
A. V. Gerbessiotis CS345

Aug 31, 2016 Fall 2016

Computer Science Fundamentals Handout 2

1 Powers of two or exponentials base two

1.1. Powers of 2. The expression 2n means the multiplication of n twos. Thus 28 = 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 is
256 and 210 = 1024. Moreover 21 = 2 and 20 = 1. Several times one might write 2**n or 2ˆn for 2n (ˆ is the
hat/caret symbol usually co-located with the numeric-6 keyboard key).

Expression Value
20 1
21 2
24 16
28 256
210 1024
216 65536
220 1,048,576
224 16,777,216
230 1,073,741,824

Figure 1: Some powers of two

Prefix Name Multiplier
d deca 101 = 10
h hecto 102 = 100
k kilo 103 = 1000
M mega 106

G giga 109

T tera 1012

P peta 1015

E exa 1018

d deci 10−1

c centi 10−2

m milli 10−3

µ micro 10−6

n nano 10−9

p pico 10−12

f femto 10−15

Figure 2: SI system prefixes

1.2. Properties of powers. Among these

1.2.1 (Multiplication.) 2m · 2n = 2m 2n = 2m+n. (Dot · optional.)

1.2.2 (Division.) 2m/2n = 2m−n. (The symbol / is the slash symbol)

1.2.3 (Exponentiation.) (2m)n = 2m·n.

1.3. Approximations for 210 and 220 and 230. Since 210 = 1024 ≈ 1000 = 103, we have that
220 = 210 · 210 ≈ 1000 · 1000 = 1, 000, 000 = 106.
Likewise, 230 = 210 · 210 · 210 ≈ 1000 · 1000 · 1000 = 1, 000, 000, 000 = 109.
Therefore 220 is roughly one million (a bit more) and 230 is roughly one thousand million (a bit more).
Is 230 always roughly a billion ? Think twice and after reading 1.4 below.

1.4 Billions and Trillions: SI notation. Note that in British English, one billion is one million millions i.e.
a trillion in American English! And a trillion in British English might have 18 zeroes following the one! So we
prefer to say 1G for 109 and 1T for 1012 using the SI (Systeme International d’ unites) prefixes (or prefices)!

2 Logarithms base two

2.1. Logarithm base two (y = lg (n)). The logarithm base two of n is denoted by y = lg (n) or just y = lg n
or sometimes y = log2 n, and it is the power y that we need to raise integer 2 to get n.

That is, y = lg n ⇐⇒ 2y = 2lgn = n.

We sometimes write lg lg n to denote lg (lg (n)) and the nesting of logarithms can go on.

Expression Value Explanation
lg (1) 0 since 20 = 1
lg (2) 1 since 21 = 2
lg (16) 4 since 24 = 16
lg (256) 8 since 28 = 256
lg (1024) 10 since 210 = 1024
lg (1048576) 20 since 220 = 1048576
lg (1073741824) 30 and so on

Figure 3: Logarithms: Base two

2.2 The other logarithms: log10(x) and ln (x). If one writes log n, then the writing will be ambiguous.
Mathematicians or engineers might assume that it is to the base 10, i.e. log10 n or they can confuse it with lnn,
that uses as base the base e of the Neperian logarithms, i.e. loge n = lnn, where e is the base of the Neperian
logarithms e = 2.7172

ln (x) is the base e logarithm i.e. loge (x)

log (x) MIGHT BE the base 10 logarithm i.e. log10 (x)

2.3 Example. lg 2 is one since 21 = 2. lg (256) is 8 since 28 = 256. lg (1) is 0 since 20 = 1.

2.4. Example. Since 210 = 1024 we have that lg (1024) is 10.

2.5. Properties of Logarithms. In general, 2lg (n) = n and thus,

2.5.1 (Product.) lg (n ·m) = lg n+ lgm.

2.5.2 (Division.) lg (n/m) = lgn− lgm.

2.5.3 (Exponentiation.) lg (nm) = m · lg n.

2.5.4 (Change of base.) nlgm = mlgn.

2.6. Example. Since 220 = 210 · 210 we have that lg (220) = lg (210 · 210) = lg (210) + lg (210) = 10 + 10 = 20.
Likewise lg (230) = 30. Similarly to paragraph 1.3 of the previous page, lg (1, 000) ≈ 10 , lg (1, 000, 000) ≈ 20 and
lg (1, 000, 000, 000) ≈ 30.

2.7 How much is n1/ lgn? Let z = n1/ lgn. Then by taking logs of both sides (and using 2.5.3) lg z =
(1/ lg n) lg n = 1, we have lg z = 1 which implies z = 2.

3 Floors/Ceilings, Sets/Sequences, Conjunction/Disjunctions

3.1 The floor bxc. The floor function is defined as follows: bxc is the largest integer less than or equal to x.

3.1.1 Exercise: The floor of b10.1c and b−10.1c . The b10c is 10 itself. The b10.1c is 10 as well. The b−10.1c
is −11.

3.2 The ceiling dxe. The ceiling function is defined as follows: dxe is the smallest integer greater than or equal
to x.

3.2.2 The ceiling of d10.1e and d−10.1e . The d10e is 10 itself. The d10.1e is 11 as well. The d−10.1e is −10.

3.3 For a set we use curly braces { and } to denote it. In a set the order of its elements does not mater.
Thus set {10, 30, 20} is equal to {10, 20, 30}: both represent the same set containing elements 10,20, and 30 and
thus {10, 30, 20} = {10, 20, 30}.

3.4 For a sequence we use angular brackets 〈 and 〉 to denote it. In a sequence the order of its elements
matters. Thus by using angular bracket notation sequence 〈10, 30, 20〉 represents a sequence where the first
element is a 10, the second a 30 and the third a 20. This sequence is different from sequence 〈10, 20, 30〉. The
two are different because for example the second element of the former is a 30, and the second element of the
latter is a 20. Thus those two sequences differ in their second element position. (They also differ in their third
element position anyway.) Thus 〈10, 30, 20〉 6= 〈10, 20, 30〉.

3.5 Sets include unique elements; sequences not necessarily. Note the other distinction between a set
and a sequence. The {10, 10, 20} is incorrect as in a set each element appears only once. The correct way to
write this set is {10, 20}. For a sequence repetition is allowed thus 〈10, 10, 10〉 is OK.

3.6 Sets or sequences with too many elements to write down: three periods (. . .) Thus {1, 2, . . . , n}
would be a way to write all positive integers from 1 to n inclusive. The three period symbol . . . is also known as
ellipsis (or in plural form, ellipses).

3.7 ”Forall”, ”there exists” and ”belongs to”. The symbols ∀ , ∃, ∈ mean ”forall”, ”there exists” and
”belongs to” respectively.

3.8 Conjunction, Disjunction and Negation. The symbols ∧, ∨ and ¬ denote Conjunction, Disjunction
and Negation respectively. For true, we might use true or t or 1; likewise false , or f , or 0 for false. Thus
1 ∧ 0 = 0 and 1 ∨ 0 = 1. And x ∧ ¬x = 0 and x ∨ ¬x = 1. Sometimes we write x̄ for ¬x. Alternatively we might
write x∧y or x AND y for conjunction. Alternatively we might write x∨y or x OR y for disjunction. Alternatively
we might write NOT(x) for negation.

4 The factorial and Stirling’s approximation formula

4.1 The factorial n!. The factorial n! is defined as follows:

n! = 1 · 2 · . . . · n.

By definition 0! = 1 and 1! = 1. Thus 2! = 2, 3! = 6 and so on.

4.2 An upper bound for the factorial n! ≤ nn. A trivial upper bound for the factorial is derived by
upper-bounding each one of its terms by n.

n! = 1 · 2 · . . . · n ≤ n · n · . . . · n = nn.

4.3 A lower bound for the factorial n! ≥ (n/2)(n/2). A trivial lower bound for the factorial is derived by
lower-bounding half of its lower-order terms by 1, and half of its higher-order terms by n/2.

n! = 1 · 2 · . . . · (n/2) · (n/2 + 1) · . . . · n ≥ 1 · 1 · . . . · 1 · (n/2) · . . . · (n/2)
= (n/2)(n/2).

