A. V. GERBESSIOTIS CS345
Avuc 31, 2016 FaLL 2016

HW 6 99 POINTS

CS 345: Homework 6 is the Mini-Project and worth more points (Due: Dec 13, 2016)

Rule 1. Teams of no more than three students as explained in syllabus (Handout 1). Work, i.e. source code
only with no classes or other executable/binary files, to be emailed in electronic form as a single-file tar or zip
archive (and in no other format).

Rule 2. Submitted archive will be processed on an AFS machine (afsconnectl.njit.edu or afsconnect2.njit.edu or
osl11.njit.edu), where testing would take place. (At a minimum, the archive should contain a text file HW6_ABC. txt
as explained below.) The code should be compilable/interpretable and executable on one or the other similar
AFS machines in any language available there (emphasis in C, C++, Java, Python, Perl).

A file-based desktop search engine: HiFiDSE

You will implement the components of the Higlander File-based Desktop Search Engine. I will be
mispronouncing it high feed sea rather than high phi DSE.

0.1 Project deliverables.

After compilation the executable unit produced should be named hifidse. If your code is interpreted the
wrapper function should be hifidse possibly with an appropriate suffix as needed. We shall refer to that file as
hifidse for the remainder. Every source file you submit must include in the form of comments in its first 5 lines
the names of the members of the group including the last four digits of their NJIT IDs. In addition a file named
HW6_ABC.txt needs to be included (that also conforms to the first-5-line convention) that includes instructions
for compilation/interpretation, bugs, and anything else of interest. The ABC are the initials of the first names of
the three members of a team. (Naturally if a team has fewer members this can be truncated.)

0.2 Objectives of the Mini-Project

A crawler has already downloaded Web-based information into a single directory. Within that directory there
might be subdirectories of files or individual file(s).

You will first examine the files in the directory and its subdirectories for files that are text searchable based
on filename attributes. Those files will then be tokenized, i.e. a file will be split into ”"words” that can be English
words, numbers, dates etc, flattened (case removal), stemmed and then the resulting index-terms will be indexed.
Implicit in all considerations would be the requirement that the system will be main-memory based: you don’t
need to address issues related to the question "What if i run out of RAM, or CPU cycles?’. The index itself will
be file-based, one file per index term.

A small query engine will also be built that will facilitate very simple queries (conjunction, disjunction of two
or three arguments, negation of one argument).

0.3 Overview

Stepl: Searchable Documents. The locally-stored web-pages available in a single directory will be
processed. Subdirectories will be recursively searched. Files that are text-searchable will be iden-
tified. Some assistance is provided in the protected area of the course Web-page in the form of
program recdir.c available as link L5 there. It’s up to you whether you want to use it or not
(it has only been tested on a Unix system). Text-searchable files are to be uncompressed text files
(.txt,.html,.htm,.c,.cc,.java,.cpp,.h). This step will generate as a by-product file stepl.txt that will
store URL (Uniform Resource Locators) or in fact URI (Uniform Resource Identifiers) and map them
to numbers (docIDs). You are then about to start the process of parsing these and only these
text-searchable files and tokenizing their contents and performing linguistic analysis in the form of
stopword elimination and stemming.

Step 2: Tokenization. This step involves the tokenization of every text-searchable file (aka document).
IMPLICIT in the tokenization is case-folding: everything becomes lower-case! You identify and
extract tokens of interest (words, numbers, dates, etc) along with other useful context information
(such as word position in the text, font-size and other context for an html text document).

Step 3: Stopword Elimination. Steps 2-4 are part of the parsing phase and the generation of the
Forward Index: first identify tokens and then convert tokens into an index-term by eliminating some
(stopwords) or obtaining from several slightly different tokens one index-term (stemming). For the
sake of this assignment we will concentrate only on elementary stopword removal. The output of
this phase will be the tokens identified in Step 2 minus the stopwords; this stream of keywords will
then be further processed in Step 4.

