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Preface

This material is neither final nor thoroughly proofread. It constitutes work in progress and might contain errors. It
should be used IN CONJUNCTION with other references if consulted for factual checking.

Report discrepancies with other sources, or factual errors, or typos to the author.

Distribution of this material in any form, without the expressly written consent of the author is PROHIBITED.
c© Copyrighted by Alexandros Gerbessiotis (2021-2023).
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Introduction

1
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Chapter 1

Mathematical logic and set theory

1.1 Statements and Propositions
In computing we prove statements. Such statements need to be stated precisely.

Definition 1.1 (Proposition). A proposition is a statement that is either true or false.

The disjunction in the definition of proposition is an exclusive disjunction. The exclusive disjunction uses the word
“either” and the word “or”. If only the word “or” was used, it would be a disjunction that is an inclusive disjunction,
but not an exclusive disjunction. The exclusive disjuntion in the definition of a proposition means that a statement can
be true, it can be false but it cannot be both true and false at the same time.

Definition 1.2 (Axiom). An axiom is a statement accepted or assumed to be true without proof.

An axiom is thus a proposition. An axiom forms the basis for logically deducing other statements.
A constant is an object whose value cannot change. Thus a five is always a five and can never be a six. We prefer

to represent five and six with a numeric digit such as 5 and 6 respectively. A variable is an object (or name) whose
value can change. We can represent variables with letters or combinations of letters (and sometimes digits as well).
Thus x and y might represent variables. If we define the range of values or the set of values a variable can take we talk
about the data type of a variable. In mathematics we refer to variables as uknowns or indeterminates. We might use
a letter P in capital case to denote a proposition. This way we can easily refer to it. A proposition can then depend
on the values of variables say x and y. Such a proposition would be denoted as P(x,y). In that case we call P(x,y) a
predicate.

Definition 1.3 (Predicate). A predicate is a proposition whose truth value is dependent on the value of one or more
variables.

Definition 1.4 (True or False). The truth values True or False will be denoted in short by T and F respectively.
(Alternatively, by 1 and 0 respectively.)

True is a truth value, and so is False. T and F, or t and f, or 1 and 0 are notations for True and False respectively.
Five or 5 or 0b101 are also notations for five. The last of the three is the binary representation of five.

Definition 1.5 (Proof ). A proof is a verification of the truth value of a proposition by a sequence of logical deductions
derived from a base set of axioms.

Definition 1.6 (Theorem). A theorem is a proposition along with a proof of its correctness.

3
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4 CHAPTER 1. MATHEMATICAL LOGIC AND SET THEORY

Definition 1.7 (Lemma). A lemma is a preliminary or simpler theorem useful to proving a proposition that yields a
theorem.

Definition 1.8 (Corollary). A corollary is a proposition that follows from a theorem in few and usually simple logical
deductions or steps.

A lemma precedes, and a corollary follows a theorem.
Proposition 1.1 below is true, and Proposition 1.2 is false. (Integers shown in this section are traditional denary integers
also known as decimal or base-10 or radix-10 integers.)

Example 1.1. The following proposition is true.

Proposition 1.1. 1+1 = 2.

Example 1.2. The following proposition is false. (No tricks!)

Proposition 1.2. 1+1 = 1.

We do not know whether the following proposition is true or false. But we do know that it is either true or false!

Proposition 1.3 (Goldbach’s Conjecture). Every even integer greater than two is the sum of two prime numbers.

There are simple (primitive) propositions and compound propositions.
Simple propositions can be composed into more complicated propositions using connectives.

Definition 1.9 (Compound proposition). A compound proposition is formed by combining simple propositions using
logical connectives.

Definition 1.10 (Logical Connectives). There are three fundamental logical connectives: Negation, Disjunction, and
Conjunction.

Since a predicate is a proposition, we could replace the word “proposition” above with the word “predicate”.
For a compound proposition, consisting of the composition of multiple predicates, we might generate a truth table

that establishes the truth value of the proposition for various values of the predicate variables involved.
Before that we need to introduce the concept of a collection. There are two instances of a collection: a set and a

sequence. We introduce first sets and their operations. Sequence will be introduced in the next chapter.
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1.2. NUMBERS AND COLLECTIONS 5

1.2 Numbers and Collections
Definition 1.11 (Collection). A collection of elements is a grouping of its elements.

The elements of a collection may also be referred to as members. Two collections are of note: sets and sequences.

1.2.1 Integer numbers
We provide some definitions that will be utilized throughout this work, and are familiar to you from other courses.

Definition 1.12 (Integer numbers: Signed Integers.). An integer number is a number that takes integer values. The
value of a number includes a sign to indicate whether it is positive or negative and the magnitude of the number. A
number can be positive, negative or zero. A zero is neither positive nor negative and has no sign preceding it. For a
positive integer number we might or might not place a plus sign + before its magnitude. For a negative integer number
we always place a negative sign − before its magnitude.

Definition 1.13 (Natural (integer) numbers: positive integers). A natural integer number, or natural number, or
ordinal number is a non-negative integer number.

This latter definition varies in different textbooks. Although we defined a natural integer number as a non-negative
integer number, several alternative sources describe a natural integer number as a positive integer number thus exclud-
ing zero. In the remainder we shall drop the number noun and call an integer number just an integer.

Definition 1.14 (Non-negative integer numbers). A non-negative integer can be positive or zero. No sign is needed.

Definition 1.15 (Natural (integer) numbers: unsigned integers). A natural integer , or natural number, or ordinal
number is an integer number that is a positive integer or (sometimes a) zero.

Example 1.3. Integer 13 is a positive integer and so is +13. They represent the same integer. Integer−13 is a negative
integer. Integer 0 is neither positive nor negative. A zero does not have a sign. Ordinarily, there should be no sign
preceding a 0.

1.2.2 Real numbers
Definition 1.16 (Real numbers). A real number is a number that takes real values. It can be positive, negative or zero.

1.3 Collections: Sets
Definition 1.17 (Set). A set is a collection of elements in no particular order, where every element appears once.

The elements of a set are also called members of the set or member elements of the set.

1.3.1 Denoting a set

Remark 1.1 (Curly braces for a set). The elements of a set are listed one after the other in no particular order
separated by commas; curly braces { and } are used to delineate the set.

Example 1.4 (Set example). Thus set {1,3,2} is the same as set {1,2,3}: both denote the same set containing elements
1,2, and 3. Thus {1,3,2}= {1,2,3}. We usually assign names to sets, for example A = {1,3,2} and we can refer to it
as set A.
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6 CHAPTER 1. MATHEMATICAL LOGIC AND SET THEORY

Definition 1.18 (Set ordering.). In a set the order of its elements does not matter. Moreover a set does not contain
duplicate elements thus {10,10} is not a set.

Definition 1.19 (The belongs-to ∈ symbol.). We say an element x belongs to set A if and only if set A contains x; we
write x ∈ A. If A does not contain element y we write instead y 6∈ A.

Example 1.5 (Set example). For set A = {1,3,2}, we write 1 ∈ A to indicate that 1 is a member of set A, or equiva-
lently, that 1 belongs-to set A. We also write 4 6∈ A to indicate that 4 is not a member of set A.

1.3.2 Empty set, Universal set

Definition 1.20 (Empty Set). A set with no elements is empty. Thus {} is an empty set. We also denote an empty set as
∅ or /0. Thus ∅= /0 = {}.

Definition 1.21 (Universal Set). Every time we define a set we are going to assume that its elements are drawn from
a larger, wider set that is known as the Universal set. The Universal set will be denoted by U.

Thus if we define a set A, its universal set U would have the following property: for every element x of A (x
belongs-to A), that element x also belongs-to U . Moreover there would exist an element u ∈U such that x 6∈ A.

Example 1.6. The following set B includes three elements, the empty set, element 1 and a single-set or singleton, a
set containing one element and that is element 1. B = { /0,1,{1}}. For this example we write /0 ∈ B, also 1 ∈ B but also
{1} ∈ B.

1.3.3 Set enumeration
Definition 1.22 (Set enumeration individually). The elements of a set can be enumerated individually and completely
as in {10,30,20}.

Definition 1.23 (Set enumeration by a set comprehension). The elements of a set can be enumerated through a set
comprehension that describes a property P(.) that is satisfied by the elements. Then the set of elements x satisfied by
property P i.e. P(x) is described as {x : P(x)} or {x | P(x)} or {x.P(x)}.

We read the colon (:) as “such that”.

Remark 1.2 (Set enumeration using ellipsis). For sets with too many elements to write down we might use three
periods (. . .). Thus {1,2, . . . ,n} would be a way to write all positive integers from 1 to n inclusive.

This way we technically describe a sequence of elements but the elements of the sequence become members of a
set and in a set there is no ordering of its elements. The three period symbol . . . is also known as ellipsis (or in plural
form, ellipses, which is not grammatically used in the remainder).

From that point on we shall frequently use a name for a set that is a single letter in capital case. One can call that
name a variable.

1.3.4 Sets of integers and reals
Most numbers listed below would be natural numbers (one way or the other). When we start talking about negative
numbers this will be made very clear (and the discussion will be brief).

The set of integer numbers is denoted by Z.

Z= {. . . ,−2,−1,0,1,2, . . .}
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1.3. COLLECTIONS: SETS 7

The set of natural numbers is denoted by N.
N= {0,1,2, . . .}

The set of real numbers is denoted by R.

Definition 1.24 (Sets of integers and reals.).
Set Z: The set of integers is denoted by Z.
Set Z∗: The set of non-zero integers is denoted by Z∗.
Set Z+: The set of non-negative integers is denoted by Z+.
Set Z∗+: The set of positive integers is denoted by Z∗+.

Set N: The set of natural numbers, natural integers (unsigned integers) is denoted by N.
Set N∗: The set of natural numbers excluding zero is denoted by N∗.

Set R: The set of real numbers.
Set R+: The set of non-negative real numbers.
Set R∗+: The set of positive real numbers.

Set Q: The set of rational numbers i.e. Q= {q : q = x/y,x,y ∈ Z,y 6= 0}.

Note that in this notation a subscripted + indicates positiveness but does not exclude a zero; and a superscripted ∗
indicates exclusion of zero explicitly. All properties of integers translate to the domain of Real Numbers.

Definition 1.25 (Real Numbers: Floating-point Numbers). A real number that includes integer digits, possibly a
decimal point, and decimal digits is called a floating-point number.

Thus 12.1 or 12.10 or 1.21 ·101 all represent the same real number.

Definition 1.26 (Exponential notation). A real number can be expressed in exponential notation in the form a× 10b

or equivalently as aEb or aeb.

Thus 5.1×103 is 5.1e3 or 5.1E3.

Definition 1.27 (Absolute value of a number). The absolute value of a number (real or integer) is its magnitude. In
other words the absolute value of a number is the number WITHOUT its sign.

Example 1.7. The absolute value of 3 and +3 is 3. The absolute value of −3 is also 3. The absolute value of 0 is 0.

Definition 1.28 (Magnitude of a number real or integer). The magnitude of an integer or real number is its absolute
value.

Example 1.8 (Magnitude vs value). For a negative number such as −5 its magnitude is 5 and its value is −5. Thus
the ’we always place a negative sign − before its magnitude’ at the beginning of this (sub)section finally makes sense.

Example 1.9 (Set example). Now that we have defined certain sets of integers we can define the elements of a set in
more complex ways. For set A = {1,3,2}, we can define set B as follows B = {x ∈ Z : x ∈ A,x ≥ 2}. One may write
B = {x : x ∈ Z,x ∈ A,x ≥ 2}. Of course one might realize then that x ∈ Z is supefluous and B = {x : x ∈ A,x ≥ 2}
describes the same set. Moreover note that the commas are to be interpreted as B = {x : x ∈ A and x≥ 2}. And to put
a closure, B = {2,3}.
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8 CHAPTER 1. MATHEMATICAL LOGIC AND SET THEORY

1.3.5 Cardinality of a set
Definition 1.29 (Cardinality of a set). The cardinality of a set is the number of its elements. The cardinality of set A
is denoted as |A| or cA or c(A) or n(A).

Definition 1.30 (Finite and Infinite sets). If the cardinality of set A is a natural (integer) number, i.e. |A| ∈ N, we call
A a finite set; otherwise A is an infinite set.

Remark 1.3. Sometimes we say a set is finite if we can map the elements of the set to some subset {1,2, . . . ,n} of the
natural numbers. If this is not possible we call such a set an infinite set. Thus Z,N,R are infinite sets.

Example 1.10. The empty set has cardinality zero. The cardinality of {10,30,20} or A = {10,30,20} is three. We
write |A|= 3 or c(A) = 3 or cA = 3. Moreover we can map 10 to 1, 30 to 2, 20 to 3 thus we can map the elements of
A to the subset {1,2,3} of natural numbers.

Example 1.11. Infinite sets can use an ellipsis (three periods) as in {1,2,3, . . .} or {. . . ,1,2,3, . . .} or
{. . . ,−2,−1,0,1,2, . . .} for example.

1.4 Set equality, subsets, union and intersection

1.4.1 Set equality
Definition 1.31 (Set equality). Two sets A and B are equal to each other and we write A = B or B = A if and only if
they have the same elements.

In other words for every x ∈ A we have x ∈ B, and for every x ∈ B we have x ∈ A.

Example 1.12. Thus set A= {10,30,20} is equal to B= {10,20,30}: both represent the same set containing elements
10, 20, and 30 and thus {10,30,20}= {10,20,30} or we can just write A = B.

If a set A is not equal to set B we write A 6= B.

1.4.2 Subsets and proper subsets
Definition 1.32 (Subsets). A set A is called a subset of set B and denoted by A⊆ B if every element of A is in B.

Definition 1.33 (Proper subsets). A set A is called a proper subset of set B and denoted by A⊂ B if every element of
A is in B and B has at least one element not in A.

In other words A ⊆ B implies that for every a ∈ A we have a ∈ B. If we write A ⊂ B, this implies that there also
exists a b ∈ B such that b 6∈ A.

Corollary 1.1. Moreover A⊆ B and B⊆ A is equivalent to A = B. Not a subset is denoted by 6⊂ and * as needed.

We may use the notation A 6⊆ B and A 6⊂ B to denote that A is not a subset of B and A is not a proper subset of B
respectively.

Example 1.13. Set {1,2} ⊆ {1,2}. Moreover, set {1,2} ⊆ {1,2,3}, and set {1,2} ⊂ {1,2,3}.
Moreover, set {1,2,3} 6⊂ {1,2,3}, and set {1,2} 6⊂ {1,2}, and /0⊆ {1,2}, and /0⊂ {1,2}.

Example 1.14. For any set A it is A⊆ A and /0⊆ A.

Every set is supposed to belong to a fixed large set that is known as the universal set U . Thus we have.

Theorem 1.1. For any set A we have /0⊆ A⊆U.
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1.4. SET EQUALITY, SUBSETS, UNION AND INTERSECTION 9

1.4.3 Intersection and Union of sets
Definition 1.34 ( Intersection of sets.). For two sets A and B, the intersection C of A and B is denoted by C = A∩B
and defines the set C that contains the common elements of A and B. Thus

C = A∩B = {x : x ∈ A,x ∈ B}.

Equivalently
C = A∩B = {x : x ∈ A∧ x ∈ B}.

The diagram is known as the Venn diagram.
A B

A∩B

Definition 1.35 ( Disjoint sets.). Two sets E,F are disjoint if they have no common elements thus E ∩F = /0.

Definition 1.36 ( Union of sets.). For two sets A and B, the union D of A and B is denoted by D = A∪B and defines
the set D that contains all the elements of A and B. (The common elements are listed once to comply with the definition
of a set). Thus

D = A∪B = {x : x ∈ A or x ∈ B}.
Equivalently, at the end of this chapter, we may write,

D = A∪B = {x : x ∈ A∨ x ∈ B}.

A B

A∪B

Example 1.15. Let A = {1,2,3,4}, B = {1,3,5}, C = {2,4,6}. Then A∩B = {1,3}, A∪B = {1,2,3,4,5}, B∩C = /0.

Corollary 1.2. For any two sets A,B, we have A∩B ⊆ A, A∩B ⊆ B. For any two sets A,B, we have A ⊆ A∪B,
B⊆ A∪B.

1.4.4 Properties of Union and Intersection
Proposition 1.4 (Intersection). Let A,B,C be sets. Then

(a) A∩A = A,

(b) A∩B⊆ A, A∩B⊆ B,

(c) (A∩B)∩C) = A∩ (B∩C) Associative Law
(d) A∩B = B∩A Commutative Law
(e) A∩U = A
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10 CHAPTER 1. MATHEMATICAL LOGIC AND SET THEORY

Proposition 1.5 (Union). Let A,B,C be sets. Then

(a) A∪A = A,

(b) A⊆ A∪B, B⊆ A∪B,

(c) (A∪B)∪C) = A∪ (B∪C) Associative Law
(d) A∪B = B∪A Commutative Law
(e) A∪U =U

Proposition 1.6 (Distributive Law). Let A,B,C be sets. Then

A∩ (B∪C) = (A∩B)∪ (A∩C)

A∪ (B∩C) = (A∪B)∩ (A∪C)

Example 1.16. Show that (X ∩Y )∪Z = X ∩ (Y ∪Z), or show that it is not correct.

Proof. It is not correct and a counter example suffices to prove it! Let X = {1,2,3}, Let Y = {4,5,6}, Let Z = {1,3,5}.
Then (X ∩Y )∪Z = Z. Moreover X ∩ (Y ∪Z) = {1,3} 6= Z.
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1.5. POWERSETS AND COMPLEMENT OF A SET 11

1.5 Powersets and complement of a set

1.5.1 Powersets
Definition 1.37 ( PowerSet). The Powerset of A denoted by P(A) or P(A) is the set of all possible subsets of set A.
Thus |P(A)|= 2|A|.

Example 1.17. For set A = {10,20,30},
P(A) = { /0,{10},{20},{30},{10,20},{10,30},{20,30},{10,20,30}}.
The cardinality of P(A) is two raised to the cardinality of A. Thus |A| = 3 and therefore |P(A)| = 23 = 8. In other
words, for every element of A we have two possibilities: 0 for the element NOT-TO be in a specific member of P(A),
and 1 for the element TO be in a specific member of P(A). For the three element set A we have thus the following
possibilities 000, 100, 010, 001, 110, 101, 011, 111 that correspond to the 8 members of P(A) as listed. (The first digit
is the indicator for 10, the next one for 20, and the last one for 30.)

1.5.2 Complement of a set

Definition 1.38 (Complement of a set). The complement of B sometimes denoted B̄ or B′ or B{ is the set of elements
not in B.

B{ = B′ = {x : x 6∈ B}.

For the definition of the complement of a set to make sense, there should be a reference set call it F and all sets
such as B are subsets of F . Then we can define the complement of B relative to F .

Definition 1.39 (Complement of a set relative to a reference set F). The complement of B sometimes denoted B̄ or B′

or B{ is the set of elements not in B.
B{ = B′ = {x : x ∈ F,x 6∈ B}.

Having provided the definition of the universal set U, set U plays the role of F and we can alternatively provide
the following definition for the complement of a set utilizing U .

Definition 1.40 (Complement of a set relative to U). The complement of B sometimes denoted B̄ or B′ or B{ is the set
of elements not in B.

B{ = B′ = {x ∈U : x 6∈ B}.

B

B{
U

Definition 1.41 ( Difference of two sets). For two sets A,B we define the difference A−B or A\B as follows.

A−B = A\B = {x : x ∈ A,x 6∈ B}.
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12 CHAPTER 1. MATHEMATICAL LOGIC AND SET THEORY

A B

A−B

BA

B−A

Definition 1.42 ( (Relative) complement). For two sets A,B we define the relative complement of B relative to A i.e.
A∩B{ to be the difference A−B.

A−B = A\B = A∩B{ = {x : x ∈ A,x 6∈ B}.

Definition 1.43 ( Absolute complement). The absolute complement of B relative to a reference set that contains all
elements of all sets including B is B{ = F−B, where F is the reference set. Given that we have defined the Universal
set U, we can then say

B{ =U−B.

Definition 1.44 ( + on sets). We also define addition of sets as follows A+B = (A−B)∪ (B−A).

Addition has a formal name: symmetric difference.

Definition 1.45 ( Symmetric Difference). For two sets A,B the symmetric difference of A and B is defined as follows.

A⊕B = (A∪B)− (B∩A) = (A−B)∪ (B−A)

BA

B−AA−B

A⊕B

Example 1.18. Show that X ∪ (Y −X) = X ∪Y .

Proof. First X ∪ (Y −X) = X ∪ (Y ∩X{). Then using the distributive lawp X ∪ (Y −X) = (X ∪Y )∩ (X ∪X{). The
later part X ∪X{ = U and thus X ∪ (Y −X) = X ∪Y as needed. (We trivially used property (e) from the Intersection
properties above.

Example 1.19. Let U = {1,2,3,4,5,6,7,8,9} Let A = {1,2,3,4}, B = {1,3,5}, C = {2,4,6}. A{ = {5,6,7,8,9}.
A−B = {2,4}, A−C = {1,3}, A⊕B = {2,4,5}.
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1.5. POWERSETS AND COMPLEMENT OF A SET 13

1.5.3 Properties of Sets

Definition 1.46 (Associativity Law). For any sets A,B,C we have A∩ (B∩C) = (A∩B)∩C and A∪ (B∪C) = (A∪
B)∪C.

Definition 1.47 (Commutativity Law). For any sets A,B we have A∪B = B∪A and A∩B = B∩A.

Definition 1.48 (Distribution Law). For any sets A,B,C we have A∪ (B∩C) = (A∪B)∩ (A∪C) and A∩ (B∪C) =
(A∩B)∪ (A∩C).

Definition 1.49 (Identity Law). For any set A, we have A∪ /0 = A, A∩ /0 = /0. For any set A, we have A∪U = A,
A∩U = A.

Definition 1.50 (Idempotent Law). For any set A, we have A∪A = A and A∩A = A.

Definition 1.51 (Involution Law). For any set A, we have (A{){ = A.

Definition 1.52 (De Morgan’s Law for sets). For every two sets that are subsets of a reference set F (or U), we have

(A∪B){ = A{∩B{

and
(A∩B){ = A{∪B{.

Definition 1.53 (Complement Law and Involution). Moreover by De Morgan’s Law we can also derive that

A∪A{ = F, A∩A{ = /0, /0{ = F, F{ = /0.

Moreover A⊆ B implies B{ ⊆ A{. Finally A{{ = A.
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14 CHAPTER 1. MATHEMATICAL LOGIC AND SET THEORY

1.6 Pairs and tuples

1.6.1 Ordered Pairs and tuples

Definition 1.54 (Ordered Pair, Triples and n-tuple.). For a pair of elements a,b order matters. Thus (a,b) means that
a is the first element of the pair and b is the second. Moreover (a,b) 6= (b,a). Likewise (a,b,c) and (x1, . . . ,xn) are
triples/triplets and n-tuples respectively.

Definition 1.55 (Cartesian product). For two sets A and B the cartesian product C = A×B is defined as

C = A×B = {(a,b) : a ∈ A,b ∈ B}.

A cartesian product is generalizable to n sets, not just two.

The cartesian product is generalizable to n sets, not just two, thus for sets A1,A2, . . . ,An we can define C = A1×
A2× . . .×An.

Definition 1.56 (Cartesian plane). A cartesian plane C is defined as C = A×B, where A = B = R. Thus a cartesian
plance is R×R.

1.6.2 Counting
Theorem 1.2 (Counting). Let A,B be two subsets of a finite reference set F.

• Let A⊆ B. Then |A| ≤ |B|.

• Let A⊆ B. Then |B−A|= |B|− |A|.

• Let A⊆ B. If |B|= |A|, the A = B.

• If A and B are disjoint sets then |A∩B|= 0, |A∪B = |A|+ |B|.

• |A′|= |F |− |A|.

1.6.3 Principle of Inclusion-Exclusion
Theorem 1.3 (Principle of Inclusion-Exclusion for two sets). Let A and B be two finite sets.

|A∪B|= |A|+ |B|− |A∩B|.

Example 1.20. CS435 has prerequisites CS241 and CS288. There are 30 students who have taken CS241. There
are 50 students who have taken CS288. There are 20 students who have taken both CS241 and CS288. What is the
total number of students who have completed CS241 or CS288? Let A be the CS241 students, Let B be the CS288
students, Let A∪B be the students involved, and Let A∩B be the 20 students who have taken both CS 241 and CS288.
|A|= 30, |B|= 50, |A∩B|= 20. Then by the IE principle, we have that

|A∪B|= |A|+ |B|− |A∩B|.= 30+50−20 = 60.

Theorem 1.4 (Principle of Inclusion-Exclusion for n sets). Let A1, . . . ,An be n finite sets.

|A1∪ . . .∪An| = |A1|+ . . .+ |An|
− |A1∩A2|− |A2∩A3|− . . .−|An−1∩An|
+ |A1∩A2∩A3|+ |A1∩A2∩A4|+ . . .+ |An−2∩An−1∩An|
. . .

+(−1)n+1 |A1∩A2∩ . . .∩An|.
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1.7. COMPOUND PROPOSITIONS 15

1.7 Compound Propositions

1.7.1 Negation
The negation of a proposition is also a proposition.

We use the symbol NOT, not, ¬, or ! as connectives for negation. They are alternative operators, in fact operator
symbols, indicating the same operation: negation.

The negation of a proposition P is then denoted by ¬P, or NOT P, or NOT(P), not P, or not(P), or !P.
The symbol ¬ (alternatively, NOT, not) is known as the operator for negation. The operation implied by the

operator is known as negation. The operator ¬ is a unary operator and accepts one and only one operand on which
it acts, in this case a proposition such as P. For proposition P, ¬P is also a proposition and the latter is called the
negation of P.

Definition 1.57 (Negation). A proposition P and its negation ¬P have opposite truth values. If P is true, then ¬P is
false, and if P is false, then ¬P is true.

The following table is known as the truth table for negation. For a given proposition P it shows for the different
possibilities of the truth values of P the truth values of ¬P.

Negation (¬)
P ¬P
T F
F T

Example 1.21. Let proposition P be defined as follows.

P : The state of New Jersey is in the USA.

Proposition Q is defined as follows.

Q : The state of New Jersey is NOT in the USA.

It is common knowledge that proposition P is T (true), and proposition Q is obviously F (false). We call Q the negation
of P and say Q = ¬P, since P and Q = ¬P have opposite truth values.

1.7.2 Disjunction
The disjunction of two propositions is also a proposition. We may also refer to a disjunction as an inclusive disjunction
to distinguish it from an exclusive disjunction that will be defined later. We use the symbols OR, or, ∨, +, and | as
connectives for a disjunction. They are the operators for disjunction. An operator is a symbol; the operator implies an
operation.

The disjunction of two propositions P and Q is thus denoted by P OR Q, or P∨Q, or P+Q, or P|Q and the forms
OR(P,Q) or ∨(P,Q) can also be used.

Each operator for disjunction is a binary operator and accepts two operands, and thus in P∨Q for example,
proposition P is the left operand, and proposition Q is the right operand. When we use the form P∨Q the operator is
between the operands. We call this form an infix notation. In the case ∨(P,Q) the operator precedes the operands and
we call this form a prefix notation. (There is also a postfix notation.) For two propositions P,Q, the disjunction P∨Q
is also a proposition.

Definition 1.58 (Disjunction(OR)). A disjunction P∨Q is false when both P and Q are false, and it is true otherwise.

Therefore, the disjunction is T when one or both of the propositions is T, otherwise it is F. The following table is
known as the truth table for disjunction P∨Q. It shows the truth value of the disjunction for the various possibilities
of the truth values of propositions P,Q. Since we have two propositions, we have 2 ∗ 2 = 4 possibilities for the truth
values of P and Q and thus four rows in the truth table.
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16 CHAPTER 1. MATHEMATICAL LOGIC AND SET THEORY

Disjunction (∨)
P Q P∨Q
F F F
F T T
T F T
T T T

Example 1.22.
P: 2+2 = 4.
Q: 2+2 = 3.
R : P∨Q.
S: 2+2 = 4 OR 2+2 = 3. Assuming that integers are denary (base 10, radix-10), proposition P is T, proposition Q is
F, proposition R i.e. P∨Q is T, and S is another way to write R = P∨Q and thus S is T as well.

Sometimes a disjunction is called an inclusive disjunction because there exists an exclusive disjunction.
In an exclusive disjunction, it cannot be that P and Q are both T.

Example 1.23. Consider proposition P, where

P : Today is Tue

and proposition Q, where
Q : Today is Wed.

Today cannot be Tue and Wed at the same time! Therefore we need to make a stronger statement than an inclusive
disjunction P∨Q. This leads to establishing an exclusive disjunction P⊕Q. (There is always the possibility that today
is one of the remaining five days that are neither Tue nor Wed.)

1.7.3 Exclusive Disjunction
The exlusive disjunction of two propositions is also a proposition. We use the symbols XOR, xor, ⊕, Y, and in C
or C++ the symbol ˆ known as hat as connectives for an exclusive disjunction operator. The exclusive disjunction of
two propositions P and Q is thus denoted by P⊕Q or P XOR Q or sometimes as PYQ and in some programming
languages as PˆQ. Sometimes the form XOR(P,Q) or ⊕(P,Q) can be used. For two propositions P, Q the exclusive
disjunction P⊕Q is also a proposition.

Definition 1.59 (Exclusive Disjunction (XOR)). An exlusive disjunction P⊕Q is true when exactly one of P, Q is true,
and it is false otherwise.

Therefore, the exclusive disjunction is false when both propositions are true or both propositions are false. Other-
wise it is true. The following table is known as the truth table for the exclusive disjunction P⊕Q for given P,Q.

Exclusive Disjunction (⊕)
P Q P⊕Q
F F F
F T T
T F T
T T F

1.7.4 Negated Disjunction
The negated disjunction of two propositions is also a proposition. We use the connective symbol NOR for negated
disjunction. The negated disjunction of two propositions P and Q is thus denoted by P NOR Q. Sometimes the form
NOR(P,Q) can be used.
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1.7. COMPOUND PROPOSITIONS 17

NOR means negative OR that is negated OR or negated disjunction. For two propositions P and Q the negated
disjunction P NOR Q is also a proposition.

Definition 1.60 (Negated Disjunction (NOR)). The negated disjunction P NOR Q is true when both P and Q are false,
and it is false otherwise.

Thus P NOR Q is defined as ¬(P∨Q). The truth table of P NOR Q is shown next.

Negative-OR (NOR)
P Q P NOR Q
F F T
F T F
T F F
T T F

1.7.5 Conjunction

The conjunction of two propositions is also a proposition. We use the symbols AND, and, ∧, & for connectives, and
rarely the symbol . for period. The conjunction of two propositions P and Q is thus denoted by P∧Q, P AND Q,
P&Q, P.Q, and occasionally the forms AND(P,Q), ∧(P,Q) can be used.

For two propositions P,Q, the conjunction P∧Q is also a proposition.

Definition 1.61 (Conjunction(AND)). A conjunction P∧Q is true when both P and Q are true and it is false otherwise.

Therefore, the conjunction is F when one or both of the propositions is F, and T otherwise. The truth table for
conjunction P∧Q is shown next.

Conjunction(∧)
P Q P∧Q
F F F
F T F
T F F
T T T

Example 1.24.
P: 2+2 = 4.
Q: 2+2 = 3.
P∧Q.
R: 2+2 = 4 AND 2+2 = 3.

Obviously, P is T, Q is F, and P∧Q is F. Moreover R is F as well.

1.7.6 Negated Conjunction

The negated conjunction of two propositions is also a proposition. We use the connective NAND for negated con-
junction. The negated conjunction of two propositions P and Q is thus denoted by P NAND Q. Sometimes the form
NAND(P,Q) can be used.

NAND means negative AND that is negated AND or negated conjunction. For two propositions P and Q the
negated conjunction P NAND Q is also a proposition. Moreover P NAND Q is equivalent to ¬(P∧Q).

Definition 1.62 (Negated Conjunction(NAND)). The negated conjunction P NAND Q is false when both P and Q are
true, and it is true otherwise.
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18 CHAPTER 1. MATHEMATICAL LOGIC AND SET THEORY

NAND
P Q P NAND Q
F F T
F T T
T F T
T T F

We have concluded the presentation of the simple connectives that can connect propositions into compound propo-
sitions. We present few more connectives.

1.7.7 Implication

Let P and Q be two propositions. Then P⇒ Q is called an implication or conditional. In an implication like this, P is
the antecedent (hypothesis) and Q is the consequent (conclusion). We can read this implication as “If P then Q”, or “P
implies Q”, or “P only if Q”, or “Q if P”.

The implication P⇒ Q of two propositions P and Q used as the antecedent and consequent is also a proposition.

Definition 1.63 (Implication). The implication P⇒Q is false if P is true and Q is false, and it is true in all other
cases.

The implication P⇒Q is thus equivalent to ¬P∨Q. The truth table of an implication is shown next.

Implication (⇒)
P Q P⇒Q
F F T
F T T
T F F
T T T

Example 1.25. We have two propositions. Proposition P is the statement

P : It snows

and proposition Q is the statement,
Q : I will not go out

The implication P⇒ Q reads,
IF It snows, THEN I will not go out

The statement ”IF it snows, THEN I will not go out” is an implication implied by P⇒ Q. The ”It snows” part
is the antecedent P and the ”I will not go out” is the consequent Q. The implication is false if it snows and I decide
to (and do) go out. The implication is true if it snows, and I do not go out. However the implication is also true if it
DOES NOT snow and I don’t go out, or if it DOES NOT snow, and I decide to go out.

Remark 1.4 (Sufficient). In an implication P is sufficient for Q. If P occurs i.e. is true then the (true) implication
implies Q will be true. If P does not occur (it is not true), Q might be true or might be false. Other things dictate Q’s
truth value then.

Remark 1.5 (Necessary). In an implication Q is necessary for P that is, Q is necessary for P to be true in the sense
that the truthness of P guarantees Q to be true. (It is thus impossible to have P true without Q also being true.)
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1.7. COMPOUND PROPOSITIONS 19

Example 1.26. It is easier to remember an implication using the form S⇒ N. Thus S is sufficient for N and N is
necessary for S. Call proposition S: ”Person named Steve”. and Proposition N: ”Person has a Name”. In other
words the implication is “if a person is named Steve, then that person has a name”

Person is named Steve ⇒ Person has a Name

S is sufficient for N. If a person is named Steve it means person has a name. N is necessary for S. It is impossible for
S to be true and N then being false.

Example 1.27.
(a) A conditional reads: ”if it snows, then Alex will get sick”. We are told ”It did not snow”. Discuss the validity of
”Alex will get sick”.
(b) The conditional reads: ”if it snows, then Alex will get sick”. We are told ”Alex did not get sick”. Discuss the
validity of ”It did not snow”.
(c) The negation of P⇒ Q is determined as follows. First P⇒ Q is equivalent to ¬P∨Q. Thus its negation is the
negation of the disjunction i.e. ¬(¬P∨Q) which is P∧¬Q.
(d) ”If cats are bats, then bats have four legs.” Let P be ”cats are bats” and let Q be ”bats have four legs”. The
implication is then P⇒ Q. Its negation is P∧¬Q i.e. ”cats are bats and bats DONOT have four legs”.

Proof. (a) Even if it did not snow, Alex might or might not get sick. If he gets sick it won’t be because it snowed. The
antecedent is F, the consequent can be F or T. The implication is T, as there is nothing that evaluates it as F.
(b) The statement (proposition) ”It did not snow” is T. Had it snowed, Alex would have gotten sick but we have been
told that Alex did not get sick. Therefore proposition ”It did not snow” is T.)

1.7.8 Bi-Implication
Let P and Q be two propositions. Then P⇔ Q or P ⇐⇒ Q is called a bi-implication or bi-conditional. We can read
this bi-implication as ”P if and only if Q”, or ”P necessary and sufficient for Q”, or If P then Q and if Q then P. Note
that in ’P if and only if Q’ P⇒ Q is the part that says P only if Q or equivalently Q if P. And the Q⇒ P is the part
that says P if Q.

The bi-implication P⇔Q of two propositions P and Q is also a proposition.

Definition 1.64 (Bi-implication). The bi-implication P⇔Q is true if P and Q are both true or both false, and it is
false in all other cases.

Definition 1.65 (Bi-implication). We alternatively define P⇔ Q as

P⇔ Q : (P⇒ Q)∧ (Q⇒ P)

The truth table of bi-implication P⇔Q is shown next.

Bi-Implication
P Q P⇒Q Q⇒ P P⇔Q
F F T T T
F T T F F
T F F T F
T T T T T

1.7.9 Converse
Let P and Q be two propositions. The converse of implication P⇒ Q is another implication: Q⇒ P. An implication
is a proposition. The converse of an implication is also a proposition.

Definition 1.66 (Converse of an implication). For implication P⇒ Q its converse is defined as

converse(P⇒ Q) : (Q⇒ P)
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20 CHAPTER 1. MATHEMATICAL LOGIC AND SET THEORY

1.7.10 Inverse
Let P and Q be two propositions. The inverse of implication P⇒ Q is another implication: ¬P⇒¬Q. The inverse of
an implication is also a proposition.

Definition 1.67 (Inverse of an implication). For implication P⇒ Q its inverse is defined as

inverse(P⇒ Q) : (¬P⇒¬Q)

1.7.11 Contrapositive
Let P and Q be two propositions. The contrapositive of implication P⇒ Q is another implication: ¬Q⇒ ¬P. The
contrapositive of an implication is also a proposition.

Definition 1.68 (Contrapositive of an implication). For implication P⇒ Q its contrapositive is defined as

contrapositive(P⇒ Q) : (¬Q⇒¬P)

1.8 Compound Proposition evaluation
A compound proposition can be evaluated into a T or F by evaluating all of its primitive propositions and then apply
the rules of composition implied by the connectives ¬,∧,∨ etc.

Sometimes we use parentheses to describe the order of composition. Sometimes we define an order of precedence
for the connectives: for example ¬ has highest precedence, followed by ∧, followed by ∨.