Of course here we ”ignored” differences between odd and even values of n. The analysis above is true and correct
for even n. Think of for n = 6 and n/2 = 3 and n/2 + 1 = 4 that

6! = 1 · 2 · 3 · 4 · 5 · 6 ≥ 1 · 1 · 1 · 4 · 5 · 6 ≥ 1 · 1 · 1 · 3 · 3 · 3 = 33 = (6/2)(6/2)

Otherwise for an odd n one should write,

n! = 1 · 2 · . . . · bn/2c · dn/2e · . . . · n ≥ 1 · 1 · . . . · 1 · dn/2e · . . . · dn/2e
≥ 1 · 1 · . . . · 1 · (n/2) · . . . · (n/2)
= (n/2)(n/2).

Think of for n = 5 and b5/2c = 2 and d5/2e = 3 that

5! = 1 · 2 · 3 · 4 · 5 ≥ 1 · 1 · 3 · 4 · 5 ≥ 1 · 1 · 2.5 · 2.5 · 2.5 = 2.53 ≥ (5/2)(5/2)

4.4 An approximation for n!. The following is a simplified approximation of Stirling’s approximation formula
that follows in 4.5.

n! ≈
(n
e

)n
,

4.5 Stirling’s approximation formula for n!. It applies for n ≥ 10.

n! =
√

2πn
(n
e

)n(
1 + Θ

(
1
n

))
,

A corrolary is that lg(n!) is approximately n lg n or Θ(n lg n) after the assymtotic Θ symbol is introduced!

lg (n!) ≈ n lg n− n lg e = Θ(n lg n).

4.6 The choose symbol as in n choose k or choose k objects out of n.(
n

k

)
=

n!
k!(n− k)!

,

5 Bits and Bytes

5.1 Bits and bytes! (The capitalization is English grammar imposed and intended as an unintentional joke!)

5.2 Bit and its notation. A bit is an ACRONYM derived from BInary digiT and is the minimal amount of
digital information. A bit can exist in one of two states: 1 , 0 or High, Low or Up, Down or True, False or T,
F. The correct notation for a bit is a fully spelled lower-case bit. If we want to write down in English 9 binary
digits we write down 9bit; a transfer rate can be 9.2bit/s. The notation 9b should be considered nonsense. A
lower-case b should never denote a bit! Several publications mistakenly do so, however!

5.3 Byte and its notation. A byte is the minimal amount of binary information that can be stored into the
memory of a computer and it is denoted by a capital case B. Etymologically, a byte is the smallest amount of
data a computer could bite out of its memory! We cannot store in memory a single bit; we must utilize a byte
thus wasting 7 binary digits. Nowadays, 1B is equivalent to 8bit. Sometimes a byte is also called an octet.
Memory size is usually expressed in bytes or its larger multiples. We never talk of 8,000bit memory: 1,000B is
the correct way to describe it! To store 9bit in memory we need 2B (the extra byte is for the 9th bit)! Sometimes
we write 10byte or 10Byte which are acceptable; don’t use them and write 10B instead.

5.4 Aggregates of a Byte. A word is defined to be 32-bit, i.e. 4B. A double-word is thus 8B. The metric
system (i.e. SI i.e. International System) notation for Byte multiples follows.

1 bit = 2 states (0 or 1) [NEVER use 1b] , 1 byte = 1B = 8bit [AVOID 1Byte or 1byte]

1 short = 1 wide-byte =2B= 16bit , 1 word = 4B = 32bit , 1 double-word = 8B = 64bit

Symbol Factor Short/Long Name Memory size and reading

Ki = 2**10 kibi kilobinary 1KiB= 1kibibyte = 2**10B,

Mi = 2**20 mebi megabinary 1MiB= 1mebibyte = 2**20B,

Gi = 2**30 gibi gigabinary 1GiB= 1gibibyte = 2**30B,

Ti = 2**40 tebi terabinary 1TiB= 1tebibyte = 2**40B,

Pi = 2**50 pebi petabinary 1PiB= 1pebibyte = 2**50B,

AVOID THE FOLLOWING CONFUSING NOTATION

It’s confusing to write 1kB for 1024B as 1k is 1000; Is 1MB equal to 1,000,000B, or 1000kB or 1024kB or 1MiB?

It’s confusing to write 1KB for 1024B as K is degree Kelvin not the 1024 multiplier!

Microsoft uses 1GB for 1GiB of main memory/RAM but hard-disk companies uses 1GB for 1,000,000,000B.

5.6 How many bytes in 1KB or 1MB or 1GB? Use 1KiB, 1MiB, 1GiB if you are thinking of 210B, 220B, 230B
respectively for main memory (RAM) size or disk-drive capacity. A K is degrees Kelvin so 1KB is not SI compli-
ant; yet it is being used for 1KiB. The original sinner was 1kB that was used to denote 1024B; Intel is using 1KB
for 1024B! Avoid 1kB, avoid 1KB and use instead 1KiB! For main memory (aka RAM) Intel or Microsoft use 1GB
to mean 230B. Hard-disk drive manufacturers such as Seagate use 1GB to mean 1, 000, 000, 000B. Yet Microsoft
uses 1GB to mean 230B of a hard-disk drive. Avoid all problems using 1GiB for 230B.
Final Question: When is 500GB equal to 453GB for the correct 453GiB? A hard-disk drive (say,
Seagate) with 500GB on its packaging, will offer you a theoretical 500,000,000,000B. However this is unformatted
capacity; the real capacity after formatting you can use would be 2-3% less, say 487,460,958,208B. Yet an
operating system such as Microsoft Windows 7 will report this latter number as 453GB. Microsoft would divide
the 487,460,958,208 number with 1024*1024*1024 which is 453.93GiB i.e. microsoft’s 453GB.

5.7 Memory is a linear vector. A memory is an array of bytes, i.e. a sequence of bytes. In memory M ,
the first byte is the one stored at M [0], the second one at M [1] and so on. A byte is also a sequence of 8bit.

5.8 Big Endian vs Little Endian. If we plan to store the 16-bit (i.e. 2B) integer 0101010111110000 in memory
locations 10 and 11, how do we do it? Left-part first or right-part first (in memory location 10)? This is what
we call byte-order and we have big-endian and little-endian. The latter is being used by Intel.

BigEndian LittleEndian(Intel architecture)

10: 01010101 11110000

11: 11110000 01010101

6 Frequency and Time Domain

6.1 Frequency: Hz vs cycles/s. The unit of frequency is cycles per second. The symbol for the unit of
frequency is the Hertz, i.e. 1Hz = 1cycle/s. Then 1kHz, 1MHz, 1GHz, and 1THz are 1000, 106, 109, 1012

cycles/s or Hz. Note that in all cases the H of a Hertz is CAPITAL CASE, never lower-case. (The z is lower
case everywhere.)

6.2 Time in seconds or submultiples or multipes. The unit of time is the second and it is denoted by 1s or
also 1sec. Submultiples are 1ms, 1µs, 1ns, 1ps which are 10−3, 10−6, 10−9, 10−12 respectively and are pronounced
millisecond, microsecond, nanosecond, and picosecond respectively. Note that millisecond has two ells.

6.3 Frequency (f) and time (t): f · t = 1. The relationship between frequency and time is given by the
following equality f · t = 1. Thus 5Hz, means that there are 5 cycles in a second and thus the period of a cycle is
one-fifth of a second. Thus f=5Hz implies t=1/5s=0.2s. Computer or microprocessor speed used to be denoted in
MHz and nowadays in GHz. Thus an Intel 80486DX microprocessor rated at 25MHz, used to execute 25,000,000
instructions per second; one instruction had a period or execution time of roughly 1/25, 000, 000 = 40ns. A
moderm CPU rated at 2GHz allows instructions to be completed in 1/2, 000, 000, 000 = 0.5ns. (And note that
in 1990s and also in 2010s retrieving one byte of main memory still takes 60-80ns.)