Step 4: Stemming. The fourth step uses the output of Step 3 to further eliminate and reduce the number
of potential index terms by performing stemming. The surviving tokens (after stopword elimination)
as transformed by stemming become the index-terms. You now map the word of an index-term to
numbers (wordID).

Step 5: Sorting aka Inverting the Forward Index and building the (inverted) index. The output
stream is then ordered (aka sorted) based on word first (increasing order), then docID (increasing
order) and finally offset (increasing order). Using this information, a file-based inverted index is to
be built, one file per index-term; file name will be the word itself. Inside each file, word occurrences
(i.e. inverted lists) in the form of a combined vocabulary and occurrence list (inverted list)
structures as described in class and summarized in this document for completeness are maintained.
For testing purposes this construction will have an interesting side-effect.

Step 6: Query Engine. You will be asked to design a query system that implements simple logical (AND
and OR, NOT) operations.

This is the minimum implementation required to gain you the full points of this assignment. You can enrich
this implementation by adding additional features such as searching more file types, do a more thorough parsing
or more elaborate linguistic analysis.

1 Stepl: Text-Searchable Document identification

The program hifidse will read the command line and behave as follows. (If you use Java or Python this
invocation will be different of course.)

% ./hifidse searchable name

The first argument in the command line (after the name of the executable) denotes the action. The next argument
is an arbitrary name that corresponds to a directory or a file name. For action searchable if name is a file-name
then you need to determine whether it is text-searchable. If it is a directory you need to determine what files in
that directory or its subdirectories are text-searchable. Thus names and filenames have three attributes: DIR for
a directory, TXTS for a text-searchable file and TXTN for a non text-searhable file. A TXTS file is one with a suffix
in the list below.

.html , .htm , .txt , .cc , .cpp, .c , .h , .java

The execution results in an output stored in file stepl.txt. The number of lines is the number of names identified
in the directory and its subdirectories. Each line is a triplet containing the corresponding path called docURL
relative to name, its attribute docATTR and docID that has been assigned to docURL by you. In the example
below docID are consecutive starting from 1. You do not need to do so: you may start from 0 or use some other
assignment.

% ./hifidse searchable alexg

% cat stepl.txt

alexg DIR 1

alexg/courses DIR 2

alexg/courses/cs345 DIR 3
alexg/courses/cs345/index.html TXTS 4
alexg/courses/cs345/my.txt TXTS 5
alexg/courses/cs345/my. java TXTS 6
alexg/courses/cs345/handouts.html TXTS 7
alexg/courses/cs345/handouts DIR 8
alexg/courses/cs345/handouts/syllabus.pdf TXTN 9

2 Step2: Tokenization

If action is token then every TXTS file will be parsed and tokenized. YOU DECIDE what constitutes a token:
the simplest rule is everything between consecutive whitespace. A tokendebug provides a more informative
(file-based) output. The side-effect at the end of this execution will be file step2.txt or step2d.txt depending
on whether a token or tokendebug was issued.

% ./hifidse token directoryname
% ./hifidse tokendebug directoryname

The tokenization phase is probably the most difficult part of this assignment and the most time consuming.
You need to decide how to parse a document and what constitutes a token. You might make the job at hand easier
if you use a parser program such as lex or yacc for this part (and the time involved to familiarize yourselves
with them, if you have never used them before). An hour or two reading a manual page or the extensive
documentation for the GNU equivalents names flex and bison might save you time building a tokenizer from
scratch. Tokenizing a TXTS file is easier. Interesting tokens that will become index terms are going to be
words (e.g. alphanumeric strings starting with a character) or non-trivial numbers. Collectively we will call all
these interesting tokens words even if some of them are numbers. During this phase streams of tuples such as
(docID,word,offset,attrCDE) or (docURL,word,offset,attrVAL) will be generated silently into step2.txt
or step2d.txt.

I. Text-searchable documents will be represented by the corresponding docID or docURL for a token or
tokendebug invocation.

II. Folded tokens will be represented by a word.

ITII. An offset is a word offset (first word, second word, etc). It can start from 0 or 1.

