
Page | 1

Brief on *NIX at NJIT

 Alex. Gerbessiotis
 CS Department

 NJIT

May 25, 2023

Page | 2

1. OSL (Open System Lab)
The term OSL at NJIT denotes Linux machines physically located
on the 2nd floor of the GITC building in a laboratory that is
known as Open Systems Laboratory (OSL in short).

The machines located in OSL have DOMAIN names oslX.njit.edu or
oslXY.njit.edu, where X,Y are digits mapping to integers from
1 to around 31.

A given domain name maps to a unique IP address starting with
128.234.44.51 for osl1.njit.edu, but note that osl31.njit.edu
might map to 128.234.44.47, which is non-intuitive.

In this document, for the sake of the discussion to follow I
will be using example machines osl7.njit.edu and
osl21.njit.edu. Therefore, X=7 in the former case and X=2 and
Y=1 in the latter case.

If you plan to connect to any one of those machines by
visiting NJIT's GITC building, skip Section 2 below. If you
are inside NJIT, and you are using a wired connection skip
Section 2 below. Some URLs (Uniform Resource Locator) of
interest are as follows.

0. NJIT computer policies as applicable to the CS Department
and other NJIT units are available, as of this writing, at

 https://ist.njit.edu/student-computers

1. The URL for downloading NJIT’s copy of MobaXterm, a Windows
secure shell client (ssh) is shown below. The URL provides
also information about using ssh on Mac OSX and Linux. We
do not discuss these options. One may also download a copy
of MobaXterm of limited functionality directly from the
manufacturer. In that case you may not even need to install
MobaXterm; for more see manufacture/publisher's web site.

https://ist.njit.edu/accessing-afs

2. The URL for ‘accessing AFS’ which means connecting to a
linux machine at NJIT is shown below

https://ist.njit.edu/afs

3. The NJIT VPN URL with links to downloadable VPN clients for
Windows, MacOSX and Linux with instructions is shown below.

https://ist.njit.edu/vpn

4. An NJIT URL with info on *nix commands is shown below.
https://ist.njit.edu/common-UNIX-commands

Page | 3

2. VPN
The discussion below uses a client computer that is a
WINDOWS 10 machine. This is in accordance with YWCC
guidelines. (It also applies to Windows 11 machines.)

NJIT persons have three options in connecting to an OSL NJIT
machine:

(a) Visiting the OSL Lab on the 2nd floor of GITC,
(b) Using within NJIT a laptop with a wired internet

connection,
(c) Using within NJIT a laptop with a wireless internet

connection,
(d) Using from OUTSIDE of NJIT a laptop.
The discussion to follow applies only to case (d) and in some
rare cases to case (c) and both would be referred to as being
'outside of NJIT'. You may skip this section if your situation
is under case (a) or case (b).

If you plan to connect to an OSL machine from outside of NJIT
you must

(1) Detect if a VPN client has been installed previously on
your machine. We expect Computing students can figure out
whether a VPN client is preinstalled or previously
installed (by you) on their machine (Setting->Programs or
Setting->Apps might provide some information). If a VPN
client is not installed, first download such a VPN
(Virtual Private Network) client though URL 3 of Section
1, and install it. Installation is done once and might
require a reboot or a restart.

(2) Activate VPN if a VPN client is preinstalled on your
machine but is currently deactivated (this is a rare
case, since by default it is activated at boot time). If
you know how to deactivate it, you should know how to
activate it or reactivate it.
Instructions below are for a Windows 10 machine but also

applicable to a Windows 11 machine.

On my laptop the windows taskbar is at the bottom of the
screen, with a Windows icon on the bottom left corner and the
time and date information on the bottom right area/corner. In
the bottom right area of the taskbar you might see the icon
shown below. If not, find an up-arrow in the right area of the
task bar, click on it and see if the icon is depicted on the

Page | 4

popped up window. For me, it appears as shown below in Figure
1. This means that the VPN client is ACTIVATED but it is not
in USE (‘not connected to the NJIT’ network). If the VPN
client were in USE, the icon would have appeared as in Figure
4 instead.

 Figure 1.

1. You may click on this icon (shown in Figure 1) and the
following pop-up window might appear (Figure 2).

 Figure 2.

2. The Connect message (Figure 2) on the button indicates not
only that your machine is disconnected (i.e. the VPN client
is not in use), but also indicates that your clicking on it
will allow a connection to take place and thus you would be
able to start using VPN. You are about ready to click
Connect. In the next step you need to have ready your myUCID
credentials (login and password) which must not have
expired. After you click connect the pop up window of Figure
3 is shown.

Page | 5

Figure 3.