The easiest way to determine the truth value of a compound proposition is to determine the truth values of all
primitive propositions and generate a truth table for all combinations of them, and determine which one is applicable
for our case. This method also works with predicates but then the number of variables determines the number of rows
of the truth table. The problem is that for t propositions (or predicate variables) the truth table would have 2t rows in
general.

1.8.1 Tautology and Contradiction
Proposition P∨¬P is a tautology. In the truth table below the last column that provides the truth values of this
proposition is only T . A proposition with such a truth table is called a tautology.

Tautology
P ¬P P∨¬P
F T T
T F T

Proposition P∧¬P is a contradiction. In the truth table below the last column that provides the truth values of this
proposition is only F . A proposition with such a truth table is called a contradiction.

In a truth table where the last column is only F , we call the proposition with such a truth table a contradiction.
Thus P∧¬P is a contradiction.

Contradiction
P ¬P P∧¬P
F T F
T F F
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1.9. PROPERTIES OF PROPOSITIONS 21

1.9 Properties of Propositions

Definition 1.69 (Identity Law). For any P, we have P∨F = P, P∨T = T , P∧T = P and P∧F = F.

Definition 1.70 (Idempotent Law). For any P, we have P∨P = P and P∧P = P.

Definition 1.71 (Involution Law). For any P, we have ¬¬P = P.

Definition 1.72 (Associativity Law). For any P,Q,R we have (P∨Q)∨R = P∨(Q∨R), and (P∧Q)∧R = P∧(Q∧R).

Definition 1.73 (Commutativity Law). For any P,Q we have P∨Q = Q∨P and P∧Q = Q∧P.

Definition 1.74 (Distribution Law). For any P,Q,R we have

P∨ (Q∧R) = (P∨Q)∧ (P∨R),

and
P∧ (Q∨R) = (P∧Q)∨ (P∧R).

Definition 1.75 (Complement Law). For any P, ¬T = F, ¬F = T , P∨¬P = T and P∧¬P = F.

Definition 1.76 (De Morgan Law). For any P, Q we have that ¬(P∨Q) = ¬P∧¬Q. For any P, Q we have that
¬(P∧Q) = ¬P∨¬Q.

1.10 Sentences and Quantifiers
Let A be a set. A sentence defined on set A is a predicate P(x), which has the property that P(a) is T or F for each
a ∈ A. The set A is the domain of P(x) and the truth set of P(x), T (P) is the set of all elements of A for which P(x) is
T.

T (P) = {a : a ∈ A, p(a) is T}

Definition 1.77 (Universal Quantifier). Let P(x) be a sentence defined on a set A.The expression

(∀a ∈ A)P(a)

or equivalently,
∀a ∈ A.P(a)

or equivalently,
∀a ∈ A : P(a)

reads as in ”for all a in set A, P(a) is true” or simply ”for all a, P(a)”. The symbol ∀ is the universal quantifier. The
three different forms of the same statement above are equivalent to T (P) = A.

We can use the simpler forms ∀a.P(a) or ∀a : P(a).

Definition 1.78 (Existential Quantifier). Let P(x) be a sentences defined on a set A.The expression

(∃a ∈ A)P(a)

or equivalently,
∃a.P(a)

or equivalently,
∃a : P(a)

reads as in ”there exists an a in set A, P(a) is true” or simply ”For an (some) a, P(a)”. The symbol ∃ is the existential
quantifier. The three different forms of the same statement above are equivalent to T (P) 6= /0.
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22 CHAPTER 1. MATHEMATICAL LOGIC AND SET THEORY

Definition 1.79 (De Morgan Law for Quantifiers).
For any P, Q we have that ¬(∀a ∈ A)P(a) = (∃a ∈ A)¬P(a).
For any P, Q we have that ¬(∃a ∈ A)P(a) = (∀a ∈ A)¬P(a).

1.10.1 Set Proof Techniques
Remark 1.6. To prove properties related to sets do as follows.

• In order to show x ∈ X, we just need to show that x has the property that describes all elements of X.

• In order to show that X ⊆ Y , show that every x ∈ X satisfies,x ∈ Y as well.

• In order to show that X ⊂ Y , first show X ⊆ Y and then show that there is a y ∈ Y such that y 6∈ X.

• In order to show that X 6⊆ Y show that some x ∈ X is such that x 6∈ Y .

• In order to show that X = Y show that X ⊆ Y and also Y ⊆ X.

• In order to show that X 6= Y show that X 6⊆ Y or Y 6⊆ X.

• In order to show a ⇐⇒ b show that a =⇒ b and also b =⇒ a.

1.10.2 Examples
Let for the remainder N be the set of positive integers.

Example 1.28. Proposition Q(n) is defined as (∀n ∈ N)(n+11 > 10). Q(n) is true. This is because the truth range
of the proposition is T (Q) = {1,2,3, . . .} which is equal to N.

Example 1.29. Proposition Q(n) is defined as (∀n ∈ N)(n+10 > 11). Q(n) is false. This is because the truth range
of the proposition is T (Q) = {2,3, . . .} which is NOT equal to N.

Example 1.30. Proposition Q(n) is defined as (∃n ∈ N)(n+10 > 11). Q(n) is true. This is because the truth range
of the proposition is T (Q) = {2,3, . . .} which is NOT equal to /0.

Example 1.31. Let A be the population of all US citizens. Proposition Q(n) is defined as follows.
(∀x ∈ A)(x is named Alex).
We do not discuss the absurdity of this proposition. We find its negation ¬Q(n). Then ¬Q(n) is defined as follows:
(∃x ∈ A)(x is NOT named Alex).
In a negation the quantifier flips and so does the statement of the main body of the proposition: is named Alex

becomes is NOT named Alex.

Example 1.32. Let A be the population of all US citizens. Proposition T (n), is defined as follows.
(∃x ∈ A)(x is named Alex).
Quite clearly this proposition is true.
We explore its negation. Then ¬T (n) is defined as follows.
(∀x ∈ A)(x is NOT named Alex).
The latter, ¬T (n) might sound absurd but it is false.
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1.11. EXERCISES 23

1.11 Exercises
Exercise 1.1. Show that P∨¬(P∧Q) is a tautology.

Proof.

P∨¬(P∧Q) = P∨ (¬P∨¬Q)

= (P∨¬P)∨¬Q)

= T ∨¬Q

= T

Exercise 1.2. Evaluate ¬(P∨Q)∨ (Q∧¬P).

Proof. One way to evaluate it is as follows

¬(P∨Q)∨ (Q∧¬P) = (¬P∧¬Q)∨ (¬P∧Q)

= ((¬P∧¬Q)∨¬P)∧ ((¬P∧¬Q)∨Q)

= ((¬P∨¬P)∧ (¬Q∨¬P))∧ ((¬P∨Q)∧ (¬Q∨Q))

= (T ∧ (¬Q∨¬P))∧ ((¬P∨Q)∧T )

= (¬Q∨¬P)∧ (¬P∨Q)

= (¬Q∨¬Q)∧¬P

= T ∧¬P

= ¬P

There is a shorter way as follows

¬(P∨Q)∨ (Q∧¬P) = (¬P∧¬Q)∨ (¬P∧Q)

= (¬P∧ (¬Q∨Q)

= (¬P∧T )

= ¬P

Exercise 1.3. Let P be “All students are in the classroom” State ¬P.

Proof. Let S be the set of students referred to in P. Let C be the set of students in the classroom. We can rephrase P
as follows

P : ∀s ∈ S : s ∈C

The negation of P is ¬P as follows
¬P : ∃s ∈ S : s 6∈C

Thus: ¬P is ”there exists a student not in the classroom”.

Exercise 1.4. Let A = {1,3,5,7,9}. Determine the truth value of each of the following propositions.

• (a) P: ∃a ∈ A : a+3 = 10.

• (b) Q: ∃a ∈ A : 2a+3 = 10.



DRAFT. C
op

yri
gh

t (
c)

20
21

-20
24

.

Alex
. Gerb

ess
iot

is.

All r
igh

ts
res

erv
ed

Not
to

be
po

ste
d on

lin
e

or
on

the
web

or
to

be

mad
e av

ail
ab

le
ou

tsi
de

of

co
py

rig
ht

ho
lde

r’s
web

-pa
ge

24 CHAPTER 1. MATHEMATICAL LOGIC AND SET THEORY

• (c) S: ∀a ∈ A : 3a+7≥ 10.

Proof. (a) T since for a = 7 we have 7+3 = 10. Thus T (P) = {7} 6= /0.
(b) F since T (P) = {}.
(c) T since T (P) = {1,3,5,7,9}= A.

Exercise 1.5. Let P be “All students are in the classroom” State ¬P.

Proof. Let S be the set of students referred to in P. Let C be the set of students in the classroom. We can rephrase P
as follows

P : ∀s ∈ S : s ∈C

The negation of P is ¬P as follows
¬P : ∃s ∈ S : s 6∈C

Exercise 1.6. For set A = {2,4,6,8} use a set comprehension to enumerate the elements of the set.

Proof. Let A = {x : x is even positive integer and x < 10}. An alternative for : is to use | or / or the symbol . for
period.

Exercise 1.7. Is { /0,{}} a set ?

Proof. No. /0 and {} are the same elements. They are two different ways to say empty set. In a set every element
is listed once. In our case the same element, the emptyset is included twice. The following two sets are sets indeed.
Let A = { /0}. Let B = {{}}. Moreover A = B since /0 = {} i.e. the two sets contain the same element. Moreover
c(A) = c(B) = 1, the cardinality of each is one (element).

Exercise 1.8. For any two sets A,B, if A⊆ B and B⊆ A then A = B.

Proof. Note that A⊆ B by definition means that for every a ∈ A we have a ∈ B.
In order to show that A = B we need to show that for every x ∈ A we have x ∈ B, and also for every x ∈ B we have

x ∈ A.
We prove first the xinA⇒ x ∈ B. This is a direct consequence of A⊆ B which says x ∈ A⇒ x ∈ B!
We prove next the xinB⇒ x ∈ A. This is a direct consequence of B⊆ A which says x ∈ B⇒ x ∈ A!
Therefore A and B have the same elements and thus A = B.

Exercise 1.9. For any two sets A,B, if A = B then A⊆ B and B⊆ A.

Proof. This is the converse of the previous proposition. It can be proved similarly.

Exercise 1.10. Let A,B,C be any three sets. Show that if A⊆ B and B⊆C, then A⊆C.

Proof. (i) From A⊆ B we have x ∈ A implies x ∈ B.
(ii) From B⊆C we have x ∈ B implies x ∈C.
(iii) Thus by (i) every element x ∈ A also belongs to B and thus x ∈ B.
(iv) Furthermore by (ii) every element in B belongs to C. Thus x ∈C as well.
Thus by way of (iii) and (iv) we have proved x ∈ A implies x ∈C which means A⊆C.

Exercise 1.11. Show that A = {2,3,5} is not a subset of B = {nN : nisodd}

Proof. In order to show A 6⊆ B it suffices to find ONE element of A that is not in B.
Let x = 2. 2 ∈ A but 2 6∈ B. This is because B contains odd numbers such as 1,3,5,7 etc. Thus A 6⊆ B.

Exercise 1.12. Let A = {2,3,5}, B = {2,4,6}, C = {1,3,5,7}. Find A∩B, B∩C, and A∩C and A∪B, B∪C, and
A∪C.



DRAFT. C
op

yri
gh

t (
c)

20
21

-20
24

.

Alex
. Gerb

ess
iot

is.

All r
igh

ts
res

erv
ed

Not
to

be
po

ste
d on

lin
e

or
on

the
web

or
to

be

mad
e av

ail
ab

le
ou

tsi
de

of

co
py

rig
ht

ho
lde

r’s
web

-pa
ge

1.11. EXERCISES 25

Proof. A∩B = {2}, B∩C = {}, A∩C = {3,5}.
A∪B = {2,3,4,5,6}, B∪C = {1,2,3,4,5,6,7}, A∪C = {1,2,3,5,7}.

Exercise 1.13. Let U = {1,2,3,4,5,6,7,8,9,10}. Let A,B,C as in the previous problem. Find A{, A−B, A⊕B, B⊕C.

Proof. A{ = {1,4,6,7,8,9,10}, A−B = {3,5}, A⊕B{3,5,4,6}, B⊕C{1,2,3,4,5,6,7},

Exercise 1.14. Show that it is possible A∩B = A∩C and yet B 6=C.

Proof. Let A = {2,3}, B = {2,4,6}, C = {2,5,7}. It is clear that A∩B = A∩C = {2}, yet B 6=C.

Exercise 1.15. For any A,B such A⊆ B we have A∩B = A.

Proof. In order to show A∩B = A (i) we first show A∩B⊆ A and (ii)then show A⊆ A∩B.
(i) Let x ∈ A∩B. This means x ∈ A and x ∈ B. Because of the first part x ∈ A. Therefore we have shown that

x ∈ A∩B⇒ x ∈ A. This means A∩B⊆ A.
(ii) Let x ∈ A. Let A,B are such that A ⊆ B, then a ∈ A implies a ∈ B for all a. Set a = x and we have that x ∈ A

implies x ∈ B. Since x ∈ A and x ∈ B then x ∈ A∩B. Therefore we have shown that x ∈ A⇒ x ∈ A∩B. This means
A⊆ A∩B.

From A∩B⊆ A and A⊆ A∩B we have A = A∩B.

Exercise 1.16. Prove the Theorem of Inclusion-Exclusion

Proof. Let us restate it c(A∪B) = c(A)+ c(B)− c(A∩B).
When we count c(A) the elements of A and c(B) the elements of B. In the c(A)+ c(B) we count the elements of

the intersection A∩B twice, once as elements of A and once as elements of B. Thus to calculate c(A∪B) we need to
subtract from the sum c(A)+ c(B) the c(A∩B).

Exercise 1.17. What is the Powerset P(A) of set A = {a,1,2}? Sometimes we write 2A for P(A).

Proof. P(A) = {{},{1},{2},{a},{1,2},{1,a},{2,a},{1,2,a}},

Exercise 1.18. Use properties of sets to compute in closed form (A∩B)∪ (A∩B{)

Proof.

(A∩B)∪ (A∩B{) = ((A∩B)∪A)∩
(
(A∩B)∪B{

)
= ((A∪A)∩ (A∪B))∩

(
(A∪B{)∩ (B∪B{)

)
= (A∩ (A∪B))∩

(
(A∪B{)∩U

)
= (A∪B)∩ (A∪B{)

= (A∪ (B∩B{))

= A∪ /0 = A
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Chapter 2

Relations

2.1 Introduction
For two sets A and B, we may define the cartesian product of those two sets A×B.

Definition 2.1 (Cartesian product). For two sets A and B the cartesian product C = A×B is defined as

C = A×B = {(a,b) : a ∈ A,b ∈ B}.

A cartesian product is generalizable to n sets, not just two.

If A = B we can write A×A as A2. Moreover R×R or R2 is the cartesian plane.
A relation is sometimes referred to as a binary relation.

Definition 2.2 (Relation from A to B). For two sets A,B a relation R from A to B is a subset of A×B. Therefore
R⊆ A×B.

R = {(a,b) : a ∈ A,b ∈ B}

We then say (a,b) ∈ R or aRb. Likewise, if the pair (a,b) is not in R we write (a,b) 6∈ R and a6Rb.

Definition 2.3. For a relation R from set A to set B, for a ∈ A and b ∈ B there are two possibilities for a and b:

• (a,b) ∈ R: we then say a is R-related to b or aRb.

• (a,b) 6∈ R: we then say a is NOT R-related to b or a6Rb.

Another definition if it involves only one set is as follows.

Definition 2.4 (Relation from A to A). For a sets A a relation S from A to A is a subset of A×A. Therefore S⊆ A×A.

The elements of A that are first elements of R are known as the domain of relation R. The elements of B that
are second elements of R are know as the range of relation R. Thus we define Do(R) or D(R) and Ra(R) or R(R) as
follows.

Definition 2.5 (Domain of T ). The domain D of a relation T is denoted by D(T ) and defined as follows.

Do(T ) = D(T ) = {a : aT b,a ∈ A}

Definition 2.6 (Range of T ). The range R of a relation T is denoted by D(T ) and defined as follows.

Ra(T ) = R(T ) = {b : aT b,b ∈ B}

27
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28 CHAPTER 2. RELATIONS

(We used T instead of R for the name of the relation to avoid overloading symbol R: it would have indicated both
the range of a relation, and the name of the relation itself.)

Definition 2.7 (Inverse relation). The inverse R−1 of a relation R from A to B, is the relation from B to A defined as
follows:

R−1 = {(b,a) : (a,b) ∈ R}= {(b,a) : aRb}

(a,b) ∈ R ⇐⇒ (b,a) ∈ R−1

aRb ⇐⇒ bR−1a

or

Example 2.1. Let A = {1,2,3,4} and B = {0,4,5}. Let R = {(1,0),(2,0),(3,0),(4,0),(4,4)}. The domain of R is
{1,2,3,4} and the range of R is {0,4}.

Example 2.2. Let X be a set of objects each object having a weight. We define the relation H (think of ≥). For two
elements of X say a,b ∈ X, we write (a,b) ∈ H if and only if a is of weight at least the weight of b. We can write also
aHb instead of (a,b) ∈ H. A more preferred symbol for H is ≥. Then a ≥ b is easier to deal with than (a,b) ∈ H or
aHb!

(a,b) ∈ H ⇐⇒ aHb ⇐⇒ a≥ b

Example 2.3. It is not that difficult to establish that relation R of the first example relates to relation H of the second
example.

Example 2.4 (Circle). Let S be a relation on set R whose elements satisfy the following equation C(x,y)= x2+y2−9=
0. Thus S = {(x,y) : x∈R,y∈R,C(x,y) = 0} The elements of the relation S define a circle (circumference) with center
(0,0) and radius 3.

Theorem 2.1. For a relation R from A to B, D(R) = R(R−1) and R(R) = D(R−1).

Proof. (a) Let a ∈ D(R). Then there exists a b ∈ B such that aRb.

aRb ⇐⇒ bR−1a ⇐⇒ a ∈ R(R−1) ⇐⇒ D(R)⊆ R(R−1)

(b) Let a ∈ R(R−1). Then there exists a b ∈ B such that bR−1a.

bR−1a ⇐⇒ aRb ⇐⇒ a ∈ D(R) ⇐⇒ R(R−1)⊆ D(R).

From D(R)⊆ R(R−1) and R(R−1)⊆D(R) we conclude D(R) = R(R−1). The other part is proved analogously.

2.2 Properties of Relations

Definition 2.8 (Reflexive Relation). A relation R on set A is reflexive if (a,a) ∈ R for every (all) a ∈ A, that is aRa for
every a ∈ A.

(A relation is not reflexive if there is an a ∈ A such that (a,a) 6∈ R.) The relation ≤ is reflexive on Z but < is not
reflexive.

Definition 2.9 (Antireflexive Relation). A relation R on set A is antireflexive if (a,a) 6∈ R for every (all) a ∈ A.

Definition 2.10 (Symmetric Relation). A relation R on set A is symmetric if whenever (a,b) ∈ R, then (b,a) ∈ R.

A relation R is not symmetric if there exists (a,b) ∈ R for which (b,a) 6∈ R.
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2.2. PROPERTIES OF RELATIONS 29

Definition 2.11 (Antisymmetric Relation). A relation R on set A is antisymmetric if whenever (a,b)∈ R, and (b,a)∈
R then a = b.

Thus if a 6= b, and (a,b) ∈ R then (b,a) 6∈ R for an antisymmetric relation.

Definition 2.12 (Transitive Relation). A relation R on set A is transitive if whenever (a,b) ∈ R, and (b,c) ∈ R, then
(a,c) ∈ R.

Thus R is not transitive if there exists a triplet a,b,c that breaks transitivity!

Example 2.5 (≥ vs >). The relation H (of a prior example) is reflexive. This is because for every x ∈ X, we have
(x,x)∈H or xHx or x≥ x. However if we had defined a relation > (x weighs more that y is denoted x> y or (x,y)∈>),
then > would not be reflexive. Both ≥ and > are transitive though.

Example 2.6 (Equality). Let A be any set. Then R = {(a,a) : A ∈ A} defines the equality relation. We prefer to use =
for R then.

Example 2.7 (Universal and Empty Relations). Let A be any set. Then A×A⊆ A×A and is known as the Universal
relation (for A). Likewise set ⊆ A×A, and it is known as the Empty Relation (for A).

2.2.1 Equivalence relations
Definition 2.13 (Equivalence Relation). A relation R on set A is an equivalence relation if it is Reflexive, Symmetric,
Transitive.

Theorem 2.2. If R is an equivalence relation on set A, then R−1 is also so.

Definition 2.14 (Equivalence Class). Let R be an equivalence relation on set A. Let a ∈ A. We define [a] the set of
elements of A to which a is related under R that is

[a] = {b : b ∈ A,(a,b) ∈ R}

Then [a] is the equivalence class of a ∈ A. Any b ∈ A and b ∈ [a] is the representative of the equivalence class. The
collection of all equivalence classes of elements of A under R is denoted by A/R

A/R = {[a]|a ∈ A}

Example 2.8. Let A = {1,2,3} and let R = {(1,1),(2,2),(3,3),(1,2),(2,1)}. Relation R is reflexive, symmetric and
transitive i.e. an equivalence relation. Moreover [1] = {1,2}, [2] = {1,2}, and [3] = {3}. Moreover A/R = {[1], [3]}
although A/R = {[2], [3]} could also have been used since [1] = [2] = {1,2}.

Example 2.9. Consider set Z and relation R7 (congruence modulo 7) i.e. xR7y if and only if

x≡ y (mod 7)

in other words x are y are related if their difference is a multiple of 7 or in other words 7 divides the difference x− y
(or y− x). R7 is an equivalence relation and the equivalence classes are

E0 = {. . . ,−21,−14,−7,0,7,14,21, . . .}

E1 = {. . . ,−20,−13,−6,1,8,15,22, . . .}
E2 = {. . . ,−19,−12,−5,2,9,16,23, . . .}

E3 = {. . . ,−18,−11,−4,3,10,17,24, . . .}
E4 = {. . . ,−17,−10,−3,4,11,18,25, . . .}
E5 = {. . . ,−16,−9,−2,5,12,19,26, . . .}
E6 = {. . . ,−15,−8,−1,6,13,20,27, . . .}
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30 CHAPTER 2. RELATIONS

Example 2.10. Show that the relation x≡ y (mod 3) defined on Z is an equivalence relation.

Proof. Given relation R : x ≡ y (mod 3) defined on Z, we will show it is Reflexive, Symmetric and Transitive. x ≡ y
(mod 3) mean x− y is a multiple of 3 or equivalently 3 divides x− y (and also y− x). That is there exists an integer k
such that x− y = 3k.
Reflexive. Obviously x− x = 3 ·0. Thus 3 divides x− x and thus x≡ x (mod 3). Therefore xRx.
Symmetric. If x≡ y (mod 3) there exists k such that x−y = 3k. Then y−x = 3(−k) and thus y≡ x (mod 3) as well.
Therefore xRy implies yRx.
Transitivity. Let xRy and yRz for some x,y,z ∈ Z. Then x ≡ y (mod 3) and y ≡ z (mod 3). These imply x− y = 3k
and y− z = 3m for some integer k,m. Then (x− y)− (y− z) = 3(k−m) for some integer k−m. But the left hand side
is x− z and thus x− z = 3(k−m). We conclude xRz.

2.2.2 Partial order (relation)

Definition 2.15 (Partial Order). A relation R on set A is a partial order if it is Reflexive, Antisymmetric, Transitive.
Then (A,R) is called a partially ordered set or poset.

Example 2.11. The relation ≤ on R is a partial order.

Theorem 2.3. If R is a partial order on set A, then R−1 is also so.

2.2.3 Total order (relation)

Definition 2.16 (Total Order). A relation R on set A is a total order if it is a partial order in which any two elements
are comparable i.e. it is a partial order for which any two elements of A either a < b or a == b or a > b. Then (A,R)
is called a totally ordered set or loset. (The prefix lo is an acronym for linearly ordered.)

2.2.4 Composition of relations

Definition 2.17 (Composition of relations). Let A,B,C be sets and we define relation R from A to B, and relation S
from B to C. Then a relation R◦S can be defined from A to C

R◦S = {(a,c) : ∀a ∈ A∀c ∈C∃b ∈ B,(a,b) ∈ R,and(b,c) ∈ S}

R◦S = {(a,c) : ∀a ∈ A∀c ∈C∃b ∈ B,aRb,bSc}

In other words for every a of A and c of C we can find at least one b of B such that aRb and bRc.

Definition 2.18 (Composition of relations). Sometimes R ◦ S as defined previously is actually defined as S ◦R. Pay
attention to the definition of the textbook used!!!!

Note that for a relation R on a set A R◦R is denoted by R2, and R3 = R2 ◦R and so on.

Definition 2.19 (Transitive closure). Let R be a relation on a set A. We have prior to this discussion defined R2 = R◦R
and by extension Rn = Rn−1 ◦R. We define the transitive closure R∗ of R as follows:

R∗ = ∪∞
i=1Ri.

Let R = {(1,2),(2,1)}. Then R∗ = {(1,2),(2,1),(1,1),(2,2)}.
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2.3. EXERCISES 31

2.3 Exercises
Exercise 2.1. Let A = {10011,1001,1110,11011} Let B = {2,3,4,5,6}.

(a) What is the cardinality of A×B?
(b) Is T = {(1001,2)(1111,3),(11011,5)} a relation from A to B?
(c) How many relations can we have from A to B.
(d) Is R = {(1001,2)(1110,3),(10011,3),(11011,4)} a relation from A to B?
(e) For R find Do(R) and Ra(R).
(f) For R find R−1.
(g) (e) For R find Do(R−1) and Ra(R−1).

Proof. (a) c(A×B) = c(A) · c(B) = 5 ·4 = 20.
(b) No it is not. Element 1111 of (1111,3) is not a member of A and thus (1111,3) 6⊆ A×B. For T to be a relation

T ⊆ A×B.
(c) There are c(A) · c(B) = 4 ·5 = 20 pairs in A×B. Any subset of A×B is a relation. There are 220 = 1,048,576

candidates for a relation.
(d) Yes it is. Observe by the way for (a,b) ∈ A×B, b is the number of ones of the binary number indicated by a

(or just the number of ones of a if you know nothing about binary numbers).
(e) Do(R) = A , Ra(R) = B−{5,6}= {2,3,4}
(f) R−1 = {(2,1001)(3,1110),(3,10011),(4,11011)}.
(g) Ra(R−1) = Do(R) = A and Do(R−1) = Ra(R) = {2,3,4}.

Exercise 2.2. Consider set A = {a,b,c} and relation on A×A, such that R = {(a,a),(b,b),(a,c),(a,b)}.
Is R (a) reflexive, (b) symmetric, (c) antisymmetric, and (d) transitive?

Proof. (a) NO. For c ∈ A, (c,c) 6∈ R.
(b) NO. (a,c) ∈ R but (c,a) 6∈ R.
(c) YES. (a,a) ∈ R and thus a = a Likewise for (b,b). Even if there are (a,c),(a,b) there are no (c,a) nor (b,a).
(d) YES. (a,a),(a,c) imply (a,c). (a,a),(a,b) imply (a,b). (a,b),(b,b) imply (a,b).

Exercise 2.3. Consider Z. We say x and y are equivalent modul 7 if

x≡ y (mod 7)

i.e. x− y is a multiple of 7, or equivalently, 7 divides x− y.
Show that the ≡ relation is reflexive, symmetric and transitive.

Proof. (a) Reflexivity. For every a ∈ Z, we have a−a = 0 ·7, thus 7 divides (a−a). Thus a≡ a (mod 7).
(b) Symmetricity. Say a ≡ b (mod 7). Then 7 divides a− b or equivalently a− b = 7k for some integer k (i.e.

a−b is a multiple of 7. The b−a = 7(−k). If k is integer so is −k. Thus b≡ a (mod 7).
(c) Reflexivity. If a ≡ b (mod 7), b ≡ c (mod 7), then from the former we have a− b = 7k and similarly from

the latter b− c = 7m for some integer k,m. The a− c = (a− b)+ (b− c) = 7(k+m) with k+m integer Thus a ≡ c
(mod 7).
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Chapter 3

Functions

3.1 Introduction
Definition 3.1 (Function). A function f : A−→ B is a mapping from elements of set A to elements of set B i.e. f is a
relation from A to B such that for every element a ∈ A there is a UNIQUE element b ∈ B such that (a,b) ∈ f .

3.1.1 Domain, Range, Image
Definition 3.2 (Domain of f ). For a function f : A−→ B, A is called the domain of f .

Definition 3.3 (Range of f ). For a function f : A −→ B, B is called the range of f . (Sometimes B is called the
codomain of f .)

Definition 3.4 (Image of f ). The image of f : A−→ B is defined as the set

I( f ) = Im( f ) = {b|b = f (a) f or some a ∈ A}.

The image of a function is the image of its domain.

3.1.2 Evaluation, Interpolation, Solution
Definition 3.5 (Evaluation). Let us remind ourselves that f is a function, a is the argument of the function, and b is
the value of f with argument a. The operation f (a) is also known as the evaluation of f at a and sometimes we write
b = f (x)|x=a.

Definition 3.6 (Inversion or solution). The operation that given b and f we find a is known as inversion or solution
(eg solve f (x) = b means find an x = a such that f (a) = b).

Definition 3.7 (Interpolation). The operation that given a collection of a and a collection of b, such that a maps to b,
asks for the computation of f that satisfies this mapping is known as the interpolation operation.

Example 3.1. A function can be defined by way of a mathematical expression (formula). Thus f (x) = x2 or x→ x2,
or y = x2 map through f (.) or x2 element x of R to element f (x) or x2 or y. The x of f (x) or x2 or y = x2 is known as
a variable or indeterminate. Implicit in this definition is that A = B = R. However I( f ) = R+.

3.1.3 Injective, Surjective, Bijective functions
Definition 3.8 ((Injective Function)). A function f : A −→ B is an injective function (one-to-one) if for every b ∈ B,
there exists at most one a ∈ A such that b = f (a).

33
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34 CHAPTER 3. FUNCTIONS

Example 3.2. For f : R −→ R the function f (x) = x2 is not injective. This is because for x and −x we have f (x) =
f (−x) = x2. Thus for a given x2 ∈ R there exist two elements of R, x and −x mapping to x2. On the other hand For
f : R+ −→ R+ the function f (x) = x2 is injective.

Definition 3.9 ((Surjective Function)). A function f : A−→ B is a surjective function (onto) if the image of f is B i.e.
B = I( f ), or equivalently for every b ∈ B there exists an a ∈ A such that f (a) = b.

Definition 3.10 ((Bijective Function)). A function f : A−→ B is a bijective function (bijection or one-to-one and onto)
if it is injective and surjective.

Definition 3.11 ((Inverse Relation)). For a function f : A−→ B the inverse relation f−1 on B,A is defined as (b,a) ∈
f−1 if and only if (a,b) ∈ f i.e. b = f (a).

Note 3.1. If f is bijective then f−1 is a function. If f is injective, then f−1 is a function for a domain that is I( f )
rather than B. For a bijective function f−1( f (x)) = x.

For a surjective function |A| ≥ |B|. For a injective function |A| ≤ |B|. For a bijective function |A|= |B|.

Definition 3.12 (Composition of functions). Consider two functions f ,g such that f : A−→ B and g : B−→C, where
the range of f is the domain of g. Then we may define a function g ◦ f called the composition of f and g as a new
function from A to C defined as follows.

g◦ f (a) = g( f (a))

We first find the image of a under f which is f (a). Then we find the image of f (a) under g which is g( f (a)).

Definition 3.13 (Binary relation R). A binary relation R from A to B is

• a function, if ≤ 1 outgoing ’edge’ for every a ∈ A to b ∈ B.

• surjective, if ≥ 1 incoming ’edge’ for every b ∈ B,

• total, if ≥ 1 outgoing ’edge’ for every a ∈ A,

• injective, if ≤ 1 incoming ’edge’ for every b,

• bijective, if = 1 outgoing ’edge’ for every a, and = 1 incoming ’edge’ for every b.

Example 3.3. Let f (x) = 1/x2. Show that it is a function from the nonzero reals to the set of positive reals.

Proof. Relation f is a function. For every real x 6= 0, x2 is also a real and so is 1/x2. We can’t have two different
y1,y2 such that y1 = 1/x2 and y2 = 1/x2 as this would imply y1 = y2.
Function f is not one-to-one (injective). This is because for x 6= 0, both x and (−x) map to the same 1/x2.
Function f is onto (surjective). This is because for every y that is positive we can find y = f (x) = 1/x2 i.e. x =
±1/
√

y. Pick one of the possible x values, say x = 1/
√

y. We find f (1/
√

y) = y and thus every y has an (at least one)
x mapping to it.
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3.2. NUMBER SET SYSTEMS 35

3.2 Number Set systems
We review the familiar number sets.

N= {0,1,2, . . .} the set of natural numbers
Z= {. . .−2,−1,0,1,2, . . .}= {a−b : a ∈ N,b ∈ N} the set of integers
Q= {a/b : a ∈ Z,b ∈ Z,b 6= 0} the set of rational numbers
R the set of real numbers

Moreover we have
N⊂ Z⊂Q⊂ R.

3.3 Integers and their properties
For the set of integers Z the following properties are available.

(a) For a,b ∈ Z then a+b ∈ Z, and also a ·b ∈ Z.
(b) Associative law for addition and also multiplication. For every a,b,c we have that

(a+b)+ c = a+(b+ c) , (ab)c = a(bc)

(c) Commutative law for addition and also multiplication. For every a,b,c we have that

a+b = b+a , ab = ba

(d) Distributive law:
a(b+ c) = ab+ac

(e) Addition has 0 as the identity element; multiplication has 1 as the identity element.

a+0 = 0+a = a , a ·1 = 1 ·1 = a

(f) Additive inverse −a for any integer a. The multiplicative inverse of a is denoted by 1/a or a−1.

a+(−a) = (−a)+a = 0 , a · (1/a) = (1/a) ·a = 1 a ·a−1 = a−1 ·a = 1

(g) The relation ≤ is a partial order: it is reflexive, antisymmetric and transitive.

Theorem 3.1 (Set Z: ≤ is a total order). Let a,b,c ∈ Z. The following properties are true.
a≤ a (reflexive property)
a≤ b∧b≤ a ⇐⇒ a = b (antisymmetric property)
a≤ b∧b≤ c⇒ a≤ c (transitive property)
a,b ∈ Z⇒ a≤ b∨b≤ a (total order)

A partial order is a total order if in addition to the reflexive, antisymmetric, and transitive properties, all of the
elements of Z are relatable with ≤.

Theorem 3.2 ((Z,+) is an Abelian group). For addition over Z the following are true.
a ∈ Z,b ∈ Z⇒ a+b ∈ Z (addition is closed over Z)
(a+b)+ c = a+(b+ c) (associative addition)
a+b = b+a (commutative addition)
a+0 = 0+a = a (identity element for addition is zero)
a+(−a) = (−a)+a = 0 (inverse of every element exists for addition)

If commutativity was not applicable, then Z would have been a group only.

Theorem 3.3 ((Z,∗) is a semigroup). For multiplication over Z the following are true.
a ∈ Z,b ∈ Z⇒ a∗b ∈ Z (multiplication is closed over Z)
(a∗b)∗ c = a∗ (b∗ c) (associative multiplication)
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36 CHAPTER 3. FUNCTIONS

Theorem 3.4 ((Z,+,∗) is a commutative ring with identity). For Z equipped with multiplication and addition is a
commutative ring with identity one over multiplication. The following are then true.

((Z,+) is an abelian group)
((Z,∗) is a semigroup )

a∗ (b+ c) = a∗b+a∗ c (multiplication is distributive over addition)
a∗1 = 1∗a = a (identity element for multiplication is one)

Moreover one can show that Q and R are also commutative rings with identity one.

3.4 Reals and their Properties

All properties of integers translate to the domain of Real Numbers.

Theorem 3.5 (Set R: ≤ is a total order). Let a,b,c ∈ R. The following properties are true.
a≤ a (reflexive property)
a≤ b∧b≤ a ⇐⇒ a = b (antisymmetric property)
a≤ b∧b≤ c⇒ a≤ c (transitive property)
a,b ∈ R⇒ a≤ b∨b≤ a (total order)

A partial order is a total order if in addition to the reflexive, antisymmetric, and transitive properties, all of the
elements of R are relatable with ≤.

Theorem 3.6 ((R,+) is an Abelian group). For addition over R the following are true.
a ∈ R,b ∈ R⇒ a+b ∈ R (addition is closed over R)
(a+b)+ c = a+(b+ c) (associative addition)
a+b = b+a (commutative addition)
a+0 = 0+a = a (identity element for addition is zero)
a+(−a) = (−a)+a = 0 (inverse of every element exists for addition)

If commutativity was not applicable, then R would have been a group only.

Theorem 3.7 ((R−{0},∗) is an Abelian group). For multiplication over R the following are true.
a ∈ R,b ∈ R⇒ a∗b ∈ R (multiplication is closed over R)
(a∗b)∗ c = a∗ (b∗ c) (associative multiplication)
a∗b = b∗a (commutative multiplication)
a∗1 = 1∗a = a (identity element for multiplication is one)
a∗ (1/a) = (1/a)∗a = 1 a 6= 0 (inverse of every non zero element exists for multiplication)

If commu-

tativity was not applicable, then R would have been a group only.

Theorem 3.8 ((R,+,∗) is a field). For R equipped with multiplication and addition, we have that R is an Abelian
group for addition, and R−{0} is an Abelian group for multiplication. Combined with the fact that multiplication is
distributive over addition we have that (R,+,∗) is a field. A field is also an integral domain. Therefore the following
are true.