6.4 Nanosecond and Distance (and speed of light). In one nanosecond, light (in vacuum) can travel a
distance that is approximately 1 foot. Thus 1 foot is approximately ’’1nanosecond’’.

7 Number systems: Denary, Binary, Octal, and Hexadecimal

7.1 Number Systems: Radix or Base. When we write number 13, implicit in this writing is that the
number is a denary (base-10) integer, and thus we utilize digits 0-9 to write this integer down. Since we use
ten digits, the base or radix of this number is 10. We may write this explicitly by saying ”base-10 integer 13”
or ”radix-10 integer 13”. If every number that we write is in base-10 / radix-10 we usually omit to mention the
base/radix explicitly. Sometimes we just say that the number is in ”decimal” or it is a ”decimal integer” or a
”denary integer”. The former ”decimal” might cause confusion as ”decimal” is associated with the decimal digits
or decimal point of a real number. For this reason, the unfamiliar ”denary” may and should be used instead.
A more convenient way to describe the radix is as a subscript to the number itself: write 1310. (In computing
base-8 and base-16 utilize the special prefixes 0o or 0x or 0X as shown below, to indicate the radix/base for such
integers or numbers.)

Base or Radix # digits used digits notation

Binary 2 2 0, 1 1001011

2

Octal 8 8 0..7 113 or 0o113

8

Denary 10 10 0..9 75 or 75

(also, Decimal) 10

Hexadecimal 16 16 0..9 a..f 0x4b or 0X4B or 4b or 4B

0..9 A..F 16 16

7.2 Natural Integer Numbers: Unsigned Integers. A natural (integer) number is a positive integer.
Sometimes a zero is included. In computing we call such integers unsigned integers, i.e they are non-negative
integers (zero or positive).

7.3 Integer Numbers: Signed Integers. In general an integer number can be positive, negative or zero. In
computing we call such integers signed integers.

7.4 Real Numbers: Floating-point Numbers. A real number (that includes integer digits, possibly a
decimal point, and decimal digits) is called in computing a floating-point number. Thus 12.1 or 12.10 or
1.21 · 101 represent a real number. In exponential notation a × 10b might also be written as aEb or aeb. Thus
5.1× 103 is 5.1e3 or 5.1E3.

7.5 n-bit or n-digit numbers. When we talk about binary numbers we fix and express explicitly the binary
digits of the representation: thus n-bit denotes an n-bit or n-digit binary number. An n-digit number can be
base-2, base-10, base-8, or base-16. But for an n-bit number the ”bit” indicates a binary digit and thus implicit
in this description is the fact that the number is a binary number. Binary numbers can get quite lengthy. We
can group three bits or four bits and assign a special symbol to the group to generate its octal or hexadecimal
representation instead (23 = 8 and 24 = 16). For the 8-bit integer 11110000 the right-most zero is sometimes
called the least-significant bit or digit and the left-most one is sometimes called the most-significant bit or
digit. This is if all bits of 11110000 represent its magnitude i.e. its value. When signed integers are represented
and the left-most bit is the sign the remaining bits is the magnitude i.e. 1110000 and then the left-most bit of
the magnitude might be called the most-significant bit. However this is not universally followed/adhered.

7.6 Example.

101 is base-10, base-2, base-8, based-16 representation of 5, 101, 65, 257 respectively

41 cannot be in base-2 because it uses digit 4 which is not one of the binary digits

81 cannot be in base-2, nor base-8 because it uses an 8 available only for base-10, base-16

AB cannot be in base-2,base-8,base-10, becaused digits A,B are only used in hexadecimal.

7.7 How many (minimal number of) bits to represent unsigned integer n, where n > 0? The number
of bits for n is blg nc+ 1 or equivalently dlg (n+ 1)e. Thus for 1 we need 1 bit, for 2 i.e. 102 we need two, for 4
ie. 1002 we need three and for 7 i.e 1112 we also need three.

7.8 Table of some integers in binary, octal, hexadecimal and denary.

Binary Denary Hexadecimal Octal Notes

0000 0 0 0 Octal 17 is formally written as 0o17

0001 1 1 1

0010 2 2 2

0011 3 3 3 Hexadecimal 11 is formally written as 0x11

0100 4 4 4 Hexadecimal FF or ff is written 0XFF or 0xff respectively

0101 5 5 5

0110 6 6 6

0111 7 7 7

1000 8 8 10

1001 9 9 11

1010 10 A 12

1011 11 B 13

1100 12 C 14

1101 13 D 15

1110 14 E 16

1111 15 F 17

10000 16 10 20

10001 17 11 21

7.9 Example with b = 2. Convert n = 5-digit integer 110012 into decimal. Thus 110012 is 2510 i.e. 25.

24 23 22 21 20

· · · · ·
1 1 0 0 1
= = = = =
16+ 8+ 0+ 0+ 1 = 25

7.10 Example with b = 8. Convert n = 5-digit integer 110018 into decimal. Thus 110018 is 460910 i.e. 4609.

84 83 82 81 80

· · · · ·
1 1 0 0 1
= = = = =
4096+ 512 0+ 0+ 1 = 4609

7.11 Example with b = 2. Convert 12, 102, 1002, 10002, . . . , 1 0 . . . 0︸ ︷︷ ︸
x zeroes

into decimal.

12 is 110 i.e. 20 = 1.
102 is 21 = 2.
1002 is 22 i.e. 4.

10002 is 23 i.e. 8.

Likewise 1 0 . . . 0︸ ︷︷ ︸
x zeroes

is 2x.

7.12 Example with b = 2. Convert 12, 112, 1112, 11112, . . . , 1 . . . 1︸ ︷︷ ︸
x ones

into decimal.

12 is 110 is 21 − 1 i.e. a 1.
112 is 22 − 1 i.e. 3.
1112 is 23 − 1 i.e. 7.

11112 is 24 − 1 i.e. 15.

Likewise 1 . . . 1︸ ︷︷ ︸
x ones

is 2x − 1.

7.13 Example with b = 2. How many non-negative integers can be represented with n bits? Answer is 2n

from 0 to 2n − 1.
7.14 Example. Convert n = 8-bit binary 11111111 into octal

’ 11’111’111 : Group : Step 1.

’011’111’111 : Add leading zeroes : Step 2

3 7 7 : Convert groups into octal : Step 3

0o377 : Output : Step 4

7.15 Example. Convert n = 8-bit binary 11111111 into octal

’1111’1111 : Group : Step 1.

’1111’1111 : Add leading zeroes : Step 2

F F : Convert groups into octal : Step 3

0XFF : Output : Step 4

or

0xff : Output : Step 4

7.16 Example: Denary to Binary (left to right). Convert x = 77 into binary. The result is 10011012.

K=6 K=5 K=4 K=3 K=2 K=1 K=0

2**6 2**5 2**4 2**3 2**2 2**1 2**0

X=77

64 <= 77? 1

X=77-64=13

32 <= 13? 1 0

X = 13

16 <= 13? 1 0 0

X=13

8 <= 13? 1 0 0 1

X=13-8=5

4 <= 5 ? 1 0 0 1 1

X=5-4=1

2 <= 1 ? 1 0 0 1 1 0

X=1

1 <= 1 ? 1 0 0 1 1 0 1

X=1-1=0

Result is 1001101

7.17 Example: Denary to Binary (right to left). Convert x = 77 into binary right to left. The result is
10011012.

X= 77 is odd --------------------------------------

|

X=(77-1)/2=38 |

X=38 is even ----------------------------------- |

| |

X=38/2=19 | |

X=19 is odd ------------------------------- | |

| | |

X=(19-1)/2=9 | | |

X=9 is odd --------------------------- | | |

| | | |

X=(9-1)/2=4 | | | |

X=4 is even ----------------------- | | | |

| | | | |

X=4/2=2 | | | | |

X=2 is even ------------------- | | | | |

| | | | | |

X=2/2=1 | | | | | |

X=1 is odd --------------- | | | | | |

| | | | | | |

X=(1-1)/2=0 1 0 0 1 1 0 1

Output 1001101

7.18 Range of an 8-bit unsigned and signed integer.

8-bit unsigned can represent all 2**8 = 256 unsigned integers from 0..255

8-bit signed (two’s complement) can represent the 256 integers -128 .. -1 0 1 .. 127