3. The Username: field might have been pre-populated with your
UCID. If not, type in your myUCID login in the Username:
field, and then type in your myUCID password in the
Password: field. The use of the TAB button (or SHIFT-TAB
button) of the keyboard can help you moving around quickly.
The Group: option can be left Default or you select an
alternative according to the user instructions available
during the VPN installation process or other information
provided by NJIT.

4. If you have supplied the correct information (correct login
name and correct associated password), a connection will be
established and VPN would be in use and the popup window of
Figure 3 will disappear. At that point if you try to locate
the VPN icon using the instructions prior to step 1, the
icon has a lock on it as shown below in Figure 4.

 Figure 4.

 5.If there was an active connection prior to step 2, and
there will be an active connection after step 3, the window of
Figure 2 would have looked like Figure 5. The button reads
Disconnect since VPN is in use vs the Connect in Figure 2 when
VPN was not yet in use. You can click on Disconnect to
terminate the VPN connection when it is of no need any more. An
alternative is to locate the icon shown in Figure 4, click on
it, and it will allow you to disconnect and thus terminate the
IN-USE VPN session.

Page | 6

 Figure 5.

 At this point if you are outside of NJIT you have a VPN
session in use. The next section deals with the interaction
with a secure shell (ssh) client and how it can be used to
connect to an OSL machine.

Page | 7

3. Secure Shell Client
By now, you are either in Case 2(b) or 2(c) or 2(d). If you
are in case 2(a) you do not need a ssh client, since you can
login directly to an OSL machine and each OSL machine has its
own one preinstalled. If you are in Case 2(b) you have skipped
the rest of the discussion of Section 2. In case 2(c) whih is
rare or case 2(d) you have completed successfully step 3, and
you have a VPN session that is in-use (and of course active).

This means you have an authenticated, network connection-based
presence at NJIT.

Download and Install a Secure Shell client (ssh) utilizing URL
1 of Section 1. An alternative is through URL 2. OSX and Linux
machines have one pre-installed. The one available for Windows
has file transfer capabilities using a graphical interface.
Some NJIT provided machines also have it preinstalled. Thus
for a Windows machine you may install the secure shell client
known as MobaXterm, available to all at NJIT by NJIT, or go
to the commercial MobaXterm web-site and download the limited
feature free version found there. NJIT provides some info on
MobaXterm through the link below that also includes info for
secure shell to OSX users.

 https://ist.njit.edu/how-connect-afs-mobaxterm

The discussion below is for a Windows client using
Mobaxterm.

1. Invoke Mobaxterm. An icon on your desktop might be
available for clicking on it. A window as shown in Figure 6
will pop up. Depending on your settings and customizations,
it might look different from the one in Figure 6. Click on
the button with the message Start Local Terminal

Page | 8

 Figure 6.

2. After clicking the button “Start local terminal”, a window
like the one shown below in Figure 7 will pop up. That
window has a varying prompt (text string) that ends with a
right arrow and then next to the right arrow you may see a
blinking cursor in the form of a rectangular box. This is a
window running on your local computer, a client
application. The prompt is a request by the application for
you to provide input. We might call the application a
shell. The shell is running on the client machine (your
Windows laptop for example).

Page | 9

 Figure 7.

3. Start writing using the keyboard a shell command that will
be read by the client application (shell) of your Windows
client machine. The command that you will type will be read
by the client application (shell) and executed. The client
application will then establish a Secure Shell connection
to a remote OSL machine as specified by you in the typed
command. As soon as a connection is established you would
be writing down commands apparently on the client, but the
window would be hosted by the remote host (machine/server),
and the commands would be read and executed by the remote
host instead.

For the example to follow we pick as a remote host (server)
osl7.njit.edu.
The syntax of what you should type starting at the cursor's
position would be
 ssh myUCID@host-name
where

ssh is the name the client program (shell); ssh
stands for secure shell.

myUCID denotes your UCID login name and replace the
string accordingly, and

host-name is the remote host name to which you want to
connect. For this example host-name is osl7.njit.edu

Do not forget to press ENTER at the end of the typed line
and every typed line.

Page | 10

A Warning message might be generated the first time you
connect to this host and a password prompt is output for
you to provide your myUCID password. The blinking cursor
box is waiting for your myUCID password. Type it in and

Do not forget to press ENTER at the end of the typed
password.

See Figure 8 below.

 Figure 8.

Page | 11

4. After you typed your password and pressed ENTER you are

logged on to the machine in question and of the given host-
name). The screen might or might not look like the one in
Figure 9. Looking at Figure 9 in the third line from the
top you might read a "On host osl7...." verifying that you
indeed got connected to osl7.njit.edu as intended.

The window of Figure 9. is a window hosted by the remote
host (osl7.njit.edu). Although you will be typing commands
in the client machine, your input will be transmitted to,
read and executed and interacted by the remote host!