IV. Names attrCDE (for attribute code) and attrVAL (for attribute value) provide information about the
word and its context. For non HTML (HTM) files there is only one attrCDE and attrVAL, 0 and PLN (for plain)
respectively. For a word inside the title of an HTML/HTM document i.e. inside <TITLE>, </TITLE>, 1 and
TTL are to be used. For a word inside an HTML anchor i.e. words surrounded by a pair of <A>, anchor
tags, use 2 and ANC. If surrounded by a <H1> to <H3> use 3 and H13, if by <H4> to <H6> use 4 and H46.
Other attribute codes and values are possible.

V. When token is issued for a text-searchable file containing the token Algorithms then the following
quadruplet would be generated. Note that case folding will immediately turn the A of the token Algorithms into
the (case-folded) word algorithms. The 1 means word-offset is 1 as Algorithms is the one and only word of the
file. Moreover for a .txt file an attribute code of 0 and value of PLN only make sense.

(5,algorithms,1,0)

or

(alexg/courses/cs345/my.txt,algorithms,1,PLN)

Note. At this phase we still deal with word but no wordID. However we deal with docURL and docID available
after Stepl.

Note. In files step2.txt or step2d.txt you may not include parentheses and commas that we used in the
example above; you may replace them with space (see sample stepl.txt contents). Thus the latter quadruplet
(aka output of step2d.txt) can appear as

alexg/courses/cs345/my.txt algorithms 1 PLN

3 Step3: Stopword Elimination

The output of Step2 is used to eliminate stopwords from that streams of tuples. Thus stopword behaves
similarly to token (rather than tokendebug). It generates an output stream with fewer tuples; yet offset and
other information does NOT change. A file step3.txt will be generated which is step2.txt minus the offending
tuples.

% ./hifidse stopword name

The list of stopwords is as follows.

i a about an are as at be by com en for from how in is it of on or that the
this to was what when where who will with www

4 Step4: Stemming

The stream input for this step is the output of Step 3 (if implemented) or Step 2 otherwise.

% ./hifidse stem name
% ./hifidse stemdebug name

For action stem or stemdebug you need to apply Harman’s stemming algorithm that eliminates very simple
suffixes (eg. plural). File step4.txt will be generated or step4d.txt as needed. The output for stem is a
stream similar to that of token or stopword BUT WITH ONE MAJOR EXCEPTION: instead of word the
corresponding wordID appears in the tuple. Note that I have written wordID rather than say ”stemmed word”.
For option stemdebug the corresponding indexterm appears in the tuple obtained from the corresponding word.

The original token Algorithms for the past 2 steps has still been around as the word algorithms in the
output of token, tokendebug or stopword. With stemdebug it will appear as indexterm named algorithm
in ste4d.txt whereas for stem the word algorithms will be replaced by a number the wordID assigned to the
newly-derived indexterm algorithm. We delayed assigning wordIDs for a good reason: the original text could
have included tokens Algorithm, algorithms, Algorithms generating two words after case-folding: algorithm
and algorithms. Delaying wordID assignment for Step4 means that there is one index-term is algorithm that
DOES NOT EVEN SHOW-UP in the original text.

HarmanStemmingAlgorithm(word) [Steps are in order and not swappable...]
1. If word ends in -ies but not -eies or -aies

then -ies --> -y;
2. If word ends in -es but not -aes, -ees or -oes

then -es --> -e;
3. If word ends in -s but not -us or -ss
then -s -=> -

Note. If you decide not to do stemming, you still need to create step4.txt or stepdd.txt i.e. convert word
into wordIDs but indexterm would be the same as word.

4.1 Side Effects

The stem or stemdebug invocation will also create a file step4LEX.txt This is the list of index-terms with their
associated wordIDs computed in this step. The list is ordered by wordID and is printable, one tuple per line.
wordID’s do not need to be consecutive nor start from zero or one for that matter.

