
Page | 1

Connecting to UNIX/Linux at NJIT

A. V. Gerbessiotis
CS Department

 NJIT

May 25, 2023

Revised 12/21/2023

AVG-24-01

Page | 2

Previous documents dated 2021 or 2022 such as the ones listed
below are superseded by this new document. Many typos have been
corrected. This new version is also consistent with Windows 11
in addition to Windows 10.

[Ref1] Connecting to *UNIX at NJIT, December 23, 2022.

[Ref2] Connecting to *NIX at NJIT, December 23, 2021.

This 2023 document is Part A of a longer document consisting of
four parts of a Brief on Unix/Linux at NJIT.

Page | 3

 PART A

 Connecting to UNIX/Linux at NJIT

Precondition: You have an NJIT-sanctioned laptop or desktop computer that satisfies NJIT

computer policies as applicable to the CS Department and/or other NJIT units. As of this

writing, you may find the policy at the URL below (URL: Uniform Resource Locator usually

referred to as a ‘link’).

 The policy can be summarized as follows: you have a Windows-based computer (Windows

10 or may be a later version such as Windows 11).
 https://ist.njit.edu/student-computers

Page | 4

1. OSL (Open System Lab)
The term OSL at NJIT denotes Linux machines physically located
on the 2nd floor of the GITC building in a laboratory that is
known as Open Systems Laboratory (OSL in short). The machines
located in OSL have DOMAIN names oslX.njit.edu or
oslXY.njit.edu, where X,Y are digits mapping to integers from
1 to around 31. A given domain name maps to a unique IP
address starting with 128.234.44.51 for osl1.njit.edu, but
note that osl31.njit.edu might map to 128.234.44.47, which is
non-intuitive. In this document, for the sake of the
discussion to follow I will be using example machines
osl7.njit.edu and osl21.njit.edu. Therefore, X=7 in the former
case and X=2 and Y=1 in the latter case.

If you plan to connect to any one of those machines by
visiting NJIT's GITC building, skip Section 2 below. If you
are inside NJIT, and you are using a wired connection skip
Section 2 below. Some URLs (Uniform Resource Locator) of
interest are as follows.

0. NJIT computer policies as applicable to the CS Department
and other NJIT units are available, as of this writing, at

 https://ist.njit.edu/student-computers

1. [Secure Shell Client for Windows]. The URL for downloading
NJIT’s copy of MobaXterm, a Windows secure shell client
(ssh) is shown below. The URL provides also information
about using ssh on Mac OSX and Linux. We do not discuss
these options. One may also download a copy of MobaXterm of
limited functionality directly from the manufacturer. In
that case you may not even need to install MobaXterm; for
more see manufacture/publisher's web site.

https://ist.njit.edu/accessing-afs

2. The URL for ‘accessing AFS’ which means connecting to a
linux machine at NJIT is shown below

https://ist.njit.edu/afs

3. The NJIT VPN URL with links to downloadable VPN clients for
Windows, MacOSX and Linux with instructions is shown below.

https://ist.njit.edu/vpn

4. An NJIT URL with info on *nix commands is shown below.
https://ist.njit.edu/common-UNIX-commands

Page | 5

2. VPN
The discussion below uses a client computer that is a
WINDOWS 10 machine. This is in accordance with YWCC
guidelines. (It also applies to Windows 11 machines.)

NJIT persons have four options of connecting to an OSL NJIT
machine:

(a) Visiting the OSL Lab on the 2nd floor of GITC,
(b) Using within NJIT a computer with a wired internet

connection,
(c) Using within NJIT a computer with a wireless internet

connection,
(d) Using from OUTSIDE of NJIT a computer.

The discussion to follow applies only to case (d) and in some
rare cases to case (c) and both would be referred to as being
'outside of NJIT'. You may skip this section if your situation
is under case (a) or case (b).

If you plan to connect to an OSL machine from outside of NJIT
you must

(1) Detect if a VPN client has been installed previously on
your machine. We expect Computing students can figure out
whether a VPN client is preinstalled or previously
installed (by you) on their machine (Setting->Programs or
Setting->Apps might provide some information). If a VPN
client is not installed, first download such a VPN
(Virtual Private Network) client though URL 3 of Section
1, and install it. Installation is done once and might
require a reboot or a restart.