The remote host window has a different prompt as well.
At the very bottom of the screen that is Figure 9 you see
the prompt which FOR MY OWN SETUP (but maybe NOT FOR YOU)
is the percent symbol % and after a space you may see the
blinking cursor waiting for your input . The prompt and the
cursor are customizable.

 Figure 9.

You might explore other options of MobaXterm. Moreover it
is possible to upload files (from the client machine to the
remote host) or download files (from the remote host to the
client machine). You might see on the left side or the
right side of the MobaXterm window, the file system
directory area for your account. Read the Mobaxterm manual

Page | 12

or instructions as made available by NJIT or through the
Mobaxterm web-site for more information.

At this point you are ready to start interacting with the
remote host.

Type in Unix/Linux commands, when done typing them, press
the ENTER button and observe the output.
If you are not familiar with Unix or Linux there are
several tutorials or summaries out there. Pick the one you
are more comfortable with it.

Finally, to terminate the session type exit. You will
‘logout’ from the remote host, and you will the move back
to the familiar screen of Figure 7.

If you are done with MobaXterm, terminate it by clicking on
its top right corner the X symbol that will ‘kill’ the
window. Likewise locate the icon of Figure 4 and stop VPN.
The icon of Figure 4 will revert to its form in Figure 1.
At that point if you rightclick on Figure 1 you will be
able to deactivate VPN. Deactiving VPN is NOT EQUIVALENT to
an uninstall.

Page | 13

4. Unix and Linux
Linux is based on the Unix operating system (OS) and
environment. The Unix operating system consists of a kernel (the
part of the OS that is in main memory all of the time along with
the data structures required for its proper operation) plus a
variety of services that the operating system provides.

Unix was introduced in the late 60s/early 70s in the then AT&T
Bell Labs by K. Thompson and D. Ritchie and was originally
developed for a DEC PDP-11 minicomputer. It was originally
written in assembly. In 1973 it was rewritten in the programming
language known as C. The OS initial interaction with a user is
done with some teletype terminals (also known as Video Display
Units) to which a keyboard is attached. Thus interaction with a
user was done through a device accepting and displaying 80
characters per line of fixed width ASCII output (and a total of
24 such lines). Think of this Courier font being the only option
for terminal input (through the keyboard) and output (through
the small 8-10inch screen of the terminal).

The UNIX operating system supported timeshared multitasking of
user processes. A program in execution is known as a process and
the OS's kernel is actively managing processes in main memory as
opposed to a program that resides passively in secondary memory,
i.e. a hard disk drive for which the OS knows nothing about its
contents.

Timesharing means that multiple users have shared access of the
CPU (processor) for a limited amount of time in a round-robin
fashion. Thus over a period of roughly five seconds, five users
have access to the CPU for roughly 1 second per user at a time
in a round-robin fashion (1-2-3-4-5-1-2-3-etc). The period of
1second is known as the quantum or timeslice. The operating
system's kernel is responsible for efficiently switching from
one user to another user's process(es). If a user process has no
activity during its timeslice/quantum in timeshared multitasking
the OS would switch the usage of the CPU to another process of
the same user or some other user. And if one process had to stop
using the CPU to do an I/O operation (e.g. printing) then
another user's process or another process of the same user could
take over the CPU since multitasking is also supported. Whereas
the objective of timesharing is to minimize CPU response time
for processes, and the objective of multitasking is just to
increase CPU utilization, the objective of timeshared

Page | 14

multitasking is to both minimize CPU response time and maximize
CPU utilization.

In a Unix system, a user is logged on to the system by providing
a set of credentials (login name and an associated password), a
process already familiar to you from the earlier sections of
this document. At NJIT we call the credentials MyUCID
credentials consisting of a myUCID (login name) and a myUCID
password.

Immediately after the login has been completed successfully the
Unix environment would become available to the logged on user
and a program (process) would start executing in the user's
environment after the user's login: the Unix shell process.

The UNIX shell process would allow the user to interact with the
operating system and start, stop, suspend and resume the
execution of services provided by the OS or create and manage
user created processes. These services are programs and when run
they become processes. The definition of a process is ‘a program
in execution’. All interaction is done through the terminal and
its associated keyboard that was used by the user to gain access
to the system: the user types in commands to the shell and after
the shell interprets these commands, it invokes services of the
OS to execute/realize those user commands as needed and as
privileged. The OS might decline to execute some of these
commands for safety or security reasons based on the credentials
(privileges) of the user.

To keep interaction short UNIX commands to the shell are short
and sometimes intuitive. For example command ls is short for
list, cat for catenate (list contents), mkdir for make
directory, ps for process status, cd for change directory, pwd
for print working directoy, mv for move, and cp for copy.

Moreover, the UNIX shell provides command line editing, and
history of interactions with the shell thus allowing for editing
a previously lengthy command instead of retyping it before re-
execution or repeating a frequently executed command by easily
recalling it from a history of prior interactions.