consisting of 128 negative values, 127 positives values and zero

7.19 Signed integers. In order to be able to represent negative integers we need to somehow represent the
sign of the number as positive (say +) or negative (say −). We somehow need to incorporate this sign with the
binary digits of the number. The simplest way to accomplish this is to borrow one of the bits of a binary number
and use the 0 value of it to represent a positive number and the 1 value of it to represent a negative number.
That is too easy. The problem that we might face is zero: Will its sign be positive or negative, i.e. a 0 bit or

a 1 bit? How we handle zero, is going to affect the discussion that follows. But let us resolve first one more
issue. What bit of a bit sequence will denote the sign? The answer to this question is rather easy: the left-most
bit. Note that we use the term left-most rather than the dangerous (in this setting) most-significant digit or
most-significant bit. In addition, when we deal with binary (positive and negative) integers we also need to be
explicit about the number of digits in the representation. The are three major representations of (negative and
non-negative) integers.
7.19.2 A Signed mantissa. An n-bit integer in signed mantissa has one sign bit (the leftmost one) and n− 1
bits for the value (magnitude). Thus integers in the range −2n−1, . . . , 2n−1 can be represented with two zeroes,
a negative and a positive one available. 7.19.2.a Signed Mantissa Example. Thus for 8-bit integers, +43
becomes 00101011 and −43 becomes 10101011. The left-most (cautiously most-significant-bit) is the sign and
differs in +43 from −43; the remaining 7 bits are the same 0101011 and correspond to natural number 43. Note
that one NEEDS TO TELL US THAT 10101011 is in signed-mantissa representation. Otherwise we might think
that this a natural (unsigned) integer whose value is 171. Note that 128 + 43 = 171. Thus if x is a positive
integer number, then we can represent −x in signed-mantissa 8-bit notation by considering 128 + x, and writing
down its bits as if it was a natural number rather than the negative number −x. Moreover for 10101011 in signed
mantissa, we treat it first as if it is a non-negative integer and retrieve its magnitude 171. Given that we know
is in signed mantissa and the left most bit that is a one is the sign the negative representated is the negation of
171− 128 = 43 i.e it represent −43! Note that in signed mantissa there is a positive zero and a negative zero i.e.
00000000 and 10000000.
7.19.3 One’s complement. It is similar to the signed mantissa representation for range and number of zeros.
Thus an n-bit one’complement integer can represent all integers in the range −2n−1, . . . , 2n−1 with two zeroes
(the positive zero being an all-zero sequence and the negative zero an all-one bit sequence).
7.19.4 Two’s complement. An n-bit integer in two’s complement has a left-most bit used as a sign bit, and
the remaining n− 1 bits for its value. There is only one zero (all bits are zero) and the integers represented are
in the range −2n−1, . . . , 2n−1 − 1.
7.19.4.1. Two’s complement example. In two’s complement we have the left-most bit used as a sign bit as
well. There is only one zero. The two’s complement of a non-negative integer is the integer itself in binary. Thus
37 is represented as an 8-bit two’s complement integer by the bit sequence 00100101. If we plan to represent -38
though, we first flip the bits i.e. we generate 11011010 and add one to the result obtaining 11011011, which is
two’s complement for -38. Thus 00000000 corresponds to zero. What do we make out of 11111111? Definitely
it is a negative integer. We reverse the steps of converting a denary integer into two’s complement by first
subtracting one to get 11111110. Then we flip the bits to get 00000001. Thus 11111111 is −1. For the same
reason there is no negative zero as well: if we start with zero, flip the bits to get 11111111 and try to add one
to it we end up getting a 9-bit 100000000 that cause overflow problems!
7.20 Java’s numeric data types. In java a byte is an 8-bit signed two’complement integer whose range is
−27 . . . 27 − 1. In java a short is a 16-bit signed two’complement integer whose range is −215 . . . 215 − 1. In
java an int is a 32-bit signed two’complement integer whose range is −231 . . . 231 − 1. In java a long is a 64-bit
signed two’complement integer whose range is −263 . . . 263 − 1. The default value of a variable for the first three
primitive datatypes is 0 and for the latter a 0L.
7.21. Floating Point in Fixed-Point. One easy way to incorporate real numbers is to assume that in fixed-
point n-bit representation, some of the bits represent the integer part (say a of them) and the remaining n − a
bits the decimal If one does not want to commit that many bits, a floating-point representation is used where
the decimal point is not fixed to a digits or n− a decimals.

Integer Fixed-Point Fixed-Point

abcd.efgh abcde.fgh

00011100 28 1.75 3.50

abcd.efgh = a x 8 + b x 4 + c x 2 + d x 1 + e x 1/2 + f x 1/4 + g x 1/8 + h x 1/16

abcde.fgh = a x16 + b x 8 + c x 4 + d x 2 + e x 1 + f x 1/2 + g x 1/4 + h x 1/8

7.22. Floating Point Values. Let us start with some definitions affecting real numbers. A normalized binary
number is one that has a 1 just before (on the left of) the decimal point. Thus 100. looks like 4 but it is not
normalized. Its normalized form would be 1.0 × 22 resulting by shifting it to the right two positions. Thus a
normalized binary number is always of the form ±1.xxxx2 × 2yyyy where xxxx is the fraction or mantissa
and yyyy is the exponent. The fraction plus one i.e. 1.xxxx is known as the significand D. The significand
by definition is always a small real number between 1 and 2. Real number in floating-points are represented
using the IEEE 754-1985 standard. Be reminded that in IEEE 754-1985 neither addition nor multiplication are
associative any more. Thus it is possible that (a+ b) + c 6= a+ (b+ c). Thus errors can accumulate when we add
or multiply values! Do not forget that!

single precision (SP) double precision (DP)

32-bit 64-bit

Bias B=127 Bias B=1203

------------------------------ ------------------------------

|S| E 8-bit | F 23-bit | |S| E 11-bit | F 52-bit |

------------------------------ ------------------------------

Reserved Values

E F s E F

00000000 0..0 0 0..0 0..0 is positive zero +0.0

00000000 0..0 1 0..0 0..0 is negative zero -0.0

00000000 X..X NotNormalized (1-2S) x 0.F x 2**-126

11111111 0..0 0 1..1 0..0 is positive Infinity

11111111 0..0 1 1..1 0..0 is negative Infinity

11111111 X..X NaN Not-a-Number (eg 0/Inf, 0/0, Inf/Inf)

Smallest E: 0000 0001 = 1 - B = -126

Smallest F: 0000 ... 0000 implies Smallest D: 1.0000 ... 0000 = 1.0 [normalized]

Smallest Number = 0 00000001 0....0 = (1-2S) x 1.0 x 2**-126 ~ (1-2S) 1.2e-38 [normalized]

Largest E: 1111 1110 = 254 - B = 127

Largest F: 1111 ... 1111 implies Largest D: 1.1111 ... 1111 ~ 2.0 [normalized]

Largest Number = 0 11111110 1....1 = (1-2S) x 2.0 x 2**127 ~ (1-2S) 3.4e38 [normalized]

Smallest E: 0000 0000 reserved to mean 2**-126 for nonzero F

Smallest F: 0000 ... 0001 implies Smallest D: 0.0000 ... 0001 = 2**-23 [Unnormalized]

Smallest Number = 0 00000000 0....1 = (1-2S) x 2**-23 x 2**-126 = 2**-149 [Unnormalized]

Largest E: 0000 0000 reserved to mean 2**-126 for nonzero F

Largest F: 1111 ... 1111 implies Largest D: 0.1111 ... 1111 ~ 1-2**-23 [Unnormalized]