(2) Activate VPN if a VPN client is preinstalled on your
machine but is currently deactivated (this is a rare
case, since by default it is activated at boot time). If
you know how to deactivate it, you should know how to
activate it or reactivate it.
Instructions below are for a Windows 10 machine but also

applicable to a Windows 11 machine.

On my laptop the windows taskbar is at the bottom of the
screen, with a Windows icon on the bottom left corner and the
time and date information on the bottom right area/corner. In

Page | 6

the bottom right area of the taskbar you might see the icon
shown below. If not, find an up-arrow in the right area of the
task bar, click on it and see if the icon is depicted on the
popped up window. For me, it appears as shown below in Figure
1. This means that the VPN client is ACTIVATED but it is not
in USE (‘not connected to the NJIT’ network). If the VPN
client were in USE, the icon would have appeared as in Figure
4 instead.

 Figure 1.

1. You may click on this icon (shown in Figure 1) and the
following pop-up window might appear (Figure 2).

 Figure 2.

2. The Connect message (Figure 2) on the button indicates not
only that your machine is disconnected (i.e. the VPN client
is not in use), but also indicates that your clicking on it
will allow a connection to take place and thus you would be
able to start using VPN. You are about ready to click
Connect. In the next step you need to have ready your myUCID
credentials (login and password) which must not have
expired. After you click connect the pop up window of Figure
3 is shown.

Page | 7

Figure 3.

3. The Username: field might have been pre-populated with your
UCID. If not, type in your myUCID login in the Username:
field, and then type in your myUCID password in the
Password: field. The use of the TAB button (or SHIFT-TAB
button) of the keyboard can help you moving around quickly.
The Group: option can be left Default or you select an
alternative according to the user instructions available
during the VPN installation process or other information
provided by NJIT.

4. If you have supplied the correct information (correct login
name and correct associated password), a connection will be
established and VPN would be in use and the popup window of
Figure 3 will disappear. At that point if you try to locate
the VPN icon using the instructions prior to step 1, the
icon has a lock on it as shown below in Figure 4.

 Figure 4.

 5.If there was an active connection prior to step 2, and
there will be an active connection after step 3, the window of
Figure 2 would have looked like Figure 5. The button reads
Disconnect since VPN is in use vs the Connect in Figure 2 when
VPN was not yet in use. You can click on Disconnect to
terminate the VPN connection when it is of no need any more. An
alternative is to locate the icon shown in Figure 4, click on
it, and it will allow you to disconnect and thus terminate the
IN-USE VPN session.

Page | 8

 Figure 5.

 At this point if you are outside of NJIT you have a VPN
session in use. The next section deals with the interaction
with a secure shell (ssh) client and how it can be used to
connect to an OSL machine.

Page | 9

3. Secure Shell Client
If you have completed section 2, in cases 2(c) and 2(d) you
have activated VPN.

This means you have an authenticated, network connection-based
presence at NJIT.

Unix, Linux, and OSX machines have a secure shell client pre-
installed. It is accessed through the command line inside what
some Operating Systems call a terminal. The name of the secure
shell client is ssh (acronym for Secure SHell. Windows also
includes a command line secure shell client also named ssh. It
is accessible through a command shell window (aka terminal).

NJIT makes available to students and instructors a commercial
graphical-based secure shell client known as MobaXTerm. Go to
the NJIT IST site where software is available and download and
then install it from there. One can also download it and then
install it through the NJIT URL below.

 https://ist.njit.edu/how-connect-afs-mobaxterm

Another option is to go to the commercial MobaXterm web-site
https://mobaxterm.mobatek.net/

and download from it (and then install) a free limited-
capability Home-Edition version.

The discussion below is for a Windows client using
Mobaxterm. It might also work to some degree for the
command line alternative cited earlier.

Page | 10

1. Invoke Mobaxterm. An icon on your desktop might be
available for clicking on it. A window as shown in Figure 6
will pop up. Depending on your settings and customizations,
it might look different from the one in Figure 6. Click on
the button with the message Start Local Terminal

 Figure 6.