Every command of the shell such as ls, ps, mv, cp, pwd, cat, cd,
is an executable program residing in secondary memory (disk). It
was originally written in C and compiled and assembled

Page | 15

subsequently into the executable file named ls, ps, etc. Thus
typing a command such as

% ls

would cause the shell (an OS process) to load the program named
ls from secondary memory into main memory, thus turning it into
a process and then executing it as needed.

A reminder: the % is the shell prompt. You do not type it. It is
output by the shell to remind you that 'I, the shell, have your
full attention: please type in your request'. Moreover when you
do so and type your request (ls in this case) do not forget to
tell the shell that you are done when you are done typing your
command. You do so by pressing the ENTER key of the keyboard at
the end.

At that moment the shell interprets your input (in the example
above it is an ls), the text between the prompt and the ENTER,
and executes it as needed. Every execution of a process in linux
(in this case ls) by default creates and interacts with three
files associated and connected with three devices:

(a) standard input also known to the user as the file with fd
(file descriptor) 0,

(b) standard output with fd equal to 1, and

(c) standard error with fd equal to 2.

Unless the shell is instructed otherwise by you, standard input
is associated with your terminal's keyboard, and standard output
and standard error are both associated with the terminal's
screen.

Moreover in Linux, multiple commands can be executed one after
the other in the command line. Thus

% ls ; date ; echo "Hi"

Thus in the above example after ls is executed, the current date
and time is printed, and afterwards a message gets printed on
the standard output, the terminal used by the user.

Moreover in Linux, multiple commands can interact with each
other with a mechanism known as an unnamed pipe. A pipe is a
FIFO (First In First Out) queue that accepts input from the
output of one command and generates output that will become the
input of another command. Thus

Page | 16

% ls | egrep filename

consists of the command ls that prints the contents of the
current directory (this description makes sense after you read
the next section if you are not familiar with any operating
system's structure) and directs this output to the unnamed pipe
indicated by the pipe | symbol. The unnamed pipe indicated
receives as input the transmitted by ls output and then it
generates its own output that is to become the input of the
command egrep. The command egrep filters its input by discarding
all lines that do not contain the string/word filename and thus
preserving to the output that it will generate the lines that
contain the string filename. The combined execution thus prints
the output lines of ls that contain the string filename.

Pipes can allow multiple cascade communication such as the
following one.

% ls –l | egrep filename | sort | less

Page | 17

5. Unix/Linux filesystem
hierarchy

The Unix file system structure is hierarchical. This extends to
Linux. The term file system has not been defined yet and it is
thus being used generically at this point. In fact there are
more than one type of a filesystem in Unix (and Linux) yet the
discussion is generic and applies to all of them. The same
interface is being used even if internally the systems are
different. Moreover, on the osl machines at NJIT, to this
hierarchical structure an external file system is further
attached (mounted) that is known as AFS (for Andrew File
System). It is a distributed file system with certain advanced
features that we will not describe here. In summary AFS allows
you to access your files independently on whether you are logged
on to osl10.njit.edu or osl20.njit.edu or some other machine at
NJIT that has access to AFS (including Windows or OSX machines
but also Linux or Unix machines).

A Unix filesystem (or its structure) resembles a rooted acyclic
directed graph (some people might view it as a tree) whose nodes
are files: a filesystem of files! Since at this point we get on
into discrete math territory, we won't pursue further those
terms.

If there is a term overload let us start from scratch defining
them in sequence.

A hard disk drive (HDD) can be split into logical subdivisions
that are known as partitions. We won't disk the hardware
subdivisions of a hard disk drive: sectors, track, clusters,
cylinders or other logical formations such as volumes.

A partition can be assigned a format. The format of a partition
of a hard disk drive is known as a filesystem.

A filesystem (on a partition) can be created, mounted (to the OS
and thus activated and can be viewed through the OS) or

Page | 18

unmounted. One can not destroy (delete) a filesystem directly:
creating a new one on top of an older one overwrites the older
one. The filesystem describes how a partition is organized
logically into files and also describes the areas of the
partition that stores information on those files and their data
(metadata).

A filesystem contains files of different types.

A file is a collection of data on external memory (also known as
secondary memory, and coloquially referred to as a hard disk
drive). Thus a file is a collection (organized form) of data on
a HDD's formated partition (i.e. a filesystem).

Unix and Linux currently support several common file types. The
most common ones are listed below. Associated with the file
type's name we use a single character to represent and describe
the file's type. Types of files in Unix and Linux are as
follows.

- :(regular) file,

d :directory,

l :symbolic link, also known as soft-link,

p :named pipe,

b :block device file,

c :character device file, and

s :socket (used in networked communication).

In Unix every file is identified by a numeric identifier (value)
known as its inode (number). Inode stands for index node.