Largest Number = 0 00000000 1....1 = (1-2S) x 1-2**-23 x 2**-126 ~ 2**-126(1-2**-23) [Unnormalized]

7.23 Single Precision(SP). In single precision the sign S is one-bit (left-most one), the exponent E is 8-bit and
the fraction F is 23-bit. Viewing E as an unsigned integer and converting it into its value and converting all the
23-bits into the corresponding fraction ala the fixed-point conversion, the floating-point number represented by
the bit-sequence (S,E, F,D = 1+F) is n = (1−2S)× (1+F)×2E−B = (1−2S)× (1+F)×2E−127. The relative
precision is SP given that it uses a 23-bit fraction is roughly 2−23, thus 23 log10 2 ≈ 6 decimal digits of precision
can be expected. There are two zeroes: when all of E, F are the 0-bit sequences the positive and negative zero
is determined by the sign bit

7.24 Double Precision(DP). In double precision the sign S is one-bit (left-most one), the exponent E is 11-bit
and the fraction F is 52-bit. Viewing E as an unsigned integer and converting it into its value and converting all
the 52-bits into the corresponding fraction ala the fixed-point conversion, the floating-point number represented
by the bit-sequence (S,E, F) is n = (1 − 2S) × (1 + F) × 2E−B = (1 − 2S) × (1 + F) × 2E−1203. The relative
precision is DP given that it uses a 52-bit fraction is roughly 2−52, thus 52 log10 2 ≈ 16 decimal digits of precision
can be expected. Thus the first double precision number greater than 1 is 1 + 2−52.

7.23.1 Single Precision Example(s). In order to represent −0.75 in single precision we first normalize it
i.e. −0.75 = −1 × 1.12 × 2−1. The binary number (in fixed point) 1.12 is 1.5 thus this expressions means that

−0.75 = −1× 1.5× 2−1 which is correct. To determine E, we add the B i.e. E = B + (−1) = 127− 1 = 126. Its
8-bit binary representation is 0111 1110. The fraction part F is 1 or in 23 bits 1000000 00000000 00000000.
Thus the result is

S E F

10111111 01000000 00000000 00000000 = 1 | 01111110 | 1000000 00000000 00000000 =

What number is 110000001010....0? Since the sign bit is S = 1 we know the number is negative. The
following 8 bits are the exponent E 10000001 i.e. they represent E = 129. Then the exponent is e = E − B =
129 − 127 = 2. The fractional part is F=010 . . . 0 and thus D = 1.010 . . . 0. Converting D into denary we get
d = 1 + 1/4 = 1.25. Thus the number reprsented is (1− 2S)× 1.25× 22 = −5.0

Then represent 1/10 i.e. the 0.110 in SP. The one-tenth representation caused problem in the 1991 Patriot
missile defense system that failed to intercept a Scud missile in the first Iraq war resulting to 28 fatalities.

7.24 Same algebraic expression, two results. The evaluations of an algebraic expression when commutative,
distributive and associative cancellation laws have been applied can yield at most two resulting values; if two
values are resulted one must be a NaN. Thus 2/(1 + 1/x) for x =∞ is a 2, but 2x/(x+ 1) is a NaN.

7.25 Double-Extended Precision(DP). In double-extended precision the sign S is one-bit (left-most one),
the exponent E is at least 15-bit and the fraction F is at least 64-bit; at least 10 bytes are used for a long double.

8 Limits

8.1. Limits in computing: Asymptotics. In computing limits are for n → ∞ i.e. for asymptotically large
values of some parameter n. The parameter n is problem size or problem size-related. Thus for a sequence of n
keys, n is the parameter that represents the number of elements in the sequence. For an 2d-array (aka matrix)
n× n, parameter n represents the number of its rows or columns: in this latter examples the size of the matrix
is n2.

8.2.
lim
n→∞

n =∞

lim
n→∞

n lg n =∞

lim
n→∞

lg n =∞

lim
n→∞

2n =∞

8.3.

lim
n→∞

(a/b)n =


0 a < b

1 a == b

∞ a > b

8.4.
lim
n→∞

2n

n!
= 0

8.5. Example Apply L’Hospital if needed. Forget about conversion (multiplicative) constants; they won’t affect
a 0 or an ∞ limit. Thus in the third equality do not spend time thinking of whether 1/n must be multiplied
with ln 2 or divided by ln 2, let alone with lg 2 (which by the way is equal to one)!

lim
n→∞

n lg n
n2

= lim
n→∞

lg n
n

= lim
n→∞

(lg n)′

(n)′
= lim

n→∞

(1/n)
1

= 0

BTW, derivatives are in Section 9.

9 Derivatives and Integrals

9.1.

(f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x),
(
f(x)
g(x)

)′
=
f ′(x)g(x)− f(x)g′(x)

g2(x)
,

9.2. For fixed constant k > 0.(
xk
)′

= k · xk−1, (ex)′ = ex, (ax)′ = ax · ln (a), (ln (x))′ = 1/x,

As also discussed in 8.5, ignore the multiplicative constant ln (a) in all calculations involving
the limits 0 and ∞

9.3. For fixed constant k > 0, and for n in place of x we shall ignore multiplicative constants in our calculations.(
nk
)′
≡ nk−1, (2n)′ ≡ 2n, (an)′ ≡ an, (ln (n))′ ≡ 1/n, (lg (n))′ ≡ 1/n,

9.4.∫
xkdx = xk+1/(k+1)+c,

∫
(1/x)dx = ln (|x|)+c,

∫
(ex)dx = ex+c,

∫
(ax)dx = ax/ ln (a)+c,

10 Sums of sequences: finite and infinite

10.1. Some constants: Neperian base, π, Euler’s gamma, Golden ratio phi φ and its Fibonacci-related counter-
part.

e ≈ 2.718281, π ≈ 3.14159, γ ≈ 0.57721, φ =
1 +
√

5
2

≈ 1.61803, φ̂ =
1−
√

5
2

≈ −.61803.

10.2. Finite Sum of integers, integer squares and integer cubes. The first is the arithmetic series.

An =
n∑
i=1

i =
n(n+ 1)

2
,

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
,

n∑
i=1

i3 =
n2(n+ 1)2

4
.

10.3. For a 6= 1 we have the following finite sums. The first one is the geometric series.

Gn =
n∑
i=0

ai =
an+1 − 1
a− 1

,
n−1∑
i=0

iai =
(n− 1)an+1 − nan + a

(1− a)2
, (1 + d)n =

∞∑
i=0

(
n

i

)
di

10.4. For | a |< 1 we have the following infinite sums derived from Gn as n→∞.

∞∑
i=0

ai = 1 + a+ a2 + . . .+ ai + . . . =
1

1− a
,

∞∑
i=1

ai =
a

1− a

10.5. For | a |< 1 we have the following infinite sum by taking the first derivative of 10.4 and multiplying by a.

∞∑
i=0

iai = a+ 2a2 + . . .+ iai + . . . =
a

(1− a)2
; For a = 1/2, we have

∞∑
i=0

i(1/2)i = 2

10.6. The first sum is the Harmonic series.

Hn =
n∑
i=1

1
i
≈
∫

(1/x)dx ≈ ln (n) + γ,

n∑
i=1

Hi = (n+ 1)Hn − n,
n∑
i=1

iHi =
n(n+ 1)

2
Hn −

n(n− 1)
4

.

10.7. For |a| < 1.

ea = 1 + a+
a2

2!
+ . . .+

ai

i!
+ . . . =

∞∑
i=0

ai

i!
.

10.8. For |a| < 1.

ln(1 + a) = a− a2

2
+ . . .+

(−1)i+1ai

i
+ . . . =

∞∑
i=1

(−1)i+1a
i

i
, ln

1
1− a

= a+
a2

2
+ . . .+

ai

i
+ . . . =

∞∑
i=1

ai

i
,

10.9. For |a| < 1.

1
(1− a)n+1

=
∞∑
i=0

(
i+ n

i

)
ai,

1√
1− 4a

=
∞∑
i=0

(
2i
i

)
ai,

a

1− a− a2
= a+ a2 + 2a3 + 3a4 + . . . =

∞∑
i=0

Fia
i

10.10.(
n

k

)
=

n!
k!(n− k)!