Page | 11

2. After clicking the button “Start local terminal”, a window
like the one shown below in Figure 7 will pop up. The
window opened by MobaXterm runs a program known as shell:
it accepts (and can read) input provided by the user (you)
in the form of typed commands. The window of Figure 6 is
MobaXterm and the window of Figure 7 is also MobaXterm that
runs in it a shell. All are running on the client machine
(your Windows laptop for example). That latter window’s
shell has a variable user-dependent prompt (text string)
that ends with a right arrow and then next to the right
arrow you may see a blinking cursor in the form of a
rectangular, blinking, white box. This is where the shell
of MobaXterm expects input from YOU. You type input text
(commands) next to the cursor box and when you are done you
press the ENTER key to tell the shell that YOU ARE DONE
typing and expect the shell to execute your commands.

 Figure 7.

In the next step we are going to establish a secure shell
connection between the client machine (running a MobaXterm
shell) with a remote machine (an OSL Linux computer): you will
then be typing commends in the client machine but will be
interpreted and executed by the REMOTE machine.

Page | 12

3. Start writing using the keyboard a shell command that will
be read by the client application (MobaXterm’s shell) of
your Windows client machine. The command that you will type
will be read by the client application (MobaXterm’s shell)
and then executed if it has the correct syntax. The client
application (MobaXterm) will then establish a Secure Shell
connection to a remote OSL machine whose identity has been
specified by you in the typed command. As soon as a
connection is established you would be writing down
commands apparently on the client machine’s shell, but the
window would be remote hosted by the remote host
(machine/server), and the commands would be read and
executed by the remote host instead.

For the example to follow we pick as a remote host (server)

osl7.njit.edu.
We use a generic UCID login name that is going to be
referred to as myUCID. Replace it with your own UCID
login name. If yours is abc12 replace myUCID with abc12,
if it is kat34 use kat34 and so on.
The syntax of the command that you will type appears on the
right of the cursor)

 ssh myUCID@host-name
where

ssh is the name of the client program (shell); ssh
stands for secure shell and executes on the client machine
(your computer).

myUCID denotes YOUR UCID login name known to the remote
host machine; replace the string accordingly (if your UCID
is abc12 you use abc12 in place of myUCID), and

host-name is the remote host name to which you want to
connect. For this example host-name is osl7.njit.edu

Example

Therefore if your myUCID is abc12 and you want to connect
to osl7.njit.edu you should write in the command line.

 ssh abc12@osl7.njit.edu

Do not forget to press ENTER at the end of the typed line
and every typed line. The ENTER tells the client

Page | 13

application (MobaXterm’s shell first and the remote
server’s shell later) to execute the typed command.

A Warning message might be generated the first time you
connect to this host and a password prompt is output for
you to provide your myUCID password. The blinking cursor
box is waiting for your myUCID password. Type it in and

Do not forget to press ENTER at the end of the typed
password.

See Figure 8 below.

 Figure 8.

Page | 14

4. After you typed your password and pressed ENTER you are
logged on to the remote host of the given host-name. The
screen might or might not look like the one in Figure 9.
Looking at Figure 9 in the third line from the top you
might read a "On host osl7...." verifying that you indeed
got connected to osl7.njit.edu as intended.

The window of Figure 9. is a window hosted by the remote
host (osl7.njit.edu) running its own shell! Although you
will be typing commands in the client machine, your input
will be transmitted to, read, executed, and interacted by
the remote host!

The remote host window has a different prompt as well.
At the very bottom of the screen that is Figure 9 you see
the prompt which FOR MY OWN SETUP (but maybe NOT FOR YOU)
is the percent symbol % and after a space you may see the
blinking cursor waiting for your input . The prompt and the
cursor are customizable. This is the prompt and the cursor
of the shell of the remote (host) machine not the client’s
anymore.

 Figure 9.

Page | 15

5. You might explore other options of MobaXterm. Moreover it
is possible to upload files (from the client machine to the
remote host) or download files (from the remote host to the
client machine).

Familiarize with mobaxterm (read its online manual/help).

The main area (black background) on the right side is FOR
ME the remote host (osl7).
The secondary area on the left shows information about my
file area on the remote machine’s filesystem. As soon as
ssh established a connection to the remote host, the remote
host mounted my files on the file server that is supported
by it (the remote host). The file server supports a
distributed file system known as AFS (Andew File System).
My files are available at a default location in the
filesystem; the location is known as the home directory. My
home directory ends with my UCID. Beneath a sequence of
icons and on the left side of a green checkmark you may
observe a path name that maps to my home directory
 /afs/cad.njit.edu/u/a/l/alexg
(several times it appears as /afs/cad/u/a/l/alexg)
The part of the directory /a/l map to the first two lettes
of my UCID. For you the part /a/l/alexg would definitely be
different.