An inode value 10 indicates that the information for a specific
file (the one with inode value 10) is available at index 10 of a
table that is known as the inode table. The inode table was
created when a filesystem was created on a partition of a HDD.
Index 10 of that table contains information about the file
identified with inode value 10 such as the size of the file in
bytes, its file type, and other useful information including the
locations on the hard disk drive that contain the data
(contents) of the file.

Users do not like numbers (inodes) to reference files. An inode
number such as 315156789 is difficult to memorize. Users prefer
names. The term filename would then be established.

Page | 19

A filename is a mnemonic name that is associated with a given
inode number. The association is effected inside a directory and
the pair (filename,inode number) is recorded in the data of the
directory (a directory is a file of type directory). In a given
directory there can be only one pair with a given filename and
given inode number (filename, inode number). Different
directories can however contain the same pair. Furthermore, it
is possible that in the same directory we have another
association of the the same inode number but with a different
file name such as (filename2, inode number). In other words the
same file (inodenumber) has two names (aliases).

We furthermore prefer to say that a directory contains a
filename rather than it contains a filename and inode number
association. And sometimes two different filenames in the such
directory such as filename and filename2 map to the same file of
the same HDD.

In Unix and Linux we create a regular file by typing

 % touch myfile

Several things happen with this 'command'

(a) A file in the HDD is created by assigning a currently
available inode number say N to the file that is to be
established and the space in the inode table index N is
initialized appropriately, for example setting the type
of the new file to – (regular file), and

(b) an entry is made in the directory into which the command
touch was typed establishing the relationship (myfile,N).

Subsequently the file creation process of myfile is continued
and gets completed.(Note that the size of the created file
would be zero bytes.)

Implicit in all this discussion is the fact that we, the user,
know where we are in the hierarchical structure of the
filesystem with which we interact. Thus "in the directory into
which the command was typed" needs some explanation.

When a user logs on the system the location of the user in the
filesystem is the user's home directory. The user can identify
this location in two diffrent ways either by typing

 % pwd

Page | 20

for print working directory (which immediately after login is
the user's home directory) or by typing

 % ls ~

where tilde ~ is an alias for the user's home directory
location. If a user is lost in the filesystem hierarchy a user
can do a

 % cd ~

and this moves him to the user's home directory, the starting
location immediately after login. The command cd ~ literally
means change (the current) directory to become the home
directory (of mine).

The hierarchical top of a Unix or Linux filesystem is the root
of the filesystem. It is depicted by a slash symbol / and it is
a directory, i.e. a file of type directory. It can contain files
of any type including directories. The latter can be referred to
as subdirectories since they are subordinate to the root
directory /. A parent-child hierarchical relationship can then
be established. The root is the parent of its subdirectories,
and the subdirectories are the root's children.

Every file in the filesystem is associated with an absolute path
that describes its location in the hierarchy relative to the
root /, the common ancestor of all files (and of all types of
files) in existence in the filesystem.

Thus the file with name filename might be associated with the
absolute path

/afs/cad.njit.edu/u/u/s/user5/filename

This is to be read as follows.

(a) start with the root / directory and read its data, and
locate in the data of directory / a filename and inode
number association for a file named afs,

(b) then use the inode number of filename afs, to retrieve
information about the file, confirm it is a directory
(type) and access its data by reading its data contents
and locating in it a filename and inode number
association for a file named cad.njit.edu,

(c) then use the inode number of filename cad.njit.edu, to
retrieve information about the file, confirm it is a

Page | 21

directory (type) and access its data by reading its data
contents and locating in it a filename and inode number
association for a file named u,

(d) do the same for u and its file of type directory also
named u, and

(e) do the same for u and its file of type directory s, and
(f) do the same for s and its file of type directory user5,

and
(g) in directory user5 find the file named filename through

the association (filename,inode number). This is the file
in question. The inode of filename say 315156789 allows
us to determine the type of file with inode 315156789 by
going to the inode table and retrieving information about
index 315156789.

The absolute path also provides us with some other hierarchical
information. For example a 'child' of user5 is filename, or the
parent of filename is user5. The parent of user5 is s. The
parent of a file is always a directory that contains the file.
By the way, the parent of the root / is the root itself, a
directory. The root / is the only element of the hierarchy that
is the parent of itself! A file with no children is a non-
directory file (a file of a type other than directory) or an
empty directory (without files i.e. children).

In the absolute path we observe two usages of the slash symbol.

The slash symbol is being used to denote the root (directory) of
the file system. Subsequently the slash symbol is being used to
separate directories (and arbitrary files) in the absolute path
of a file. The absence of a slash symbol at the end of the
absolute path for filename also indicates that filename is a
file of type OTHER than directory. If it was a directory a slash
would have been the last character of the path. (But different
programs/commands use this inconsistently.)