,

n∑
k=0

(
n

k

)
= 2n,

(
n

k

)
=
(

n

n− k

)
,

(
n

k

)
=
(
n− 1
k

)
+
(
n− 1
k − 1

)
.

10.11.

(1 + x)n =
∞∑
i=0

(
n

i

)
xi

10.A.1. Proof for 10.2 An. Let An = 1 + 2 + . . . + (n − 1) + n. Write forwards and backwards An and add
up the two.

An = 1 + 2 + . . .+ (n− 1) + n

An = n+ (n− 1) + . . .+ 2 + 1 Add up this and the previous equation
2An = (n+ 1) + (n+ 1) + . . .+ (n+ 1) + (n+ 1)
2An = n(n+ 1)
An = n(n+ 1)/2

11 Asymptotic Notation and the Recurrences

Master Method. T (n) = aT (n/b) + f(n), such that a ≥ 1, b > 1 are constant and f(n) is an asymptotically
positive function. Then T (n) is bounded as follows..

M1 If f(n) = O(nlgb a−ε) for some constant ε > 0, then T (n) = Θ(nlgb a).

M2 If f(n) = Θ(nlgb a), then T (n) = Θ(nlgb a lg n).

M3 If f(n) = Ω(nlgb a+ε) for some constant ε > 0, and if af(n/b) ≤ cf(n) for some constant 0 < c < 1 and for
large n, then T (n) = Θ(f(n)).

There is an alternative formulation for Case 2 (aka M2) of the master method.
M2′ If f(n) = Θ(nlgb a(lg n)k), for some non-negative constant k, then T (n) = Θ(nlgb a(lg n)k+1).

A1. Little-oh. f(n) = o(g(n)), iff limn→∞
f(n)
g(n) = 0.

A2. Little-omega. f(n) = ω(g(n)), iff limn→∞
f(n)
g(n) =∞.

A3. If f(n) = o(g(n)), then f(n) = O(g(n)).

A4. If f(n) = ω(g(n)), then f(n) = Ω(g(n)).

A5. Theta (version 1). f(n) = Θ(g(n)), iff f(n) = Ω(g(n)) and f(n) = O(g(n)).

B1. Theta (version 2). f(n) = Θ(g(n)) iff ∃ positive constants c1, c2, n0 : 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) ∀ n ≥
n0.

B2. Big-Omega. f(n) = Ω(g(n)) iff ∃ positive constants c1, n0 : 0 ≤ c1g(n) ≤ f(n) ∀ n ≥ n0.

B3. Big-Oh. f(n) = O(g(n)) iff ∃ positive constants c2, n0 : 0 ≤ f(n) ≤ c2g(n) ∀ n ≥ n0.

12 Induction

12.1. An axiom is a statement (or proposition) accepted to be true without proof.
An axiom forms the basis for logically deducing other statements.

12.2 A proposition is a statement that is either true or false.
We can also define an axiom as,

12.2.a An axiom is a proposition that is assumed or accepted to be true.

12.3 A proof is a verification of a proposition by a sequence of logical deductions derived from a base set of
axioms.

12.4. A theorem is a proposition along with a proof of its correctness.
Every proposition is true or false with reference to a space we first define axiomatically and then build on by

establishing more theorems.

12.5 Axioms of Arithmetic.

For example, Peano’s axioms, on whose inductive proofs are based, define natural (non negative) numbers.
The set of natural (or non-negative integers) numbers is also denoted by N .

Axiom 1 (Peano). 0 is a natural number.
Axiom 2 (Peano). If n is a natural number, then its successor s(n) is also a natural number.

(We prefer to write n+ 1 for the successor s(n) of n.)
Induction is a proof technique to prove a proposition P (n) that depends on a natural number n.

12.6 Induction (the Principle). Let P (n) be a proposition that depends on a natural (integer)
number n. If

(Base case): P (0) is true, and
(Inductive Step): P (n) implies P (n+ 1) for all natural numbers n, then
(Conclusion): P (k) is true for all natural numbers k.

12.6.1 Why does induction work?
The base case establishes P (0). The Inductive step establishes the chain of implications,

P (0)→ P (1), P (1)→ P (2), P (2)→ P (3), . . . , P (n)→ P (n+ 1),

To fire-up the chain reaction, P (0) must be true. This is established by the base case!

12.7 Strong Induction.
(Base case): P (0) is true, and
(Inductive Step): P (0), P (1), . . . , P (n) jointly imply P (n+ 1) for all natural numbers n, then
(Conclusion): P (k) is true for all natural numbers k.

12.8 Induction: Base case other than P (0). If P (0) cannot be proven true, find the smallest value a, where
a is a natural number such that P (a) is true. The conclusion would then be true for all P (k) such that k ≥ a.
For Strong induction the changes for the Inductive step and Conclusion are shown below.
(Inductive Step, Base Case P (a)): P (a), P (a+ 1), . . . , P (n) jointly imply P (n+ 1) for all natural numbers
n ≥ a.
(Conclusion): P (k) is true for all natural numbers k ≥ a.

13 Computer Architectures: von-Neumann and Harvard

13.1 Architecture and Model of computation: Von-Neumann model. Under this architectural model, a
central processing unit, also known as the CPU, is responsible for computations. A CPU has access to a program
that is being executed and the data that it modifies. The program that is being executed and its relevant data
both reside in the same memory usually called main memory. Thus main memory stores both program and
data, at every cycle the CPU retrieves from memory either program (in the form of an instruction) or data,
performs a computation, and then writes back into memory data that were computed at the CPU by one of its
units in a current or prior cycle.

13.2 Architecture and Model of computation: Harvard model. An alternative architecture, the so called
Harvard model of computation or architecture as influenced by (or implemented into) the Harvard Mark
IV computer for USAF (1952) was also prevalent in the early days of computing. In the Harvard architecture,
programs and data are stored separately into two different memories and the CPU maintains distinct access
paths to obtain pieces of a program or its associated data. In that model, a concurrent access of a piece of a
program and its associated data is possible. This way in one cycle an instruction and its relevant data can both
and simultaneously reach the CPU as they utilize different data paths.

13.3 Hybrid Architectures.
The concepts of pipelining, instruction and data-level caches can be considered Harvard-architecture

intrusions into von-Neumann models. Most modern microprocessor architectures are using them.

13.4 CPU vs Microprocessor. CPU is an acronym for Central Processing Unit. Decades ago all the units that
formed the CPU requires multiple cabinets, rooms or building. When all this functionality was accommodated
by a single microchip, it became known as the microprocessor. The number of transistors in modern processor
architectures can range from about a billion to 5 billion or more (Intel Xeon E5, Intel Xeon Phi, Oracle/Sun Sparc
M7). A chip is the package containing one or more dies (actual silicon IC) that are mounted and connected on a
processor carrier and possibly covered with epoxy inside a plastic or ceramic housing with gold plated connectors.
A die contains or might contain multiple cores, a next level of cache memory adjacent to the cores (eg. L3),
graphics, memory, and I/O controllers.

13.5 Multi-core, Many-core, GPU and more. In the past 10-15 years uni-processor (aka single core
aka unicore) performance has barely improved. The limitations of CPU clock speeds (around 2-3GHz), power
consumption, and heating issues have significantly impacted the improvement in performance by just increasing
the CPU clock speed. An alternative that has been pursued is the increase of the number of “processors” on a
processor die (computer chip). Each such “processor” is called a core. Thus in order to increase performance,
instead or relying to increasing the clock speed of a single processor, we utilize multiple cores that work at the
same clock speed (boost speed), or in several instance at a lower (clock) speeds (regular speed).