0 6= 1
((R,+) is an abelian group)

((R−{0},∗) is an abelian group)
a∗ (b+ c) = a∗b+a∗ c (multiplication is distributive over addition)
a∗b = 0 ⇐⇒ a = 0 or b = 0 (integral domain)

The last or is disjunctive, not exclusive. Note that the last property above is not needed for the definition of a field
and can be omitted. This is because every field is an integral domain, and thus this property can be derived from the
remaining properties of the field. An implication of Theorem 3.8 is also that for a,b,c ∈ R, if ab = ac and a 6= 0, then
a(b− c) = 0 and since a 6= 0 then b− c = 0 that is b = c.
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3.5. EXPONENTIAL BASE TWO FUNCTIONS 37

3.5 Exponential base two functions
Definition 3.14 (Powers of 2). The expression 2n means the multiplication of n twos.

Therefore, 22 = 2 ·2 is a 4, 28 = 2 ·2 ·2 ·2 ·2 ·2 ·2 ·2 is 256, and 210 = 1024. Moreover, 21 = 2 and 20 = 1. One might
write 2∗∗n or 2ˆn for 2n (ˆ is the hat/caret symbol usually co-located with the numeric-6 keyboard key).

Power Value
20 1
21 2
24 16
28 256
210 1024
216 65536
220 1048576
230 1073741824
240 1099511627776
250 1125899906842624

Figure 3.1: Powers of two

Definition 3.15 (Properties of powers).

• (Multiplication.) 2m ·2n = 2m 2n = 2m+n. (Dot · optional.)

• (Division.) 2m/2n = 2m−n. (The symbol / is the slash symbol)

• (Exponentiation.) (2m)n = 2m·n.

Example 3.4 (Approximations for 210 and 220 and 230). Since 210 = 1024 ≈ 1000 = 103, we have that 220 =(
210
)2 ≈ 10002 = 106, and likewise, 230 =

(
210
)3 ≈ 10003 = 109.

The last number, a one followed by nine zeroes, is a billion in American English; in (British) English a billion is a
million millions (aka trillion). If one writes 109 or 1012 no confusion is possible.

Note 3.2. A kilo uses a lower case k. A capital case K stands for Kelvin, as in degrees Kelvin.
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38 CHAPTER 3. FUNCTIONS

3.6 Logarithmic base two (and e, and 10) functions
Definition 3.16 (Logarithm base two of n is lg(n)). The logarithm base two of n is formally denoted by y = lg(n) or
if we drop the parentheses, y = lgn, and is defined as the power y that we need to raise integer 2 to get n.

That is, y = lg(n) ⇐⇒ 2y = 2lg(n) = n.

From now on we will be using the informal form y = lgn without parentheses instead of y = lg(n). Another way to
write both is y = log2 n or y = log2 (n). The two writings: lgk n = (lgn)k are equivalent. We sometimes write lg lgn to
denote lg(lg(n)) and the nesting can go on. Note that lg(k) n with a parenthesized exponent means something else (it
is the iterated logarithm function).

Definition 3.17 (Other Logarithms). The other logarithms: log10(x) or log10 x and ln(x) or lnx or loge n, are to the
base 10 or to the base e = 2.7172 . . . of the Neperian logarithms respectively. If one writes logn, then the writing may
be ambiguous. Note that if we tilt towards calculus we use x as in lg(x) but if we tilt towards computing or discrete
mathematics we use n as in lg(n) for the indeterminate’s i.e. variable’s name.

Expression Value Explanation
lg(n) y since 2y = 2lgn = n (by definition)
lg(1) 0 since 20 = 1
lg(2) 1 since 21 = 2
lg(256) 8 since 28 = 256
lg(1024) 10 since 210 = 1024
lg(1048576) 20 since 220 = 1048576
lg(1073741824) 30 and so on

Figure 3.2: Logarithms: Base two

Example 3.5. lg2 is one since 21 = 2. lg(256) is 8 since 28 = 256. lg(1) is 0 since 20 = 1.

Theorem 3.9 (Properties of Logarithms.). In general, 2lg(n) = n and thus,

i. (Multiplication.) lg(n ·m) = lgn+ lgm.

ii. (Division.) lg(n/m) = lgn− lgm.

iii. (Exponentiation.) lg(nm) = m · lgn.

iv. (Change of base.) nlgm = mlgn. Moreover lga = loga
log2 (whatever the base of the latter logs).

Example 3.6. Since 220 = 210 · 210 we have that lg(220) = lg(210 ·210) = lg(210)+ lg(210) = 10+ 10 = 20. Like-
wise lg(230) = 30. Drawing from the exercise of the previous page, lg(1,000) ≈ 10 , lg(1,000,000) ≈ 20 and
lg(1,000,000,000)≈ 30.

Example 3.7. How much is n1/ lgn? Let z = n1/ lgn. Then by taking logs of both sides (and using the exponentiation
rule for logarithms) lgz = (1/ lgn) lgn = 1, we have lgz = 1 which implies z = 2.

Theorem 3.10. Exponential function: A Lower bound. For all real x, ex ≥ 1+ x, where e = 2.7172 . . ..

Theorem 3.11. Exponential function: An upper bound (and the lower bound above combined). For all x such
that |x|< 1, we have that 1+ x≤ ex ≤ 1+ x+ x2.
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3.7. THE FACTORIAL FUNCTION 39

3.7 The factorial function
Definition 3.18 (Factorial function). The factorial function is defined as follows: f (n) = n! and the definition ”n!”
reads ”n factorial” and not n exclamation mark. It is the product of the first n positive integers 1,2, . . . ,n. Note that
f (0) = 0! = 1 and f (1) = 1! = 1. Moreover,

f (n) = n · f (n−1) = n · (n−1)! = n!.

We prefer the less formal but more informative,

f (n) = 1 ·2 · . . . · (n−1) ·n.

Theorem 3.12 (Upper bound for factorial). For every n≥ 1, we have that n!≤ nn.

Proof. The first result is a straighforward upper bound of each term of the factorial with n.

n! =

n terms︷ ︸︸ ︷
1 ·2 · . . . · (n−1) ·n

≤
n terms︷ ︸︸ ︷

n ·n · . . . ·n ·n
≤ nn

Corollary 3.1 (Logarithmic Upper bound). If n!≤ nn by taking logarithms lg(n!)≤ n lgn.

Theorem 3.13 (Lower bound for factorial). For every n≥ 1, we have that n! > (n/2)(n/2).

Proof. The smallest half of the terms of the factorial are at least one (lower bound). The largest half of the terms of
the factorial are at least n/2. Moreover dn/2e+ bn/2c= n and bnc ≤ n≤ dne. Therefore,

n! =

n terms︷ ︸︸ ︷
1 ·2 · . . . · bn/2c · dn/2e · . . . · (n−1) ·n

≥
n terms︷ ︸︸ ︷

1 ·1 · . . . ·1 · dn/2e · . . . · dn/2e · dn/2e

≥
bn/2c terms︷ ︸︸ ︷

1 . . .1

dn/2e terms︷ ︸︸ ︷
dn/2e . . .dn/2e

≥ (dn/2e)dn/2e

≥ (n/2)(n/2).

Corollary 3.2 (Logarithmic Lower bound). If n!≥ (n/2)(n/2) by taking logarithms lg(n!)≥ (n/2) lg(n/2).

Corollary 3.3. We have lg(n!)≥ (n/2) lg(n/2) and lg(n!)≤ n lgn i.e. lg(n!)≈ n lgn.

Example 3.8. For the floor or ceiling manipulations consider n = 6 with n/2 = 3 and dn/3e= bn/3c= 2.

6! = 1 ·2 ·3 ·4 ·5 ·6≥ 1 ·1 ·1 ·3 ·3 ·3 = 33 = (6/2)(6/2)

Likewise, for n = 5 with n/2 = 2.5 and b5/2c= 2, d5/2e= 3.

5! = 1 ·2 ·3 ·4 ·5≥ 1 ·1 ·3 ·3 ·3 = 33 ≥ (5/2)(5/2)
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40 CHAPTER 3. FUNCTIONS

Theorem 3.14 (Stirling’s approximation formula for n!.). For all n > 10, we have that n! ≈
√

2πn(n/e)n which is
more formally defined as in

(n/e)n
√

2πne1/(12n+1) ≤ n!≤ (n/e)n
√

2πne1/(12n).

Corollary 3.4 (Simplified Stirling’s formula). For n > 10 we have that n!≈
( n

e

)n.

Corollary 3.5. A corollary is that lg(n!) = Θ(n lgn) after the Θ is formally introduced.

Proof. From either Stirling’s theorem or its Corollary, we have that

lg(n!)≈ n lgn−n lge = Θ(n lgn).

3.7.1 Combinatorial identities
Fact 3.1. (

n
k

)
=

n!
k!(n− k)!

,

The following is immediately derived if we rearrange (swap) in the denominator above k! and (n− k)!.

Fact 3.2. (
n
k

)
=

(
n

n− k

)
,

Fact 3.3. (
−n
k

)
= (−1)k

(
n+ k−1

k

)
Fact 3.4. (

−1/2
k

)
=

(−1)k

4k

(
2k
k

)
Fact 3.5 (Binomial theorem).

(a+b)n =
n

∑
k=0

(
n
k

)
akbn−k

The latter is derived for a = b = 1.

Fact 3.6.
n

∑
k=0

(
n
k

)
= 2n,

For a =−1 and b =−x and n =−n we have

Fact 3.7.
(−1− x)−n =

n

∑
k=0

(
−n
k

)
(−1)k(−x)−n−k

Proof.

(−1− x)−n =
−n

∑
k=0

(
−n
k

)
(−1)−n−k(−x)k

=
n

∑
k=0

(
−n
k

)
(−1)k(−x)−n−k
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3.7. THE FACTORIAL FUNCTION 41

By simple math manipulations the following can then be proven. This is the basis used in the Pascal Triangle
to determine the coefficient of akbn−k i.e. C(n,k) from the coefficients of C(n− 1,k) and C(n− 1,k− 1). Note
C(n,k) =

(n
k

)
.

Fact 3.8. (
n
k

)
=

(
n−1

k

)
+

(
n−1
k−1

)
.
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42 CHAPTER 3. FUNCTIONS

3.8 Inequalities
For a discrete function the indeterminate (variable, uknown) will more often than not be denoted by n. For continuous
functions by x. Thus A(n) is a discrete function and B(x) is a continuous variable function (unless otherwise noted).
There are several ways one can use to comparae two functions f (n) and g(n). First we note the properties of integers
as defined in Section 3.3. Those Theorems can be generalized in the domain of real numbers as well with some of
them repeated in the previous page. With this in mind we enumerate some important ones here.

Fact 3.9 (Inequalities). For all a,b,c,q, p,n ∈ R and p > 0 and n < 0, we have the following.

Transitivity : a < b, ∧ b < c ⇒ a < c.

R1. : a < b, ∀q ⇒ a+q < b+q

R2. : a < b, c < d ⇒ a+ c < b+d

R3. : a < b, p > 0 ⇒ a · p < b · p
R4. : a < b, n < 0 ⇒ a ·n > b ·n
R5. : 0 < a < b ⇒ 1/a > 1/b

R6. : Flip < into > and > into <

Example 3.9. Show that for 0 < a < b we have that a2 < b2.

Proof.

Use R3 with c = a∧a > 0 : a < b⇒ a2 < ab (3.1)

Use R3 with c = b∧b > 0 : a < b⇒ ab < b2 (3.2)

Use Transitivity and (1) and (2) above : a2 < ab∧ab < b2⇒ a2 < b2

Example 3.10. Show that for 0 < a < b we have that a3 < b3.

Example 3.11. Show that ∑
n
i=1 i3 ≤ n4.

Proof.
n

∑
i=1

i3 = 13 +23 +33 + . . .+ i3 + . . .+(n−1)3 +n3.

Since i runs from 1 to n we have, using the examples before,

1≤ i≤ n : 1≤ n⇒ 13 ≤ n3

. . .⇒ . . .

i≤ n⇒ i3 ≤ n3

. . .⇒ . . .

n≤ n⇒ n3 ≤ n3

Add both sides of inequalities 13 +23 + . . .+ i3 + . . .+n3 ≤ n3 +n3 + . . .+n3 + . . .+n3

n

∑
i=1

i3 ≤ n ·n3 = n4
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3.9. MINIMUM AND MAXIMUM OF A FUNCTION: F(N) 43

3.9 Minimum and Maximum of a function: f(n)
Fact 3.10 (Extremes). Finding minima or maxima of a function involves taking the first derivative, equating it to zero
and solving for the indeterminate to determine the critical point(s) of the function. Then finding the sign of the second
derivative at the critical points.

Example 3.12 (Maximum). What is the maximum of f (t) = t2 +(n−1− t)2 in the interval [0,n−1]?

Proof. Find the first derivative f ′(t), equate it to zero and solve for the indeterminate t to determine the critical point.
f ′(t) = 2t +2(n−1− t)(−1)⇒ f ′(t) = 0⇒ t = (n−1)/2.

The second derivative f
′′
(t) = 2+2(−1)(−1) = 4 > 0. The function has a minimum at t = (n−1)/2. We are not

interested in its minimum but rather in its maximum. It is a parabola and thus it is symmetric in the range [0,n− 1].
The maximum would be at the extreme t = 0 or t = n−1 or there might be two maxima at t = 0, t = n−1. Indeed

f (0) = f (n−1) = 02 +(n−1−0)2 = (n−1)2 +(n−1− (n−1))2 = (n−1)2.

Example 3.13 (Minimum). What is the minimum of f (t) = t lg(t)+(n−1− t) lg(n−1− t) in the interval [0,n−1]?

Proof. Find the first derivative f ′(t).

f ′(t) = 1 · lg t + t · (1/t)+(−1) lg(n−1− t)+(n−1− t)(−1/(n−1− t)) = lg(t)− lg(n−1− t)⇒

f ′(t) = lg(t/(n−1− t)).

Solving for t in f ′(t) = 0 relates to lg(t)− lg(n−1− t) = 0 i.e. t = n− 1− t ⇒ t = (n− 1)/2. Finding the second
derivative of f (t) i.e. the derivative of lg(t)− lg(n−1− t) gives

f
′′
(t) = (lg(t)− lg(n−1− t))′ = 1/t− (−1)/(n−1− t) = 1/t +1/(n−1− t)> 0

Thus the t = (n−1)/2 is a minimum.
As a conclusion

f (
n−1

2
) = (n−1) lg((n−1)/2) = (n−1) lg(n−1)− (n−1).
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44 CHAPTER 3. FUNCTIONS

3.10 Comparison of (discrete or continuous) functions
For a discrete function the indeterminate (variable, uknown) will more often than not be denoted by n. For continuous
functions by x. Thus A(n) is a discrete function and B(x) is a continuous variable function (unless otherwise noted).
There are several ways one can use to comparae two functions f (n) and g(n).

Method 3.1 (Using direct or indirect methods and transitivity: from F(n) to G(n)). One can compare two functions
F(n) and G(n), by using inequalities and starting with one (say, F(n)) the other (i.e. G(n)) is derived (see previous
page). Or indirectly as follows.

(1) Show first that F(n)< F1(n) where F1(n) is an ’easier to deal’ function.

(2) Then show that G1(n)< G(n) likewise.

(3) Then show also directly or using latter methods or indirectly (recursively) that F1(n)< G1(n).

(4) Two applications of transitivity show that F(n)< F1(n) and F1(n)< G1(n) imply F(n)< G1(n). This
and G1(n)< G(n) imply F(n)< G(n).

Method 3.2 (Difference F(n)−G(n)). One can compare two functions F(n) and G(n), by taking their difference
F(n)−G(n) (or G(n)−F(n)) and determining the sign of the difference.

Method 3.3 (Ratio F(n)/G(n)). One can compare two functions F(n) and G(n), by taking their difference F(n)/G(n)
(or G(n)/F(n)) and determining whether it is greater, equal or less than one.

Method 3.4 (Raise using common base and then compare i.e. 2F(n) : 2G(n)). One can compare two functions F(n) and
G(n), by comparing 2F(n) and 2G(n).

Method 3.5 (Take logarithms to same base and then compare i.e. lgF(n) : lgG(n)). One can compare two functions
F(n) and G(n), by comparing lgF(n) to lgG(n).

Example 3.14 (Transitivity). The two functions f (n) = 25n2 and g(n) = 25n2 +10 can be compared by starting say
from f (n)

f (n) = 25n2 < 25n2 +1 < 25n2 +2 < .. . < 25n2 +10 = g(n)

(Transitivity is implicitly used A < B <C means A < B and B <C and thus by transitivity A <C.)

Example 3.15 (Difference). The two functions f (n) = 25n2 and g(n) = 25n2 + 10 can be compared by taking the
difference g(n)− f (n) = 25n2 + 10− 25n2 = 10 > 0 and observing that g(n)− f (n) is positive i.e. g(n) > f (n).
Equivalently f (n)−g(n)< 0 and also f (n)< g(n).

Example 3.16 (Ratio). The two functions f (n) = 25n2 and g(n) = 25n2 + 10 can be compared by taking the ratio
g(n)/ f (n) = (25n2 +10)/25n2 ≥ 1 and observing that g(n)/ f (n) > 1 i.e. g(n) > f (n). Equivalently f (n)/g(n) < 1
and also f (n)< g(n).

Example 3.17 (Exponentiation). Let a(n) = ln(25n2) and b(n) = ln(25n2 +10). Then f (n) = ea(n) = 25n2 and
g(n) = eb(n) = 25n2+10 The resulting functions f (n) and g(n) have already been compared and found to be such that
f (n)< g(n). Thus a(n)< b(n) as well by monotonicity!

Example 3.18 (Logarithms). The two functions f (n) = 25n2 and g(n) = 25n2 +10 can be compared by taking their
logarithms a(n) = ln(25n2) and b(n) = ln(25n2 +10). We just proved above that a(n) < b(n) and thus f (n) < g(n)
by monotonicity. (Admittedly, not a very interesting example!)

Example 3.19. Compare n1/ lgn and 2.
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3.10. COMPARISON OF (DISCRETE OR CONTINUOUS) FUNCTIONS 45

Proof. See also Example 3.7 for solution or

n1/ lgn : 2
lg(n1/ lgn) : lg2

(1/ lgn) · lgn : 1
1 : 1.

Obviously 1 = 1 and this n1/ lgn is equal to 2.
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46 CHAPTER 3. FUNCTIONS

3.11 Constants and Variables
Definition 3.19 (Constant). If the value of an object can never get modified, then it’s called a constant.

Example 3.20. 5 is a constant, its value never changes (ie. a 5 will never have a value of 6).

Definition 3.20 (Integer vs Real constants). An integer constant is a constant whose value is an integer valued number
that can be positive, negative or zero. A real constant is a constant whose value is a real valued number that can be
positive, negative or zero.

Example 3.21 (Some constants). The base e of the Neperian logarithms (also known as natural logarithms), π , Euler’s
gamma constant, and the Golden ratio phi φ and its Fibonacci-related counter-part are all shown below.

e≈ 2.718281, π ≈ 3.14159, γ ≈ 0.57721, φ =
1+
√

5
2

≈ 1.61803, φ̂ =
1−
√

5
2

≈−.61803.

In computer programs we also use objects (names, aliases) whose values can change. Such objects are known as
variables.

Definition 3.21 (Variable). In a variable the value of a variable can change.

When we write down, in fact define, a function in Mathematics such as f (x) = x ∗ x, we define the function by
describing it using a name x. That name in mathematics is known as the indeterminate, the unknown and sometimes
as the parameter of the function. In that function definition we did not specify the domain and the range of function f
or whether the function is from a set A to a set B. When we leave out such details, it means that A and B is R or Z or a
subset of them.

Definition 3.22 (Parameter). A parameter is a name used to define a function. In Mathematics a parameter is also
known as the indeterminate or unknown.

The value that substitutes for a parameter is known as the argument. Thus in f (5) the 5 is the argument. We
substitute 5 for x in f (x) = x ∗ x and then perform the operation (i.e. multiplication) implied by the operator (i.e.
asterisk) in the function’s definition. The argument’s value will substitute for the parameter x when we evaluate f .
This is very clearly shown in the form f (x)|x=2 that most people do not use.

Note 3.3 (Argument). The argument is the value that substitutes for a parameter when we seek to evaluate a function.

Definition 3.23 (Evaluation). For a function f (x) and a value a, evaluation means finding f (x) for x = a. This is
denoted formally as f (a) or f (x)|x=a.

In the example above the result of the function is f (x)|x=5 = f (5) = 5∗5 = 25.
The function is defined through an operation indicated by an operator. The operator is the star, the symbol for the

operation known as multiplication.
In a function evaluation operation, we are given a, we are given f and its definition f (x) and we are asked to find

f (a). In solving a polynomial equation, we are given f (x), we are given f (a) and we are asked to find a

Definition 3.24 (Solution). For a faunction f (x) and its valuation f (a), solution means find the a such that f (x) =
f (a). (It is possible that more than one a exists.)

Usually f (a) = 0 and thus we want to find the a such that f (x) = 0.

Definition 3.25 (Interpolation). For an input a0,a1, . . . ,an and values f (a0), f (a1), . . . , f (an) the computation of the
polynomial f of degree n that satisfies f (x)|x=ai = f (ai) is known as interpolation.

Thus evaluation, solution and interpolcation are three interconnected problems where two of a, f (a), and f are
known and we are interested in finding the missing one.

Remark 3.1 (Integer vs Real indeterminate names). In functions defined hereafter we will shall more often use n
instead of x. Indeterminate n implies a non-negative or positive integer. Indeterminate x implies a real number. We
describe primarily a discrete math universe of non-negative integer numbers.
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3.12. OPERATORS ARE SYMBOLS FOR FUNCTIONS 47

3.12 Operators are symbols for functions
Definition 3.26 (Operator and Operation. Operands). An operator in mathematics and also in computing is a symbol
denoting a mathematical operation. An operator can be binary or unary (or ternary or something else) depending
on its number of arguments to which it applies.. When the arguments surround the operator they are also known as
operands. The operation is the action implied by the operator.

Definition 3.27 (Binary and Unary operators). Operators (and thus operations) can be binary or unary. A unary
operator is a symbol that indicates a unary operation, that is the application of a mathematical or computing function
on one (single) value that is known as the operand. In a binary operator we expect two operands (a left operand and
a right operand.

Note 3.4. In some programming languages one can write x+ y and the operator + for addition is surrounded by its
operands, but one can also write the same expression in function form eg add(x,y) and the arguments follow the name
of the operation.

Thus +,∗ are binary operators. We write x+y or 3∗4. Argument or parameter x or 3 is the left operand. Argument
or parameter y or 4 is the right operand. But +5 or ∗x might indicate a positive integer in the former case or a pointer
variable in the latter case and are both unary operators in that context. Another unary operator is the absolute value
function ||. Thus |5| is a 5. Thus the resolution of a symbol to a specific operation might be context sensitive. The
operator in sin(x) is sin and it is a unary operator. (By the way the x is in radians; there are 2π radians on a circle of
360 degrees.) For a ternary operator the operands are numbered, first operand, second operand etc.

Definition 3.28 (Operator overload). Some operators (i.e. symbols) can be binary or unary depending on the context.
(The or in the sentence above is a disjunctive or. This means the same symbol can be used both as a unary and binary
operator.)

Operator − might imply the operation known as subtraction when it acts as a binary operator. Thus in 3− 5, the
context indicates that − is such a binary operator: it is surrounded by a left and right operand. However in −7 there is
only one operand, and the symbol i.e. operator − implies or indicates operation negation. Note that ++ as in x++
or ++ x is a unary operator for post-increment and pre-increment and not a typo of a binary operator with missing
arguments or parameters. It also highlights that the operand of a unary operator can precede it or follow it. In this
example ++ indicates a unary operator overload!

Definition 3.29 (Prefix, postfix and infix notation). A binary operator requires two operands. The operator can
precede, follow or be in-between the operands. Thus +5 3 or 5 3+ or 5+3 indicates the same addition operation in
prefix, postfix and infix notation. In all cases 5 is the left operand and 3 is the right operand.

We are used to using infix notation in describing operations since elementary school.
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48 CHAPTER 3. FUNCTIONS

3.13 Notation symbols
Remark 3.2 (The floor function: bxc). The floor function is defined as follows: bxc is the largest integer less than or
equal to x.

Remark 3.3 (The ceiling function: dxe). The ceiling function is defined as follows: dxe is the smallest integer greater
than or equal to x.

Example 3.22 ( The floor of b10.1c and b−10.1c). We have that b10c is 10 itself. Moreover b10.1c is 10 as well.
Note that b−10.1c is −11.

Example 3.23 ( The ceiling of d10.1e and d−10.1e). We have that d10e is 10 itself. Moreover d10.1e is 11 as well.
Note that d−10.1e is −10.
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3.14. BOOLEAN FUNCTIONS 49

3.14 Boolean Functions
This discussion extends the definitions of Chapter 1. A proposition was defined as a statement that can be either T or
F. A predicate is a proposition whose truth value depends on the value of one or more variables.

Definition 3.30 (Predicates P(n),P(n,m),P(n1,n2, . . .). A predicate P(n) can be considered a function where n ∈ A.
P : A→{T,F}. Predicates can utilize more than one variables.

Definition 3.31 ( Boolean variables). Boolean variables take two values true or false, 1 or 0, T or F or t or f.

Moreover in programming languages any non-zero value evaluates to true and a zero value evaluates to false. (Thus
a non-zero value is true or 1 whether it is 1 or some other non-zero value.)

Definition 3.32 (Lattice). A lattice is a set A with two operations defined on it ∧ and ∨ satisfying the following
properties for all x,y,z ∈ A.

(AssociativeLaw) (x∧ y)∧ z = x∧ (y∧ z)

(AssociativeLaw) (x∨ y)∨ z = x∨ (y∨ z)

(CommutativeLaw) x∧ y = y∧ x

(CommutativeLaw) x∨ y = y∨ x

x∧ (x∨ y) = x

x∨ (x∧ y) = x

Definition 3.33 (Distributive Lattice). Let A be a lattice with ∧,∨. A is a distributive lattice if the following two
properties also hold for all x,y,z ∈ A.

(DistributiveLaw) x∧ (y∨ z) = (x∧ y)∨ (x∧ z)

(DistributiveLaw) x∨ (y∧ z) = (x∨ y)∧ (x∨ z)

Definition 3.34 (Complemented Lattice). Let A be a lattice with ∧,∨. It is a complemented lattic if there are to
elements F and T , the minimum element, and the maximum element such that for every a ∈ A we have the following.

x∧T = x, x∧F = F

x∨T = T, x∨F = x

∀x ∈ X ,∃¬x ∈ X ⇒ x∧¬x = F, x∨¬x = T.

Definition 3.35 (Boolean Algebra). A boolean Algebra is a complemented and distributed lattice.

Definition 3.36 (DNF). An expression which is the disjunction of terms that are conjunctions is called a disjunctive
normal form.

Definition 3.37 (CNF). An expression which is the conjunction of terms that are disjunctions is called a conjunctive
normal form.

More formally

Definition 3.38 (Literal). Let P be a proposion letter. Then P is a positive literal, and ¬P is negative literal. A literal
is either a positive or a negative (literal).

Definition 3.39 (Conjunctions and DNF and t-DNF). Let l1, l2, . . . , lk be a set of k literals, kN. A term t is a conjunction
of k literals if and only if is of the form

l1∧ l2∧ . . .∧ lk
A formula f is in Disjunctive Normal Form if it is a disjunction f = t1∨ t2∨ . . .∨ tm of m terms for some m ∈ N, i.e.

f = t1∨ t2∨ . . .∨ tm

We say that f is in t-DNF if every term has exactly t literals.
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50 CHAPTER 3. FUNCTIONS

Example 3.24. (a) The formula x∨ y is in DNF.
(b) The formula (x∧ y)∨ (y∧ z∧q) is in DNF.

Definition 3.40 (Disjunctions and CNF and t-CNF). Let l1, l2, . . . , lk be a set of k literals, kN. A clause c is a disjunction
of k literals if and only if is of the form

l1∨ l2∨ . . .∨ lk

A formula f is in Conjunctive Normal Form if it is a conjunction f = c1∧ c2∧ . . .∧ cm of m clauses for some m ∈ N,
i.e.

f = c1∧ c2∧ . . .∧ cm

We say that f is in t-CNF if every clause has exactly t literals.
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3.15. EXERCISES 51

3.15 Exercises
Exercise 3.1. Let A = {10011,1001,1110,11011} Let B = {2,3,4,5,6}.

(a) Is R = {(1001,2),(1110,3),(10011,3),(11011,4)} a relation from A to B?
(b) Is R : A→ B as defined in (a) a function from A to B?
(c) Is T a function from A to B where T = {(1001,2),(10011,3),(11011,4)}

Proof. (a) YES it is, from the discussion of the previous Chapter and a relevant exercise.
(b) YET it is. For all a ∈ A there is a b ∈ B such that aRb. This is function R definition. Thus the relation R is a

function.
(c) NO it is not. There is an a ∈ A for which there is no b ∈ B such that aRb. This a is a = 1110.

Exercise 3.2. For f : R⇒ R and g : R⇒ R we define f (x) = 3x+1 and g(x) = x2−4. Find g◦ f .

Proof. Note that (g◦ f )(x) = g( f (x)) = g(3x+1) = (3x+1)2−4 = 9x2 +6x+1−4 = 9x2 +6x−3.
Moreover f (x) = 3x+1 shows y = 3x+1. And f (x) = x2−4 implies z = f (y) = y2−4. Eliminating y we have

z = y2−4 = (3x+1)2−4 = 9x2 +6x−3.

Exercise 3.3. Let A,B 6= 0 be two integers. We define Q,R the quotient and the remainder of the integer division of A
by B. This makes A the dividend and B the divisor.

A = B ·Q+R.

For the division to be uniquely definesd we impose a condition that 0≤ R < |B|.
(a) Let A = 23, B = 5. Find Q,R.
(b) Let A =−23, and B = 5. Find Q,R.
(b) For A >= 0,B > 0 show Q,R are unique.

Proof. (a) (Q,R) = (4,3) since 23 = 5 ·4+3.
(b)−23= 5 ·(4)−43 but also−23= 5 ·(−4)−3 but also−23= 5 ·(−5)+2. In this latter case (Q,R)= (−5,2).All

other possibilities are discarded.
(c) Let there exist two pairs Q1,R1 and Q2,R2 such that A = BQ1 +R1 and A = BQ2 +R2. Moreover 0 ≤ R < B

i.e. 0≤ R1 < B and 0 < R2 < B. Then R1 6= R2 and we may assume R1 > R2 without loss of generality. Why?
If R1 = R2 then A−R1 = A−R2 and then BQ1 = BQ2. Since B > 0 we divide by B and then Q1 = Q2 in addition

to R1 = R2.
We proceed with the existence of two remainders and R1 > R2. Take A = BQ1 +R1 = BQ2 +R2 We have that

B(Q2−Q1) = R1−R2. Because 0≤ R1,R2 < B and B divides B(Q2−Q1) then B divides the equal R1−R2. But the
difference R1−R2 < B. The only way for B to divide R1−R2 is when R1 = R2. Done (In addition we have Q1 = Q2
as derived earlier for the other case.)

Equivalently from B(Q2−Q1) = R1−R2 we could argue that Q2−Q1 = (R1−R2)/B is an integer. (The diffence
of two integer Q1,Q2 is an integer.) Since 0≤ R1,R2 < B then 0≤ (R1−R2)/B < 1. The only integer that can satisfy
this is R1−R2 = 0.
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Chapter 4

Proofs

4.1 Peano’s Axioms of Arithmetic
This is the official definition of natural numbers denoted already by set N.

Definition 4.1 (Axioms of Arithmetic: Peano’s axioms). Peano’s axioms define natural numbers. The set of natural
numbers is denoted by N or N.

N= {0,1,2, . . .}

Axiom 4.1 (First Peano Axiom). 0 is a natural number.

Axiom 4.2 (Second Peano Axiom). If n is a natural number, then its successor s(n) is also a natural number.
(We prefer to write n+1 for the successor s(n) of n.)

Theorems in mathematics are true because they are based and derived from simple axioms that are usually true.

Theorem 4.1 (Well Ordered Set Principle). Every non-empty subset of N has a minimal element.

Proposition 4.1. There are no positive integers (strictly) between 0 and 1.

Proof. The proposition is true. Say there is at least one integer a strictly between 0 and 1 i.e. 0 < a < 1. Collect a and
all those like a (integers strictly beetween 0 and 1) into set A. We have |A| ≥ 1 since a ∈ A. By the Well Ordered Set
Principle A has a minimal element. Call it m. Square m to obtain m2. Since 0 < m < 1 we have that 0 < m2 < 1. Thus
m2 is also a member of A. Moreover, 0 < m2 < m < 1. That is m2 is an element of A smaller than its smallest element
A which is m! This contradicts the minimality of m. Thus a cannot exist which means A is empty!

4.2 Theorems and their Proofs

Example-Proposition 4.1 (Goldbach’s Conjecture). Every even integer greater than two is the sum of two prime
numbers.

We can Goldbach’s conjecture in a more formal form as follows. It is not that readable though.

Example-Proposition 4.2 (Goldbach’s Conjecture).

∀n ∈ N.∃p ∈ N.∃q ∈min{N} : 2/n∧Prime(p)∧Prime(q)∧n = p+q.

53
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54 CHAPTER 4. PROOFS

According to Wikipedia, Proposition 4.2 is true for all integers up to about 4 ·1018; no one knows whether Proposi-
tion 4.2 is indeed true as stated. Every proposition is true or false with reference to a space we first define axiomatically
and then build on by establishing more theorems. Proposition 4.3 below is defined in the form of predicate P(n).

Example-Proposition 4.3. P(n): For natural number n, integer n2 +n+5 is prime.

Another way to say this is as follows.

Remark 4.1. P(n): ∀n ∈ N, n2 +n+5 is prime.

Remark 4.2. Reminder: A prime number is a natural number greater than 0 whose is divisible by one and itself.
(Prime numbers that are integers have divisors the two units +1 and−1, and the products of the units and the number
itself.)

Remark 4.3. P(n) is a predicate that depends on n. It is not a function. P(n) is either true or false depending on n.
Moreoever P(5) reads
For natural number 5, integer 52 +5+5 is prime.
Obviously P(5) is false.
Moreoever P(3) reads
For natural number 3, integer 32 +3+5 is prime.
Obviously P(3) is true.

A number of proof techniques are introduced starting with the next page.
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4.3. SOME PROOF TECHNIQUES 55

4.3 Some proof techniques

4.3.1 (Proof) by existence
Method 4.1 ((Proof) by existence). For a proposition P(x) show that ∃x such that P(x) is T.

Example 4.4. For two real numbers a,b such that a < b, there exists a real number c such that a < c < b.

Proof. We find an x that satisfies a < x < b. Let x = (a+b)/2. x−a = (a+b)/2−a = (b−a)/2 > 0 and thus x > a.
Likewise x−b = (a+b)/2−b = (a−b)/2 < 0 and thus x < b.
We have found c. It is c = x = (a+b)/2.

4.3.2 (Disproof) by counterexample
Method 4.2 ((Disprove) by counterexample). A theorem has a hypothesis and a conclusion. Find an instance x for
which the hypothesis holds, and then show that for that instance x the conclusion DOES not hold. Or to prove that a
proposition is false it suffices to provide a counterexample that show the proposition to be false.

Proposition 4.3 can be easily shown to be false by providing a counterexample.

Proof. (That Proposition 4.3 is false.) For n = 4, we have that n2+n+5 = 42+4+5 = 25 and one divisor of 25 other
than 1 and 25, is 5. Therefore 25 is not a prime number, it is in fact a composite number and therefore this simple
counterexample shows that Proposition 4.3 is false because it is not true for n = 4.

We now generate the following proposition that uses the existential quantifier (’there exists’).

Example-Proposition 4.5. Q(n): ∃n ∈ N such that n2 +7 is prime.

In order to prove that Proposition 4.5 is true, we only need prove it for a single value of n. The existential quantifier
reads ’there exist at least one natural number n’. Thus one natural number n is n = 3 that make predicate Q(n) true.
For n = 2, we can easily establish that 22+7 = 11 is a prime number. Proposition 4.5 is not, however, very interesting.
Let us modify it a bit.

Theorem 4.2. ∀n ∈ Z, n > 0 n2 +7 is prime.

Proof. We can disprove this theorem for n = 3. n2 +7 = 32 +7 = 16, and 16 is not prime. Its divisors other than 1, 16
include 2, 4, 8.

On the next page we discuss direct deduction.
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56 CHAPTER 4. PROOFS

4.3.3 Direct Deduction
Method 4.3 (By Direct Deduction). In order to prove P =⇒ Q, we ’Assume P (is true)’, and using logical arguments
’derive Q (is true)’.

Example 4.6.

Proposition 4.2. If integer n is such that n > 0 and n is even, then n2 is even.

Proof. We identify P as ’integer n, n > 0, and n is even’.

We identity Q as ’n2 is even’.
STEP 1. Asume P: We assume n is integer, n > 0, and n is even.
STEP 2. For an even inger n, if we divide n by 2 the remainder of the division is a zero. Thus n = 2k where k is the
integer quotient of this division that leaves 0 as a remainder (i.e. n = 2∗ k+0).
Important conclusion-1: n = 2k.
Important conclusion-2: k is integer.
STEP 3. From step (2) above n = 2k. Subsequently, n2 is equal to n2 = (2k)2 = 4k2. This implies n2 = 2(2k2) = 2m,
where m = 2k2. In other words n2 is a multiple of 2 and the other integer m. (m is integer since from (3) k is an integer
and m which is m = 2∗ k2 = 2∗ k ∗ k as the product of three integers is also an integer.
Important conclusion-3 n2 = 2m.
Important conclusion-4 m is integer.

STEP 4. Conclusion n2 = 2m, with m integer implies n2 is even. The latter part is Q.

Theorem 4.3. Show that for n ∈ Z, n≥ 1 we have n2 +5n+12≤ 18n2.