5 Stepd: Inverted Index
% ./hifidse invert name

At this point the stream is the one appearing in step4.txt. We have tuples (docID,wordID,offset,attrCDE).
This is the forward index. We need to invert it to generate the inverted index, i.e. the index. Inversion involves
sorting. We need to bring close all tuples that share the same indexterm i.e. have the same wordID. We sort
thus the tuples first by wordID then by docID and then by offset and followed by attrCDE.

1. Vocabulary and occurrence lists. An inverted index consists of a Vocabulary and occurrence or
inverted lists.

2. Vocabulary: technical details. The Vocabulary will contain the indexterm and its wordID generated by
stemming in a file named step5VOC.txt. It is similar to step4LEX.txt except that the Vocabulary is sorted
by indexterm not wordID and contains more information per indexterm i.e. line in the file. Every line of the
Vocabulary file is related to an entry indexterm that records information such as the corresponding wordID but
also Ndocs and Nhits. A pointer LocP to the actual entries (occurrence or inverted lists) need not be recorded.
For this implementation the location LocP is implied: it is a filename obtained from indexterm and/or wordID.

Entry Ndocs records the number of distinct documents that contain the wordID after stemming (e.g. all
occurrences of algorithms and algorithm). Entry Nhits counts the number of occurrences of wordID in all
documents (a given word might occur more than once in a document).

3. Inverted lists: technical details. The inverted list part of the index are files under (inside) a directory
named step5.dir. Although LocP traditionally points to Ndocs linked lists of total length Nhits, for our case
LocP for a specific wordID is implied: a file named indextermwordID.txt the associated filename for indexterm
with wordID, indexterm.txt, the choice is yours. An inverted list (file contents) would include all the tuples
associated with wordID in sorted order by docID, offset and attrCDE. A tuple is triplets (docID,offset,
attrCDE). Note that obviously, one does not need to store in the inverted list wordID or the indexterm.

The format of the file is as follows: one tuple per line, with the three elements as specified earlier. Parentheses
or commas are optional, but use a space to separate the elements of the tuple. The number of lines of that file
should be Nhits.

5.1 Side Effects

File step5VOC.txt contains the Vocabulary. A wordID generates a one-line entry. Entries are sorted by
indexterm and contain the indexterm name, wordID, Ndocs and Nhits. Directory step5.dir contains the
multiple files of the index i.e. the inverted lists. Directory location is relative to the invocation of invert.

6 Step6: Query Engine

Having completed the index we ask you to implement a command line-based implementation of a simple query
language that deals with up to three terms. The assumed input for this step is the index built in step5.dir,
the vocabulary step5V0C.txt plus other files (eg stepl.txt) of previous steps, as needed.

; Assuming docID(terml) == docID(term2) ... do
% ./hifidse and2 terml term2 terml1 AND term2
% ./hifidse and3 terml term2 term3 terml AND term2 AND term3

)
)
s
)

% ./hifidse or2 terml term2 terml OR term2
% ./hifidse or3 terml term2 term3 terml1 OR term2 OR term3
% ./hifidse andnot terml term2 ; terml AND -term2
% ./hifidse next5 terml term2 ; loffset(terml)-offset(term2) | <=5

The outcome of and?2 is to read the inverted/occurrence lists of the wordIDs of terml and term2 and find
their common intersection docID-wise, i.e. find those documents that contain both index-terms. The output is
a list of the documents containing both index-terms, one per line. Each line prints not only the docIDs but also
the docURL of each document. Thus the output is similar to that of Stepl minus the DIR,TXTS,TXTN noise.
The and3 allows for a 3-term conjunction.

The outcome of or is that of a disjunction and its two variants behave analogously to and2, and3.

The outcome of andnot is to read the occurrence lists of the wordIDs of terml and term2 and find those
documents in which term1 appears but not term2. The printout of the result is as before.

Note that for this part we only need to use docID information and neither offset nor attr to generate an
answer to a query. A more elaborate processing can occur using offset and attrCDE information that will also
rank the results. But ranking could have been a step 7 that we decided to not include it!

Finally, operator next5 checks whether the terms terml or term2 appear next to each other in a document
(i.e. their offset differ by 5 or less.
|

Date Posted: Aug/31/2016