Thus we now have multiple-core (or multi-core) or many-core processors. Dual-core or Quad-core refer
to systems with specifically 2 or 4 cores. The number of cores is usually (2016) less than 30 (eg Intel’s Xeon
processors). Sometime many-core processors (eg Intel’s Phi) are attached to the CPU and work in ’parallel’ with
the CPU or independetly of it. In such a case a many-core is called a coprocessor. A GPU (Graphics Processing
Unit) is used primarily for graphics processing. CUDA (Compute Unified Device Architecture) is an application
programming interface (API) and programming model created by NVIDIA (TM). It allows CUDA-enabled GPU
units to be used for General Purpose processing, sequential or massively paprallel. Such GPUs are also known
as GPGPU (General Purpose GPU) when provided with API (Application Programming Interface) for general
purpose work. A GPU processor (GK110) contains a small number (up to 16 or so) of Streaming Multiprocessors
(SM, SMX, or SMM). Each streaming multiprocessor has up to 192 32-bit cores supporting single-precision
floating-point operations and up to 64 64-bit cores supporting double-precisions operations. Other cores support
other operations (eg. transendental functions). Thus the effective ”core count” is in the thousands.

14 Computer Architecture: Memory Hierarchies

CPU and Main Memory Speed. A CPU rated at 2GHz can execute 2G or 4G operations per second or
roughly two-four operations per nanosecond, or roughly one operation every 0.25-0.5ns. A CPU can fetch one
word from maim memory (”RAM”) every 80-100ns. Thus there is a differential in performance between memory
and CPU. To alleviate such problems, multiple memory hierarchies are inserted between the CPU (fast) and
Main Memory (slow): the closer the memory to the CPU is the faster it is (low access times) but also the costlier
it becomes and the scarcier/less of it also is. A cache is a very fast memory. Its physical proximity to the CPU
(or core) determines its level. Thus we have L1 (closest to the CPU, in fact ”inside” the CPU), L2, L3, and L4
caches. Whereas L2 and L3 are ”static RAM/ SRAM”, L4 can be ”dynamic RAM / DRAM” (same composition
as the main ”RAM” memory) attached to a graphics unit (GPU) on the CPU die (Intel Iris).

14.1 Level-1 cache. A level-1 cache is traditionally on-die (same chip) within the CPU and exclusive to a
core. Otherwise performance may deteriorate if it is shared by multiple cores. It operates at the speed of the
CPU (i.e. at ns or less, currently). Level-1 caches are traditionally Harvard-hybrid architectures. There is an
instruction (i.e. program) cache, and a separate data-cache. Its size is very limited to few tens of kilobytes per
core (eg. 32KiB) and a processor can have separate jevel-1 caches for data and instructions. In Intel architectures
there is a separate L1 Data cache (L1D) and a L1 Instruction cache (L1I) each one of them 32KiB for a total of
64KiB. They are implemented using SDRAM (3GHz typical speed) and latency to L1D is 4 cycles in the best
of cases (typical 0.5-2ns range for accessing an L1 cache) and 32-64B/cycle can be transferred (for a cumulative
bandwidth over all cores as high as 2000GiB/s). Note that if L1D data is to be copied to other cores this might
take 40-64 cycles.

14.2 Level-2 cache. Since roughly the early 90s several microprocessors have become available utilizing sec-
ondary level-2 caches. In the early years those level-2 caches were available on the motherboard or on a chip
next to the CPU core (the microprocessor core along with the level-2 cache memory were sometimes referred to
as the microprocessor slot or socket). Several more recent microprocessors have level-2 caches on-die as well. In
early designs with no L3 cache, L2 was large in size (several Megabytes) and shared by several cores. L2 caches
are usually coherent; changes in one are reflected in the other ones. An L2 cache is usually larger than L1 and
in recent Intel architectures 256KiB and exclusive to a core. They are referred to as ”static RAM”. The Its size
is small because a larger L3 cache is shared among the cores of a processor. An L2 cache can be inclusive (older
Intel architectures such as Intel’s Nehalem) or exclusive (AMD Barcelona) or neither inclusive nor exclusive (Intel
Haswell). Inclusive means that the same data will be in L1, L2, and L3. Exclusive means that if data is in L2,
it can’t be in L1 and L3. Then if it is needed in L1, a cache ”line” of L1 will be swapped with the cache line
of L2 containing it, so that exclusivity can be maintained: this is a disadvantage of exclusive caches. Inclusive
caches contain fewer data because of replication. In order to remove a cache line in inclusive caches we need only
check the highest level cache (say L3). For exclusive caches all (possibly three) levels need to be checked in turn.
Eviction from one requires eviction from the other caches in inclusive caches. In some architectures (Intel Phi),
in the absence of an L3 cache, the L2 caches are connected in a ring configuration thus serving the purpose of an
L3. The latency of an L2 cache is approximately 12-16 cycles (3-7ns), and up to 64B/cycle can be transferred
(for a cumulative bandwidth over all cores as high as 1000-1500GiB/s). Note that if L2 data is to be copied to
other cores this might take 40-64 cycles.

14.3 Level-3 cache. Level-3 caches are not unheard of nowadays in multiple-core systems/architectures. They
contain data and program and typical sizes are in the 16-32MiB range. They are available on the motherboard
or microprocessor socket. They are shared by all cores. In Intel’s Haswell architecture, there is 2.5MiB of L3
cache per core (and it is write-back for all three levels and also inclusive). In Intel’s Nehalem architecture L3
contained all the data of L1 and L2 (i.e. (64 + 256) ∗ 4KiB in L3 are redundantly available in L1 and L2). Thus
a cache miss on L3 implies a cache miss on L1 and L2 over all cores! It is also called LLC (Last Level Cache) in
the absence of an L4 of course. It is also exclusive or somewhat exclusive cache (AMD Barcelona/Shanghai, Intel
Haswell). An L3 is a victim cache. Data evicted from the L1 cache can be spilled over to the L2 cache (victim’s

cache). Likewise data evicted from L2 can be spilled over to the L3 cache. Thus either L2 or L3 can satisfy an
L1 hit (or an access to the main memory is required otherwise). In AMD Barcelona and Shanghai architectures
L3 is a victim’s cache; if data is evicted from L1 and L2 then and only then will it go to L3. Then L3 behaves as
in inclusive cache: if L3 has a copy of the data it means 2 or more cores need it. Otherwise only one core needs
the data and L3 might send it to the L1 of the single core that might ask for it and thus L3 has more room for
L2 evictions. The latency of an L3 cache varies from 25 to 64 cycles and as much as 128-256cycles depending on
whether a datum is shared or not by cores or modified and 16-32B/cycle. The bandwidth of L3 can be as high
250-500GiB/s (indicative values).

14.4 Level-4 cache. It is application specific, graphics-oriented cache. It is available in some architecture (Intel
Haswell) as auxiliary graphics memory on a discrete die. It runs to 128MiB in size, with peak throughput of
108GiB/sec (half of it for read, half for write). It is a victim cache for L3 and not inclusive of the core caches
(L1, L2). It has three times the bandwidth of main memory and roughly one tenth its memory consumption. A
memory request to L3 is realized in parallel with a request to L4.

14.5 Main memory. It still remains relatively slow of 60-110ns speed. Latency is 32-128cycles (60-110ns)
and bandwidth 20-128GiB/s (DDR3 is 32GiB/sec). It is available on the motherboard and in relatively close
proximity to the CPU. Typical machines have 4-512GiB of memory nowadays. It is sometimes referred to as
”RAM”. As noted earlier, random access memory refers to the fact that there is no difference in speed when
accessing the first or the billionth byte of this memory. The cost is uniformly the same.

14.6 Multi-cores and Memory. To support a multi-core or many-core architecture, traditional L1 and L2
memory hierarchies (aka cache memory) are not enough. They are usually local to a processor or a single core. A
higher memory hierarchy is needed to allow cores to share memory ”locally”. An L3 cache has been available to
support multi-core and more recently (around 2015) L4 caches have started appearing in roles similar to L3 but
for specific (graphics-related) purposes. When the number of cores increases beyond 20, we talk about many-
core architectures (such as Intel’s Phi). Such architectures sacrifice the L3 for more control logic (processors).
To allow inter-core communication the L2 caches are linked together to form a sort of shared cache.