Proof. We can prove this result directly. We use throughout this proof n ∈ Z.
We have for all n≥ 1

12≤ 12n2

and
5n≤ 5n2

Obviously
n2 ≤ n2

If we add up the inequalities we have

n2 +5n+12≤ n2 +5n2 +12n2 = 18n2.

On the next page we discuss proof by case analysis.
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4.3. SOME PROOF TECHNIQUES 57

4.3.4 Proof by case analysis
Method 4.4 (By case analysis). Prove a theorem by case analysis. A theorem has a hypothesis and a conclusion.

• List all possible cases for which the hypothesis holds, and

• for each such possible case, do indeed prove that the conclusion holds.

Theorem 4.4. The product of two positive consecutive natural number a,b ∈ N is an even number.

Proof. Let the first number be a. The next one (consecutive) would be a+1. Both are positive and thus a > 0.
Case analysis.
Case 1. a is odd. If a is odd then a+1 must be even. The product of an odd and even integer is even.
Case 2. a is even. If a is even then a+1 must be odd. The product of an odd and even integer is even.
Conclusion: Both in case 1 and case 2 the product is an even number

The polarity of (positive) integer number x is 0 if it is even and 1 if it is odd.

Theorem 4.5. The square of a (positive) integer number retains the polarity of the integer number.

Proof. Let x be a positive integer number. We are going to show that x and x2 have the same polarity.
Case analysis.
Case 1. x is odd. If x is odd, the remainder of the division of x by two is 1. Thus x = 2k + 1 where k is the

quotient of the division. Then x2 = (2k+ 1)2 = 4k2 + 4k+ 1 = 4k(k+ 1)+ 1 = 2 · (2k(k+ 1))+ 1 = 2m+ 1, where
m = 2k(k+1). 2m+1 is an odd number. Thus if x is odd, then x2 is also odd.

Case 2. x is even. If x is even, the remainder of the division of x by two is 0. Thus x = 2k for some k > 0. Then
x2 = 4k2 = 2(2k2) = 2m for some m > 1. Thus if x is even, then x2 is also even.

Conclusion: Both in case 1 and case 2 the polarity of x is that of x2.

Theorem 4.6. For all A,B show that A = (A∩B)∪ (A−B).

Proof.
Direction 1: Show A⊆ (A∩B)∪ (A−B).

Let a ∈ A. Then either a ∈ B or a 6∈ B. If the former holds, we are done, since then a ∈ A∩B and then a ∈ (A∩B)∪
(A−B), since it belongs to the first component of the union. Otherwise consider the latter i.e. a 6∈ B. Then a 6∈ A∩B.
But then a ∈ A−B since a 6∈ B. This implies a ∈ (A∩B)∪ (A−B) as well. Thus we have proved that an arbitraray
a ∈ A is also a ∈ (A∩B)∪ (A−B) and thus shown A⊆ (A∩B)∪ (A−B).
Direction 2: Show (A∩B)∪ (A−B)⊆ A.

Let x ∈ (A∩B)∪ (A−B). Then either x ∈ A∩B or x ∈ A−B. This is because the intersection of the two sets A∩B
and A−B = A∩B′ is the /0 since A∩B∩A∩B′ = A∩ (B∩B′) = A∩ /0 = /0.

Case 1: x ∈ A∩B. This implies that x ∈ A (and also x ∈ B). However x ∈ A leads to x(A∩B)∪ (A−B) leads to
x ∈ A and thus (A∩B)∪ (A−B)⊆ A and we are done.

Case 2: x ∈ (A−B). This implies again that x ∈ A, and we reach the same conclusion as in Case 1. Thus in both
cases we have (A∩B)∪ (A−B)⊆ A.

Combining Direction 1 and Direction 2 we obtain the result.

On the next page we discuss proof by contra positive.
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58 CHAPTER 4. PROOFS

4.3.5 Contra positive
Let P and Q be two propositions. The contrapositive of implication P⇒ Q is (implication) ¬Q⇒¬P.

Method 4.5 (By contrapositive). In order to prove P =⇒ Q, we prove instead the contrapositive ¬Q =⇒ ¬P, through
the direct method.

Example 4.7.

Proposition 4.3. If positive integer n > 0 is odd, then n2 is odd.

Proof. We identify P as ’positive integer n > 0 is odd’.
We identity Q as ’n2 is odd’.

Then ¬P becomes ’positive integer n > 0 is even’.
Then ¬Q becomes ’n2 is even’.

Thus P⇒Q becomes ¬Q⇒¬P. The latter is proven by the direct method. Let n2 be even. If n2 is even then n must
be even. (The latter is true since if n was odd n = 2k+1 and then n2 = (2k+1)2 = 4k2 +4k+1 = 2(2k2 +2k)+1 =
2m+1, would be odd too, that is impossible since n2 is even.)

Proposition 4.4. If n > 0 is odd, then n2 is odd.

Proof. It suffices to prove that n2 is NOT odd implies n is NOT odd.
Let n2 be NOT odd. Then it must be even. If n2 is even then n must be even i.e. n is NOT odd. Result proven.

On the next page we discuss proof by contradiction.
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4.3. SOME PROOF TECHNIQUES 59

4.3.6 Contradiction
Method 4.6 (By contradiction). In order to prove P is true, assume P is false. Subsequently show that proposition R
is false, when we know that R is in fact true. Or with P false we show that R is true and R is false at the same time!

Definition 4.2 (Theorem Proof Technique: by Contradiction). A theorem has a hypothesis and a conclusion. Let
the conclusion be b.

• Assume conclusion b to be false (does not hold). Then prove some other assertion c to be false, where it is known
that c is true.

• Assume conclusion b to be false (does not hold). Then prove some other assertion c to be false and c to be true
at the same time.

Theorem 4.7.
√

2 is irrational. (Be reminded that x is rational if and only if there are integer m,n 6= 0 such that
x = m/n.)

Proof. Proof is by contradiction.
Let us assume that

√
2 is rational that is

√
2 ∈Q. We are going to show that this leads to a contradiction.

If
√

2 is rational then there exist m,n ∈ Z, m,n 6= 0 such that
√

2 = m/n. Integer m and n have no common
divisor; otherwise we can divide it out from m, n, and reach m′ and n′ such that

√
2 = m′/n′ and m′ and n′ share no

common divisor.
Then squaring both sides we have

(
√

2)2 = (m/n)2 ⇐⇒ 2 = m2/n2 ⇐⇒ m2 = 2n2.

We thus have that m2 is an even number since it is of the form 2k, with k = n2. Then, by the previous theorem, m must
also be even.

If m is even then m = 2p for some integer p.

m = 2p ⇐⇒ m2 = (2p)2 ⇐⇒ m2 = 4p2

But m2 = 2n2. Therefore

m = 2p ⇐⇒ m2 = 4p2 ⇐⇒ 2n2 = 4p2 ⇐⇒ n2 = 2p2.

Thus n2 is an even number and by a previous theorem, n must also be even.
Since n and m are even, then they have a common divisor which is two. This contradicts the choice of m,n that

were picked so that they share NO COMMON DIVISOR.

On the next page we discuss proof by converse, inverse and equivalence.
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4.3.7 Converse
Let P and Q be two propositions. The converse of implication P⇒ Q is (implication) Q⇒ P.

4.3.8 Inverse
Let P and Q be two propositions. The inverse of implication P⇒ Q is (implication) ¬P⇒¬Q.

4.3.9 Proof of an equivalence ⇐⇒
In order to prove P ⇐⇒ Q we first observe that it is equivalent to P =⇒ Q and Q =⇒ P and thus we prove ⇐⇒
by provings two implications.

In the next few pages we discuss proof by mathematical induction.
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4.4 Mathematical Induction: Preliminaries
Method 4.7 (Using W.O.S.P. to prove a P(n)). The Well Ordered Set Principle can be used to prove that

’P(n) is true ∀n ∈ N’ .

This can be done as follows.

1 Formulate a set C of counterexamples to P(n) being true, thus defining

C = {n ∈ N : ¬P(n)}

(This reads ’C contains all integers n such that ¬P(n) is true’. This latter ’¬P(n) is true’ implies ’P(n) is false’.)

2 Assume (for the sake of contradiction) that C is non-empty.

3 By the Well Ordered Set Principle C has a minimal element m.

4 Obtain a contradiction by finding a c ∈C smaller than m.

5 Then conclude that C must be empty i.e. P(n) is true for all n.

We then use it to prove the following result.

Example 4.8.

Theorem 4.8. 1+2+ . . .+n = n(n+1)/2 for all n ∈ N.

Proof. By way of contradiction, assume that the theorem is false. Then there exist some integers that serve as coun-
terexamples and thus populate C.

1. Form C
C = {k ∈ N : 1+2+ . . .+ k 6= k(k+1)/2}

2. If C is empty we are done. If C is non-empty then it has a minimal element by the W.O.S.P. and let that be m.

3. Thus for m we have P(m) is not true i.e. P(m) is false and thus

1+2+ . . .+m 6= m(m+1)/2

Consider k = 1. And also k = 0.
1 = 1(1+1)/2

0 = 0(0+1)/2

Thus 0 6∈C. Also 1 6∈C. Therefore m > 1. Consider m−1 < m. Then P(m−1) is true since m is smallest value
for which P(m) is false. Then P(m−1) true implies.

1+2+ . . .+(m−1) = (m−1)m/2.

If we add m to both sides, we obtain.

1+2+ . . .+(m−1)+m = (m−1)m/2+m = m(m+1)/2.

This contradicts
1+2+ . . .+m 6= m(m+1)/2

4. Consequently C cannot be non-empty.
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5. Therefore, C must be empty, that is P(n) is true for all n ∈ N.

We can prove also that

Theorem 4.9 (Well Ordered Set Principle for Reals). Every non-empty finite subset of real numbers has a minimal
element.

Sometimes it is referred to as Ordinary induction or Weak induction. The former implies something else (that will
be called Strong induction). The latter implies a Strong induction.
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4.5. MATHEMATICAL INDUCTION: ORDINARY OR WEAK INDUCTION 63

4.5 Mathematical Induction: Ordinary or Weak induction
Theorem 4.10 (Ordinary Induction). Let A ⊆ N. Let (i) 0 ∈ A, and (ii) whenever k ∈ A then k+ 1 ∈ A. The two
conditions (i) and (ii) imply A = N.

Proof. Let A{ be the complement of A over N.

A{ = N−A = {k ∈ N|k 6∈ A}.

Suppose A 6= N. Then A{ is a non-empty set and by the Well ordered set principle it has a minimal element and call
that element a. Since 0 ∈ A it is obviously a 6= 0. This mean a > 0 and thus a−1 is non-negative (positive or zero).
Because a is the mimimal element of A{, a−1 belongs to A. Thus a−1 ∈ A. From the statement of the mathematical
induction principle set k = a−1. k ∈ A implies k+1 = a∈ A. This contradicts the membership of a in the complement
of A! Thus A{ cannot have a minimal element i.e. it must be empty. This implies that A = N.

The argument works also if the definition of N is the positive integers thus exluding zero.

Theorem 4.11 (Alternative Ordinary Induction). Let A⊆N∗. Let (i) 1 ∈ A, and (ii) whenever k ∈ A then k+1 ∈ A.
The two conditions (i) and (ii) imply A = N∗.

Remark 4.4. In inductive proofs we try to prove that the set of integers A that satisfy a given property or proposition
or predicate is all of N i.e. A = N.

Theorem 4.12. If a,b ∈ N∗ then ab≥ a. Equality is applicable if and only if b = 1.

Proof. Use (alternative ordinary) induction on b. Let a ∈ N∗.

STEP1: Base case. It is b = 1. Clearly a ·1≥ a since a ·1 = a.

Auxiliary step. For the inductive step, since a ∈N∗, we have a≥ 1, which implies a > 0 and thus 2a = a+a > a+0,
leads to 2a > a.

STEP 1′: Inductive hypothesis. Suppose that ab > a for some b ∈ N. We then will show that a(b+ 1) > a in the
inductive step. The inductive step is formulated below.

STEP 2: Inductive step.
ab > a, for some b ∈ N =⇒ a(b+1)> a.

By the inductive hypothesis ab > a. Therefore

a(b+1) = ab+a > a+a = 2a,

i.e. a(b+1) > 2a. Moreover by the auxiliary step 2a > a. By way of trasitivity a(b+1) > 2a > a and the inductive
step has been shown.

STEP 3: Conclusion. It follows that ab > a for all b≥ 2. For the base case b = 1 we have ab≥ a in fact ab = a.

Note 4.1 (Variable names). In induction we customarily utilize an n and n+ 1. In theorem 4.10 we encountered a k
and k+1. In our inductive proof we used a b and b+1 instead of an n or k or n+1 or k+1. They are just ’variables’.
Names are not important!
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4.6 Mathematical Induction: Strong induction

Theorem 4.13 (Strong Induction). Let A⊆ N. Let (i) 0 ∈ A, and (ii) whenever {0,1, . . . ,k} ⊆ A then k+1 ∈ A. The
two conditions (i) and (ii) imply A = N.

Theorem 4.14 (Alternative Strong Induction). Let A ⊆ N∗. Let (i) 1 ∈ A, and (ii) whenever {1,2, . . . ,k} ⊆ A then
k+1 ∈ A. The two conditions (i) and (ii) imply A = N∗.

Strong vs Weak form of induction. Given that Theorem 4.13 or Theorem 4.14 establishes strong induction, we
sometimes refer to Theorem 4.10 as Weak Induction. Thus Induction or Mathematical Induction or Weak Induction
or also Ordinary Induction are all synonymous and refer to Theorem 4.10 or its Theorem 4.11 formulation. There is
one and only one name for Strong Induction of Theorem 4.13 or Theorem 4.14.

Induction as a proof method. In inductive proofs we try to prove that the set of integers A that satisfy a given property
or proposition is all of N (or N∗) i.e. A = N. (We drop the alternative from now on.) In the remainder we ignore
properties and focus on propositions. Of particular interest are propositions that depend on an integer variable n and
thus we would establish that the range A of n is indeed N i.e. A = N.

Note that we will use the term ”integer variable” as a misnomer for natural number. Thus ”integer variable” would
be an alias for ”non-negative integer”, ”natural number”, or ”natural number excluding 0”, as needed.

To wrap up all these assumptions, let P(n) be a generic proposition that depends on integer variable n. Whether
we call the indeterminate b, k or n does not matter. What it matters is its range of values which is usually all of N (i.e.
N or N∗).

4.6.1 Why does induction work

Let P(n) be a proposition that depends on a natural number n, as explained in the previous page. Weak induction is
structured as follows.

Weak (Ordinary) Induction.
(Base case): P(0) is true, and
(Inductive Step): P(n) =⇒ P(n+1) for all natural numbers n≥ 0,
imply that
(Conclusion): P(n) is true for all natural numbers n, including 0 (base case value).

Why does induction work? The base case establishes P(0) is true. The Inductive step establishes the trueness of
implication chains,

P(0)⇒ P(1), P(1)⇒ P(2), P(2)⇒ P(3), . . . ,P(n)⇒ P(n+1),

We connective of the two is P(0). To fire-up the chain reaction of implications, we start with the left-hand side of
the first implication that contains P(0). By the base case P(0) is true. The trueness of the first chain P(0)⇒ P(1)
establishes the trueness of P(1). Then the trueness of P(1) just established along with the trueness of P(1)⇒ P(2)
establishes the trueness of P(2) and this goes on and on and on! Collectively we can say P(n) is true for all n ≥ 0.
This is equivalent to saying 0 ∈ A, 1 ∈ A, using the terminology of Theorem 4.10.

Strong Induction.
(Base case): P(0) is true, and
(Inductive Step): P(0),P(1), . . . ,P(n) =⇒ P(n+1) for all natural numbers n≥ 0,
imply that
(Conclusion): P(n) is true for all natural numbers n, including 0 (base case value).
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4.6. MATHEMATICAL INDUCTION: STRONG INDUCTION 65

Strong Induction with base case a.
(Base case): P(a) is true, and
(Inductive Step): P(a),P(a+1), . . . ,P(n) =⇒ P(n+1) for all natural numbers n≥ a,
imply that
(Conclusion): P(n) is true for all natural numbers n≥ a.

Method 4.8 (Template method for inductive proofs). 1. State that you plan to use Weak or Strong induction, as
needed.
2. Determine and state predicate P(n) also know as the inductive or induction hypothesis.
3. Base case (or Basis of induction) Show that P(0) is true. Alternately determine the base case value and prove P(.)
is true, as needed.
4. Inductive step. Show that P(n) =⇒ P(n+ 1) for every n ∈ N. Note that for convenience P(n− 1) =⇒ P(n) or
other alternatives might be used cautiously (eg n≥ 0 or n > 1) ? For strong induction P(0)∧ . . .P(n) =⇒ P(n+1).
Note that for a different base case the P(0) is replaced accordingly.
5. If all steps completed claim P(n) for all nN or n≥ q, where q is another base case value (step 3 alternative).
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4.7 Applications of induction

4.7.1 Arithmetic sequence sum

Definition 4.3 (Sum Sk(n) ). Let for any natural number k > 0 be

Sk(n) = 1k +2k + . . .+nk

We also write Sk(n) = ∑
n
i=1 ik.

Theorem 4.15. A(n) = S1(n) = 1+ . . .+n is equal to n(n+1)/2.

We sometimes denote S1(n) as A(n) for the sum of the terms of the arithmetic sequence 〈i〉, i = 1, . . . ,n.

Example 4.9. (Arithmetic sequence sum A(n) = S1(n).)

Proposition 4.5. P(n) : ∀n≥ 1,A(n) = n(n+1)/2.

Proof.
STEP 0: Identify the predicate P(n) that depends on an integer/natural variable, and also that variable.

The first step in induction is to identify in a proposition a predicate that depends on a natural-valued variable and
also that same natural-valued variable. Obviously the predicate P(n) is A(n) = n(n+ 1)/2, where A(n) is another
name for the generic S1(n). We are going to show that P(n) is true for all (integer n ≥ 1). That is we shall show that
A(n) = n(n+1)/2. The proof is by induction.

STEP 1: Base case: (Show that) P(1) is true.
The left hand-side of the equality in P(n) is A(n) i.e. S1(n) and the right-hand side is n(n+1)/2. We shall show

that the two sides are equal for n = 1 i.e. we shall show P(1).
Left hand side of P(n) first for n = 1: A(n)|n=1 = 1. The left hand side sum of P(1) is A(1) i.e. the sum of one

term (and that term is 1), which is 1.
Right hand side of P(n) for n = 1: n(n+1)/2n=1 = 1(1+1)/2 = 1. Obviously this is 1(1+1)/2 = 1.
Therefore P(1) is true since the left hand side A(1) is equal to the right hand side 1(1+1)/2.

STEP 2: Inductive Step. P(n)⇒ P(n+1).

2.a Induction hypothesis: P(n). A P(n) true is equivalent to

A(n) = 1+2+ . . .+n =
n

∑
i=1

i = n(n+1)/2.

2.b How do we establish P(n+1) then? A P(n+1) (to be proven true) is equivalent to

A(n+1) = 1+2+ . . .+(n+1) =
n+1

∑
i=1

i = (n+1)(n+2)/2.

2.c Use 2.a to get to 2.b.
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4.7. APPLICATIONS OF INDUCTION 67

Starting with 2.b we write down the left hand side of A(n+1), and then we separate the last term from the previous
n terms of the sum

A(n+1) =
n+1

∑
i=1

i

= 1+2+ . . .+(n+1) = (1+2+ . . .+n)+(n+1)

=

(
n

∑
i=1

i

)
︸ ︷︷ ︸

A(n)

+(n+1)

=

(
n

∑
i=1

i

)
︸ ︷︷ ︸
Use P(n)

+(n+1)

= n(n+1)/2+(n+1) = n(n+1)/2+2(n+1)/2 = (n+1)(n+2)/2

This completes the induction. We proved two things

• We first proved that P(1) is true.

• and then showed P(n)⇒ P(n+1) for all n≥ 1.
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4.7.2 Geometric sequence sum
Definition 4.4 (Geometric sum G(n,x) ). Let for any natural number n≥ 0 and x ∈ R we define

G(n,x) =
n

∑
i=0

xi = x0 + x1 + . . .+ xi + . . .+ xn.

The sum is known as the geometric series or sum of the terms of the geometric sequence. The i-th term of the sum
is xi.

Example 4.10. (Geometric sequence sum.)

Theorem 4.16. P(n) : ∀n≥ 0,x 6= 1,

G(n,x)(=
n

∑
i=0

xi) =
xn+1−1

x−1
.

Proof. We prove the theorem by induction.

STEP 0. Identify predicate P(n).
The predicate P(n) in the theorem that depends on n is

P(n) : G(n,x) =
xn+1−1

x−1
,

where G(n,x) = ∑
n
i=0 xi.

STEP 1. Base case: (Show that) P(0) is true. We can show either P(0) or P(1): then base case would be n = 0 or
n = 1. We show P(0) is true i.e. we use n = 0.

The left-hand side of (the equality in) P(n) G(0,x) = ∑
0
i=0 xi = x0 = 1.

The right-hand side is xn+1−1
x−1 |x=1 =

x1−1
x−1 = 1.

Right hand-side is equal to left-hand side. Therefore P(1) is true.

STEP 2. Inductive Step: P(n)⇒ P(n+1).
2.a Induction hypothesis: P(n). A P(n) is true is equivalent to

G(n,x)(= 1+ x+ . . .+ xn) =
xn+1−1

x−1
.

2.b How do we establishe P(n+1) then? A P(n+1) (to be proven true) is equivalent to

G(n+1,x)(= 1+ x+ . . .+ xn+1) =
xn+2−1

x−1
.

Similarly to the previous example 4.9 we start from the latter’s left-hand side to conclude its right hand-side by
using the former result for P(m). Between the second and third inequality we use the induction hypothesis for P(m)
above.
2.c Use 2.a to get to 2.b.

G(n+1,x) = 1+ x+ . . .+ xn+1 = 1+ x+ . . .+ xn + xn+1

= (1+ x+ . . .+ xn)+ xn+1

=
xn+1−1

x−1
+ xn+1

=
(xn+1−1)+ xn+1(x−1)

x−1
=

xn+2−1
x−1

,

which establishes P(n+1) from P(n). Base case and inductive step combined conclude the induction-based proof.
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4.7. APPLICATIONS OF INDUCTION 69

4.7.3 Fibonacci sequence general term
A recursive function is a function that invokes itself. In direct recursion a recursive function f invokes directly itself,
whereas in indirect recursion function f invokes function g that invokes f . A quite well-known recursive function
from discrete mathematics is the Fibonacci function Fn or more widely known as the Fibonacci Sequence Fn.

The name sequence implies that it includes all the terms F0,F1, . . . ,Fn−1,Fn, . . .. The n-th indexed term is given by
the following recursive formulation.

Fn = Fn−1 +Fn−2 if n > 1

where
F0 = 0 and F1 = 1

Example 4.11 ((Fibonacci Sequence).).

Proposition 4.6 (Strong Induction Example). P(n) : ∀n≥ 0,Fn ≤ 2n.

Proof. We prove the theorem by strong induction.

STEP 0. Identify predicate P(n).
The predicate P(n) is the theorem that depends on n is

P(n) : Fn ≤ 2n.

STEP 1. Base case: (Show that) P(0) is true.
P(0) is true is equivalent to showning F0 ≤ 20.
The left-hand side of the insequality F0 is equal to 0 by the definition of the Fibonacci recurrence.
The right hand side 20 = 1 directly. It is clear that F0 ≤ 20 since 1≤ 1. Base case completed.

STEP 2. Inductive Step. P(0)∧P(1)∧ . . .∧P(n−1)⇒ P(n).

2.a Induction hypothesis: P(0)∧P(1)∧ . . .∧P(n−1).
P(0) true is F0 ≤ 20. Likewise P(1) true is F1 ≤ 21. Using variable i for i = 0, . . . ,n− 1 we can summarize all

P(0),P(1), . . . ,P(n−1) using
P(i) true is equivalent to Fi ≤ 2i.

2.b What is P(n+1)? A P(n+1) (to be proven true) is equivalent to

Fn+1 ≤ 2n+1

2.c Use 2.a to get to 2.b.

Fn+1 = Fn +Fn−1

= Fn︸︷︷︸
P(n)

+ Fn−1︸︷︷︸
P(n−1)

≤ 2n +2n−1

≤ 2n +2n

≤ 2 ·2n

≤ 2n+1.

P(n+1) has been proven given the induction hypothesis and we used both P(n−1) and P(n). (Strong induction.)
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4.7.4 Binomial terms
Theorem 4.17. For all n ∈ N and a,b we have

(an−bn) = (a−b)
(
an−1 +an−2b+an−3b2 + . . .+abn−2 +b

)
.

It can be proved by induction. Special case for n = 2 and n = 3 are a2 − b2 = (a− b)(a+ b) and a3 − b3 =
(a−b)(a2 +ab+b2). In the latter expression set b =−b to get an expansion for a3 +b3.

Theorem 4.18 (Geometric Sequence - Geometric Sum). For all n ∈ N and a we have

(an−1) = (a−1)
(
an−1 +an−2 +an−3 + . . .+a+1

)
.

This is the previous theorem for b = 1 and can be rewritten as

1+a+a2 + . . .+an−1 =
an−1
a−1

.

provided that a 6= 1.

Theorem 4.19 (Geometric Series). For the previous theorem to the limit n→∞, and−1 < a < 1, we have an→ 0 and
thus

1+a+a2 + . . .+an−1 =
−1

a−1
=

1
1−a

.

Theorem 4.20 (Binomial Theorem). For all n ∈ N and a,b we have

(a+b)n =
n

∑
i=0

(
n
k

)
akbn−k = an +nan−1b+

n(n−1)
2

an−2b2 + . . .+

(
n
k

)
akbn−k + . . .+nabn−1 +bn.
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4.8 Exercises

Exercise 4.1. An integer n > 1 is prime if its only divisors are 1 and the integer n itself. Otherwise integer n is
composite. Examine the truth value of the proposition P defined as follows:

P : 15 is prime

Proof. Proposition P is F. We can prove ¬P is T and thus P is F. ¬P is 15 is NOT prime or equivalently 15 is composite.
We know that 15= 3 ·5 thus 3 divides 15 and 5 divides 15. 15 is indeed composite. Neither 3 nor 5 is 1 or 15 itself.

Exercise 4.2. Show that 7n−1 is a multiple of 6.

Proof. Use the identity an−bn = (a−1)(an−1 +an−2 + . . .+a+1) Then 7n−1n = 6(7n−1 + . . .+7+1) = 6k. Thus
7n−1 is a multiple of 6.

Exercise 4.3. If n,m are odd integers, then n+m is an even integer.

Proof. Direct proof. Let n be odd. This means there exists integer k such that n = 2k+ 1, i.e. the remainder of the
division of n by 2 is 1. Likewise m is odd and thus there exists integer l such tham m = 2l + 1 for the same reason.
Then n+m = 2k+1+2l +1 = 2(k+ l +1). Thus n+m is a multiple of 2 i.e. an even number.

Exercise 4.4. If n is an odd integer and m is an even integer, then n+m is an odd. integer.

Exercise 4.5. If n is odd, so is n2.

Proof. Direct proof. Let n be odd. This means there exists integer k such that n = 2k+ 1, i.e. the remainder of the
division of n by 2 is 1. Then n2 = (2k + 1)2 = 4k2 + 4k + 1 = 4k(k + 1) + 1 = 2(2k(k + 1)) + 1 = 2l + 1, where
l = 2k(k+1) is an integer as the product of three integers: 2, k and k+1. Because n2 = 2l +1, we conclude n2 is an
odd number.

Exercise 4.6. If n is odd, so is n2.

Proof. Proof by contradiction.
Let n be odd. This means there exists integer k such that n = 2k+1, i.e. the remainder of the division of n by 2 is

1. Then n2 = (2k+1)2 = 4k2 +4k+1 = 4k(k+1)+1 = 2(2k(k+1))+1 = 2l +1, where l = 2k(k+1) is an integer
as the product of three integers: 2, k and k+1.

We would like to prove that n2 is also odd. Let, for the sake of a contradiction, that n2 is even.
Based on the prior analysis, we concluded that n2 is of the form n2 = 2l+1, i.e. n2 is an odd number that contradicts

the assumption that n2 is even. Thus n2 cannot be even. Conclusion: n2 is odd.

Exercise 4.7. The product of two consecutive integers is even.

Proof. Let n and n+1 be two consecutive integers. We do a case analysis.
Case 1: n is odd. Then, as previously noted, there exists integer k such that n = 2k+ 1. Then n+ 1 = 2k+ 2

and thus n(n+ 1) = (2k+ 1)(2k+ 2) = 2(k+ 1)(2k+ 1) = 2l with l an integer such that l = (k+ 1)(2k+ 1). Thus
n(n+1) = 2l is a multiple of two i.e. even.

Case 2: n is even. Then, as previously noted, there exists integer k such that n= 2k. Then n+1= 2k+1. Similarly
as before n(n+1) = 2(k(2k+1)) we conclude n(n+1) is even as well.

Whethere n is odd or even, n(n+1) is even.

Exercise 4.8. The square of an integer n is either a multiple of 4 or leaves a remainder of 1 if divided by 8. For
example 22,62,82,102 are all multiples of 4. 32,52,72,92 are 8+1 or 3 ·8+1, or 6 ·8+1, or 10 ·8+1 respectively.
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72 CHAPTER 4. PROOFS

Proof. We do a case analysis.
Case 1: n is even. Then (skipping some details obtainable from previous exercises), n = 2k and thus n2 = 2k ·2k =

4k2 i.e. n2 is a multiple of 4
Case 2: n is odd. Then n = 2k+ 1 and thus n2 = (2k+ 1)2 = 4k(k+ 1)+ 1. But we know the product of two

consecutive integers is even thus k(k+1) = 2l. Then n2 = 4k(k+1)+1 = 4(2l)+1 = 8l +1. Thus the remainder of
the division of n2 by 8 is 1 as shown (and the uniqueness of integer division).

With Case 1 ( square multiple of 4) and Case 2 ( square leaves remainder 1 after division with 8) we complete the
proof.

Exercise 4.9. A three digit denary (base-10) integer is divisible by (multiple of) 3 if the sum of its digits is divisible by
3. Thus 123 is a multiple of 3 since 1+2+3 = 6 = 3 ·2. And 972 is a multiple of 3 since 9+7+2 = 3 ·6. Thus 123 is
a multiple of 3 since 1+2+3 = 6 = 3 ·2. And 972 is a multiple of 3 since 9+7+2 = 3 ·6. (By the way 123 = 3 ·41
and 972 = 3 ·324.)

Proof. Let n= abc be a three digit denary integer. Then a is the number of hunders, b the number of tens and c the units
of n. Thus n = a×100+b×10+c. We know 100 = 3 ·33+1 = 3k+1 with k = 33. We know 10 = 3 ·3+1 = 3l+1
with l = 3. Tehn n= a(3k+1)+b(3l+1)+c= 3(ak+bl)+(a+b+c). If a+b+c is divisible by 3, then a+b+c= 3q
for some integer q. Then n = 3(ak+bl)+(a+b+ c) = 3(ak+bl +q) and thus n is a multiple of 3.

Exercise 4.10. Any three digit integer that ends with 5 has a square that is a multiple of 25. Thus ab5 is such that
(ab5)2 is a multiple of 25.

Proof. Let ab5 = a× 100+ b× 10+ 5 = 10(10a+ b)+ 5. The (ab5)2 = 100(10a+ b)2 + 25+ 100(10a+ b) = 25k
where k = 4(10a+b)2 +1+4(10a+b). This concludes the proof.

Exercise 4.11. Show that for a,b > 0 we have (a+b)/2≥
√

ab≥ 2/(1/a+1/b).

Proof. First part first (left-most inequality).
In order to show (a+b)/2 ≥

√
ab we square both sides. Since all quantities are non-negative, it suffices to show

(a+b)2/4≥ ab i.e. (a+b)2 ≥ 4ab, i.e. (a+b)2−4ab≥ 0 that is (a−b)2 ≥ 0. Since a,b are non-negative, the latter
is true.

Second part next (right-most inequality).
In order to show

√
ab ≥ 2/(1/a+ 1/b), we need to show the following sequence of equivalent inequalities. The

last one is obviously true. Note that the third inequality had both its sides multiplied with ab > 0, and the first squaring
has both sides greather than zero as well.

(
√

ab)2 ≥ (2/(1/a+1/b))2⇔
ab ≥ 4/(1/a+1/b)2⇔

ab(1/a+1/b)2 ≥ 4⇔
a2b2(1/a+1/b)2 ≥ 4ab⇔

a2 +b2 +2ab ≥ 4ab⇔
a2 +b2−2ab ≥ 0⇔

(a−b)2 ≥ 0⇔
T

The last inequality above is true (square of a real number cannot be negative).
First and second inequalities proven. The generalization of this for n terms instead of two is known as the

Arithmetic-Geometric-Harmonic Mean inequality.

Exercise 4.12. Show (a2 +b2)(c2 +d2)≥ (ac+bd)2.
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4.8. EXERCISES 73

Proof. This is the Cauchy-Schwartz inequality.

(a2 +b2)(c2 +d2) ≥ (ac+bd)2⇔
a2c2 +a2d2 +b2c2 +b2d2 ≥ (a2c2 +b2d2 +2abcd⇔

a2d2 +b2c2+ ≥ (a2c2 +b2d2 +2abcd⇔
a2d2 +b2c2−2abcd ≥ 0⇔

(ad−bc)2 ≥ 0⇔
T

The last inequality is true.

Exercise 4.13. Prove by contradiction that for all x,y ∈ R with x+ y≥ 100, then x≥ 50 or y≥ 50.

Proof. We want to prove the implication.

∀x∀y : x+ y≥ 100⇒ x≥ 50∨ y≥ 50

Let P be the proposition of the antecedent.
P : ∀x∀y : x+ y≥ 100

Let Q be the proposition of the consequent
Q : x≥ 50∨ y≥ 50

Thus the implication states
P⇒ Q

The negation ¬Q of Q is
¬Q : x < 50∧ y < 50

Contradiction: Assume P is true but Q is F .
Thus for the sake of contradiction we are going to assume ¬Q is T or equivalently Q is F. This means that both x,y

are less than 50. That is x < 50 and y < 50. Then x+ y < 50+50 = 100 i.e. x+ y < 100.
This however contradicts the antecedent of the implication which is proposition P that states that for all x,y that

x+ y≤ 100.
We have thus proven that P is false. This contradicts the FACT (assumption) that P is true.
In other words if Q is F we proved because of x+ y≤ 100 a contradiction to the antecedent’s x+ y≥ 100.
Thus Q cannot be false. Thus Q must be true.

Exercise 4.14. Show by contrapositive that for all x ∈ R if x2 is irrational then x is irrational.

Proof. We want to prove the implication.

∀x : x2 is irrational ⇒ x is irrational

Let P be the proposition of the antecedent.

P : ∀x : x2 is irrational

Let Q be the proposition of the consequent
Q : x is irrational

Thus the implication states
P⇒ Q

Proof by contrapositive means
¬Q⇒¬P

That is we show that if x is rational then x2 is also rational. If x is rational there exist integer n,m such that x = n/m.
Then x2 = n2/m2. If n,m are integer so are n2,m2 as the products of two integers. Then x2 is rational as the fraction of
two integers.

Proof is complete because we proved ¬Q⇒¬P. By contrapositive, P⇒ Q has been proven.
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74 CHAPTER 4. PROOFS

Exercise 4.15. Show that min(x,y)+max(x,y) = x+ y.

Proof. Proof by case analysis.
Case 1. Let x < y.
Then min(x,y) = x. Also max(x,y) = y. Therefore min(x,y)+max(x,y) = x+ y.
Case 2. Let x > y.
Then min(x,y) = y. Also max(x,y) = x. Therefore min(x,y)+max(x,y) = x+ y.
Case 3. Let x = y.
Then min(x,y) = y = x. Also max(x,y) = x = y. Therefore min(x,y)+max(x,y) = x+ y.

Exercise 4.16. (Practice Makes Perfect). Do for practice the following examples. Show that for any n≥ 0

i=n

∑
i=0

i2 = n(n+1)(2n+1)/6

Exercise 4.17. (Practice Makes Perfect). Show that for any n > 1, n2−1 > 0.

Exercise 4.18. (Practice Makes Perfect). Show that for any n≥ 2, ∑
n
i=1 i≤ 3n2/4.

Exercise 4.19. (Practice Makes Perfect). Show that for any x≥ 3, ∑
n−1
i=0 xi ≤ xn/2.

Exercise 4.20. (Practice Makes Perfect). Show that for any n≥ 1, ∑
n
i=0 i2 ≤ (n3 +2n2)/3.

Exercise 4.21. (Practice Makes Perfect). What is wrong with the proof of the theorem below? Explain.

Theorem 4.21. All horses of the world are of the same color.

Proof. The proof is (supposed to be) by induction on the number of horses n.

P(n): In any set of n≥ 1 horses, all the horses of the set are of the same color.

1. Base Case: Show P(1) is true. P(1) is always true as in a set consisting of a single horse, all the horses (there is
only one) of the set have the same color.

2. Inductive step : ∀n ∈ N, i.e. n≥ 1, P(n)⇒ P(n+1).
Let us assume (induction hypothesis) that for any n ≥ 1, P(n) is true. Since we assume P(n) to be true, every set

of n horses have the same color. Then we will prove that P(n+1) is also true (inductive step), i.e. we will show that in
every set of n+1 horses, all of them are of the same color. To show the inductive step, i.e. that P(n+1) is true let us
consider ANY set of n+1 horses H1,H2, . . .Hn,Hn+1. The set of horses H1,H2, . . . ,Hn, consists of n horses, and by the
induction hypothesis any set of n horses are of the same color. Therefore color(H1) =color(H2) = . . .=color(Hn). The
set of horses H2,H3, . . . ,Hn+1, consists of n horses, and by the induction hypothesis any set of n horses are of the same
color. Therefore color(H2) =color(H3) = . . .=color(Hn+1). Since from the first set of horses color(H2) =color(Hn),
and from the second set color(H2) =color(Hn+1), we conclude that the color of horse Hn+1 is that of horse H2, and
since all horses H1,H2, . . . ,Hn are of the same color, then all horses H1,H2, . . . ,Hn,Hn+1 have the same color. This
proves the inductive step. The induction is complete and we have thus proved that for any n, in any set of n horses all
horses (in that set) are of the same color.