Page | 16

In the next window I interact with the remote shell (black
area). I first type a command to confirm my home directory.
This command is pwd
Command pwd is short for print working directory (and
current working directory is my home directory). It prints
the current working directory in the filesystem mounted to
my UCID account.
Then I moved away from my home directory by entering
another directory I have already created: cs332.
I typed the command: cd cs332
Command cd is short for change (working) directory and the
argument to cd is either a full directory path or a
relative one. In my case I am going to move into directory
cs332 that is located at my home directory. It is thus a
relative directory to my home directory.
A command: pwd
after the cs cs332 confirms that the new working directory
is not

/afs/cad/u/a/l/alexg
any more but

/afs/cad/u/a/l/alexg/cs332
Looking at the left (white area) we observe the
corresponding changes effected.

Page | 17

Furthermore, on the left area we observe a row of icons.

One of the icons,

is the upload icon to upload a file from the client
(Windows) machine to the remote host (Linux osl7.njit.edu
machine). If you click on it a window like the one below
may open; you may navigate around it and pick a directory
and from within it a file that you might decide to upload
to the remote host or a file directly from the window if it
exists.

I decided to select the j7332f23.pdf file and then things
change as follows.

Page | 18

By clicking on Open (dialog box), an upload is initiated.
Depending on the size of the file to be uploaded the upload
might get completed within a few seconds or more. As soon
as it gets completed, the left hand (white area)of the
MobaXterm session shows the uploaded file (compare the
named files now vs the named file in a prior screenshot).
This is shown on the window on the next page.
To convince yourselves I typed in the right window (black
area)
the command ls
prior to and after the upload.
It is quite clear that one more additional file has been
added into directory cs332.

Page | 19

Read the Mobaxterm manual or help area or instructions as
made available by NJIT or through the Mobaxterm web-site
for more information.

At this point you are ready to start interacting with
the remote host.

Type in Unix/Linux commands, and when done typing them,
press the ENTER button and observe the output.
If you are not familiar with Unix or Linux there are
several tutorials or summaries out there. Pick the one you
are more comfortable with it.

Finally, to terminate the session type exit. You will
‘logout’ from the remote host, and you will the move back
to the familiar screen of Figure 7.

If you are done with MobaXterm, terminate it by clicking on
its top right corner the X symbol that will ‘kill’ the
window. Likewise locate the icon of Figure 4 and stop VPN.
The icon of Figure 4 will revert to its form in Figure 1.
At that point if you rightclick on Figure 1 you will be
able to deactivate VPN. Deactiving VPN is NOT EQUIVALENT to
an uninstall.

Page | 20

PART B

 Limited UNIX command overview

Page | 21

4. Limited Unix command
overview

In a Unix system, a user is logged on to the system by providing
a set of credentials (login name and an associated password), a
process already familiar to you from the earlier sections of
this document. At NJIT we call the credentials MyUCID
credentials consisting of a myUCID (login name) and a myUCID
password.

Immediately after the login has been completed successfully the
Unix environment would become available to the logged on user
and a program (process) would start executing in the user's
environment after the user's login: the Unix shell process.

The UNIX shell process would allow the user to interact with the
operating system and start, stop, suspend and resume the
execution of services provided by the OS or create and manage
user created processes. These services are programs and when run
they become processes. The definition of a process is ‘a program
in execution’. All interaction is done through the terminal and
its associated keyboard that was used by the user to gain access
to the system: the user types in commands to the shell and after
the shell interprets these commands, it invokes services of the
OS to execute/realize those user commands as needed and as
privileged. The OS might decline to execute some of these
commands for safety or security reasons based on the credentials
(privileges) of the user.

To keep interaction short UNIX commands to the shell are short
and sometimes intuitive. For example command ls is short for
list, cat for catenate (list contents), mkdir for make
directory, ps for process status, cd for change directory, pwd
for print working directoy, mv for move, and cp for copy.

Moreover, the UNIX shell provides command line editing, and
history of interactions with the shell thus allowing for editing
a previously lengthy command instead of retyping it before re-
execution or repeating a frequently executed command by easily
recalling it from a history of prior interactions.