15 Computer Architecture: Numbers and Data Types

15.1 Constant. If the value of an object can never get modified, then it’s called a constant. 5 is a constant, its
value never changes (ie. a 5 will never have a value of 6).

15.2 Variable. In computer programs we also use objects (names, aliases) whose values can change. Those
objects are known as a variable. Every variable has a data-type. What is the data-type of a variable? In most
programming languages a statement such as the one below, assigns the value of constant 10 (right hand-side of
equality) to become the value of variable x on the left-hand side of the equality.

x=10

15.3. Data-type. In a programming language, every variable has a data-type, which is the set of values the
variable takes and the operations defined (or are allowable) on the data-type.

15.4 Built-in or primitive data-types. Composite data-types. In mathematics, an integer or a natural
number is implicitly defined to be of arbitrary precision. Computers and computer languages have built-in (also
called primitive) data-types for integers of finite precision. These primitive integer data-types can represent
integers with 8-, 16-, 32- or (in some cases) 64-bits or more. An integer data-type of much higher precision is only
available not as a primitive data-type but as a composite data-type through aggregation and composition
and built on top of primitive data-types. Thus a composite data-type is built on top of primitive data types.
One way to build a composite data-type is through an aggregation called an array: an array is a sequence of
objects of (usually) the same data-type. Thus we can view memory as a vector of bytes. But if those bytes are
organized in the form of a data-type a sequence of elements of the same data-type becomes known as an array
(rather than a plain vector). Sometimes the data type of a variable is assigned by default, depending on the
value assigned to the variable. The data-type of the right-hand side determines the data-type of x in x = 10: in
this case it is of ”number data type”. In some other cases we explicitly define the data type of a variable.

15.5 Weakly-typed and strongly-typed languages. In a weaky-typed language the data type of a variable
can change during the course of a program’s execution. In a strongly-type language as soon as the variable is
introduced its data-type is explicitly defined, and it cannot change from that point on. For example

Weakly Typed Language such as MATLAB

x=int8(10); % x is integer (data type)

x=10.12; % x is real number (data type)

x=’abcd’; % x is a string of 4 characters (data type)

Strongly Typed Language such as C, C++, or Java

int x ; % x is a 32-bit (4B) integer whose data type can not change in the program

x=10;x=2; % ok

x=10.10 ; % Error or unexpected behavior: right hand-side is not an integer.

15.6 Definition vs Declaration. In computing we use the term definition of a variable to signify where space
is allocated for it and its data-type explicitly defined for the first time, and declaration of a variable to signify
our intend to use it. A declaration assumes that there is also a definition somewhere else, does not allocate space
and serves as a reminder. For a variable there can be only ONE definition but MULTIPLE declarations. This
discussion makes sense for compiled languages and thus int x serves above as a definition of variable x. For
interpreted languages, separate definitions are usually not available and declarations coincide with the use of a
variable. Thus we have three declarations that also serve as definitions of x in the weakly-typed example each
one changing the data type of x. In the latter example variable x is defined once and used twice (correctly) after
that definition.

15.7 Data model. A Data model is an abstraction that describes how data are represented and used.

15.8 Mathematical Function: Input and Output Interface. When we write a function such as f(x) = x∗x
in Mathematics we mean that x is the unknown or parameter or ideterminate of the function. The function
is defined in terms of x. The computation performed is x2 i.e. x∗x. The value ’returned’ or ’computed’ is exactly
that x ∗ x. When we call a function with a specific input argument we write f(5). In this case 5 is the input
argument or just argument. Then the 5 substitutes for x i.e. it becomes the value of parameter x and the
function is evaluated with that value of x. The result is a 25 and thus the value of ’f(5)’ becomes ’25’. If we
write a = f(5), the value of f(5) is also assigned to the value of variable a. Sometimes we call s the output
argument, which is provided by the caller of the function to retrieve the value of the function computed.

15.9 ASCII Characters. In the preceding pages we viewed several 8-bit or so sequences in a variety of ways
as positive or negative numbers. A 7-bit bit-sequence can also be viewed as an ASCII character code. Thus a
single byte (8 bits) can be used to store characters, not numbers (remember that a byte is the minimum storage
that can be used to store information). For ASCII characters that extra bit that goes unused is either a 0 or an
error-correction parity bit.
15.10 Table of ASCII characters. The table below contains all 128 ASCII character codes from 0 to 127
arranged in 8 rows (0-7 in octal or hexadecimal) and 16 columns (0-F in hexadecimal). The ASCII code for a
character can be retrieved by concatenating the row index (code) with the column index code. For example A is
in row 4 and column 1 i.e. its hexadecimal code is 0x41. Its row index 4 in 4-bit binary is 0100 and 1 in 4-bit
binary is 0001. Thus the code for A is 01000001 which is 65 in decimal or 0x41 in hexadecimal. Rows 0 and 1
contain Control Characters represented by the corresponding mnemonic code/symbol. Code 32 or 0x20 is the
space symbol (empty field).
15.11 Unicode characters. The Unicode character set uses 2 or more bytes to represent one character. The
Unicode character for an ASCII character remains the same if one adds extra zeroes. Thus DEL which is 0x7F in
ASCII has UNICODE code 0x007F. We also write this as U+007F.

\ 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS TAB LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 ! " # $ % & ’ () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 ‘ a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

NUL = null BS = Backspace DLE = Datalink escape CAN = cancel

SOH = start of heading TAB = horizontal tab DC1 = Device control 1 EM = end of medium

STX = start of text LF = linefeed/newline DC2 SUB = substitute

ETX = end of text VT = vertical TAB DC3 ESC = escape

EOT = end of transmission FF = form feed/newpage DC4 FS = file separator

ENQ = enquiry CR = carriage return NAK = negative ACK GS = group separator

ACK = acknowledge SO = shift out SYN = synchronous idle RS = record separator

BEL = bell SI = shift in ETB = end of trans. block US = unit separator

15.12 Java character primitive data types. In jave a char data type is a single 16-bit Unicode character.
Its minimum value is ’\u0000’ (or U+0000) and its maximum value ’\uFFFF’ (or U+FFFF).
15.13 UTF-8. In UNICODE only numeric values are assigned to characters. These numeric values are not
required to be ordered in a specific sequence of bytes, of the same number or variable number. There are several
encoding schemes to represent Unicode. One of the is UTF-8 where characters are encoded using 1 to 6 bytes. In
UTF-8 all ASCII characters are encoded within the 7 least significant digits of a byte and its most-significant bit
is set to 0. Thus Unicode characters U+0000 to U+007F that is the ASCII characters are encode simply as byte
0x00 to 0x7F. Thus ASCII and UTF-8 encoding look the same. All characters larger than U+007F use 2 or more
bytes each of which has the most significant bit set to 1. This means that no ASCII byte can appear as part of
any other character since only ASCII characters have a 0 in the most signficant bit position. The first byte of
a non-ASCII character is one of 110xxxxx, 1110xxxx, 11110xxx, 111110xx, 1111110x and it indicates how
many bytes there are altogether or the number of 1s following the first 1 and before the first 0 indicates the
number of bytes in the rest of the sequence. All remaining bytes other than the first start with 10yyyyyy.

UTF-8 Number of bits in code point Range

0xxxxxxx 7 00000000-0000007F

110xxxxx 10xxxxxx 11 00000080-000007FF

1110xxxx 10xxxxxx 10xxxxxx 16 00000800-0000FFFF

11110xxx 10xxxxxx 10xxxxxx 10xxxxxx 21 00010000-001FFFFF

111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 26 00200000-03FFFFFF

1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 31 04000000-FFFFFFFF

1110xxxx 10xxxxxx 10xxxxxx