(Hint: The key to this proof is the existence of horse H2. More details on a later page.)
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4.8. EXERCISES 75

Exercise 4.22. Show that for any n≥ 0
Fn ≤ 2n−1.

Exercise 4.23. Show that for any n≥ 1
Fn ≥ 2(n−1)/2.

Exercise 4.24. (On horses, cows, and tricky inductive arguments). Horses revisited i.e. why the Theorem of Exam-
ple 4.21 is false. On the previous page we proved that all horses have the same color, an otherwise nonsense statement
(or false proposition). What’s wrong with the inductive proof?

Many may argue that the error is in the logic of the inductive step.
The logic is fine, the quantification “for all n” is not, since the assumption of always having horse H2 might not

be true. The crux of the inductive step is the existence of three ’different’ horses H1,H2,Hn+1. We first form a set of
n horses H1,H2, . . . ,Hn and apply the induction hypothesis and then form another set of n horses, H2, . . .Hn,Hn+1,
and apply the induction hypothesis again. Crucial to the proof is that c(H1) = c(H2) from the first application of the
induction hypothesis, and c(H2) = c(Hn+1) from the second thus concluding that c(H1) = c(H2) = . . .= c(Hn).

Let’s see what happens for n = 1, i.e. let’s try to show that P(1)⇒ P(2), i.e. show the inductive step for a certain
value of n equal to 1. If we try to form H1, . . .Hn this set contains only one ’horse’ element for n = 1: H1 ! If we try
to form H2, . . . ,Hn+1 this set contains only one ’horse’ element H2. There is no common third ’horse’ Hk in the set
containing H1 nor in the set containing H2. This is because the argument in the previous paragraph works only for
n ≥ 2. In that case one set is formed from H1,H2 and the other set from H2,H3. However even if we can prove the
inductive step nicely in that case there is no way to prove the base case set for n = 2 i.e. P(2)!

Therefore the inductive step that “we proved” before P(n)⇒ P(n+1) is not true for all n≥ 1 but only for n≥ 2.
This however can not establish the trueness of P(n) for all n≥ 1 because P(2) may or may not be true.

What is P(2)?

P(2) is “in any set of two horses, both horses are of the same color”.
In conclusion, the whole “horsy argument” breaks down because

A2. P(n)⇒ P(n+1) for all n≥ 1,
was not shown, for all n≥ 1; it was only proved for all n≥ 2, i.e.

A2. P(n)⇒ P(n+1) for all n≥ 2,

and thus the base case “P(1) is true” can not be used with the latter version of the inductive step; for the latter we
need P(2) to be true WHICH IS NOT!

Exercise 4.25. Show by induction that for all integer n≥ 1, we have that 1 ·3 ·5 · . . . · (2n−1)≤ nn.

Proof.
Base case n = 1. It is clear that 1≤ 11.

Induction step. Let the inequality be true for n = k that is

1 ·3 · . . . · (2k−1)≤ kk.

We will show that it is true for n = k+1 that is

1 ·3 · . . . · (2k−1)(2k+1)≤ (k+1)k+1.

1 ·3 · . . . · (2k−1)(2k+1) ≤ (1 ·3 · . . . · (2k−1)) · (2k+1)
≤ kk · (2k+1)
≤ (k+1)k+1
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76 CHAPTER 4. PROOFS

In order to show that kk · (2k+1)≤ (k+1)k+1 we start with

(k+1)k+1

kk ≥ (k+1) · (1+1/k)k

≥ (k+1) ·2
≥ 2k+1.

Exercise 4.26. Show that if (xi)
n
i=1 and (yi)

n
i=1 are two monotonic sequences similarly ordered then

n
n

∑
i=1

xiyi ≥
n

∑
i=1

xi

n

∑
i=1

yi

Proof.

n
n

∑
i=1

xiyi−
n

∑
i=1

xi

n

∑
i=1

yi =
n

∑
j=1

n

∑
i=1

xiyi−
n

∑
i=1

xi

n

∑
j=1

y j

n

∑
j=1

n

∑
i=1

x jy j−
n

∑
i=1

n

∑
j=1

xiy j =
n

∑
j=1

n

∑
i=1

x jy j−
n

∑
i=1

n

∑
j=1

x jyi

1
2

n

∑
j=1

n

∑
i=1

(xiyi + x jy j− x jyi− xiy j) =
1
2

n

∑
j=1

n

∑
i=1

(xi− x j)(yi− y j)

≥ 0.

If this manipulation of indices looks confusing, consider the following n inequalities that have the same left-hand side,
but only n of the n2 terms of the sum in the right-hand side.

n

∑
i=1

xiyi ≥ x1y1 + x2y2 + . . .+ xnyn

n

∑
i=1

xiyi ≥ x1y2 + x2y3 + . . .+ xny1

n

∑
i=1

xiyi ≥ x1y3 + x2y4 + . . .+ xny2

. . .
n

∑
i=1

xiyi ≥ x1yn + x2y1 + . . .+ xnyn−1

If we add those n inequalities we get,

n
n

∑
i=1

xiyi ≥
n

∑
i=1

xi

n

∑
i=1

yi.
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Chapter 5

Sums of sequences

5.1 Sequences

We can generalize the definition of a pair, triple or triplet, and n-tuple by defining a sequence in which elements can
be repeated. In a sequence, as opposed to a set, order matters, i.e. the elements of a sequence have some order.

Definition 5.1 (Sequence). A sequence is a collection of elements ordered in a specific way.

Definition 5.2 (Series). A series is the sum of the terms of a sequence.

Less often a series is the product of the terms of a sequences.
The term sequence however will it be used when we refer to a sequence of integers.

Definition 5.3 (Sequences). A sequence a is a function whose domain is a subset of the integers. We use the notation
an to represent an element of a sequence instead of a(n). The term n is the index of the sequence. If the domain is
finite, the sequence is a finite sequence, else it is an infinite.

Example 5.1. (a) The sequence {1,2,3,5,7,11} is a finite sequence.
(b) The sequence an = 2n, n≥ 0 is an infinite sequence.

Definition 5.4 (Increasing sequence). A sequence an of domain D is increasing if for all integer i ∈D, j ∈D such that
i < j we have ai < a j.

Definition 5.5 (Monotonically Increasing or non-decreasing sequence). A sequence an of domain D is increasing if
for all integer i ∈ D, j ∈ D such that i < j we have ai ≤ a j.

Example 5.2. (a) The sequence {1,2,3,5,7,11} is increasing.
(b) The sequence an = 2n, n≥ 0 is increasing.

Definition 5.6 (Monotonically Decreasing or non-increasing sequence). A sequence an of domain D is increasing if
for all integer i ∈ D, j ∈ D such that i < j we have ai ≥ a j.

Example 5.3. (a) The sequence an = 1/2n, n≥ 0 is deccreasing.

Definition 5.7 (Subsequences). Let a be a sequence. A subsequence b of a is sequence formed from a by picking
certain terms of a as they appear in a.

77
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78 CHAPTER 5. SUMS OF SEQUENCES

Definition 5.8 (Sum and Product of terms of a sequence). Let an be a sequence from n = A to n = B. We can also
write it {an}n=B

n=A. or {an}B
n=A. We define

B

∑
i=A

an = aA +aA+1 + . . .+aB.

B

∏
i=A

an = aA ·aA+1 · . . . ·aB.
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5.1. SEQUENCES 79

5.1.1 Denoting a sequence

Remark 5.1 (Angular brackets for a sequence). For a sequence we use angular brackets 〈 and 〉 to denote it. In a
sequence the order of its elements matters: the elements of a sequence are listed according to their order. We separate
two consecutive elements with a comma.

Example 5.4 (Sequence example). Thus sequence 〈1,3,2〉 represents a sequence where the first element is a 1, the
second a 3 and the third a 2. This sequence is different from sequence 〈1,2,3〉. The two are different because
for example the second element of the former is a 3, and the second element of the latter is a 2. Thus those two
sequences differ in their second element position. (They also differ in their third element position anyway.) Thus
〈1,3,2〉 6= 〈1,2,3〉.

Remark 5.2 (Set vs Sequence). Sets include unique elements; sequences not necessarily. The {10,10,20} is incorrect
as in a set each element appears only once. The correct way to write this set is {10,20}. For a sequence repetition is
allowed thus 〈10,10,10〉 is OK.

5.1.2 Sequence enumeration

Remark 5.3 (Sequences with too many elements: ellipsis to the rescue.). Sequences with too many elements to write
down: three periods (. . .). Thus {1,2, . . . ,n} would be a way to write all positive integers from 1 to n inclusive. The
three period symbol . . . is also known as ellipsis (or in plural form, ellipses).

Definition 5.9 (Sequence enumeration). An infinite or finite sequence can also be described by a sequence compre-
hension or enumeration. For example 〈ai〉, for i = 1, . . . ,n, describes a sequence. So does 〈a1,a2, . . . ,an〉. We may
also drop the angular brackets and write ai, for i = 1, . . . ,n.

Example 5.5. We can define sequence ai = i. This is sequence 1,2, . . . ,n more correctly writtens as 〈1,2, . . . ,n〉.

5.1.3 Sum and Product of terms of a sequence
The terms (elements) of a sequence can be summed or multiplied. A series is the sum of the terms of sequence.

Example 5.6 (Sum of terms of a sequence). For a sequence 〈ai〉, for i= 1, . . . ,n, the sum of its terms is a1+a2+ . . .+an
and can be represented in compact form as

∑
1≤i≤n

ai =
i=n

∑
i=1

ai =
n

∑
i=1

ai = a1 +a2 + . . .+an,

or inline ∑
n
i=1 ai = ∑1≤i≤n ai .

Example 5.7 (Product of terms of a sequence). For a sequence 〈ai〉, for i = 1, . . . ,n, the product of its terms is
a1 · s2 · . . . ·an and can be represented in compact form as

∏
1≤i≤n

ai =
i=n

∏
i=1

ai =
n

∏
i=1

ai = a1 · s2 · . . . ·an,

or inline ∏
n
i=1 ai = ∏1≤i≤n ai.

Variable i assumes integer values starting with the smallest value as indicated under the sum’s Sigma symbol or
the product’s PI symbol, and ending with the value indicated over the corresponding symbol. For the sequence defined
in the two previous examples, the smallest value for i is i = 1 and the largest value is i = n.

The variable’s name is introduced under the sumbol with the starting value assigned to it. It is sometimes omitted
at the top of the symbol (but implied). The general member of the sum or the product bear the running value of the
variable.

A sum of no terms is equal to 0. A product of no terms is equal to 1.
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80 CHAPTER 5. SUMS OF SEQUENCES

5.2 Arithmetic sequence sum: arithmetic series
A series is the sum of the terms of a sequence.

Definition 5.10 (Arithmetic sequence). The arithmetic sequence 〈ai〉, for i = 1, . . . ,n, is defined as follows:

ai = i

Definition 5.11 (Arithmetic series A(n)). The arithmetic series of the first n terms of the arithmetic sequence is denoted
by A(n) and defined as follows.

A(n) = a1 +a2 + . . .+an =
n

∑
i=1

ai

One can represent the series as An as well.

By representing the series A(n) as An we can define a new sequence 〈Ai〉, where Ai = ∑
n
j=1 a j. We can calculate

A(n) from its open-form ∑ i = 1nai to derived a closed form expression for it that describes in in the most compact
form with the fewest number of terms.

Fact 5.1 (Arithmetic series). A closed-form expression for A(n) is shown below for completeness.

A(n) = An =
n

∑
i=1

i =
n(n+1)

2
.

Proof. (Fact 5.1) Since A(n) = An = 1+ 2+ . . .+(n− 1)+ n. Writing An forwards and backwards we add up the
corresponding terms.

An = 1+2+ . . .+(n−1)+n

An = n+(n−1)+ . . .+2+1

}
Add up the two equations (5.1)

We have

2An = (n+1)+(n+1)+ . . .+(n+1)+(n+1) ⇐⇒
2An = n(n+1) ⇐⇒

An = n(n+1)/2.

5.3 Quadratic and Cubic sequence sum

Fact 5.2 (Quadratic and Cubic series). Q(n), the quadratic series, and C(n), the cubic series are defined analogously
as follows. A closed-form expression is shown for both of Q(n) and C(n).

Q(n) = Qn =
n

∑
i=1

i2 =
n(n+1)(2n+1)

6
, C(n) =Cn =

n

∑
i=1

i3 =
n2(n+1)2

4
.
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5.4. HARMONIC SEQUENCE SUM: HARMONIC SERIES 81

Proof. (Fact 5.2) We can use the following method to find sums of the following form

Sk =
n

∑
i=1

ik.

First consider (i+ 1)k+1 and expand it. Substitute in the expansion i = 1, i = 2, . . ., i = n, a total of n times and
write the resulting n equalities one after the other. Then, sum these n equalities by summing up the left hand sides and
the right hand sides. Solve for Sk and Sk can then be found as a function of n.

For the sum in question k = 1. Therefore we consider

(i+1)2 = i2 +2i+1

We substitute for i = 1,2, . . . ,n writing one equality after the other

(1+1)2 = 12 +2 ·1+1
(2+1)2 = 22 +2 ·2+1
(3+1)2 = 32 +2 ·3+1
(4+1)2 = 42 +2 ·4+1

. . . = . . .

(n+1)2 = n2 +2 ·n+1

When we sum up the n equalities we realize that say, (3+1)2 of the third line is equal to 42 of the fourth line and
therefore.

(1+1)2 +(2+1)2 + . . .+(n+1)2 = (12 +22 +32 + . . .+n2)+2 · (1+2+ . . .+n)+(1+ . . .+1)

We note that 2 · (1+2+ . . .+n) = 2S1 and (1+ . . .+1) = n (number of ones is number of equations). Then,

(n+1)2 = 1+2S1 +n

Solving for S1 we get that S1 = ((n+1)2−n−1)/2, ie S1 = (n2+2n+1−n−1)/2 = (n2+n)/2 = n(n+1)/2, which
is A(n) = An.

5.4 Harmonic sequence sum: harmonic series

Fact 5.3 (Harmonic series).

H(n) = Hn =
n

∑
i=1

1
i
≈
∫
(1/x)dx≈ ln(n)+ γ.

Fact 5.4 (Derivative formulae from harmonic series). Let Hn = ∑
n
i=1 1/i. Then we have the following equations.

n

∑
i=1

Hi = (n+1)Hn−n,
n

∑
i=1

iHi =
n(n+1)

2
Hn−

n(n−1)
4

.

Example 5.8.
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82 CHAPTER 5. SUMS OF SEQUENCES

Proof. Consider H8.

H8 = 1+1/2+1/3+1/4+1/5+1/6+1/7+1/8
≤ 1+1/2+1/2+1/4+1/4+1/4+1/4+1/8
≤ 1+1+1+1/8 = 3+1/8.

Thus H8 ≤ 3+ 1/8. Likewise we can show then H16 ≤ 4+ 1/16 and by induction H2k ≤ k+ 1/2k. Going the other
way around.

H8 = 1+1/2+1/3+1/4+1/5+1/6+1/7+1/8
≥ 1+1/2+1/4+1/4+1/8+1/8+1/8+1/8
≤ 1+1/2+1/2+1/2

By induction we can prove that H2k ≥ 1+ k/2. Moreover
∫ n+1

1 1/xdx < Hn ≤
∫

∞

1 (1/x)dx.

5.5 Properties of powers

The following identities can be derived from the following theorem that is proved by induction, as special cases for
n = 2 and n = 3, and with the third identity deriving from the second by substituting −b for b.

Fact 5.5. For all a,b

a2−b2 = (a−b)(a+b), a3−b3 = (a−b)(a2 +ab+b2), a3 +b3 = (a+b)(a2−ab+b2).

Theorem 5.1. For all n ∈ N and a,b we have

(an−bn) = (a−b)
(
an−1 +an−2b+an−3b2 + . . .+abn−2 +b

)
.

Corollary 5.1 (Geometric series). For all n ∈ N and a we have

(an−1) = (a−1)
(
an−1 +an−2 +an−3 + . . .+a+1

)
.

This is the previous theorem for b = 1 and can be rewritten in the form of the geometric series provided that a 6= 1.

5.6 Geometric sequence G(n,x) sum

Fact 5.6 (Geometric sequence G(n,x) sum). Let G(n,x) = ∑
n
i=0 xi. Then we have the following equations, for x 6= 1.

G(n,x) = Gx
n =

n

∑
i=0

xi = 1+ x+ x2 + . . .+ xn =
xn+1−1

x−1
.

5.6.1 Infinite geometric sequence G(x) sum

Theorem 5.2 (Infinite geometric series). If |x|< 1 to the limit n→ ∞ we have the following

G(x) = lim
n→∞

G(n,x) = lim
n→∞

1+ x+ x2 + . . .+ xn = lim
n→∞

xn+1−1
x−1

=
1

1− x
.

Therefore

G(x) =
∞

∑
i=0

xi =
1

1− x
.
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5.7. I(N,X) SEQUENCE SUM 83

5.7 I(n,x) sequence sum

Fact 5.7 (I(n,x) series). For x 6= 1 we have the following finite sum.

I(n,x) =
n−1

∑
i=0

ixi =
(n−1)xn+1−nxn + x

(1− x)2 .

5.7.1 Infinite I(x) sequence sum

Correspondingly, the infinite sum is derived as follows.

Fact 5.8. For |x|< 1 we have the following sum.

I(a) =
∞

∑
i=1

ixi =
x

(1− x)2 .

Corollary 5.2 (I(n,1/2)). Moreover, we have that for I(n,1/2),

I(n,1/2) =
n−1

∑
i=0

i/2i = 2− 2n+2
2n .

I(1/2) =
∞

∑
i=0

i/2i = 2.

Proof. (Fact 5.2, Corollary 5.2) We show that

I(1/2) = I1/2 =
∞

∑
i=0

i/2i = 2.

We start with the geometric series and in particular the infinite geometric series. Getting its first derivative with
respect to x and then multiplying both sides with x yields, almost, the result. In the last step we substitute 1/2 for x. In
all cases |x|< 1.

G(n,x) =
n−1

∑
i=0

xi = 1+ x+ . . .+ xi + . . .+ xn−1 =
xn−1
x−1

G(x) =
∞

∑
i=0

xi = 1+ x+ . . .+ xi + . . .=
1

1− x

I(x) =
∞

∑
i=0

i · xi = 1 · x1 +2 · x2 + . . .+ i · xi + . . .= ?
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84 CHAPTER 5. SUMS OF SEQUENCES

For any |x|< 1, we have.

∞

∑
i=0

xi =
1

1− x

1+ x+ . . .+ xi + . . . =
1

1− x(
1+ x+ . . .+ xi + . . .

)′
=

(
1

1− x

)′
0+1 · x0 + . . .+ i · xi−1 + . . . =

1
(1− x)2

0 · x+1 · x1 + . . .+ i · xi + . . . =
x

(1− x)2

I(x) =
∞

∑
i=0

i · xi =
x

(1− x)2

From the last one for a = 1/2 we get I(1/2) = 2.

5.8 Taylor series logs and exponentials

Fact 5.9. For |x|< 1.

ex = 1+ x+
x2

2!
+ . . .+

xi

i!
+ . . .=

∞

∑
i=0

xi

i!
.

ln(1+ x) = x− x2

2
+ . . .+

(−1)i+1xi

i
+ . . .=

∞

∑
i=1

(−1)i+1 xi

i
.

ln
1

1− x
= x+

x2

2
+ . . .+

xi

i
+ . . .=

∞

∑
i=1

xi

i
.

5.9 Fibonacci identities

Fact 5.10. For |x|< 1, and Fi the Fibonacci sequence,

1
(1− x)n+1 =

∞

∑
i=0

(
i+n

i

)
xi,

1√
1−4x

=
∞

∑
i=0

(
2i
i

)
xi,

x
1− x− x2 = x+ x2 +2x3 +3x4 + . . .=

∞

∑
i=0

Fixi

5.10 Binomial sequence sum: binomial series
Theorem 5.3 (Binomial Theorem). For all n ∈ N and a,b we have

(a+b)n =
n

∑
i=0

(
n
k

)
akbn−k = an +nan−1b+

n(n−1)
2

an−2b2 + . . .+

(
n
k

)
akbn−k + . . .+nabn−1 +bn.
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5.10. BINOMIAL SEQUENCE SUM: BINOMIAL SERIES 85

Definition 5.12 (Power series). A power series P(x) with center 0 is a series of the following form.

P(x) =
∞

∑
i=0

aixi = a0 +a1x+ . . .+aixi + . . . .

Definition 5.13 (Power series). A power series P(x) with center c is a series of the following form.

P(x− c) =
∞

∑
i=0

ai(x− c)i.

For a power series we first consider the ratio of two consecutive terms r such that

r = lim
i→∞
|ai+1(x− c)i+1

ai(x− c)i |

That limit is equal to
r = |x− c|| lim ai+1

ai
|

Let R be the reciprocal of | lim ai+1
ai
|. Then r = |x− c|/R. If r < 1 the series absolutely converges. If r > 1 it diverges.

Equivalently |x− c| < R and |x− c| > R respectively. In other words the center of the interval of convergence, if it
converges, is c and the radius is R.

Theorem 5.4 (Radius of concergence). Let P(x− c) = ∑
∞
i=0 ai(x− c)i be a power series. There is an R such that

0≤ R≤∞ such that the series converges absolutely for 0≤ |x−c|< R and diverges for 0≤ |x−c|> R. Furthermore,
if 0 ≤ r < R, then the power series converges uniformly on the interval |x− c| < r and the sum of the series is then
continuous in |x− c|< R.

Proof. Let w.l.o.g. c = 0; otherwise replace x with x− c. Say that ∑
∞
i=0 aiyi converges for some y ∈ R with y 6= 0. Its

terms would then converge to zero and they would be bounded and there would exist a B≥ 0 such that |anyn| ≤ B for
n = 0,1, . . .. If |x|< |y| then

|anxn|= |anyn||x
n

yn | ≤ Brn,

where r = | xy |< 1. Comparing P(x) with ∑Brn we conclude that P(x) is convergent; if the power series converges for
some y ∈ R then it converges absolutely for every x ∈ R with |x|< |y|.

Let R = ∑{|x| ≥ 0 : ∑aixi} converges. If R = 0 then the series converges for x = 0. If R > 0 then series converges
absolutely for each x ∈ R with |x| < R because it converges for some y ∈ R with |x| < |y|. By definition the series
diverges for each x ∈ R with |x| > R. If R = ∞ then the series converges for all x ∈ R. Let 0 < b < R and let |x| ≤ b.
Choose a c > 0 such that b < c < R. Then ∑ |aici| converges, so |aici| ≤ B and then

|aixi|= |aici||x
c
|i ≤ |aici||b

c
|i ≤ Bri

whewre r = b/c < 1. Since ∑Bri < ∞ the series converge uniformly for |x| ≤ b and the sum is continuous on |x| ≤ b.
Given that this holds for each 0≤ b < R, the sum is continuous in |x|< R.

Theorem 5.5 (Power series convergence). A power series P(x− c) with center c

P(x− c) =
∞

∑
i=0

ai(x− c)i

if it converges for |x− c|< R and diverges for |x− c|> R then 0≤ R≤ ∞ is called the radious of convergence of the
power series.
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86 CHAPTER 5. SUMS OF SEQUENCES

Theorem 5.6. Suppose that ai 6= 0 for all sufficiently large i and the limit

R = lim
i→∞
| ai

ai+1
|

exists or diverges to infinity. The P(x− c) has radius of convergence R.

Proof. Let

r = lim
i→∞

ai+1(x− c)i+1

ai(x− c)i |= |x− c| lim |ai+1/ai.

The power series converges if 0≤ r < 1 or |x− c|< R and diverges if 1 < r ≤ ∞ or |x− c|> R.

Theorem 5.7. The radius of convergence R of P(x− c) is

R =
1

limsupi→∞

|ai|1/i

where R = 0 if the limsup diverges to ∞ and R = ∞ if lim∑ is 0.

Proof. Let

r = limsup |ai(x− c)i|1/i = |x− c| lim∑a1/i
i .

The series converges for 0≤ r < 1 or |x− c|< R and diverges for 1 < r ≤ ∞ or |x− c|> R.

Example 5.9. The series

G(x) =
∞

∑
i=0

xi

has radius of convergence R = 1 = 1
lim11/i . It converge for |x| < 1 to 1/(1− x) and diverges for |x| > 1. At x = 1 or

x =−1 the series diverges. The interval of convergence is (−1,1).

Example 5.10. The series

H(x) =
∞

∑
i=0

(1/i)xi

has radius of convergence R = 1 = lim1/i/1/(i+1) = 1. At x = 1 it is the harmonic series which diverges, at x =−1
it is the alternating harmoning series that converges but not absolutely.

Example 5.11. The series

K(x) =
∞

∑
i=0

(1/i!)xi

has radius of convergence R = 1 = lim1/i!/1/(i+1)! = ∞. It converges for all x ∈ R. It is exp(x).

Example 5.12. The series

K(x) =
∞

∑
i=0

(1/i!)xi

has radius of convergence R = 1 = lim1/i!/1/(i+1)! = ∞. It converges for all x ∈ R. It is exp(x).
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5.11. EXERCISES 87

5.11 Exercises
Exercise 5.1. The following series is given. Examine the radius and interval of convergence.

L(x) =
∞

∑
i=0

(x+4)i

Proof. Apply the ratio test considering x a fixed value.

lim
i→∞
| (x+4)i+1

(x+4)i |= |x+4|< 1.

The radius of convergence is 1. The interval of convergence |x+4|< 1 implies −1 < x+4 < 1 implies −5 < x <−3.
Thus in this interval it converges absolutely. We test the two endpoints −5 and −3. For x = −5 we have L(−5) =
∑(−1)i and the series diverges. For L(−3) = ∑1 and it also diverges. Thus there is no conditional convergence.



DRAFT. C
op

yri
gh

t (
c)

20
21

-20
24

.

Alex
. Gerb

ess
iot

is.

All r
igh

ts
res

erv
ed

Not
to

be
po

ste
d on

lin
e

or
on

the
web

or
to

be

mad
e av

ail
ab

le
ou

tsi
de

of

co
py

rig
ht

ho
lde

r’s
web

-pa
ge

88 CHAPTER 5. SUMS OF SEQUENCES



DRAFT. C
op

yri
gh

t (
c)

20
21

-20
24

.

Alex
. Gerb

ess
iot

is.

All r
igh

ts
res

erv
ed

Not
to

be
po

ste
d on

lin
e

or
on

the
web

or
to

be

mad
e av

ail
ab

le
ou

tsi
de

of

co
py

rig
ht

ho
lde

r’s
web

-pa
ge

Chapter 6

Counting

6.1 Rules of sum and product
Definition 6.1 (Rule of Sum principle). If event A can occur in a different ways, and another event B can occur in b
different ways, and suppose those two events cannot occur simultaneously, then one or the other can occur in a+ b
ways. That is event A or B can occur in a+b ways.

Definition 6.2 (Rule of Product principle). If event A can occur in a ways, and event B can occur in b ways, and
suppose those two events are independent of each other, the combination of those event can occur in a×b ways. That
is event A and B can occur in a×b ways.

The two principles are generalizable to more than two events.
Reminding ourselves that |A| and c(A) is the cardinality of set A, and we will be using the latter in the remainder

we have the following.

Proposition 6.1 (Rule of Sum principle). Let A and B be two disjoint sets. Then

c(A∪B) = c(A)+ c(B)

Proposition 6.2 (Rule of Product principle). Let A and B be two sets and let A×B be its cartesian product. Then

c(A×B) = c(A) · c(B)

6.1.1 Examples
Example 6.1. A student needs to choose a Science elective. The Physics Department has 3 appropriate ones, the
Biology Department has 4. The student have 7 choices.

Example 6.2. A digit is one of 0-9. A lower-case char is one of a-z. An upper-case char is one of A-Z. A char is
upper-case or lower-case. By the rule of sum we have 26+ 26 = 52 possible outcomes for a char. An alphanumeric
digit is a char or a digit. By the rule of sum we have 26+26+10 = 62 possible outcomes. A two digit number by the
rule of product has 100 outcomes.

Example 6.3 (Rule of Sum for 3). Suppose that YWCC has 10 CS courses, 5 IS course, and 3 IT courses. The number
of ways a student can choose just one of the courses (CS or IS or IT) is 10+5+3 = 18.

Example 6.4 (Rule of Product for 3). Suppose that YWCC has 10 CS courses, 5 IS course, and 3 IT courses. The
number of ways a student can choose one course from each program (for a total of three courses) is 10 ·5 ·3 = 150.

Example 6.5. Given 3 English books, 5 CS book, and 7 Math books, in how many ways can we choose 2 books in
different topics? 3 ·5+5 ·7+3 ·7.

89
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90 CHAPTER 6. COUNTING

Example 6.6. We throw two dice. What are the chances of getting an even number? Out of the 36 draws (6 per dice)
half are odd-odd or even-even leading to an even sum. That is 18 out of 36 i.e. 50%.

Example 6.7. How many different bytes do we have? A byte is 8 bit. A bit is 0 or 1. Thus by the rule of sum (principle)
we have 2 possibilities for a bit. By the rule of product (principle) we have 2× 2× 2× 2× 2× 2× 2× 2 = 256
possibilies. Thus a byte has 256 possible values.

Example 6.8 (Rule of Sum and Rule of Product for many). A student needs to choose a Science elective as before and
a course from the Math Department. The Physics Department has 3 appropriate ones, the Biology Department has 4,
and the Chemistry Department 2. The student have 9 choices. There are five choices for a Math course, and also two
choices for a Statistics course from the Math Department. Now the combination of 1 Science Dept and 1 Math Dept
course can occur in (3+4+2)× (5+2) = 63 ways.

Example 6.9. We have n objects say {1,2, . . . ,n}. What is the number of subsets of this set of n objects?

Proof. Let si map to choosing or not choosing i. We have 2 choices for si. For all si i.e. for the number of subsets by
the rule of product we have 2 ·2 · . . . ·2 = 2n.

Example 6.10 (Counting the Complement). How many 3-char strings have a letter repeated if the allowable charac-
ters are {a,b,c,d}.

Proof. We want to find the cardinality of A. Sometimes A is difficult to compute. A better approach is find U and A{

and use c(A) = c(U)−c(A{). For a −−− there are four character candidates for the first −, and so on for the second,
third −. This defines U and c(U). There are 43 strings of three characters from the set. This means c(U) = 43.
Now let us find out the number of strings that DO NOT contain a duplicate character (i.e. aab is not allowed.) This
way we will establish A{ and c(A{). We have 4 choices for the first −, but then 3 choices (remaining ones) for the
second − and just two choice (the unused ones) for the third −, for a total of 4 ·3 ·2 = 24. Thus c(A{) = 24. A simple
subtraction shows c(A) = c(U)− c(A{) = 43−24 = 40.
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6.2. FACTORIAL AND IDENTITIES 91

6.2 Factorial and identities
Definition 6.3 (Factorial reminder). The factorial function is defined as follows: f (n) = n! and reads ”n factorial”.
Note that f (0) = 0! = 1 and f (1) = 1! = 1. Moreover f (n) = n · f (n−1) = n · (n−1)!.

Fact 6.1 (Stirling’s approximation). For n > 10, we have n!≈
√

2πn(n/e)n A better approximation is

(n/e)n
√

2πne1/(12n+1) ≤ n!≤ (n/e)n
√

2πne1/(12n).

Fact 6.2. (
n
k

)
=

n!
k!(n− k)!

,

The following is immediately derived if we rearrange (swap) in the denominator above k! and (n− k)!.

Fact 6.3. (
n
k

)
=

(
n

n− k

)
,

Proof. One can prove such a fact directly or by combinatorial intepretation. Suppose we have n distinct objects.
Suppose we label the objects 1, . . . ,n. We can ask in how many ways can we pick k distinct object out of n and the
answer is

(n
k

)
. We have n ways to pick the first object, n−1 ways to pick the second object (having made the selection

of the first), and so on, (n− k+ 1) to pick the k-th object. However with this method we count the same collection
k! times. Whether we pick say three objects in this sequence 2,1,3 or that sequence 3,2,1 or etc is immaterial as
the outcome in all 6 available possibilities draws to picking objects 1,2, and 3. Thus we need to divide the product
n · (n−1) · . . . · (n− k+1) with k!. The result follows if we multiply numerator and denominator with (n− k)!.

To prove the left hand side is equal to the right hand side then becomes trivial. Picking k of n objects is equivalent
to assigning a label ’Picked’ to k out of n objects. This can be done in

(n
k

)
by the previous argument. However an

alternative is to assign to n− k out of the n objects the lable ’Unpicked’. This can be done in
( n

n−k

)
. But then the

objects without an ’Unpicked’ label are assigned the ’Picked’ label. Thus the number of way to pick k objects out of
n is equal to the number of ways to unpick n− k objects out of n (and then the not-unpicked objects are subsequently
picked).

Fact 6.4. (
−n
k

)
= (−1)k

(
n+ k−1

k

)
Fact 6.5. (

−1/2
k

)
=

(−1)k

4k

(
2k
k

)
Using mathematical induction the following can be proven. It is the general form of the Binomial Theorem.

Fact 6.6.
(a+b)n =

n

∑
k=0

(
n
k

)
akbn−k

The latter is derived for a = b = 1.

Fact 6.7.
n

∑
k=0

(
n
k

)
= 2n,

For a =−1 and b =−x and n =−n we have

Fact 6.8.
(−1− x)−n =

n

∑
k=0

(
−n
k

)
(−1)k(−x)−n−k.
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92 CHAPTER 6. COUNTING

By simple math manipulations the following can then be proven. This is the basis used in the Pascal Triangle
to determine the coefficient of akbn−k i.e. C(n,k) from the coefficients of C(n− 1,k) and C(n− 1,k− 1). Note
C(n,k) =

(n
k

)
.

Fact 6.9. (
n
k

)
=

(
n−1

k

)
+

(
n−1
k−1

)
.

Proof. Let us call the objects 1, . . . ,k. Let us consider object 1. When we choose k out of n objects 1 can be picked or
not.

Case 1 (object 1 is not picked). Then the number of ways of picking k objects out of n is to not-pick 1 and pick k
objects out of the remaining n−1 ones (objects 2, . . . ,n. The latter can be done in

(n−1
k

)
ways.

Case 2 (object 1 is picked). Then the number of ways of picking k objects out of n is to pick 1 and then pick k−1
objects out of the remaining n−1 ones (objects 2, . . . ,n. The latter can be done in

(n−1
k−1

)
ways.

By the rule of sum the results follows.
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6.3. PERMUTATIONS AND COMBINATIONS 93

6.3 Permutations and Combinations
A set of n objects means those objects are by default distinct by way of the definition of a set.

Theorem 6.1 (Permutation). Any arrangement of a set of n objects in a given order is defined as a permutation of
those objects. There are P(n) = n! permutations of n objects.

Proof. Let the objects be 1,2, . . . ,n and we want to fill x1x2 . . .xn. There are n choices (possibilities) for x1. Having
committed on one, there are only n−1 possibilities for x2 and so on. For x1 there is only one possibility. The number
of permutations possible is n · (n−1) · . . . ·2 ·1 = n!.

Let P(n,k) = n(n−1)(n−2) . . .(n− k+1).

Theorem 6.2 (k-Permutation). Any arrangement of any k of a set of n objects, k ≤ n in a given order is defined as a
k-permutation of those objects. There are P(n,k) = n!/(n− k)! k-permutations of n objects.

Proof. Think of filling k Rooms R1,R2, . . . ,Rk with one person each; each person is labeled 1, . . . ,n. For the first room
R1 we have n choices; when we move to R2 we are left with (n−1) choices since one of n has already booked into R1.
For R3 we have only n− 2 choices, and so on. Thus for room Ri we have (n− i+ 1) choices. By the multiplication
principle for the k rooms R1,R2, . . . ,Rk i.e. ∏

i=k
i=1(n− i+1) = n(n−1) . . .(n− k+1).

Definition 6.4 (Permutations with Repetitions). The number of permutations of n objects that are not distinct and
there are n1 instances of one type, n2 of another type, . . ., nk of another type is P(n;n1, . . .nk)

P(n;n1, . . .nk) =
n!

n1!n2! . . .nk!

Proof. Treat the objects distinct first. There are n! permutations p. But there n1 objects of the first type and are thus
not distinct. Any of the n1! ordering of those objects in p is the same as any other one. Thus we adjust by dividing n!
by n1! and we have reduce the number of permutations down to n!/n1!. We continue similarly.

Example 6.11. If we have 1,2,3 its 6 permutations are (1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1). But if we
have 1,1,1 we only have one (1,1,1). If we have 1,1,2 we only have (2 objects of type 1, 1 object of type 2), we have
three permutations: (1,1,2),(1,2,1),(2,1,1).

Definition 6.5 (Combinations). A selection of a set of k out of n objects is defined as a combination of those ob-
jects. The k elements form a set that is order does not matter. We can call this a k-combination. The number of
k-combinations C(n,k) is thus

C(n,k) = P(n,k)/k! =
n!

k!(n− k)!
=

(
n
k

)
Proof. The number of permutations k out of n is P(n,k). For a given subset of k objects the k! permutations of them
should be counted once in a combination not k!. Thus C(n,k) = P(n,k)/k!.

C(n,k) =C(n,n− k)

C(n,k) =C(n−1,k)+C(n−1,k−1)

Function C(n,k) has some important properties. C(n,k) =C(n,n− k). Picking k out of n we are left with n− k in the
original pile of n objects. Thus picking k out of n also defines a combination of n− k objects out of n.