A relative path can also describe a file such filename. First by
using the command cd (change directory) we move ourselves (the
logged on user) to a specific (directory) location in the
hierarchical structure that is the filesystem as specified by
the absolute path described next to the command cd (that must be
a directory)

 % cd /afs/cad.njit.edu/u/u/s/user5/

Page | 22

We can the confirm the current location with the command pwd
(print working directory)

 % pwd

/afs/cad.njit.edu/u/u/s/user5

and then file inquiries are relative to this directory

 % ls filename

is then equivalent to an

 % ls /afs/cad.njit.edu/u/u/s/user5/filename

in other words we are looking for information on filename in
directory user5.

The current directory is denoted by (or aliased to) a dot. Thus

 % ls .

and

 % ls /afs/cad.njit.edu/u/u/s/user5/

are equivalent. The parent of the current directory is denoted
by (or aliased to) two dots (no space in between) Thus

 % ls ..

is equivalent to

 % ls /afs/cad.njit.edu/u/u/s/

And of course

 % cd .

has no effect as we request that we move to the current
directory even if we are in it already. Note that relative paths
are allowed when we use cd. Thus

 % cd ..

moves to the parent of the current directory thus

 % pwd

prints

/afs/cad.njit.edu/u/u/s

and then a relative

Page | 23

 % cd user5

moves us back to the original location.

Note that if you are user5 the OS the moment you login and the
shell runs, it automatically does (by itself)

% cd /afs/cad.njit.edu/u/u/s/user5/

for you. The indicated path (directory) is your home directory.
The tilde symbol ~ is aliased to your home directory: it saves
time typing it!

But beware of the following nuance.

Your home directory is not user5.

Your home directory is user5 of directory s of directory u of
directory u of directory cad.njit.edu of directory afs of the
root file system!

This is because it is possible that there are multiple user5
directories elsewhere in the file system hierarchy for example

/usr/local/user5/

/user5/

/bin/user5/

/user/local/bin/user5

/afs/cad.njit.edu/u/u/s/user5/user5/my.txt

Yes in your home directory there seems to be a directory user5
that contains a file name my.txt! (And the ! is an exclamation
mark not part of the file name!)

In order to find information about the file with name filename
we can type

 % ls –l filename

and the output might look like as follows.

-rw-r--rw- 1 user5 group 1178078 Apr 26 12:14 filename

Page | 24

If we type the following the inode number of filename is also
output.

% ls –li filename

315156789 -rw-r----- 1 user5 group 1178078 Apr 26 12:14 filename

If you want information about the inode number 315156789 stored
in the inode table with index 315156789, this can be obtained
through filename as follows.

 % stat filename

The –l or -li is an option: the dash - alerts the operating
system's shell that an option would be presented, and the ell
indicates the long option (details about filanme). The left most
character of the output is the dash (left of the rw) that
indicates the file type. When –li is typed two options follow
the dash symbol one after the other with out space in between:
the l option and the i option indicating a request to obtain the
inode number associated with filename. The order does not
ordinarily matter: we might have typed –il.

The nine character rw-r----- are the three triads that describe
permissions for three entities associated with filename: the
user owner of the file, the group of the user owner of the file,
and everybody else. We refer to these entities generically as
u,g, and o respectively. In this example u is user5, g is the
group named group, and o everybody else i.e. neither user5 nor
anyone in the group named group. The permissions assigned by a
triad to an entity are read (r), write (w), and execute(x) in
the presence of the corresponding letter and are positionally
dependent (r on the left of w on the left of x). The dash
indicates the absence of the corresponding privilege/perfmission
for the corresponding entity for filename. Thus user5 has r and
w privileges it can read and edit (write) the file named
filename. The group (users other than user5 of the group group)
has only r privileges, and everybody else has none.

 Observe another output below.

% ls -ld 2021linux

drwxrwxrwx 3 user5 afs 2048 Oct 14 2021 2021linux

It is clear that 2021linux is a file of type directory. Note
that the term folder is being used in Windows as an alternative
to the term directory. This is not the case in Unix. Do not use

Page | 25

the term folder in Unix (including Linux). There is no file of
type folder. In fact in Windows a folder can be a non-directory
structure. The meaning of privilege x for a directory is
different from that a file. All (user5, afs, and everybody else)
are allowed to cd into directory 2021linux because of the x
privilege. All can delete the directory or write into it i.e.
create files (of any type) or delete files. Thus the dangerous

% rm –rf 2021linux

if executed would delete everything in 2021linux including
directory 2021linux and all of its file recursively and
completely. The OS won't ask you to confirm your recklessness.
You explicitly specified f as an option in –rf to indicate
"don't ask". Moreover the r of –rf is 'recursively'!

Directory user5 contains in the data of file/directory user5 a
line

filename 315156789.