Every command of the shell such as ls, ps, mv, cp, pwd, cat, cd,
is an executable program residing in secondary memory (disk). It
was originally written in C and compiled and assembled

Page | 22

subsequently into the executable file named ls, ps, etc. Thus
typing a command such as

% ls

would cause the shell (an OS process) to load the program named
ls from secondary memory into main memory, thus turning it into
a process and then executing it as needed.

A reminder: the % is the shell prompt. You do not type it. It is
output by the shell to remind you that 'I, the shell, have your
full attention: please type in your request'. Moreover when you
do so and type your request (ls in this case) do not forget to
tell the shell that you are done when you are done typing your
command. You do so by pressing the ENTER key of the keyboard at
the end.

At that moment the shell interprets your input (in the example
above it is an ls), the text between the prompt and the ENTER,
and executes it as needed. Every execution of a process in linux
(in this case ls) by default creates and interacts with three
files associated and connected with three devices:

(a) standard input also known to the user as the file with fd
(file descriptor) 0,

(b) standard output with fd equal to 1, and

(c) standard error with fd equal to 2.

Unless the shell is instructed otherwise by you, standard input
is associated with your terminal's keyboard, and standard output
and standard error are both associated with the terminal's
screen.

Moreover in Linux, multiple commands can be executed one after
the other in the command line. Thus

% ls ; date ; echo "Hi"

Thus in the above example after ls is executed, the current date
and time is printed, and afterwards a message gets printed on
the standard output, the terminal used by the user.

Moreover in Linux, multiple commands can interact with each
other with a mechanism known as an unnamed pipe. A pipe is a
FIFO (First In First Out) queue that accepts input from the
output of one command and generates output that will become the
input of another command. Thus

Page | 23

% ls | egrep filename

consists of the command ls that prints the contents of the
current directory (this description makes sense after you read
the next section if you are not familiar with any operating
system's structure) and directs this output to the unnamed pipe
indicated by the pipe | symbol. The unnamed pipe indicated
receives as input the transmitted by ls output and then it
generates its own output that is to become the input of the
command egrep. The command egrep filters its input by discarding
all lines that do not contain the string/word filename and thus
preserving to the output that it will generate the lines that
contain the string filename. The combined execution thus prints
the output lines of ls that contain the string filename.

Pipes can allow multiple cascade communication such as the
following one.

% ls –l | egrep filename | sort | less

A list of useful commands

% pwd #print current working directory

% cd path # change the current working directory to path

% cd # if you are lost go to (i.e. cd) to home
directory

% cd / # goto the root of the filesystem

% man pwd # manual page for command pwd

% man cd # manual page for cd

% whoami

% who

% date

% hostname

% cal # calendar; use also eg. cal 5 2023

% stat filename

% ls path # list contents of directory path

% ls filename # confirm whether filename exists

% ls # list contents of current working directory

Page | 24

% ls . # same as ls; . alias for current directory

% ls .. # list contents of parent directory

% ls –l # equivalent to ls -l .

% ls -l filename

% ls -l directory %ls -l path

% ls –a # Hidden files . and .. included

% ls –lai # the inode (numeric name of the file) is also
listed on the extrement left.

% ls -lR # R for recursive ; r means reverse!

% ls file* # list all files starting with file

% ls *file # list all files ending with file

The characters after a dash are option of the command (eg. ls)

% rm file # delete a file

or

% rm pathTofile

but

% rmdir directory # remove an empty directory

% rmdir pathTodirectory # remove an empty directory

% mkdir newdirectory # create a new directory

% rm –rf file # A pretty dangerous command... Avoid it.

% rm –rf directory # A pretty dangerous command... Avoid it.

% mkdir directory # Create a directory

% mv oldname newname # rename file

% mv olddir newdir # rename a directory (newdir must not
preexist)

% cp file1 file2 # make a copy of file file1

% cat filename #list contents of filename

Page | 25

% more filename #similar to less

% less filename # controlled flow version of cat

head filename

head -10 filename # print 10 first lines of filename

% tail -10 filename # last 10 lines

% egrep me file # search for me in file

% echo string # string on screen

% wc filename # num of chars, lines, words in file

% ps # process status

% ps -ef |egrep myID

% sleep 10 # screen freezes for 10sec