For the next identity we can prove it by interpretation and by using induction (on n− 1 objects twice for two
different ’k’s!). Pick one object say 5. Each combination among the C(n,k) either contains 5 or does not contain 5.
The number of combinations that do not contain 5 is C(n−1,k) : number of combinations to pick k objects out of the
remaining n−1 after 5 is excluded. The number of combination that contain 5 is C(n−1,k−1): one of the objects in
the k combination is 5 and thus we need to fill the remaining k−1 positions from the remaining n−1 objects and we
have C(n−1,k−1) ways to do so. Some people refer to the identity as Pascal’s identity (lemma).
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94 CHAPTER 6. COUNTING

Definition 6.6 (Catalan number). The n-th order Catalan number, n≥ 1, is defined as follows. (C0 = 1.)

Cn =
1

n+1

(
2n
n

)
=

(
2n
n

)
−
(

2n
n−1

)
Definition 6.7 (Sampling with replacement of k objects). A set contains n objects. We choose k objects from the set
with replacement (the object removed is replaced). The product rule confirm that the number of samples is

n ·n · . . . ·n = nk

Definition 6.8 (Sampling with out replacement of k objects). A set contains n objects. We choose k objects from the
set without replacement. The product rule confirm that the number of samples is

P(n,k) = n · (n−1) · . . . · (n− k+1) = n!/(n− k)!

Definition 6.9 (Circular Permutations). In such a set up we arrange the n elements of a set along / around a circle.
There is no notion of first or last anymore. The number of ways is (n−1)!. (We put object 1 in an arbitrary position.
The remaining n−1 objects generate (n−1)! permutations.)

Definition 6.10 (Lexicographic order). Let a = a1a2 . . .am and b = b1b2 . . .bn be two stings over {1,2, . . . ,n}. We say
a is lexicographically less than b and write a < b

• either m < n and ai = bi for i = 1, . . . ,m,

• or for some i, ai 6= bi and for the smallest such i, ai < bi.

6.3.1 Examples
Example 6.12 (Permutations of three). Let A,B,C be three objects. We have 3! permuations of them namely, ABC,
ACB, BAC, BCA, CAB, CBA. For three objects all permutations are of the pattern xyz. There are three choices for x
(A,B, or C). Having picked a choice for x, there 3−1 choices for y (the remaining two not used for x). Having picked
a choice for x,y there is only one choice left for z. Thus 3 · 2 · 1 = 3!. For the general case with n objects, induction
works better. xP(n−1). For the first letter with n choices. The remaining n−1 positions P(n−1) will be filled by the
permutation of the remaining n−1 objects which by induction is (n−1)!. Thus the total number of permutations of n
objects is n · (n−1)! = n!.

Example 6.13 (2-Permutations of three). Let A,B,C be three objects. We have the following 2-permutations of those
three objects: AB, BA, AC, CA, BC, CB Suppose we have n objects and we want to find the k permutations of them.
Each k permutation is of the pattern p1 p2 . . . pk. For p1 there are n choices of the n objects. Having picked p1,
we are left with n− 1 choices for p2, and having picked a choice for p2 we are left with n− 2 choice for p3 and
working this out similarly we are left with (n− k+1) choices for pk. Thus the number of k-permutations of n objects
is P(n,k) = n · (n−1) · (n− k+1) = n!/(n− k)!. Moreover P(n,n) = n! so it works also for permutations (which are
n-permutations)!

Example 6.14 (Permutations with repetitions). Consider you are given YWCC. What are all possible four-letter words
than can be formed?

P(4;1,1,2) =
4!

1!1!2!
= 3 ·4 = 12

YWCC, YCWC, YCCW, WYCC, WCYC, WCCY, CYWC, CWYC, CWCY CYCW, CCYW, CCWY

Example 6.15. (a) For the three letter A,B,C set. We fix A in position 1. Then we have two choices for B,C either BC
or CB. Thus ABC and ACB are the circular permutations.
(b) For the three letter A,B,C set let us consider the 3! permutation answer. Three of those permutations: ABC, CAB
and BCA are the same circular permutation. So are the other three ACB, BAC, and CBA. Thus There are only two
circular permutations represented by ABC and its ’reverse’ (back to forth) CBA.
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6.3. PERMUTATIONS AND COMBINATIONS 95

(c) Finally a circular permutation distinguishes between ’back’ and ’forth’ or clockwise and counter clockwise. If
there is not difference ABC and ACB are also the same Thus for the general case we have (n− 1)!/2 circular full-
duplex permutations. (d) How many 5 digit number can be formed using the digits 1,1,2,3,3? 5!/(2!2!) is an obvious
answer.
(e) How many 5 digit number can be formed using the digits 1,1,0,3,3? 5!/(2!2!) is an obvious answer but for a 0 at the
front it becomes a 4-digit number. We need to subtract these from the total: they are 4!/2!2!. Thus 5!/(2!2!)−4!/2!2!.

Example 6.16. There are m different postcards and n diferent friends. (a) The number of ways of sending cards to
friends is mn or (m+ 1)n if one option is to NOT send a card. (b) The number of ways of sending distinct cards to
friends is m(m−1) . . .(m−n+1) = m!/(m−n)!.

Example 6.17. Number of 5-bit sequences with 2 ones and 3 zeroes is
(5

2

)
=
(5

3

)
. (You select the two positions that

will be set to one; the other three will be set to zero.)

Example 6.18. Let A = {a,b,c,d} and B = {1,2,3,4,5,6}. Find the number of functions f : A→ B that are not 1-1.

Proof. The number of functions from A to B is at 6 · 6 · 6 · 6 = 64. The ones that are 1-1 there are 6 · 5 · 4 · 3 = 360
Subtract and you have the answer.

Example 6.19. Find the 25-th permutation in lexicographic order of the elements of the set {1,2,3,4,5}.

Proof. The first 4! = 24 permutations in lexicographic order start with an 1. Thus the 25-th starts with a 2. It is
2134.

Example 6.20.
(a) Number of combinations of n objects out of n is C(n,n) = P(n,n)/n! = n!/n! = 1 obviously.
(b) Number of combinations of one object out of n is C(n,1) = n.

Example 6.21 (Combinations of 2 objects out of 3). Let A,B,C be three objects. We have found previously that the
following 2-permutations of those three objects are available: AB, BA, AC, CA, BC, CB From these AB and BA give
rise to combination {A,B}, and like wise AC, CA to {A,C} and BC, CB to {C,B}. Thuse we have three combinations.
Therefore P(3,2)/2! = 3 is the number of combinations of 2 objects out of 3.

Example 6.22 (Combinations). There are three pile of 5 20-dollar bills, 6 10-dollar bills, and 7 5-dollar bills. We are
to pick 3 20-dollar bills, 4 10-dollar bills, and 5 5-dollar bills. The number of ways they can be picked up is(

5
3

)(
6
4

)(
7
5

)
Example 6.23. We have a bit sequence consisting of 3 0s and thus 5 1s. The number of such bit sequences is

(8
3

)
=
(8

5

)
.

Example 6.24 (n-bit sequences with no two consecutive ones). Let fn be the number of n bit sequences with no two
consecutive ones. If the left-most bit is 0 the remaining n− 1 bit can give rise to fn−1 (n− 1)-bit sequences with no
two consecutive ones by induction. If the left-most bit is a 1 the next second from left bit MUST be a zero, and the
remaining n− 2 bit can give rise to fn−2 (n− 2)-bit sequences with no two consecutive ones by induction. The sum
rule gives fn = fn−1 + fn−1. Beware! f1 = 2 since 0, 1 are valid. Moreover f2 = 3 since 00, 01, 10 are valid but not
11. The Fibonacci sequence is Fn = Fn−1 +Fn−2, F0 = 0,F1 = 1 and F2 = 1,F3 = 2,F4 = 3. Thus fn = Fn+2!

Example 6.25 (Binomial Theorem). Let n be a positive integer. Then for all x,y we have

(x+ y)n =
k=n

∑
k=0

(
n
k

)
xkyn−k.
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96 CHAPTER 6. COUNTING

Proof.

(x+ y)n =

1st term︷ ︸︸ ︷
(x+ y) ·

2nd term︷ ︸︸ ︷
(x+ y) ·

3rd term︷ ︸︸ ︷
(x+ y) · . . . ·

n-th term︷ ︸︸ ︷
(x+ y) .

In order to form xkyn−k we multiple the x of any k of the n terms that each one of them is x+ y with the y of the
remaining n− k terms that each one of them is x+ y. Thus if we use the x from the first term and all n−1 remaining
ys, and x of the second term and all remaining ys and so one we have formed x1yn−1 in n =

(n
1

)
possible ways.

Another way to interpret this is by string formation. Strings would represent multiplications. The terms are x or y.
There is only one way to generate the all-x string of length n. Likewise for the all-y string of length n. But how many
strings do we have that have k x and n− k y? It is C(n,k) =

(n
k

)
.

Example 6.26. Show that (
n
0

)
+

(
n
1

)
+

(
n
2

)
+ . . .+

(
n
k

)
+ . . .+

(
n
n

)
= 2n

by combinatorial interpretation.

Proof. 2n maps to the number of subsets of a set of n distinct objects. Each
(n

k

)
gives the number of subsets with k out

of the n objects.

Example 6.27. Show that(
n+m

k

)
=

(
n
0

)(
m
k

)
+

(
n
1

)(
m

k−1

)
+ . . .+

(
n
i

)(
m

i−1

)
+ . . .+

(
n
k

)(
m
0

)
by combinatorial interpretation.

Proof. Two types of objects, n of type A and m of type B. Choose k out of the n+m of them.

Example 6.28. Show that (n!)! is divided by (n!)(n−1)!.

Proof. Consider n = 3. Show 6! is divided by 62. Consider n = 4. Show 24! is divided by 246.
If we have n! objects and we divide them into (n−1)! sets of size n each set being of the same kind completes the

proof.

Example 6.29. Show that (
n
m

)(
m
k

)
=

(
n
k

)(
n− k
m− k

)
by combinatorial interpretation.

Proof. Number of ways to split n objects into three groups of k, m− k and n−m objects.

Example 6.30. Show that
1 ·1!+2 ·2!+ . . . i · i!+ . . .n ·n! = (n+1)!−1

by combinatorial interpretation.

Proof. The right hand side gives a hint. It is the number of permutations of (n+ 1)! objects excluding the identity
permutation. Then i · i! is the number of permutations where pi+2 . . . pn+1 are in place but pi+1 is not.

Example 6.31 (Vandermonde Theorem). Let p,q,r be non-negative integers with r ≤ p and r ≤ q. Then

C(p+q,r) =
i=r

∑
i=0

C(p, i) ·C(q,r− i).

Proof. We prove by combinatorial interpretation. Say we have p red labeled objects, and q blue labeled objects.
(Labels are distinct.) In how many combinations can we pick r out of the p+q objects? In an r combination i objects
are red and thus r− i objects would be blue. Fill-in the details. The answer is C(p+q,r).
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6.3. PERMUTATIONS AND COMBINATIONS 97

Example 6.32 (Password Insecurity). A computer has a weird password policy. A password is 7 or 8 characters. A
character is lower-case letter or a digit. Each password must have at least one digit. What is the total number of
passwords for an attack vector?

Proof. Let A7 be the number of 7 char passwords. Likewise A8. The number of 7 char passwords that are all lower
case is 267 and these are impermissible (forbidden). Thus A7 = 367− 267. Likewise A8 = 368− 268 and thus the
answer is A7 +A8.

Example 6.33 (Grid climbing). We are on the cartesian Z×Z plane, and in particular at (0,0). We want to climb to
(4,4). Each step we can take can be forward or up thus from (i, j) we can move to (i, j+1) or (i+1, j). In how many
ways can we reach our destination? We need 8 steps 4 up steps and 4 right steps. Thus the problem can be simplified
into a 8 long string of 4 U for up and 4 R for moving to the right. Possible solutions are UUUURRRR, URURURUR,
RURURUR, and so one. Answer is 8!/4!4! =C(8,4).

Example 6.34 (Grid climbing). We are on the cartesian Z×Z plane, and in particular at (0,0). We want to climb to
(n,n). Generalizing the previous solution the answer is C(2n,n) = (2n)!/n!n!.

Note that i am decluttering the denominator by avoiding parentheses: n!n! should have been (n!n!).

Example 6.35 (Grid climbing). We are on the cartesian Z×Z plane, and in particular at (0,0). We want to climb to
(n,n). How many ways are there under the restriction that we never cross (go beyond the diagonal). (That is touch
(i, i) are OK.)

Proof. We have good and bad routes with the total Gn +Bn =C(2n,n). If we have a bad route, we find the first time
the diagonal is crossed on the way up. We then flip the directions of the path until we reach the end or we have a further
violation, by turning from that point on an up move into a right move and a right move into an up move. If the cross
was at (i, i) the new path has an edge from (i, i) to (i+1, i). Up to that point we had i+1 up moves and i right moves.
The remainder of the path has n− i−1 up and n− i right moves. We flip the directions of the path after the crossing
of the diagonal. The n− i−1 up become n− i−1 right moves, and the n− i right moves become up moves. Adding
to them the original i+1 up and i right moves we get a total n− i+ i+1 = n+1 up moves and n− i−1+ i = n−1
right moves. The new path (the original from (0,0) to (i, i+ 1) and the flipped from (i, i+ 1) to (n− 1,n+ 1)). The
total number of such paths is C(2n,n−1) =C(2n,n+1). Each one of them maps to a bad path. The total number of
paths from (0,0) to (n,n) is C(2n,n). The difference is the number of good paths i.e.

C(2n,n)−C(2n,n−1) =

(
2n
n

)
−
(

2n
n−1

)
=

2n!
n!n!
− 2n!

(n−1)!(n+1)!

=
2n!

n!(n−1)!

(
1
n
− 1

n+1

)
=

1
n+1

C(2n,n)

= Cn

Example 6.36 (Complicated combinations). We have a candy shop with 4 types of candies. We have vanilla, chocolate,
strawberry, and banana candies (V, C, S, B). In how many ways can be pick 5 candies? We could pick VVVVV, VVCSB,
SSSSS, BBBCC, and so on. Counting is not easy. We would list the candies namelessly representing one instance with
1 on a line first V, then C, then S, then B In betwen there would a bar used as a separator Thus 11|1|1|1 represents
VVCSB and 11111||| represents VVVVV, and |11||111 representing CCBBB. Thus we have 5 one (number of candies)
and 3 separators (number of candy types minus -1). The total string length (of ones and vertical bars) is thus 5+3= 8.
We need to figure out the number of ways we can place the 3 bars, in fact turning 8 ones into 5 ones and 3 bars. This
is C(8,5) = 8!/5!3! = 56. In general if the number of candy types is T and we pick D of them, the number of ways we
can pick them is C(D+T −1,D).
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98 CHAPTER 6. COUNTING

Example 6.37. How many integers 0 . . .9999 do not contain 9? (104−1)− (94−1) = 104−94.

Example 6.38. Number of n-bit sequences that have even number of 0s? Number of n-bit sequences that have odd
number of 0s? Number of n-bit sequences that have even number of 1s? Number of n-bit sequences that have odd
number of 1s? The answer is 2n−1.

Example 6.39 (Catalan number applications). The Catalan number of order (n+ 1) is associated with the different
number of full binary trees with n+1 leaves.

Proof. (Short diversion: a binary tree is a rooted and ordered tree. Rooted means a node is designated as the root.
Ordered means the children of a node are labeled left vs rights. And it is a binary tree in the sense that a node can
have 0, 1 or 2 children. A full binary tree is one where every node has 0 children, i.e. it is a leaf, or it has exactly two
children.)

Thus C(0) = 1, C(1) = 1 and C(2) = 2 (see examples below). For C(n) the number of trees is the number of trees
with a left subtree containing i leaves (and by induction the number of such subtrees is C(i− 1)) and a right subtree
containing n− i leaves (and by induction the corresponding number is C(n− i− 1) for every i from 1 to n. (Note
that we can not have an empty subtree as the root must have two children or the definition of a full binary tree gets
violated.)

Some preliminary work. Let C(x) be the o.g.f of cn. Then

C(x) =
∞

∑
n=0

cnxn

We compute C(x)∗C(x).

C(x)∗C(x) =

(
∞

∑
n=0

cnxn

)
·

(
∞

∑
n=0

cnxn

)
=

i=n

∑
i=0

ci · cn−ixn

Therefore C(x)∗C(x) is the o.g.f of ∑
i=n
i=0 ci · cn−i.

Thus C(0) = 1 and for n > 0 we have.

C(n+1) =
i=n

∑
i=0

C(i)C(n− i)

∞

∑
n=0

C(n+1)xn =
∞

∑
n=0

i=n

∑
i=1

C(i−1)C(n+1− i)xn

∞

∑
n=0

C(n+1)xn = C(x) ·C(x)

∞

∑
n=0

C(n+1)xn+1 = xC2(x)

C(x)−1 = xC2(x)

xC2(x)−C(x)+1 = 0

C(x) =
1±
√

1−4x
2x

By the binomial theorem

(1−4x)1/2 = 1−2
∞

∑
n=1

(
2n−2
n−1

)
(−1

4
)n (−4x)n

n

Subtracting it from 1 and dividing by 2x the desired result is derived.
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6.3. PERMUTATIONS AND COMBINATIONS 99

C(0)=1 y C(1)=1 x C(2)=2 x x leaf: y

/ \ / \ / \ internal

y y x y y x node: x

/ \ / \

y y y y

C(3)= 5 x x x x x

/ \ / \ / \ / \ / \

x y y x x x x y y x

/ \ / \ / \ / \ / \ / \

x y y x y y y y y x x y

/ \ / \ / \ / \

y y y y y y y y

Let us examine now the number of non-isomorphic binary trees with n vertices.

C(0)=1 C(1)=1 C(2)=2 C(3)=5

n=0 n=1 n=2 n=3

x x x x x x x x

/ \ / / / \ \ \

x x x x x x x x

/ \ / \

x x x x

Let C(n) be the number of non-isomrphic binary trees with n nodes. If we have n vertices one becomes the root.
The left subtree can have i generating by induction C(i) non-isomorphic trees, and the right side n−1− i with C(n−
i− 1) trees. The total number is then C(n) = ∑

n−1
i=0 C(i)C(n− i− 1). if we change n to m+ 1 we have C(m+ 1) =

∑
m
i=0 C(i)C(m− i). The if we change the name m back to n we have, C(n+ 1) = ∑

n
i=0 C(i)C(n− i). This is the first

derivation in the previous proof that chows C(n) is the n-th Catalan number.
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100 CHAPTER 6. COUNTING

6.4 Distributions
This selection of problems deal with the distribution of m distinct or indistinct objects into n distinct or indistinct bins.

Definition 6.11 (Distinct objects, Distinct bins). The number of ways to distribute m distinct objects into n distinct
bins is nm.

Definition 6.12 (Order in bins irrelevant). The number of ways to distribute m distinct objects into n distinct bins is

(n+m−1)!
(n−1)!

Definition 6.13 (InDistinct objects, Distinct bins). The number of ways to distribute m indistinct objects into n distinct
bins is

(n+m−1)!
(n−1)! ·m!

Definition 6.14 (Distinct objects, Indistinct bins). The number of ways to distribute m distinct objects into n indistinct
bins is S(m,n)

S(m,n) = S(m−1,n−1)+nS(m−1,n)

which gives by induction

S(m,n) =
1
n!

m

∑
i=0

(−1)i
(

n
i

)
(n−1)m

Proof. We can combinatorially interpret this recurrence. Pick object 1. It becomes a bin thus the remaining m− 1
objects are to be distributed over the remaining n−1 bins. Otherwise object 1 has n choices for a bin and the remaining
m−1 objects can utilize any of those n bins as well.

Definition 6.15 (Partition). A partition is the allocation of indistinct objects into indistinct bins.

Example 6.40 (Partitions of integers). Integer 5 has 7 partitions.

{1,1,1,1,1},{1,1,1,2},{1,2,2},{1,1,3},{2,3},{1,4},{5}.

Example 6.41 (Partitions). We have a set of 8 elements. We want to find the number n of ordered partitions of the set
into three sets containing 3,2,3 elements respectively. Let the three sets be A1,A2,A3. Since the set has 8 elements, A1
can be formed in C(8,3) ways. Then A2 can be formed in C(8−3,2) =C(5,2) ways and for A3 we have C(3,3) = 1.
Thus

n =C(8,3)C(5,2)C(3,3) =
8!

3!2!3!
= 2x5x7x88/3/2/30

If the partitions are unordered, A1A2A3 but A3A2A1 are the same we have

n/(2!) = 2x5x7x8/2 = 280
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6.5. PIGEONHOLE PRINCIPLE 101

6.5 Pigeonhole principle
Definition 6.16 (Pigeonhole principle). If n pigeonholes are occupied by n+ 1 pigeons then at least one pigeonhole
has more than one pigeon.

6.5.1 Examples
Example 6.42. In a class of 8 students, we have two students born on the same day of the Week. (We don’t know what
day that might be though unless we ask.)

Example 6.43. In a class of 13 students, we have two students born in the same month.

Example 6.44. In a class of 32 students, we have two students born on the same date. (We are talking about Eartch
months not Martian months that are longer than 31 days.)

Example 6.45. In a class of 101 students, we have two students born on the same year. (No jokes about it. All students
are less than 100 years old.)

Example 6.46. In a class of 367 students, we have two students sharing a birthday! (Accounting for leap years.)
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102 CHAPTER 6. COUNTING

6.6 Inclusion-Exclusion principle
Definition 6.17 (Inclusion-Exclusion principle). For two finite sets A and B we have

c(A∪B) = c(A)+ c(B)− c(A∩B)

Definition 6.18 (Inclusion-Exclusion principle). For three finite sets A, B and C we have

c(A∪B∪C) = c(A)+ c(B)+C(C)− c(A∩B)− c(B∩C)− c(C∩A)+ c(A∩B∩C)

A member a ∈ A is counted in c(A). If it is a member of B it has been counted in c(B) as well and thus we adjust
by −c(A∩B). Likewise if a is part of C as well we adjust by −c(C∩A). However if a is part of all three sets we
subtracted its presence three times with −c(A∩B)− c(B∩C)− c(C∩A) so we adjust by adding c(A∩B∩C).

Definition 6.19 (Generalization of Inclusion-Exclusion principle). For n sets A1, . . . ,An with k1 = ∑i c(Ai), with k2 =

∑i< j c(Ai∩A j), with k3 = ∑i< j<k c(Ai∩A j ∩Ak),

c(A1∪A2∪ . . .∪An) = k1− k2 + k3− . . .+(−1)m−1km

Moreover
c(A{

1∩A{
2∩ . . .∩A{

n) = c((A1∪A2∪ . . .∪An)
{) = |U |− k1 + k2− k3 + . . .+(−1)mkm

6.6.1 Examples
Example 6.47. In a class of CS610, 10 students know C, 20 students know C++, and 30 students know Java. 15
students know C++ and Java, 5 students know C and Java and 8 students know C and C++. 3 students know all three.
What is the total number of students in the class? Let A be the C students, B be the C++, and C the Java students...

c(A∪B∪C) = c(A)+ c(B)+C(C)− c(A∩B)− c(B∩C)− c(C∩A)+ c(A∩B∩C)

= 10+20+30−15−5−8+ c(A∩B∩C)

= 60−28+3 = 35

Example 6.48. Let U be the set of positive integers up to and including 100. Find the number of them which are not
divisible by 3,5,7. The set A divisible by 3 is c(A) = 33. The set B dissible by 5 is c(B) = 20 and likewise c(C) = 14.
Also c(A∩B) = 6,c(A∩C) = 4,c(B∩C) = 2. Moreover c(A∩B∩C) = 0. Thus

c(A{∩B{∩C{) = 100− (33+20+14)+(6+4+2)−0 = 100−67+12 = 45.

Example 6.49 (Derangements of permutations). A derangement is a permutation where no object is in it initial
position. Thus for ABC, the following are not DERANGEMENTS: ABC,ACB, BAC, CBA. However the following two
permutations are derangements: BCA, CAB. For a permutation with n objects (say 1,2,3, . . . ,n) Let Ai be the set of
all permutations that fix i. Then c(Ai) = (n−1)!. Let c(Ai∩A j) = (n−2)! i.e. all permutations that fix i and j. Thus
we want to compute

c(A{
1∩A{

2∩ . . .∩A{
n) = n!−C(n,1)(n−1)!+C(n,2)(n−2)!+ . . .== n!(1− 1

1!
+

1
2!
− 1

3!
+ . . .+(−1)n 1

n!
)≈ n!/e
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6.7. RECURRENCES OR RECURRENCE RELATIONS 103

6.7 Recurrences or Recurrence Relations

A recurrence or recurrence relation describes how one can obtain the n-th term of a sequence from prior terms of the
sequence.

Definition 6.20 (Doubling). Let a sequence has its first term a 1. The next term is obtained by doubling the previous
term. Thus if a0 = 1, the a1 = 2 ·a0, a2 = 2 ·a1 and in general an+1 = 2an for n≥ 0. Equivalently an = 2an−1 for n > 0
i.e. n≥ 1. We can prove by induction that an = 2n (and in this latter case n≥ 0).

Definition 6.21 (Arithmetic Progression). Let a0 = b and let an = an−1 + s otherwise. The initial value b is known as
the base case value or boundary value. The increment is know as the step s. The sequence generated is

b,b+ s,b+2s,b+3s, . . .

Thus an = b+ns for n≥ 0, where a0 = b and an = an−1 + s for n > 0.

Method 6.1 (Forward chain). Let an = an−1 + s for n > 0 and a0 = b. We can solve this recurrence using the forward
chain method.

Proof.

a0 = b

a1 = a0 + s

a2 = a1 + s

. . .

an−1 = an−2 + s

an = an−1 + s

We add up all these equations. The number of equations is n+ 1. The left hand side of equation (0) has an a0 that
cancels with the right-hand side a0 of equation (1). Likewise for a1,a2, . . . ,an−1. Thus after all those cancellation
on the left-hand side we are left with an and the right hand side we are left with a b and several s from equation (1)
through equation (n), a total of n of them. Thus

an = b+n∗ s.

Method 6.2 (Backtracking chain). Let an = an−1 + s for n > 0 and a0 = b. We can solve this recurrence using the
backtracking chain known as backward substitution or the iteration method or the repeated substitution methods.

Proof. To compute an,an−1,an−2 i.e. to generate the right hand-side of each one of these terms we substitute in the
reccurence n,n−1,n−2 for n. Then we generate the following terms

an = an−1 + s

an−1 = an−2 + s

an−2 = an−3 + s

. . .
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104 CHAPTER 6. COUNTING

We will be using these terms in the solution derived below.

an = an−1 + s

= (an−2 + s)+ s

= an−2 +2× s

= (an−3 + s)+2× s

= an−3 +3× s

. . .

= a0 +n× s

= b+n× s

We unfold the recurrence. To compute an,an−1,an−2 i.e. to generate the right hand-side of each of these terms we
subsitute in the reccurence n,n−1,n−2 for n. We repeat until we encounter on the right-hand side the base case a0
which is replaced by the base case value b obtained through the base case a0 = b.

an = b+n∗ s.

Definition 6.22 (Geometric Progression). Let a0 = b and let an = san−1 otherwise. The initial value b is known as the
base case value or boundary value. The s is know as the growth factor (multiplicative step). The sequence generated
is

b,b∗ s,b∗ s2,b∗ s3, . . .

Thus an = bsn for n≥ 0,

We can solve the following with a forward chain like method. We show how a backward chain works.

Method 6.3 (Backward chain). Let an = san−1 for n > 0 and a0 = b. We can solve this recurrence using the backward
chain method.

Proof.

an = san−1

an−1 = san−2

. . .

a3 = sa2

a2 = sa1

a1 = sa0

We multiply all equations. The topmost equation (1) has a an−1 in its right-hand side that will cancel out with the
left-hand side an−1 of Equation (2). At the end we are left again with an on the left-hand side and n s’s and of course
a0 which is b. Thus

an = snb = bsn.

Note that implicitly we assumed that all cancelled out terms were not 0!
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6.8. LINEAR RECURRENCES 105

6.8 Linear Recurrences
Definition 6.23 (Recurrence Relation of order k). A recurrence relation of order k is a function of the form

an = f (an−1,an−2, . . . ,an−k,n)

Definition 6.24 (Linear Recurrence Relation of order k). A linear recurrence relation of order k is a function of the
form

an = f (an−1,an−2, . . . ,an−k,n)

where f (an−1,an−2, . . . ,an−k,n) is a linear function i.e.

f (an−1,an−2, . . . ,an−k,n) = An−1an−1 +An−2an−2 + . . .+An−kan−k +g(n)

where g(n) is a function of n, and An−1, . . . ,An−k are constant coefficients. If f (n) = 0 is called homegeneous.

We can easily compute (calculate) an if all of an−1,an−2, . . . ,an−k known and if available, f (n) for a given n. Thus
if we are given a sequence of k initial values, for the first k elements of the sequence the sequence can be computed.

Example 6.50 (Fibonacci). Let fn = fn−1 + fn−2 for n > 1, with f0 = 0 and f1 = 1 for 0 ≤ n ≤ 1 which can also
be summarialy describes as fi = i for 0 ≤ i ≤ 1. The Fibonacci sequence is a 2-nd order linear and homogeneus
recurrence since f (n) = 0.

6.8.1 Solution of Linear Recurrences using the characteristic polynomial
Let

an = Ln−1an−1 +Ln−2an−2 + . . .+Ln−kan−k (6.1)

be an order k homogeneous linear recurrence where Li are constant and 6= 0. In order to be able to find a solution,
the values of a0, . . . ,ak−1 must be given and then we can compute an for all n ≥ k. The characteristic polynomial
(equation) is

φ(x) = xk−Ln−1xk−1− . . .−Ln−kx0 == xk−Ln−1xk−1− . . .−Ln−k.

The roots of φ(x) are the characteristic roots of the recurrence relation.

Remark 6.1. (a) If a is a solution of φ(x), then an is a solution of Equation 6.1. (b) If a is a solution of φ(x) of
multiplicity q, then an,nan,n2an, . . . ,nq−1an are solutions of Equation 6.1.

6.8.2 Examples
Example 6.51. (a) Let an = Lan−1 +Man−2, L 6= 0,M 6= 0. Then an−Lan−1−Man−2 = 0, gives φ(x) = x2−Lx−M.
Let the roots be distinct and r1 and r2. Then an = A · rn

1 +B · rn
2, where A,B can be computed from other information

e.g. a0,a1.
(b) Let an = 3an−1− 2an−2. Let a0 = 1 and a1 = 2. Then φ(x) = x2− 3x+ 2. We have φ(x) = (x− 1)(x− 2). Thus
r1 = 1,r2 = 2 and an = A ·1n +B ·2n = A+B2n.
Since a0 = 1 = A+B20 = A+B.
Since a1 = 2 = A+B21 = A+2B.
By subtracting we derive B = 1 and then A = 0. Thus an = 2n. We can confirm that for an = 2n, we have

an = 3an−1−2an−2 = 3 ·2n−1−2 ·2n−2 = 3 ·2n−1−2n−1 = 2 ·2n−1 = 2n.

(c) an = 4an−1−4an−2, with a0 = 1,a1 = 2. Then φ(x) = x2−4x+4. Thus the roots of φ(x) is 2 with multiplicity 2.
Therefore an = A ·2n +B ·n ·2n.
Since a0 = 1 we have a0 = 1 = A+B ·0 ·1 = A. Since a1 = 2 we have a1 = 2 = A ·21 +B ·1 ·21 == 2A+2B which
implies B = 0. Thus an = 2n. We confirm an = 2n = 4 ·2n−1−4 ·2n−2 = 2 ·2n−2n = 2n.
(d) The Fibonacci recurrence is solved next using a characteristic equation technique as well.
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Example-Proposition 6.52 (Fibonacci). The solution fn for fn = fn−1 + fn−2, for n > 1, with f0 = 0 and f1 = 1 is
given below.

fn =
1√
5

(
1+
√

5
2

)n

− 1√
5

(
1−
√

5
2

)n

Proof. Let F(x) = ∑i=0 fnxn.
F(x) = f0 + f1x+ f2x2 + . . . fnxn + . . .

The characteristic equation derived from the recurrence fn = fn−1+ fn−2 is fn− fn−1− fn−2 = 0 i.e. φ(x) = x2−x−1
Let r1 and r2 be the two roots of φ(x) = 0. r1 = (1+

√
5)/2 and r2 = (1−

√
5)/2. Then

fn = Arn
1 +Brn

2 = A(rn
1− rn

2)

Give that f0 = and f1 = 1 we have that 0 = A+B and 1 = Ar1 +Br2. This mean B = −A and 1 = Ar1−Ar2. Then
A = 1/

√
5 and B =−1/

√
5. Further details are left out and can be worked out easily.

Example 6.53. Let an = 2an−1an−2. How do we solve it ? It is not a linear recurrence. However, if we take logarithms,
lgan = lgan−1

+ lgan−2
+1. Set lgan to An and we have An = An−1 +An−2 + 1. The latter can become if we add +1

to both sides An + 1 = (An−1 + 1)+ (An−2 + 1). If Fn = An + 1, we have Fn = Fn−1 +Fn−2 a suspiciously familiar
recurrence!
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6.9 Generating Functions
Definition 6.25 (Ordinary Generating Function). Let a0, . . . ,an, . . . be a sequence of real numbers. Then A(x) defined
as follows is known as the ordinary generating function (o.g.f.) of sequence an(n≥ 0).

A(x) = a0 +a1x+a2x2 + . . .+anxn + . . .

We shall refer to A(x) as simply the generating function of an.

Definition 6.26 (Exponential Generating Function). Let a0, . . . ,an, . . . be a sequence of real numbers Then A(x) defined
as follows is known as the exponential generating function (e.g.f.) of sequence an(n≥ 0).

A(x) = a0 +a1x+a2
x2

2!
+ . . .+an

xn

n!
+ . . .

Generating functions can be manipulated as formal power series.
Properties of Generating Functions.

Definition 6.27 (A(x) and xA(x)). Let a0, . . . ,an, . . . be a sequence of real numbers and let A(x) be its ordinary
generating function. Then B(x) = xA(x) is the generating function of sequence 0,a0,a1, . . . where bn = an−1 for n > 0
and b0 = 0.

A(x) = a0 +a1x+a2x2 + . . .+an−1xn−1 +anxn + . . .

xA(x) = 0+a0x+a1x2 + . . .+an−1xn +anxn+1 + . . .

B(x) = b0 +b1x+b2x2 + . . .+bnxn + . . .

Definition 6.28 (A(x) and A(x)− a0). Let a0, . . . ,an, . . . be a sequence of real numbers and let A(x) be its ordinary
generating function. Then B(x) = A(x)−a0 is the generating function of sequence 0,a1,a2, . . . where bn = an for n > 0
and b0 = 0.

A(x) = a0 +a1x+a2x2 + . . .+anxn + . . .

A(x)−a0 = 0+a1x+a2x2 + . . .+anxn + . . .

B(x) = b0 +b1x+b2x2 + . . .+bnxn + . . .

Definition 6.29 (A(x) and (A(x)−a0)/x). Let a0, . . . ,an, . . . be a sequence of real numbers and let A(x) be its ordinary
generating function. Then B(x) = (A(x)−a0)/x is the generating function of sequence a1,a2, . . . where bn = an+1 for
n≥ 0.

A(x) = a0 +a1x+a2x2 + . . .+anxn + . . .

(A(x)−a0)/x = a1 +a2x+a3x2 + . . .+an+1xn + . . .

B(x) = b0 +b1x+b2x2 + . . .+bnxn + . . .

Definition 6.30 (Addition of two o.g.f). Let a0, . . . ,an, . . . be a sequence of real numbers and let A(x) be its ordinary
generating function. Let b0, . . . ,bn, . . . be a sequence of real numbers and let B(x) be its ordinary generating function.
Then sequence cn = (an +bn) for n≥ 0 has o.g.f C(x) = A(x)+B(x).

Definition 6.31 (Multiplication of two of o.g.f). Let a0, . . . ,an, . . . be a sequence of real numbers and let A(x) be its
ordinary generating function. Let b0, . . . ,bn, . . . be a sequence of real numbers and let B(x) be its ordinary generating
function. Then sequence C(x) = A(x)B(x) is the generating function of the sequence

cn =
n

∑
i=0

aibn−i

Remark 6.2 (Counting Problems). Counting problems can be restated as problems of determining the coefficient of
xi in a certain o.g.f.
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Theorem 6.3. If A(x) is the o.g.f for counting objects from set A, and If B(x) is the o.g.f for counting objects from set
B, then A(x)B(x) is the o.g.f. for counting objects from set A∪B.

Proof. If A(x) = a0 +a1x+ . . .+aixi, and B(x) = b0 +b1x+ . . .+bixi, then

A(x)B(x) = a0b0 +(a0b1 +a1b0)x+(a0b2 +a1b1 +a2b0)x2 + . . .+

(
i

∑
k=0

fkgi−k

)
xi + . . .

Theorem 6.4. If A(x) is the e.g.f for counting objects from set A, and If B(x) is the e.g.f for counting objects from set
B, then aib j is the number of arrangements of two objects respectively, and the cofficient of xm in A(x)B(x).

Proof. If A(x) = ∑i aixi/i! and B(x) = ∑i bixi/i! A(x)B(x) is

A(x)B(x) =
∞

∑
m=0

(
∑

i+ j=m

ai

i!
b j

j!

)
xm

The number of ways of mixing i objects that are of one type to j objects that are of another type is (i+ j)!
i! j! . Thus the

e.g.f for mixing the two types of objects has coefficient xm equal to (note m = i+ j)

1
m!
· ∑

i+ j=m
aib j

(i+ j)!
i! j!

6.9.1 Examples
Example 6.54. The generation function of ai =

(n
i

)
is A(x) = ∑

n
i=0
(n

i

)
xi = (1+ x)n. Note that

(1+ x)n = (1+ x)(1+ x) . . .(1+ x)

Each contribution to the coefficient of xi corresponds to a choice of i of the (1+x) factors by choosing the x from them
and multiplying them.