Thus the only way to find the alias to 315156789 is by looking
inside the directory that contains the relationship between the
alias (filename) and the actual name (inode) of the file
(315156789). A file (such as 315156789) can have multiple
aliases known as hard links. Thus it is possible inside user5 to
have another entry

myfile 315156789

In fact somewhere else (in some other directory) it is possible
to have the same. However we do know that this is not the case:
this is because in the output of ls –l filename on the left side
of user5 we see a 1. The 1 indicates one alias exists for
315156789 and that is filename. The operating system keeps track
of all the associations with file 315156789.

If you do however a

% ln filename myfile

and then do a

% ls –l filename

Page | 26

or an

% ls –l myfile

or

% ls –li filename

or

% ls –li myfile

things would become interesting.

Below we use the symbol sharp #. The # indicates a comment for
the shell and thus the remainder of the line is ignored by the
shell when it tries to interpret and execute the line.

The commands (in fact executable files) we introduced that
manipulate files of a filesystem or traverse the hierarchy of a
filesystem are as follows.

% pwd #print current working directory

% cd path # change the current working directory to path

% ls path # list contents of directory path

% ls # list contents of current working directory

% ls –l # long list

% ls –la # detailed long list (. and .. included)

% ls –lai # the inode (numeric name of the file) is also
listed on the extrement left.

% rm file # delete a file

or

% rm pathTofile

but

% rmdir directory # remove an empty current directory

% rmdir pathTodirectory # remove an empty directory

% rm –rf file # A pretty dangerous command... Avoid it.

% rm –rf directory # A pretty dangerous command... Avoid it.

Page | 27

% mkdir directory # Create a directory

% mv oldname newname # rename file

Page | 28

6. Filesystem commands
% pwd # print working directory

% man pwd # manual page for pwd

% man man # manual page for man

% cd path # go to directory path

% cd / # go to the root of the file system

% cd # go to the home directory of user.

% cd ~ # same as cd

% cd . # go the current directory; do nothing

% cd .. # go one directory up (parent directory)

% cd ../.. # go two levels up (grandaparent)

% ls # list contents of . (current directory)

% ls path # list contents (filenames) of directory path

% ls directory # as above

% ls file # confirm file exists

% ls ~ # list files at home directory

% ls . # same as ls

% ls .. # same as above

% ls -l # detailed listing

% ls -ld # list directories

% ls -li # inode information included

% ls -lia # hidden files included

% ls -liaR # also recursively follow + list directories

% ls file* # list files whose names start with file

% ls *file # list files whose named end with file

% ls file{1,2} # list file1 and/or file2

% ls file[0-9].txt # list files file0.txt , … , file9.txt

% rm filename # delete filename

% rm -f filename # silent removal

Page | 29

% rm -rf filename # Dangerous: does not prompt to confirm

% rm -rf directory # Even more Dangerous

% rmdir directory # removes empty dir directory

% mkdir directory # creates a directory

% mv olddir newdir # renames olddir into newdir

% mv oldfile newfile # renames oldfile into newfile

% mv file dir # move file into dir

% cp file1 file2 # makes a copy of file1; new file named file2

% cp -r dir1 dir2 # copies a full directory

% stat file # info about file (as found in inode table)

% cat file # show contents of file file

% less file # similar to cat ; controlled output

% more file # similar to less

% cat a.txt b.txt >>c.txt # concatenate a.txt, b.txt into c.txt

% paste # explore it carefully (joins two files)

% head -10 file # list first 10 lines of file

% tail -10 file # list last 10 lines of file

% sort file # sort lines of file

% sort -nr # see below

% sort -n # explore numeric based sort

% echo string # display on screen (std output)

% echo $$ # print process ID

% echo $? # print return value of an ending process (in
BASH shell)

% date

% echo \$date # observe

% echo “`date`” #

% echo $(date) #

% chmod newpermissions file # file can be dir or regular file or of
any other type; does not work on AFS for directories

% ls -l file # get old /current permissions

% chmod 572 file #r,w,x,- interpret r for 4, w for 2, x for 1, -
for 0 and add ; from sum indicated find unique sum eg 5=4+0+1=r-x,
7=4+2+1=rwx, 2=0+2+0=-w-

Page | 30

Change file permission for a file with file name filename. The permissions
are the privileges accorded to three entities, the user owner (u) of the file
(ls –l indicates it is alexg in the examples of ls), the group (g) to which
the user owner belongs (ls –l indicates the group as users), and everybody
else (o) i.e. other than alexg and the members of group users.

For file with filename file1 above, the user owner permissions are rw-
for read and write and no execute. Equivalently in binary 110 as a
r,w,x maps to a 1 and a – to a zero (r maps to the leftmost 1, w to the
second from the left and a – or alternatively a 1 to the rightmost 1).
110 in denary is 4+2+0=7. Equivalently map an r into a 4, a w into a 2
an x into a 1, and a – into a zero. Then rw- maps to 4+2+0=7 as well.