Example 6.55. Choosing r balls from a collection A of r or more indistinct red balls can be done in only one way,
thus ai = 1. (Another way to state this is that we have a collection A of an infinite number of red balls ). Then
A(x) = 1+ x+ x2 + . . .. Likewise choosing r balls from a collection of r or more indistinct blue balls can be done in
only one way, thus bi = 1. Then B(x) = 1+ x+ x2 + . . .. Choosing r balls from a collection that contains red and blue
balls can be done in r+ 1 ways by picking 0,1,2, . . .r red balls with the balance being blue balls . Thus ci = i+ 1.
Therefore C(x) = 1+2x+3x2 + . . .+(i+1)xi. Notice that

A(x)B(x) =

(
∞

∑
i=0

xi

)
·

(
∞

∑
i=0

xi

)
=

∞

∑
i=0

(i+1)xi

Proof. For the red balls choices of set A of red balls we have A(x)1+ x+ x2 + . . .+ = 1/(1− x). Likewise B(x) =
1/(1− x). The C(x) = A(x)B(x) = 1/(1− x)2 = (1− x)−2. By the binomial theorem

(1+ x)m =
∞

∑
i=0

(
m
i

)
xi

where (
m
i

)
=

m(m−1) . . .(m− i+1)
i!
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6.9. GENERATING FUNCTIONS 109

Moreover we can show that
C(x) = 1+2x+3x2 + . . .+(i+1)xi = (1− x)−2

This is because(
1+2x+3x2 + . . .+(i+1)xi + . . .

)
· (1− x)2 =

(
1+2x+3x2 + . . .+(i+1)xi + . . .

)
· (1− x2 +2x)

and thus it is equal

1+
∞

∑
i=1

(
(i+1)xi−2ixi +(i−1)xi)= 1

Example 6.56 (A(x) = 1/(1−x) and B(x) = 1/(1−kx)). Let A(x) = 1/(1−x) be an ordinary generating function. A
sequence with such a generating function is the sequence an = 1 for all n. This is because

A(x) = a0 +a1x+a2x2 + . . .+anxn + . . .= 1+ x+ x2 + . . .+ xn + . . .= 1/(1− x).

Consider now the sequence bn = kn for all n where k is some constant.

B(x) = b0 +b1x+b2x2 + . . .+bnxn + . . .= k0 + k1x+ . . .+ knxn + . . .=
1

1− kx

Example 6.57.
(a) Find the sequence that has A(x) = (1+ x)2. A(x) = 1+2x+2x2 thus the sequence is 1,2,2,0, . . ..
(b) Find the o.g.f of 0,1,1, . . .. It is given that 1+ x+ x2 + . . . = 1/(1− x). This is A(x) = 0+ 1 · x+ 1 · x2 + . . .+ =
1/(1− x)−1 = x/(1− x).
(c) Find the o.g.f of 50,51,52, . . . ,5n, . . .. It is 1/(1−5x).
(d) Find the e.g.f of 50,51,52, . . . ,5n, . . .. A(x) = 50 +51x+52x2/2!+ . . .+5nxn/n!+ . . .= e5x.

Example 6.58. We have a set A of 3 red balls and a set B of 4 green balls . In how many way can we choose two balls
? The generating function for A(x) is A(x) = 1+ x+ x2 + x3 and for B(x) = 1+ x+ x2 + x3 + x4. Multiplying them we
can read off the coefficient of x2.

Example 6.59. How many k letter words can be formed from the letter of the word MATHEMATICS?

Proof. There are 2 M,A,T in MATHEMATICS and the 5 other characters appear once. Form A(x) = (1+x+x2)3(1+
x)5 and compute the coefficient of xk.

Example 6.60. In how many ways can we throw 15 indistint objects into 5 bins so that every bin gets at least 2
objects?

Proof. Formulate A(x) = (x2 + x3 + x4 + . . .)5 and calculate the coefficient of xk.

Example 6.61 (Partitions revisited). We have indistinct objects into indistinct bins. The number of partitions of n is
the coefficient of xn in the following o.g.f A(x). A(x) is the product of o.g.f. of the form

1
1− xt = 1+ x1·t + x2·t + . . .+ xi·t + . . .

The term xi·t contributes once i instances of t in the partition. Thus

A(x)= (1+x+x2+x3+. . .)(1+x2+x4+x6+. . .)(1+x3+x6+x9+. . .)(1+x4+x8+x12+. . .)(1+x5+x10+x15+. . .)

Find the partitions of 5.
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Proof. From the o.g.f A(x) above the partitions of 5 and the number of partitions of 5 are determined during the
computation of the coefficient of x5 in A(x).

We observe that an x5 can be generated as follows:
(1) x5 from fifth term. This is 5.
(2) x4 from fourth term and x1 from first term. This is 4+1 ·1 = 4+1.
(3) x3 from third term and x2 from second term. This is 3+2 ·1 = 3+2.
(4) x3 from third term and x2 from first term. This is 3+1 ·2 = 3+1+1.
(5) x4 from second term and x1 from first term. This is 2 ·2+1 ·1 = 2+2+1.
(6) x2 from second term and x3 from first term. This is 2 ·1+1 ·3 = 2+1+1+1.
(7) x5 from first term. This is 1 ·5 = 1+1+1+1+1.

Example 6.62 (NJIT Chairs in rooms). 210 chairs are to be arranged in 4 classrooms. Each classroom can get
0,30,60,90 chairs. Rooms are distinguishable. In how many ways can we distribute the chairs?

Proof. Find the coefficient of x210 in

(1+ x30 + x60 + x90)4

Example 6.63 (Coin Changing). A country has 9cent, 17cent, 31cent, and 100cent coins. In how many different ways
can the 100cent coin be changed?

Proof. Find the coefficient of x100 in
1

1− x9
1

1− x17
1

1− x31

There is at least one way!

100 = 1 ·31+3 ·17+2 ·9

Example 6.64. The number of n digits sequences consisting of 0,1,2,3 with least one 2,3. The e.g.f of 0 and 1 is
∑i xi/i! = ex. The e.g.f of 2 and 3 is likewise ex− 1. Thus (ex− 1)2e2x has coefficient xn which is the coefficient of
xn/n! in

(ex−1)2e2x = (e2x−2ex +1)e2x = e4x−2e3x + e2x

which is

4n−23n +2n.

Example 6.65. Distribute m distinct objects into n distinct bins so that there is at least one object in each bin. Order
in a bin does not matter.

Proof. Each bin has e.g.f. ex−1 and collectively (ex−1)n.

6.9.2 Solution of Linear Recurrences using o.g.f

Example 6.66. Let an = Lan−1 +Man−2, L 6= 0,M 6= 0.
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6.9. GENERATING FUNCTIONS 111

Proof. We write the equation as follows. We multiply both sides by x2,x3, . . . , and then add all the terms. Note that
A(x) = ∑

∞
n=0 anxn.

an−Lan−1−Man−2 = 0
anxn−Lan−1xn−Man−2xn = 0

∞

∑
n=2

anxn−
∞

∑
n=2

Lan−1xn−
∞

∑
n=2

Man−2xn = 0

∞

∑
n=2

anxn−Lx
∞

∑
n=2

an−1xn−1−Mx2
∞

∑
n=2

an−2xn−2 = 0

(A(x)−a0−a1x)−Lx(A(x)−a0)−Mx2A(x) = 0
(1−Lx−Mx2)A(x)−a0−a1x+Lxa0 = 0

A(x) =
a0 +a1x+La0x
1−Lx−Mx2 .

From that point on we use properties of o.g.f. to find the an with A(x) as given above.

Working out the Fibonacci recurrence we have.

Example 6.67. Let for n > 1: fn = fn−1 + fn−2. We also have f0 = 0 and f1 = 1.

Proof. We write the equation as follows. We multiply both sides by x2,x3, . . . , and then add all the terms. Note that
F(x) = ∑

∞
n=0 fnxn. In the last equation we use f0 = 0 and f1 = 1.

fn− fn−1− fn−2 = 0
fnxn− fn−1xn− fn−2xn = 0

∞

∑
n=2

fnxn−
∞

∑
n=2

fn−1xn−
∞

∑
n=2

fn−2xn = 0

∞

∑
n=2

fnxn− x
∞

∑
n=2

fn−1xn−1− x2
∞

∑
n=2

fn−2xn−2 = 0

(A(x)− f0− f1x)− x(F(x)− f0)− x2F(x) = 0
(1− x− x2)F(x)− f0− f1x+ x f0 = 0

F(x) =
f0 + f1x+L f0x
1−Lx−Mx2

F(x) =
x

1− x− x2 .

From that point on we use properties of o.g.f. to find the an with F(x) as given above. Details appear in the next
example.

Instead of starting with the recurrence, we may start with the generating function A(x) for the given recurrence
since A(x) = a0 + a1x+ . . .+ anxn = ∑n = 0∞anxn. Things can also grow out of hand if we are not careful with the
index bounds of the sum.

Example 6.68 (Fibonacci). The solution fn for fn = fn−1 + fn−2, for n > 1, with f0 = 0 and f1 = 1 is given below.

Proof. Let F(x) = ∑i=0 fnxn.

F(x) = f0 + f1x+ f2x2 + . . . fnxn + . . .
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F(x) =
n=∞

∑
n=0

fnxn

F(x) = f0 + f1x+
n=∞

∑
n=2

fnxn

F(x) = f0 + f1x+
n=∞

∑
n=2

( fn−1 + fn−2)xn

F(x) = 0+ x+
n=∞

∑
n=2

fn−1xn +
n=∞

∑
n=2

fn−2xn

F(x) = 0+ x+ x ·
n=∞

∑
n=2

fn−1xn−1 + x2 ·
n=∞

∑
n=2

fn−2xn−2

F(x) = 0+ x+ x ·
n=∞

∑
n=1

fnxn + x2 ·
n=∞

∑
n=0

fnxn

F(x) = 0+ x+ x(F(x)− f0)+ x2F(x)

F(x)(1− x− x2) = x

F(x) =
x

1− x− x2

F(x) =
x

(1−g1x)(1−g2x)

The two solutions 1/g1,1/g2 of the quadratic equation 1− x− x2 are such that (1− g1x)(1− g2x) = 1− (g1 +
g2)x+g1g2x2 i.e. g1 +g2 = 1 and g1g2 =−1. Also g2−g1 =

√
5. Note that

F(x) =
x

(1−g1x)(1−g2x)

F(x) =
A

1−g1x
+

B
1−g2x

∑
n

fnxn =
1

(g1−g2)

1
1−g1x

+
1

(g2−g1)

1
1−g2x

∑
n

fnxn =
1

(g1−g2)
∑
n

gn
1xn +

1
(g2−g1)

∑
n

gn
2xn

fn =
1

g1−g2
gn

1 +
1

g2−g1
gn

2

The penultimate line is derived through the example Proposition 6.56 with k = g1 and k = g2 respectively. Finally a
bit of clean up is in order.

fn =
1

g1−g2
gn

1 +
1

g2−g1
gn

2

fn =
1

g2−g1
(gn

2−gn
1)

fn =
1√
5
(gn

2−gn
1)

Example 6.69. Find the number of ways of pairwise parenthesizing 4 objects. Also count the number of full binary
trees with 4 leaves. For example for n = 4 we have
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6.9. GENERATING FUNCTIONS 113

(a((bc)d)), \\

(((ab)c)d), \\

(a(b(cd))), \\

((ab)(cd)).

x x x x x

/ \ / \ / \ / \ / \

x y y x x x x y y x

/ \ / \ / \ / \ / \ / \

x y y x y y y y y x x y

/ \ / \ / \ / \

y y y y y y y y

Generalize for n objects or leaves!

Proof. Let an be the number. Then the recurrence for an works as follows

an = an−1a1 +an−2a2 + . . .+a1an−1 =
n−1

∑
i=1

aian−i

noting that a0 = 0 and a1 = 1 Let A(x) = ∑
∞
n=0 anxn.

A(x)−a1x−a0 =
∞

∑
n=2

anxn

∞

∑
n=2

anxn =
∞

∑
n=2

(
n−1

∑
i=1

aian−i

)
xn

A(x)−a1x−a0 = A2(x)

Thus A2(x)−A(x)+x = 0 given a0 = 0 and a1 = 1. Solve for A(x) i.e. A(x) = 1±
√

1−4x
2 . Ignore the sign that generates

negative an terms. Then by the binomial theorem we have

(1−4x)1/2 =
1/2(1/2−1) . . .(1/2−n+1)

n!
(−4x)n =

1 ·3 ·5 · . . . · (2n−3)
n!

2nxn

Then

1 ·3 ·5 · . . . · (2n−3)
n!

2nxn =
1 ·3 ·5 · . . . · (2n−3)

n!
1 ·2 ·3 . . .n−1
1 ·2 ·3 . . .n−1

·2n · xn =
2
n

(2n−2)!
(n−1)!(n−1)!

xn ==
−2
n

(
2n−2
n−1

)
The coefficient of xn in A(x) is the coefficient of xn in (1− (1−4x)1/2)/2 which is thus

−1
2
· −2

n

(
2n−2
n−1

)
=

1
n

(
2n−2
n−1

)
.

6.9.3 Miscellanea
In courses such as CS435, and CS610 the technical recurrences there will not conform to the linear currences we
discussed so far. The function or the sequence involved would be the running time T (n) rather than a sequence of
arbitrary and artificial numbers. Thus T (1),T (2), . . . , is the ’running time’ for a problem with length 1,2, etc. What
is the ’running time’? Definitely it is not time per se that can be expressed in seconds or milliseconds. We usually
mean number of a fundamental operation that capture in practice what would determine the actual running time of
an execution. (That actual running time is called wall-clock time.) Thus for Binary Search (but also for sorting) the
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114 CHAPTER 6. COUNTING

fundamental operation performed is a comparison of two keys. The keys are comparable (i.e. a total order is defined
on the set of key values) and thus cmp(a,b) is the comparator function that compares two keys a and b with some
values (key and key values are being use interchangeably) and the outcome of the comparison is a +1 for a > b, a 0
for a = b, and −1 or a < b. Several times a positive value also implies a > b, and a negative one a < b.

In binary search we have an array A of n sorted keys and another key k and we want to determine if k ∈ A and thus
return i such that A[i] = k. Otherwise a not-found is returned usually an index out of bounds. For example −1 or n.
(We assume C/C++/Java indexing for the array i.e. A[0..n−1].)

The first comparison if betweek k and A[m] where m maps to the middle of the array. m can be n/2 but in practice
for C indexing it would be (0+(n−1))/2. And of course we have a secondary problem floor or ceiling if the result is
not an integer.

n=8 n=6 n=7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 0 1 2 3 4 5 6

n/2=4 * * *

(n-1)/2=3 * * *

For subsequent iteration the middle point is usually computed as m = (l + r)/2. Consider 32-bit (signed) integers
for l,r and m, with l,r around 2,000,000,000, eg 2,000,100,000 and 2,000,900,000. Alternatively consider 32-bit
(unsigned) integers for l,r,m and l,r around 3,000,100,000 and 3,000,900,000. A better derivation for m is m =
l+(r− l)/2 instead. In general we simplify things by disregarding issues with floors and ceilings: for example assum
n is a power of two or more likely n is a power of two minus one or plus one!

Proposition 6.3 (Binary Search Recurrence). Solve the recurrence T (n)≤ T (bn/2c)+1 for n≥ 2, and T (1) = 1.

Proof.

T (n) = T (n/2)+1
= (T (n/4)+1)+1
= T (n/22)2∗1
= (T (n/23)+)2∗1
= T (n/23)+3∗1
. . .

= T (n/2i)+ i∗1
T (n) = T (n/2i)+ i.

The undolding of the chains ends when T (n/2i) = T (1) i.e. for n/2i = 1. Solving for i we have i = lgn. Thus

T (n) = T (n/2i)+ i.

= T (n/2lgn)+ lgn

= T (1)+ lgn

= lgn+1.

In fact T (n) is the maximum (or worst-case) running number of comparisons, since it is possible that we found our
key with the first comparison performed!

Thus T (n) ≤ lgn+1 might be a better (and correct) answer. If we re-consider the fact that n is a power of n and
thus n/2 does not include the floor function any more, we need to utilize asymptotic notation and say T (n) = O(lgn).
In such a notation the plus one disappears as the most important term is the logarithmic term. There is an added benefit
in using this form. We indeed describe not just the number of comparisons but also the running time now. Everything
else in Binary Search revolves around a comparison: we increment a variable i or l, decrement a variable r or j, or
”compare” variables i and j or l and r plus the (r+ l)/2 or (i+ j)/2 or its variants. Thus all auxiliary operations are
proportional to lgn i.e. linear to lgn also captured in the form T (n) = O(lgn).
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6.9. GENERATING FUNCTIONS 115

And food for through is i < j or i ≤ j a COMPARISON as used earlier? The answer is NO. i and j are integer
values not keys. Functions cmp expects objects that are keys. We compare i and j using a subtraction i− j involving
the accumulator of a CPU. If the result is zero i.e. i = j the FLAGS set this immediately. If the accumulator is positive
i > j or negative i < j this become immediately available in one instruction that is a subtraction i.e nanoseconds.
Comparing keys or key values takes a function call i.e. a context switch or microseonds. (And if you argue otherwise
keys can be quite long, required multiple reads from main memory and a read is 80-100ns each.)

Example 6.70. What is the number of 0 zeroes in 1000! ? (Yes it is 1000 factorial.)

Proof. 1. Since 2 · 5 is 10, Let find the multiples of 5. Each one contributes with a even number a 10. There are
1000/5 = 200 such multiples.

2. A multiple of 25 contributes one more 10 since 25 = 5∗5. There are 1000/25 = 40 of them.
3. A multiple of 125 contributes one more 10 since 125 = 5∗5∗5. There are 1000/125 = 8 of them.
4. Is the answer 200+40+8?
We have missed 625!
5. Since 625 = 5∗5∗5∗5 we have one more 5 contributed by 625.
6. The total is 49.
Conclusion: Think!
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6.10 Exercises
Exercise 6.1. How many distinct seven digit integers can be constructed by permuting the digits 1,1,1,2,2,3,4?

Proof. Applying the formula for permutations (repetitions allowed), we get

7!
3! 2!

= 420

Exercise 6.2. Calculate the number of trailing 0’s in the fully expanded decimal representation of 200!

Proof. We need to find the largest power of 10 that divides 200!. Since 10 = 2 ·5, we only need find the largest power
of 5 that divides 200!, since this is smaller than the corresponding largest power of 2.

The largest power of 5 that divides 200! is:[
200

5

]
+

[
200
52

]
+

[
200
53

]
= 40+8+1 = 49

where [·] represents the integer part of a number (i.e. the largest integer that does not exceed the number).
The first term in the above formula counts the multiples of 5. The second one counts the multiples of 25 which

contribute one more power of 5 each, and the third one counts multiples of 125.

Exercise 6.3.
(i) One starts in the lower left corner of an n×n chess board and makes a series of moves, where each move is to go
either one square to the right or one square up, so that one ends up in the top right corner. How many different paths
are there?

(ii) How many different paths are there that avoid the deadly land mine planted at the square in row i and column j?

Proof. (i) We can reach the top right corner from the lower left one after moving (n− 1) squares to the right and
(n−1) squares up. We can choose the upward movements in

C(2(n−1),(n−1)) =
(

2(n−1)
n−1

)
(6.2)

different ways and thus also fix the rightward movements.
(ii) We count first the number of paths that cross the land mine. These are the number of paths we can follow

from the lower left corner to the land mine times the number of paths from the land mine to the top right corner i.e.
C(i+ j−2, i−1) ·C(2n− i− j,n− i) (reasoning same as in part (i)). Therefore the number of paths that avoid the land
mine is equal to
C(2(n−1),(n−1))−C(i+ j−2, i−1) ·C(2n− i− j,n− i).

Exercise 6.4. In how many ways can we put in a line 10 boys and 5 girls, so that no two girls are next to each other.

Proof. First put the ten boys in a line. There are eleven spots where a girl may be inserted, but only one girl may
be placed in any spot. Thus the answer is the number of ways five objects can be selected out of eleven, which is(11

5

)
= 462. If you believe that the boys and girls are distinct, then multiply that quantity by 10!5! to account for their

various permutations.

Exercise 6.5. In how many ways can 3r balls be selected from 2r red balls, 2r blue balls, and 2r white balls?

Proof. There are two (basically equivalent) ways of dealing with this problem:
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6.10. EXERCISES 117

1. Without generating functions

Break this into two disjoint cases. Either at least r red balls are chosen (in which case the number of blue balls
must be between 0 and 3r minus the number of red balls), or fewer than r red balls are chosen (in which case
the number of blue balls must be between r minus the number of red balls and 2r). Once the number of red and
blue balls are decided, the number of white balls is uniquely determined. The answer is therefore

2r

∑
i=r

3r−i

∑
j=0

1+
r−1

∑
i=0

2r

∑
j=r−i

1 =
2r

∑
i=r

(3r− i+1)+
r−1

∑
i=0

(r+ i+1)

=
r+1

∑
i=1

(2r− i+2)+
r

∑
i=1

(r+ i)

= r+1+
r

∑
i=1

(2r− i+2)+
r

∑
i=1

(r+ i)

= r+1+
r

∑
i=1

(3r+2)

= r+1+ r(3r+2)
= 3r2 +3r+1

2. With generating functions

We must find the coefficient of x3r in (1+ x+ . . .+ x2r)3.

(
1+ x+ . . .+ x2r)3

=

(
1− x2r+1

1− x

)3

=
(

1−3x2r+1 +3x4r+2− x6r+3
) 1

(1− x)3

The coefficient of x3r in this mess is just the coefficient of x3r in (1− x)−3 minus three times the coefficient of
xr−1 in (1− x)−3, which is(

3r+2
3r

)
−3
(

r+1
r−1

)
=

(3r+2)(3r+1)
2

−3
(r+1)(r)

2

=
(9r2 +9r+2)− (3r2 +3r)

2
= 3r2 +3r+1

Exercise 6.6. By giving a combinatorial interpretation for the following sum deduce a simple expression for it:(
n
1

)
+2
(

n
2

)
+3
(

n
3

)
+ . . .+n

(
n
n

)
Proof. This sum counts the ways that one may take a subset of k out of n items, and then take another one item out
of the k (for k from 1 to n). This is equivalent to selecting one item out of the n and then splitting the remaining n−1
into two arbitrary subsets. This may be done in n2n−1 ways, giving us the more concise value for the sum.
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Exercise 6.7. By giving a combinatorial interpretation to each side prove that:(
2n
n

)
=

n

∑
k=0

(
n
k

)2

Proof. The left hand side is the number of ways of dividing 2n objects into two groups of equal size. Another way to
count that same quantity is to split the 2n objects into two halves and then count all the ways one can take k objects
from the first half and n−k from the second half, over all values of k from 0 to n. This method of counting tells us that(

2n
n

)
=

n

∑
k=0

(
n
k

)(
n

n− k

)
=

n

∑
k=0

(
n
k

)2

Exercise 6.8. How many ways can three distinct dice be thrown such that their sum is 9?

Proof. The o.g.f for the outcome of a dice is x+ x2 + . . .+ x6. So for the three dice we have (x+ x2 + . . .+ x6)3. We
can write the above formula as

x3(1+ x+ . . .+ x5)3 = x3 (1− x6)3

(1− x)3

The coefficient of x9 of the formula above or equivalently the coefficient of x6 in (1− x6)3 · (1− x)−3 is the answer to
our problem. These two powers can be written as:

(1− x6)3 =
3

∑
i=0

(
n
i

)
1i(−1)3−ix6(3−i)

(1− x)−3 =
∞

∑
r=0

(
r+3−1

r

)
xr.

Therefore, the coefficient of the x6 is equal to(
3
3

)
(−1)3−3

(
8
6

)
+

(
3
2

)
(−1)3−2

(
2
0

)
= 28−3 = 25.

Exercise 6.9. Evaluate the following series.(
n
k

)
+

(
n−1
k−1

)
+

(
n−2
k−2

)
+ · · ·+

(
n− k+1

1

)
+

(
n− k

0

)
Proof. Using (

n+1
k

)
=

(
n
k

)
+

(
n

k−1

)
and simultaneous induction on n,k , we get that(

n
k

)
+

(
n−1
k−1

)
+

(
n−2
k−2

)
+ · · ·+

(
n− k+1

1

)
+

(
n− k

0

)
=

(
n+1

k

)
.

Another way to solve this problem is by combinatorial arguments. The number of ways to choose k elements out of
n+1 is equal to the number of ways to choose k out of n when element 1 is not included in the set of k elements or to
choose k−1 out of n−1 when 1 is included but 2 is not or to choose k−2 out of n−2 when 1,2 are included but 3 is
not included or so on or choose 0 out of n− k when 1,2, . . . ,k are all included in the set.



DRAFT. C
op

yri
gh

t (
c)

20
21

-20
24

.

Alex
. Gerb

ess
iot

is.

All r
igh

ts
res

erv
ed

Not
to

be
po

ste
d on

lin
e

or
on

the
web

or
to

be

mad
e av

ail
ab

le
ou

tsi
de

of

co
py

rig
ht

ho
lde

r’s
web

-pa
ge

6.10. EXERCISES 119

Exercise 6.10. Evaluate the following series.(
n
0

)
+2
(

n
1

)
+22

(
n
2

)
+ · · ·+2n

(
n
n

)
Proof. From

(x+ y)n =
n

∑
i=0

(
n
i

)
xiyn−i,

if we set x = 2 ,y = 1 we obtain the answer: 3n.

Exercise 6.11. Find a closed form expression for the ordinary generating function of the sequence an = n2.

Proof. There are many ways to solve this problem. From

1+ x+ x2 + . . .+ xn + . . .=
1

1− x
,

if we take the derivative of each side we get

0+1+2x+3x2 +4x3 + . . .+nxn−1 + . . .=
1

(1− x)2 (6.3)

and if we take the derivative of each side once more we get

2+3 ·2x1 +4 ·3x2 + . . .+n · (n−1)xn−2 + . . .=
2

(1− x)3 .

Now, we multiply both sides of the last expression with x2 and we get

2x2 +3 ·2x3 +4 ·3x4 + . . .+n · (n−1)xn + . . .=
2x2

(1− x)3 . (6.4)

If we multiply Eq.(6.3) with x and add the result to Eq.(6.4) we get that

1x+22x2 +32x3 + . . .+n2xn + . . .=
2x2

(1− x)3 +
x

(1− x)2 =
x(1+ x)
(1− x)3 .

Exercise 6.12. Consider the recurrence an+2 = an+1 +an where a1 = a0 = 1. Show that(
n+1

0

)
+

(
n
1

)
+

(
n−1

2

)
+ · · ·= an+1

(the sum goes up to the last term where n+1− k ≥ k).

Proof. One way to solve this problem (another way is simultaneous induction on n,k and Pascal triangle’s identity), is
using the o.g.f. of the Fibonacci numbers. This is

A(x) =
1

1− x− x2 = ∑
i=0

(x+ x2)i

. The coefficient of xn+1 in the power series above is(
n+1

0

)
+

(
n
1

)
+

(
n−1

2

)
+ · · ·

which is just the coefficient of xn+1 in the o.g.f of the Fibonacci numbers i.e. an+1.
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120 CHAPTER 6. COUNTING

Exercise 6.13. The tower of Hanoi puzzle consists of three towers and n holed-discs (each disc has a hole in its center
so that it can slip through a tower). Each disc is of a different size. The discs may be moved from to tower, provided
that it is done one disc at a time and never can a disc be placed on top of a smaller disc. Initially, all n discs are in
one tower.

(i) Formulate a recursive procedure to move the entire group to another tower using hn individual moves, deter-
mined by the recurrence

hi = 2hi−1 +1
h1 = 1.

(ii) Can you improve this recurrence if there is a fourth tower?

Proof. (i) Let the three towers be input, output , and temp . Procedure TOWERS shows how to legally move the
towers from input to output.
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6.10. EXERCISES 121

/* Discs are numbered 1 to n. */

/* Operation move(i,j,k) moves disc i from tower j to tower k */

/* Precondition: assumes i has nothing on top of it */

1. Towers(input,output,temp,n)

2. if ( n==1 ) move(1,input,output)

3. else {

4. Towers(input,temp,output,n-1);

5. move(n,input,output);

6. Towers(temp,output,input,n-1)

7. }

end

If hn gives the number of moves to move n discs in the algorithm above, then we have that hn = hn−1 + 1+ hn−1 =
2hn−1 +1 , h1 = 1, by way of lines 4-6. The base case h1 = 1 is by way of line 2. The solution of this recurrence is
hn = 2n−1.

(ii) First, we show how a fourth tower helps. The simplest way to achieve this (let the four towers be input, output,
temp1, temp2 ) is by moving recursively the top n−2 discs of the input tower to say, temp1, then move disc n−1 to
temp2 , n to out put , n−1 from temp2 to out put and recursively the n−1 discs from temp1 to out put . The recurrence
that describes the number of moves is the following: b(n) = 2b(n−2)+3 , b(0) = 0, b(1) = 1. A solution to this is

the following b(n) =

{
2 ·2 n+1

2 −3 n odd
3(2n/2−1) n even

. Based on this observation, we now get the following solution. Move

the top n
2 discs (we assume n even, we can handle similarly the odd case) from the input tower to temp1 using all 4

towers. Then move the n
2 −1 discs from input to temp2 using only the input ,temp2 ,out put towers as in part (i). Then

move disc n from input to out put , then the n
2 − 1 towers from temp2 to out put as in part (i) (using only 3 towers)

and the n
2 from temp1 to out put as in part (ii) (recursively). We now give the recurrences that describe the number of

moves in both the even and odd case.
For the even case we have:

c(n) = 2c(n/2)+2a(n/2−1)+1 = 2c(n/2)+2(2n/2−1−1)+1 = 2c(n/2)+2n/2−1.

For the odd case we have:
c(n) = 2c(

n+1
2

)+2(n−1)/2−1.

One can show that c(n)≈ (1+ ε)2n/2, where ε ≈ 2 ·2−n/4.

Exercise 6.14. Solve the following recurrence relation:

an = an−1 +n2 , a0 = 1

Proof. It seems like the answer should be of the form

an = An3 +Bn2 +Cn+D

To verify this and determine the coefficients, observe that

an−an−1 = n2

A(n3− (n−1)3)+B(n2− (n−1)2)+C(n− (n−1)) = n2

A(3n2−3n+1)+B(2n−1)+C = n2

This gives us the simultaneous equations

3A = 1
−3A+2B = 0
A−B+C = 0
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122 CHAPTER 6. COUNTING

The solution for these is A = 1/3, B = 1/2, and C = 1/6. This gives the particular solution for the recurrence. To
satisfy the initial condition, we must add the homogeneous solution an = 1. The final answer is

an =
2n3 +3n2 +n+6

6

Exercise 6.15. Solve the following recurrence relation:

an = an−1 +
1

n(n+1)
, a0 = 1

Proof. An easy way to solve this is to write out the sequence and see what you get, but a more general technique is to
use generating functions. Let A(x) = ∑

∞
n=1 anxn be the o.g.f. for an. Multiplying the recurrence by xn for each n ≥ 1

we get

a1x = a0x+
x

1(1+1)

a2x2 = a1x2 +
x2

2(2+1)
...

Summing, we get

A(x)−a0 = xA(x)+
∞

∑
n=1

xn

n(n+1)

A(x) =
a0 +∑

∞
n=1

xn

n(n+1)

1− x

A(x) = (1+
∞

∑
n=1

xn

n(n+1)
)(1+ x+ x2 + · · ·)

From here we can calculate the coefficient of xn in the right hand side, which is

1+
n

∑
i=1

1
n(n+1)

= 1+
n

∑
i=1

(
1
n
− 1

n+1
)

= 1+1− 1
n+1

=
2n+1
n+1

Exercise 6.16. For a0 = r,a1 = s, express in terms of the Fibonacci numbers ( fn+1 = fn + fn−1, f0 = f1 = 1) the
following recurrence relations.

an+2 = an+1 +an.

Then solve
an+2 = an+1 +an + c.
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6.10. EXERCISES 123

Proof. (i) Let A(x) be the o.g.f. for an. Multiplying both sides of the recurrence by xn, and summing over all values
of n from 2 to ∞, we get

∞

∑
n=2

anxn =
∞

∑
n=2

an−1xn +an−2xn

A(x)−a0−a1x = x(A(x)−a0)+ x2A(x)

A(x)(1− x− x2) = x(s− r)+ r

A(x) = (x(s− r)+ r)
1

1− x− x2

But that fraction is the o.g.f. for fn. Thus

an = (s− r) fn−1 + r fn

= s fn−1 + r fn−2

(ii) To use our result from (i), we can define bn = an + c, and get a new recurrence relation:

bn = bn−1 +bn−2 , b0 = r+ c, b1 = s+ c

The solution to this is

bn = (s+ c) fn−1 +(r+ c) fn−2

= c fn + s fn−1 + r fn−2

Converting back to an, we get our answer

an = (c−1) fn + s fn−1 + r fn−2

Exercise 6.17. Find the determinant of the n×n matrix A and the permanent of the n×n matrix B

A =



1 −1 0 0 0 0 . . . 0 0 0
1 1 −1 0 0 0 . . . 0 0 0
0 1 1 −1 0 0 . . . 0 0 0
...

...
...

...
...

0 0 0 0 0 0 . . . 1 1 −1
0 0 0 0 0 0 . . . 0 1 1



B =



1 1 0 0 0 0 . . . 0 0 0
1 1 1 0 0 0 . . . 0 0 0
0 1 1 1 0 0 . . . 0 0 0
...

...
...

...
...

0 0 0 0 0 0 . . . 1 1 1
0 0 0 0 0 0 . . . 0 1 1


Proof. (i) By decomposition of the first column, it is fn, the order-n Fibnacci number.

(ii) Likewise.

Exercise 6.18. In how many ways can a convex n-gon be divided into triangles by non-intersecting diagonals ? (Find
the recurrence for the problem and solve it)



DRAFT. C
op

yri
gh

t (
c)

20
21

-20
24

.

Alex
. Gerb

ess
iot

is.

All r
igh

ts
res

erv
ed

Not
to

be
po

ste
d on

lin
e

or
on

the
web

or
to

be

mad
e av

ail
ab

le
ou

tsi
de

of

co
py

rig
ht

ho
lde

r’s
web

-pa
ge

124 CHAPTER 6. COUNTING

Proof. Let an be the number of ways to divide up an n-gon. In any division, vertex 1 and vertex n form a triangle
with vertex i for some 2 ≤ i ≤ n− 1. For each i we can recursively determine the number of such divisions, and the
possibilities for each i are disjoint. Thus

an =
n−1

∑
i=2

aian−i+1 , a2 = 1

Let A(x) be the generating function for this sequence.

∞

∑
n=3

anxn =
∞

∑
n=3

n−1

∑
i=2

aian−i+1xn

A(x)−a2x2 =
∞

∑
n=3

n−1

∑
i=2

aian−i+1xn

Note that

A2(x)
x

= (a2x2 +a3x3 + · · ·)(a2x+a3x2 + · · ·)

=
∞

∑
n=3

xn
n−1

∑
i=2

aian−i+1

Thus

A(x)− x2 =
A2(x)

x
A2(x)− xA(x)+ x3 = 0

A(x) =
x±
√

x2−4x3

2

= x
1±
√

1−4x
2

So the answer is the coefficient of xn−1 in the fraction. This is

an =
1

n−1

(
2n−4
n−2

)

Exercise 6.19. How many sequences are there of 3 not necessarily distinct integers x, y, z such that 1≤ x,y,z≤ 100
and the sum of them is divisible by 4.

Proof. The first two numbers x and y may be chosen arbitrarily from the 1002 possibilities. For any such choice,
there are exactly 100/4 = 25 possible z values that will force the sum to be a multiple of four. Thus there are
(100)(100)(25) = 250,000 possible sequences.

Exercise 6.20. (i) Find the number of solutions (x1,x2, . . . ,xn), where each xi ≥ 0 is an integer, to the equation

x1 + x2 + x3 + · · ·+ xn = r

(ii) Find the number of solutions when each xi > 0.
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6.10. EXERCISES 125

Proof. (i) Let x1+x2+ . . .+xn = r where xi≥ 0 ∀i. Put yi = 1+xi. Then yi≥ 1 ∀i. Then we get that y1+y2+ . . .+yn =
n+ r. Therefore the number of solutions in positive yi’s is equal to the number of solutions in non-negative xi. If we
take n+ r dots and place n− 1 marks in the n+ r− 1 spaces between the dots, we may take y1 to be the number of
the first set of dots, y2 as the number of the second set and so on. Therefore the number of solutions to the original
problem is

(n+r−1
n−1

)
. Another way to see this problem is to count the number of ways r indistinct balls can be put into

n distinct bins.
(ii) If instead of having n+ r in equation y1 + y2 + . . .+ yn = n+ r, we have r we get the number of solutions for

the second part (assuming r ≥ n) i.e.
(r−1

n−1

)
.