% who # who is logged on system

% whoami # whoami ? what is my UCID (for NJIT)

% date

% hostname

% cal #calendar for current year;

% cal 5 2023 #calendar for May 2023

% cal 23 #calendar for year 23…

% echo “hello” >out.txt # redirect output to file

% cat file1 >>file2 # add contents at end of file2

% cat file1 file2 >>file3 # at end of file3 add file1 then file2

% cat <file1 >>file2 # same as before last one

% wc file # num of lines, words, characters

% ps -ef

% ps -ef | egrep root # processes of user root

% ps -ef | egrep root |more # same as above but controlled output

% cat | expand | col -b # Guess! Read man for expand, col

% sleep 10 # sleep for 10 sec; screen freezes

% sleep 10 & # & is background; process in background

% jobs # see it in background

% fg %1 # bring in foreground; may omit %1

% CTRL-Z # suspend it

% bg # send it to background (again)

Page | 31

% module avail gcc # list gcc versions available

% module load gcc/9.1.0 # activate 9.1.0

% module list # list currently loaded module files

% module load cuda/9.0.2 # load NVIDIA CUDA module file

% module load texlive # load Latex (default version is 2018 on AFS)

% gcc -v # which gcc version is active (loaded)?

% gcc prog1.c # compile prog1.c ; exec in a.out

% ./a.out # Run (OS Loads+runs) a.out that becomes a
process

% gcc prog1.c -o prog1 # exec is prog1 not a.out

% gcc prog1.c -lm -o prog1 # does your code have math functions? Link with
math library

%./prog1

% which prog1 # seriously ?

% which ls # !

% gcc -S prog1.c # assembly file is prog1.s

% more prog1.s

% gcc prog1.s -o prog1 # exec in prog1

% ./prog # runs

% gcc prog1.c -o prog1x

% md5sum prog1x prog1 # same fingerprints?

% ulimit -a # see max Stack size; max user processes

% gcc -c prog1.c # object code file prog1.o generated ; no exec

% gcc prog1.o -o prog1 # now generate it!

% ./prog1 # run it

% echo $? # capture the return value of the main function
of prog1

% gcc -S prog1.s

% as prog1.s -o asprog1.o

% gcc -c prog1.s -o gccprog1a.o

% md5sum asprog1.o gccprog1a.o # what do you observe

% gcc -c prog1.c # ?

% gcc agprog1.o -o exeas

Page | 32

% objdump -D prog1.o >dprog1o.txt

% objdump -D exeas >dexeas.txt

BASH SHELL shortcuts CTRL-A means press CTRL key and A key at
the same time.

 CTRL-A #move to start of bash line

 CTRL-E #move to end

 CTRL-K #delete/kill text from cursor position to end

 CTRL-Y #yank/paste killed text

 CTRL-L #clear screen (terminal screen)

 TAB # autocomplete command or file name

 UP DOWN # move up or down command history

 !cmd # recall + execute more recent command starting

 # with text cmd

7. Tar, zip and gzip usage

How to create a tar archive on an OSL machine ?

TAR is a Tape ARchiver program. It takes as input multiple files and collates
them into a large .tar file. The latter .tar file is in a format that is fit
to be copied to a tape (and this was the intent long time ago). A .jar file
in Java is in fact a .tar file containing Java class files. Therefore tar is
versatile and universally useful. The following commands packs three files
into archive file.tar

 tar cvf file.tar a.txt b.txt c.txt

The command archives into archive file.tar the three files listed afterwards
a.txt, b.txt c.txt. The following command

Page | 33

 tar xvf file.tar

extracts from archive file.tar all the files stored in the archive. In our
example these are files a.txt, b.txt and c.txt.

Options: c for create,
 v for verbose,

f for archive filename follows,
x for extract.

How to create a zip archive on an OSL machine?

 zip file.zip a.txt b.txt c.txt

archives into file.zip a.txt b.txt c.txt

 unzip file.zip

extract all the files archived in file.zip

FOOD for THOUGHT
% cp abc.docx abc.zip
% unzip abc.zip
% mv def.xlsx def.zip
% unzip def.zip

.xlsx .pptx .docx are in fact .zip archives!!!

Dealing with gzip on an OSL machine.

The tar archiver is just an archiver. It does not compress files. The zip
program however archives and compresses files, and unzip dearchives and
decompresses the archived compressed files. One way to compress file.tar is
by doing what will turn file.tar into a compressed file.tar.gz.

Compress a file using gzip.

 % gzip file.tar

Decompress a file using gzip (the d option in –d is for decompress)

 % gzip –d file.tar.gz

and then of course if after decompression we are dealing with a .tar file we
can dearchive by typing.

 % tar xvf file.tar