Exercise 6.21. Show that for any n > r
n

∑
k=r

(−1)k
(

k
r

)(
n
k

)
= 0

Proof. From combinatorial arguments we know that

n

∑
k=r

(−1)k
(

k
r

)(
n
k

)
=

n

∑
k=r

(−1)k
(

n
r

)(
n− r
k− r

)
(The inner product in both cases is the number of ways n objects can divided into piles of size r, k− r, and n− k).
Thus it suffices to show that

n

∑
k=r

(−1)k
(

n− r
k− r

)
=

n−r

∑
i=0

(−1)i+r
(

n− r
i

)
= ±

n−r

∑
i=0

(−1)i
(

n− r
i

)
= 0

Note that

(1+ x)(n−r) =
n−r

∑
i=0

xi
(

n− r
i

)
Thus,

n−r

∑
i=0

(−1)i
(

n− r
i

)
= (1+(−1))(n−r) = 0

Exercise 6.22. Solve
3an−4an−1 +an−2 = 2−n , a0 = 6, a1 = 2.5

Proof. We now solve the recurrence 3an−4an−1 +an−2 = 2−n , a0 = 6 , a1 = 2.5.
The characteristic polynomial of this recurrence is : 3x2−4x+1 = 0, with roots x1,2 = 1, 1

3 .
Therefore the general solution of the homogeneous 3an−4an−1 +an−2 = 0 is

agen
n = c1 ·1n + c2 · (

1
3
)n ,

c1,c2 constants to be computed later from the initial conditions.
We now find a particular solution of the original solution. We try the following solution apart

n = A( 1
2 )

n and we thus
get from the original recurrence 3an−4an−1 +an−2 = 2−n:

3A(1/2)n−4A(1/2)n−1 +A(1/2)n−2 = (1/2)n

and by multiplying both sides with 2n we finally get A =−1.
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126 CHAPTER 6. COUNTING

Therefore a particulal solution to the recurrence is apart
n = (−1) · ( 1

2 )
n. A general solution to the original (non-

homogeneous) one is the sum of the the two solutions i.e.

an = agen
n +apart

n = c1 ·1n + c2 · (
1
3
)n +(−1) · (1

2
)n

We now compute the constants c1,c2.

a0 = 6 = c1 ·1+ c2 ·1−1⇒ c1 + c2 = 7

a1 = 2.5 = c1 + c2 ·
1
3
+(−1) · 1

2
⇒ 3c1 + c2 = 9

This system of equations gives
{

c1 = 1
c2 = 6 as a solution.

Therefore
an = 1 ·1n +6 · (1

3
)n +(−1) · (1

2
)n

Exercise 6.23. You are given the following system of recurrences. Solve for an and bn.

an = 2an−1 +2bn , a0 = 2
bn = an +3bn−1 , b0 = 3

Proof. If we use the o.g.f. of an, bn (let them be A(x), B(x)) we get that the system of equations

an = 2an−1 +2bn

bn = an +3bn−1

gives the following system of generating functions.

A(x)−a0 = 2xA(x)+2(B(x)−b0)

B(x)−b0 = 3xB(x)+A(x)−a0

Substituting a0 = 2, b0 = 3 we get:
A(x)(1−2x) = 2B(x)−4

B(x)(1−3x) = A(x)+1

Now, we solve the second equation with respect to A(x) and replace the expression of A(x) in terms of B(x) in the
first equation. We get:

B(x)(1−3x) =
2B(x)
(1−2x)

+
−4

(1−2x)
+1 ⇒ B(x)((1−3x)− 2

(1−2x)
) =

−4
(1−2x)

+1 ⇒

B(x) · 6x2−5x−1
(1−2x)

=
−4

(1−2x)
+1 ⇒ B(x) · (6x+1)(x−1)

(1−2x)
=

−4
(1−2x)

+1 ⇒

B(x) =
−4

(1+6x)(x−1)
+

(−2x+1)
(1+6x)(x−1)

⇒ B(x) =
4

(1+6x)(1− x)
+

(2x−1)
(1+6x)(1− x)

Now, we expand each of the two terms into simpler fractions. We thus get:

B(x) =
24
7

1+6x
+

4
7

1− x
+

−8
7

1+6x
+

1
7

1− x
⇒ B(x) =

16
7

1+6x
+

5
7

1− x
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6.10. EXERCISES 127

We know that 1/(1−ax) is the o.g.f. of an (and 1+6x = 1− (−6)x). Therefore:

bn =
16
7
(−6)n +

5
7

1n

Now, from bn = an +3bn−1 we have that an = bn−3bn−1 and therefore we get that:

an =
24
7
(−6)n− 10

7
1n

Exercise 6.24. Two professors in two different subjects are giving oral examinations to 12 students at the same exam
time. Each student will be examined individually for 5 minutes in each subject. In how many ways can a schedule
be made up so that no student will have to see both professors at the same time? Give an approximate value to the
answer as well.

Proof. Suppose professor A examines students 1 through 12 in order. Then professor B may examine the students in
any order that is a permutation of their indices where π(i) 6= i. This is just the number of derangements. Since A may
examine the students in any order, the answer is

(12!) · (12!) ·
12

∑
l=0

(−1)l

l!
≈ (12!)2

e

Exercise 6.25. Provide a combinatorial interpretation for each of the following two sums to deduce a simple expres-
sion for each of them.
a) (

n
0

)
+2
(

n
1

)
+22

(
n
2

)
+ . . .+2n

(
n
n

)
,

b) (
n
k

)
+

(
n−1
k−1

)
+ . . .+

(
n− k

0

)
.

Proof. i) Suppose we have n balls. The possible colorings of these balls with 3 colors (R,G,B) is 3n. We express this
number differently as follows. Pick k among the n balls, color the unpicked n− k R, and the number of colorings of
the remaining k with the two colors G, B is 2k. Sum up for all values of k from 0 (all balls R colored) to n (no ball R
colored) and it is straightforward that this sum is 3k.
ii) We can choose k balls among n+1 balls in

(n+1
k

)
ways.

• If the first ball is not chosen we can choose k among the remaining n in
(n

k

)
ways.

• If the first ball is chosen but the second is not we can choose k−1 balls among the remaining n−1 ones in
(n−1

k−1

)
ways and these k−1 balls and the first one give the k chosen balls. We proceed similarly,

• If the fist ball is chosen, the second ball is chosen , the l-th ball is chosen but not the l+1-th one we can choose
k− l balls among the remaining ones in

(n−l
k−l

)
ways, etc,

Summing for all values of l from 0 to k we get that the sum counts the number of ways of choosing k among n+1
balls which is

(n+1
k

)
.

Exercise 6.26. Suppose we divide the numbers in the set {1,2, . . . ,n} into l classes arbitrarily. Prove that if n≥ e · l!
then there exists a class (among the l given classes) such that x, y, z belong to this class and x+ y = z.
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128 CHAPTER 6. COUNTING

Proof. We are going to use a prior problem here. Let the l classes into which the integers from 1 to n were split be
C1, . . . ,Cl . Take the complete graph Kn+1 vertices (we number its vertices with numbers from 1 to n+1) and color its
edges with l colors as follows. We color edge {i, j} with color m if the number | i− j | is in the class Cm. Since the
difference of any two vertices in Kn+1 is at most n we can always color the edges in such a way. Since n+1≥ el!+1,
the graph has a monochromatic triangle, let it be (i, j,k, i) and let all edges of this triangle are colored m. This means
that the numbers | i− j |, | j− k |, | k− i | are all in set Cm. Let, without loss of generality, i < j < k. Then choose,
x =| i− j |, y =| j− k | and z =| k− i |. It is straightforward that x+ y = z and x,y,z ∈ Cm. Since C1, . . . ,Cl is an
arbitrary splitting of the n numbers we are done.

Exercise 6.27. In how many ways can one select n letters from an unlimited supply of A’s, B’s, and C’s so that there
are an even number of A’s (zero counts as an even number)?

Proof. Using generating functions, the answer is the coefficient of xn in (1+ x2 + x4 + . . .)(1+ x+ x2 + . . .)2, where
the first term counts the number of ways of selecting the A’s, and the second the B’s and C’s. This coefficient is equal
to

b n
2 c

∑
i=0

coefficient of n−2i in
1

(1− x)2 =
b n

2 c

∑
i=0

(
n−2i+1

n−2i

)

=
b n

2 c

∑
i=0

n−2i+1

= (bn
2
c+1)(n+1)−2

b n
2 c

∑
i=0

i

= (bn
2
c+1)(n+1)−bn

2
c(bn

2
c+1)

= (bn
2
c+1)(n−bn

2
c+1)

=

{ ( n
2 +1

)2 if n is even( n+1
2

)( n+3
2

)
if n is odd

Exercise 6.28. In how many ways can one select n letters from an unlimited supply of A’s, B’s, and C’s so that no
letter appears exactly three times?

Proof. The generating function for each letter is

1+ x+ x2 + x4 + x5 + . . .=
1

1− x
− x3

The answer is therefore the coefficient of xn in

(
1

1− x
− x3)3 =

1
(1− x)3 −

3x3

(1− x)2 +
3x6

1− x
− x9

This is equal to the coefficient of xn in (1−x)−3 (
(n+2

n

)
), minus three times the coefficient of xn−3 in (1−x)−2 (

(n−2
n−3

)
)

if n≥ 3, plus three times the coefficient of xn−6 in (1− x)−1 (one) if n≥ 6, minus one in the case where n = 9. These
combine to equal 

(n+2)(n+1)
2 −3(n−2)+3 = n2−3n+20

2 if n≥ 6 and n 6= 9
(n+2)(n+1)

2 −3(n−2)+2 = 36 if n = 9
(n+2)(n+1)

2 −3(n−2) = n2−3n+14
2 if 5≥ n≥ 3

(n+2)(n+1)
2 if 2≥ n≥ 0
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6.10. EXERCISES 129

Exercise 6.29. Suppose from any point (i, j) on an infinite grid, one is allowed to make the moves (i, j)→ (i+1, j+1)
and (i, j)→ (i+1, j−1). How many paths are there from (0,0) to (m,n)?

Proof. Suppose we make p “↗” moves, and q “↘” moves. Since any move we make increases the x coordinate by
one we must have p+ q = m. Since the net change in the y coordinate is n, it must be that p− q = n. From adding
these equations it follows that p = m+n

2 , and hence the number of times each move is made fixed. But they can be
taken in any order, so the answer is (

p+q
p

)
=

(
m

m+n
2

)
(assuming m and n are both odd or even, otherwise it is impossible).

Exercise 6.30. Find a closed form expression for the ordinary generating function of the sequence an = n3.

Proof. We shall start of with the relation

f (x) = 1+ x+ x2 + x3 + . . .+ xn + . . .

for which we know f (x) = (1− x)−1 and work from there.

f ′(x) = 1
(1−x)2 = 1+2x+3x2 + . . .+nxn−1 + . . .

x f ′(x) = x
(1−x)2 = x+2x2 +3x3 + . . .+nxn + . . .

(x f ′(x))′(x) = 1
(1−x)2 +

2x
(1−x)3 = 1+4x+9x2 + . . .+n2xn−1 + . . .

x(x f ′(x))′(x) = x
(1−x)2 +

2x2

(1−x)3 = x+4x2 +9x3 + . . .+n2xn + . . .

(x(x f ′(x))′)′(x) = 1
(1−x)2 +

6x
(1−x)3 +

6x2

(1−x)4 = 1+8x+27x2 + . . .+n3xn−1 + . . .

x(x(x f ′(x))′)′(x) = x
(1−x)2 +

6x2

(1−x)3 +
6x3

(1−x)4 = x+8x2 +27x3 + . . .+n3xn + . . .

That last series is what we want, so the answer is x
(1−x)2 +

6x2

(1−x)3 = x3+4x2+x
(1−x)4 .

Exercise 6.31. In how many ways can one form n digit words (i.e. order matters) from the set {0,1,2,3} in which the
number of 0’s is even?

Proof. For this problem we want to consider exponential generating functions. For {1,2,3} the e.g.f.’s are

1+ x+
x2

2
+

x3

6
+ . . .+

xn

n!
+ . . .= ex

For 0, the e.g.f. is

1+
x2

2
+

x4

24
+ . . .+

x2n

(2n)!
+ . . .=

ex + e−x

2

That is true because the expansions of ex and e−x both include xi

i! for i even, but for i odd the latter has− xi

i! and the two
terms cancel out. Thus the answer is the coefficient of xn

n! in

(ex)3 ex + e−x

2
=

e4x + e2x

2

This coefficient is 4n+2n

2 = 22n−1 +2n−1.

Exercise 6.32. Suppose one can move on the integer grid from position (x,y)→ (x+ 1,y+ 1) and from (x,y)→
(x+ 1,y− 1). Show, that the number of ways one can go from position (0,0) to position (m,n) (m,n > 0 and with
m+n even) without touching the x-axis(except in the beginning) is:(

m−1
m+n−2

2

)
−
(

m−1
m+n

2

)
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Proof. Since every path from (0,0) to (m,n) must not cross the x-axis at any intermediate point, the first possible
move is to (1,1) point. Take the image (1,−1) of (1,1) with respect to the x-axis. Take a path from (1,1) to (m,n)
which touches the x-axis for the first time at point (x,0). Then every path from (1,1) to (x,0) above the x-axis maps
1-1 to a path (its reflection) from (1,−1) to (x,0) below the x-axis. The number of paths (unrestricted) from (1,1)
to (m,n) are

( m−1
m+n−2

2

)
while the number of paths from (1,−1) to (m,n) (which cross the x-axis and each one of them

corresponds to a path from (1,1) to (m,n) that touches the x-axis) is
(m−1

m+n
2

)
. Subtracting the second number from the

first we get the number of paths from (1,1) (and equivalently from (0,0) ) to (m,n) which do not touch the x-axis.

Exercise 6.33. Find the number of ways 2n points on a circle can be joined pairwise with n non-intersecting chords.

Proof. Let an be the number of ways 2n points on a circle can be joined pairwise with n non-intersecting chords. Take
a given point on the circle, let it be x. When x is joined by a chord to another point on the circle it divides the points on
the circle into two sets of say 2i points on the left of the chord and 2n−2i−2 points on the right (if we have an odd
number of points on either side then we must have two intersecting chords). Summing up for all possible values of i
we get the following recurrence for this problem:

an =
n−1

∑
i=0

aian−1−i, a0 = a1 = 1

Now we sum for all possible values of n= 1,2, . . . (note that we choose a0 = 1, one can avoid this by writing separately
the first and the last term of the sum which gives an above). Then we get:

∞

∑
n=1

anxn =
∞

∑
n=1

n−1

∑
i=0

aian−1−ixn⇒ A(x)−a0 = xA2(x)

where A(x) is the o.g.f. of a0,a1, . . .. From the last equation we get that A(x) = +1±
√

1−4x
2x . We choose only the negative

root and from the Binomial Thm we get:

A(x) =
1
2x

(1−∑
n≥0

( 1
2
n

)
(−4x)n) = ∑

m≥0

( 1
2

m+1

)
(−1)m22m+1zm = ∑

m

1
m+1

(
2m
m

)
zm

Therefore, from the last expression we get that the coefficient of xn in A(x) is 1
n+1

(2n
n

)
. This is just the n+1-st Catalan

number. One can avoid the recomputation of A(x) by using bn = an−1 and then the recurrence with respect to bn
follows.

Exercise 6.34. Solve the following recurrence relation:

4xn+1−5xn + xn−1 = (0.5)n , x0 = 2, x1 = 1

Proof. We derive the characteristic equation 4x2−5x+1 = 0 from the recurrence:

4xn+1−5xn + xn−1 = (0.5)n , x0 = 2, x1 = 1 (6.5)

This equation has solutions x1,2 = 1, 1
4 . Therefore the general solution of the homogeneous equation given by (1) is:

x(hom)
n = A 1n +B (

1
4
)n

For a partial solution of the non-homogeneous of (1) we try xn = c(0.5)n. If we replace this in (1) and solve with
respect to c we get that c =−1. Therefore a partial solution for the non-homogeneous of (1) (the initial conditions are
ignored) is:

x(par)
n =−(0.5)n
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6.10. EXERCISES 131

and therefore, a general solution for (1) is given by:

x(gen)
n = x(hom)

n + x(par)
n = A1n +B(

1
4
)n− (0.5)n (6.6)

Substituting n = 0 and n = 1 in (2) and equating each case to the initial conditions x0 = 2 and x1 = 1, we get then that:
A+B−1 = 2 and A+ B

4 −
1
2 = 1 which give A = 1, B = 2. Therefore:

x(gen)
n = 1+2(

1
4
)n− (0.5)n (6.7)

Exercise 6.35. Solve the following system of recurrences:

xn+1 = 2xn +2yn , x0 = 3

yn+1 = xn +3yn , y0 = 6

Then solve the following recurrence:

wn+1 =
2wn +2
wn +3

, w0 = 0.5

Proof. Let X(z) and Y (z) be the o.g.f of the sequences xn and yn respectively. Then, from the system of recurrences:

xn+1 = 2xn +2yn , x0 = 3

yn+1 = xn +3yn , y0 = 6

we get, by summing up for all values of n = 0,1,2, . . . (and multiplying each equation by zn) the following system of
generating functions:

X(z)− x0 = 2zX(z)+2zY (z)

Y (z)− y0 = zX(z)+3zY (z)

From the first we get that X(z) = 3+2z
(1−2z)Y (z). Replacing this into the second one we get after some manipulations:

Y (z) =
6(1−2z)

(1−2z)(1−4z)
+

3z
(1− z)(1−4z)

We note that:
6(1−2z)

(1−2z)(1−4z)
=

2
(1− z)

+
4

(1−4z)

and:
3z

(1− z)(1−4z)
=
−1

(1− z)
+

1
(1−4z)

and therefore:
Y (z) =

1
1− z

+
5

1−4z
⇒ yn = 1n +5 ·4n

We replace Y (z) in the expression we got for X(z) and we similarly get that:

X(z) =
−2

1− z
+

5
1−4z

⇒ xn =−2 ·1n +5 ·4n

For the second part identify that for wn =
xn
yn

the recurrence for wn is equivalent to the system of the two recurrences
above and a solution for wn is easily derived.

Exercise 6.36. Find the number of perfect matchings in the ladder graph shown below.
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132 CHAPTER 6. COUNTING

Proof. Let f (n) be the number of perfect matchings in the ladder graph of size n (with 2n vertices). If the edge (1,1′)
is in the matching the other vertices can be matched in f (n−1) ways. If edges (1,2) and (1′,2′) are in the matching
the other vertices can be matched in f (n−2) ways. That way we get the recurrence relation:

f (n) = f (n−1)+ f (n−2) n≥ 3 , f1 = 1, f2 = 2

This is just the Fibonacci recurrence (for n > 0).

Exercise 6.37. How many n-digit binary 0-1 sequences have no adjacent 0’s? Express the answer in terms of Fi-
bonacci numbers.

Proof. Let an be the number of binary strings of length n with no adjacent 0s. If the first digit is 1 we can have
an−1 strings for the other digit positions. If the first digit is 0 then the second digit must be 1 (otherwise we get two
consecutive 0s) and we can have an−2 strings for the rest n−2 digit positions. The recurrence we got is the Fibonacci
recurrence shifted to the left one position i.e.

an = an−1 +an−2 a1 = 2, a2 = 3

and therefore the answer is fn+1 where fn is the n-th Fibonacci number of the recurrence usually defined in textbooks.

Exercise 6.38. Show by combinatorial interpretation that the sequence

fn =
n

∑
i=d n

2 e

(
i

n− i

)
n = 0,1, . . .

is the Fibonacci sequence.

Proof. The number of binary strings of length n−1 with no 2 consecutive 0s is fn. We can also count them as follows.
Let the number of 1s in the string be j. Then, we can put n−1− j 0’s in the j+1 slots formed by the 1s (one 0 per
slot). Summing for all values of j we get (below we must have j+1≥ n− i− j so that no two 0s are consecutive, and
the solution of this inequality gives the bounds for j):

n−1

∑
j=d n

2 e−1

(
j+1

n−1− j

)
=

n

∑
i=d n

2 e

(
i

n− i

)

This proves our claim. This sum is also the coefficient of xn in A(x) = 1
1−x−x2 = ∑i(x+ x2)i.

Exercise 6.39. In how many ways can one select k distinct integers from the set {1,2, . . . ,n} so that no two are
consecutive?

Proof. This is equivalent to asking how many words of length n over {0,1} have exactly k ones, no two of which are
adjacent. We can count this by laying down the n−k zeros, and then chosing k of the possible n−k+1 gaps in which
to insert ones. Thus the answer is (

n− k+1
k

)

Exercise 6.40. Find a simple expression for the following sum:(
n
0

)(
n
k

)
−
(

n
1

)(
n

k−1

)
+ . . .+(−1)i

(
n
i

)(
n

k− i

)
+ . . .+(−1)k

(
n
k

)(
n
0

)
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6.10. EXERCISES 133

Proof. Observe that the i’th term in the summation is the product of the coefficient of xi in (1−x)n, times the coefficient
of xk−i in (1+x)n. Therefore the entire sum is the coefficient of xk in (1−x)n(1+x)n =(1−x2)n. This is the coefficient
of yk/2 in (1− y)n, which is

0 if k is odd
(−1)

k
2
(n

k
2

)
if k is even

Exercise 6.41. Solve the following recurrence relation:

xn+1−6xn +9xn−1 = 2n , x0 = 3, x1 = 10

Proof. First guess a particular solution of the form x(p)
n = A2n. Substituting into the recurrence this gives

A2n+1−6A2n +9A2n−1 = 2n

4A−12A+9A = 2
A = 2

x(p)
n = 2n+1

To find the homogeneous solution observe that the characteristic polynomial is λ 2− 6λ + 9 = (λ − 3)2. So the
solution is of the form x(h)n = (Bn+C)3n (recall this was how we handled a root of multiplicity more than one).

The complete solution is xn = x(p)
n + x(h)n = 2n+1 +(Bn+C)3n where B and C are selected to satisfy the initial

conditions. These give the pair of equations 3 = 2+C and 10 = 4+(B+C)3, whose solutions are B =C = 1. Thus
the final answer is

xn = n3n +3n +2n+1

Exercise 6.42. Solve the following recurrence relation:

xn+1− xn + xn−1 = 2n , x0 = 2, x1 = 2

Proof. The characteristic equation of the homogeneous is a2−a+1 = 0 which gives two complex roots a1,2 =
1±i
√

3
2 .

Therefore, xgen
n = Aan

1 +Ban
2. We try xpart

n = c2n for a particular solution which gives c = 2/3. Then the general
solution for our recurrence is:

xn = xgen
n + xpart

n = Aan
1 +Ban

2 +
2
3

2n

We now apply the initial conditions to this solution. We get:

x0 = 2 = A+B+
2
3

and

x1 = 2 = A(
1+ i
√

3
2

)+B(
1− i
√

3
2

)+
4
3

which give A = B = 2
3 . Therefore, the solution of the recurrence is:

xn =
2
3

an
1 +

2
3

an
2 +

4
3

2n =
4
3

cos(
nπ

3
)+

2
3

2n

Exercise 6.43. Find the coefficient of xn in
x

(1− x)(1−2x)2 .
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Proof. We expand
x

(1− x)(1−2x)2

as follows:
x

(1− x)(1−2x)2 =
1

(1− x)
+

−1
(1−2x)

+
2x

(1−2x)2

Therefore the coefficient of xn in the original expression is the coefficient of xn in 1
1−x which is 1 plus the coefficient

of xn in −1
1−2x which is −2n plus the coefficient of xn in 2x

(1−2x)2 which is n2n (since the sequence n = 1,2, . . . has o.g.f.
x

(1−x)2 ) Therefore the coefficient of xn is 1+(n−1)2n.

Exercise 6.44. For the recurrence relation:

A(n) = 32 ·A(n
4
)+16n2

A(4) = 128

compute A(n) exactly for n a power of 4.

Proof. Expanding out the recurrence, we get

A(n) = 16n2 +32(16(
n
4
)2 +32(16(

n
16

)2 + . . .+32(16(
n
n
16
)2 +32A(

n
n
4
)) . . .))

= 16n2 +(32)(16)(
n
4
)2 + . . .+(32i)(16)(

n
4i )

2 + . . .+(32(log4 n)−2)(16)(
n

4(log4 n)−2 )
2 +32(log4 n)−1A(4)

=
(log4 n)−2

∑
i=0

32i16
42i n2 +32(log4 n)−1A(4)

= 16n2
(log4 n)−2

∑
i=0

2i +32lg4 n4

= 16n2(2(log4 n)−1−1)+nlg4 324
= 8n22log4 n−16n2 +4n2.5

= 12n2.5−16n2

Exercise 6.45. How many positive integers less than 10n (in the decimal scale) have their digits in non-decreasing
order?

Proof. We represent the problem as follows. We pick n+9 balls. Among these balls we will pick 9 of them, and these
will become the separators that will split the other ones in 10, possibly empty, parts (the first part is on the left of the
first separator, the tenth on the right of the last one, the other ones are between any two successive separators). We
label the balls of part i with number i−1, and thus, we use numbers 0, . . . ,9. If there’s no ball in part i, then no label
i− 1 will be assigned to any ball. After we had chosen the separator balls, and labeled the other n balls, reading the
labels from left to right we get a number whose digits are in non-decreasing order. It is easy to see that the number of
ways we can choose the 9 separator balls among the n+9 ones is (n+9

9

)
=
(n+9

n

)
, and among them, there are (n+9

n

)
−1 positive

ones.

Exercise 6.46. How many ways can four distinct dice be rolled so that they sum to 10?

Proof. For each die, the ordinary generating function is

x+ x2 + x3 + x4 + x5 + x6 = x(1+ x+ x2 + x3 + x4 + x5) = x(1−x6)
1−x
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The answer is the coefficient of x10 in
(

x(1−x6)
1−x

)4
, which is the same as the coefficient of x6 in

(
1−x6

1−x

)4
. This generating

function is equal to
(1−4x6 +6x12−4x18 + x24)(1− x)−4

The coefficient of x6 in this is the coefficient of x6 in (1− x)−4, minus four times the constant term of (1− x)−4. The
answer is therefore (4+6−1

6

)
−4
(4+0−1

0

)
=

(9
6

)
−4
(3

0

)
= 80

Exercise 6.47. Show the following identities by combinatorial interpretation:

n

∑
i=1

i
(

n
i

)2

= n
(

2n−1
n−1

)
(6.8)

n−k

∑
r=k

(
r
k

)(
n− r

k

)
=

(
n+1
2k+1

)
(6.9)

S(n+1,m+1) =
n

∑
k=m

(
n
k

)
S(k,m) (6.10)

(Where S(·, ·) represents the Stirling number of the second kind).

Proof. Suppose we have 2n distinct objects, split evenly between two bins. The right hand side counts the number
of ways we can select a single object from the first bin, and then divide the remaining objects into two groups of size
n−1 and n. The left hand side counts the same quantity when viewed in the following way. For some 1≤ i≤ n, pick
i objects from the first bin, and n− i objects from the second bin. From among the i objects chosen from the first bin,
pick the single element. The remaining (i−1)+(n− i) objects chosen are the set of n−1, and the 2n−n objects not
chosen are the set of n.

The right hand side counts the number of ways we can select an odd number of objects (2k+1) from a set of n+1
distinct objects. The left hand side counts the same quantity when viewed in the following way. Suppose the n+ 1
objects are ordered. To pick the 2k+ 1, consider separately the various possibilities for the “middle” element of the
2k+1. This object must be at least the k+1’st and at most the n+1−k’th (since it must be preceded by and followed
by k or more objects). If the middle object is at position i, the number of ways the remaining objects can be completed
is
(i−1

k

)
(pick the first half) times

(n−i
k

)
(pick the second half). This is what is counted on the left hand side (where r is

actually the position before the one of the middle element selected).
The Stirling number S(n+1,m+1) counts the number of ways that n+1 distinct objects may be placed in m+1

indistinct bins, with at least one object per bin. Consider the bin in which object 1 is placed. There must be at least m
objects not placed in this bin (since the other bins cannot be empty), and at most n (since that’s how may other objects
there are). Once we know how many objects are not placed in the same bin as 1, we may reduce the quantity to the
number of ways we may chose those (k) objects, times the number of ways we may place those remaining objects in
the remaining m bins with at least one object per bin. This is what is counted on the right hand side.

Exercise 6.48. Find a closed form expression for

n

∑
i=0

i

∑
j=0

2i2 j
(

n
i

)(
i
j

)

Using calculus and generating functions, determine the value of the sum(
n
1

)
+2
(

n
2

)
+3
(

n
3

)
+ . . .+n

(
n
n

)
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Proof. We show the answer is 7n by applying the binomial theorem backwards.
n

∑
i=0

i

∑
j=0

2i2 j
(

n
i

)(
i
j

)
=

n

∑
i=0

2i
(

n
i

) i

∑
j=0

2 j
(

i
j

)
=

n

∑
i=0

2i
(

n
i

)
(1+2)i

=
n

∑
i=0

6i
(

n
i

)
= (1+6)n

Exercise 6.49. Using calculus and generating functions, determine the value of the sum(
n
1

)
+2
(

n
2

)
+3
(

n
3

)
+ . . .+n

(
n
n

)
Proof.

f (x) = 1+
(

n
1

)
x+
(

n
2

)
x2 +

(
n
3

)
x3 + . . .+

(
n
n

)
xn

observe that

f ′(x) =

(
n
1

)
+2
(

n
2

)
x+3

(
n
3

)
x2 + . . .+n

(
n
n

)
xn−1

The answer is therefore f ′(1). But f (x) is simply (1+ x)n, so f ′(x) is n(1+ x)n−1. Thus the answer is n2n−1.

Exercise 6.50. Find a closed form expression for the ordinary generating function ∑
∞
n=0 αnxn, where

αn = ∑
k≥0

(
k

n− k

)
(Assume

(r
s

)
is 0 if s > r or s < 0).

Proof. If f (x) is the generating function ∑
∞
n=0 αnxn, then

f (x) =
∞

∑
n=0

∑
k≥0

(
k

n− k

)
xn

= ∑
k≥0

∞

∑
n=0

(
k

n− k

)
xn

= ∑
k≥0

xk
∞

∑
n=0

(
k

n− k

)
xn−k

= ∑
k≥0

xk
2k

∑
n=k

(
k

n− k

)
xn−k

= ∑
k≥0

xk(1+ x)k

= ∑
k≥0

(x+ x2)k

=
1

1− x− x2
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Exercise 6.51. Solve the following recurrence relation:

an = an−1 ·an−2 , where a1 = 2, and a2 = 4.

Proof. We take the logarithms base 2 of both sides. We thus have: lgan = lgan−1 + lgan−2. We then substitute
bn = lgan. Then the given recurrence becomes bn = bn−1+bn−2, where b1 = lga1 = lg2 = 1 and b2 = lga2 = lg4 = 2.
This is just the Fibonacci recurrence. Let fn be the n-th term of the Fibonacci recurrence. Then an = 2 fn .

Exercise 6.52. a) Solve the following recurrence relation:

an−7 an−1 +16 an−2−12 an−3 = 0, where a0 = 2, a1 = 7, a2 = 21.

b) Use some of the results of part (a) to solve the following recurrence relation:

an−7 an−1 +16 an−2−12 an−3 = 4n−1, where a0 = 2, a1 = 7, a2 = 35.

Proof. noindent a) The characteristic equation of the recurrence relation is x3−7x2+16x−12 = 0, which has 3 roots,
x1,2 = 2 (double root), and x3 = 3. Therefore the general solution of the recurrence is:

an = A2n +Bn2n +C3n (1)
We substitute the initial conditions to (1) and solving a system of 3 equations on 3 unknows we easily find that

A = B =C = 1, therefore the solution to the recurrence is an = (n+1)2n +3n.
b) We examine first the general solution agen

n of the homogeneous recurrence, that is: an−7an−1 +16an−2−12an−3 =
0. This is identical to the one of part (a), i.e., agen

n = A2n +Bn2n +C3n. We then find a partial solution of the non-
homogeneous, that is:

an−7an−1 +16an−2−12an−3 = 4n−1 (2)
We fist try as a solution the apar

n = c4n, c a constant, to be computed by replacing an in (2) by apar
n . Substituting

that way in (2) and solving with respect to c we get that c = 4. Therefore, apar
n = 4 ·4n = 4n+1. We sum the two partial

results to find the general solution of the original recurrence relation:

an = agen
n +apar

n = A2n +Bn2n +C3n +4n+1

Now and only now can we apply the initial conditions. We get a system of 3 equations with 3 unknowns that gives as
a solution the A =C =−1, B =−2, and thus an = (−1−2n)2n−3n +4n+1.

Exercise 6.53. A coin is tossed 2n times. How many of the 22n possible outcomes have the number of heads and tails
equalized for the first time after 2n tosses?
a) Find the answer by relating this problem to the Catalan numbers.
b) Give a second proof using combinatorial interpretation arguments (DO NOT use generating functions or recur-
rences).

Proof. a) The first question is easy. Let the two outcomes of a coin toss be H and T . Suppose that the outcome of
the first coin toss is H. Then, we replace each H by a ( and each T by a ) and the connection to Catalan numbers is
straightforward. If the first outcome is T , then we replace each T by a ( and each H by a ). Therefore, the result is the
sum of these two cases, i.e. twice the n-th Catalan number.
b) We prove the result here by counting the number of ways we can move on the integer grid in some way. The
integer grid is the real plane where we are only allowed to make either a (x,y)→ (x+ 1,y+ 1), (a +) move, or a
(x,y)→ (x+1,y−1), (a −) move, where x,y are integers in both cases.

Question. What is the number of paths we can traverse from (0,0) to (n,m) (n≥ m > 0) using +/− moves?
Answer. Let each + move be represented by an 1 and each − move by a −1. Then we are counting the number of

solutions to the equation x1 + . . .+ xn = m, where xi ∈ {−1,+1} ∀i. If p is the number of +1’s and q the number of
−1’s we get that we must have p+q = n and p−q = m. If we solve this system we get p = (n+m)/2, q = (n−m)/2,
and the number of ways we can go from (0,0) to (n,m) thru + or − moves is simply

(n
p

)
=
(n

q

)
(choose p 1’s among

the n choices and let the other n− p = q choices be −1’s). It is easy to generalize this result for any starting (say
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138 CHAPTER 6. COUNTING

(a,b)) and final position (say (m,n)) (by finding the number of solutions in {−1,1} of an appropriate equation such
as x1 + . . .+ xm−a = n−b).

Question. What is the number of paths we can traverse from (0,0) to (2n,0) by moves that lie only on the first
quadrant (that is positive x and y coordinates) without touching the x-axis?

Answer. Let us call this number Q. Q is equal to the number of such paths from (1,1) to (2n− 1,1) since the
first move must be a + one, and the last move must be a − one, otherwise we leave the first quadrant. Q is also
the number of paths Q1 we can go from (1,1) to (2n− 1,1) unconditionally (that is we may touch or not the x-axis)
minus the number of such paths Q2, that always touch the x-axis. Q1 can be found from the earlier question , and it
is Q1 =

(2n−2
n−1

)
. Let’s now try to find the number of paths that meet or cross the x-axis (that is Q2). Let us consider

such a path P from (1,1) to (2n− 1,1), and let it touch the x-axis for the first time at point (r,0). Let P1 be the
part of P between (1,1) and (r,0) and P2 the part between (r,0) and (2n− 1,1). We reflect P1 with respect to the
x-axis so that point (1,1) maps to (1,−1) while (r,0) remains fixed. P1 thus maps uniquely to a path of the fourth
quadrant(positive x, negative y), call it P′1. This path concatenated with P2 gives a pathfrom (1,−1) to (2n−1,1) that
is in 1-1 correspondence with P and crosses the x-axis. So, the number of paths Q2 that touch or cross the x axis is just
the number of all paths from (1,−1) to (2n−1,1), which is, from the earlier question , equal to

(2n−2
n

)
. Subtracting,

we get:

Q = Q1−Q2 =

(
2n−2
n−1

)
−
(

2n−2
n

)
=

(2n−2)!
(n−1)!(n−1)!

− n−1
n

(2n−2)!
(n−1)!(n−1)!

=
1
n

(
2n−2
n−1

)
We map every H outcome of the toin coss to a + move, and every T to a − move. Then Q above counts all outcomes
in which the number of heads equalizes the number of tails for the first time after 2n tosses AND the first coin toss
is a H. We must add to this the number of such outcomes when the fist coin toss is a T . We only then need to count
the number of ways one can go from (0,0) to (2n,0) by +/− moves with out leaving the fourth quadrant and without
touching the x-axis, which, by symmetry from the latter question, is also Q. 2Q is thus the answer to the problem.

Exercise 6.54. By a pile of coins we mean an arrangement of n coins in rows such that (see also attached figure):
(i) the coins in the first row form a single contiguous block,
(ii) in each higher row each coin touches exactly two coins from the row beneath it,
(iii) and every row consists of a single contiguous block of coins.
Let fk be the number of piles that have a first row consisting of exactly k coins.
a) Show that:

fk =
k−1

∑
j=1

(k− j) f j + 1, (k = 1,2, . . .) and f0 = 1.

Proof. a) If the first row consists of k coins, we can place on top of it any number of j coins, where 1 ≤ j ≤ k− 1.
We can place j coins in j− k ways on top of the first row (because there are so many slots the leftmost coin of a
contiguous block of j coins can occupy). As soon as we place j coins in row 2, we can place on top of this row coins
in f j different ways (inductively). If j = 0 (no coins are placed) we get one configuration, which consists of one row
only. Therefore, we get the recurrence (we take f0 = 1 as a convention to denote the empty arrangement):

fk =
k−1

∑
j=1

(k− j) f j +1 =
k

∑
j=1

(k− j) f j +1 = (
k

∑
j=0

(k− j) f j)− k f0 +1 = (
k

∑
j=0

(k− j) f j)− k+1

b) We will now find the o.g.f of f j. We multiply both sides of it by xk and sum for all values of k from 1 to ∞:

∞

∑
k=1

fkxk =
∞

∑
k=1

((
k

∑
j=0

(k− j) f j)− k f0 +1)xk⇒ F(x)−1 =
∞

∑
k=1

k

∑
j=0

(k− j) f j−
∞

∑
k=1

kxk +
∞

∑
k=1

xk

where, F(x) = ∑
∞
i=0 fixi and we know that ∑

∞
j=0 jx j = x/(1− x)2, and f0 = 1. The double sum is just the product of

the o.g.f. of the sequence j, j ≥ 0 and the sequence f j, j ≥ 0 (from the multiplication rule of o.g.f.) and thus:

F(x) = (x/(1− x)2)F(x)− x/(1− x)2 +1/(1− x)⇒ F(x) =
1−2x

x2−3x+1
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6.10. EXERCISES 139

Exercise 6.55. A derangement of n numbers is a permutation of them that has no fixed points. For example for n = 3
and numbers {1,2,3} the permutation σ , σ(1) = 2,σ(2) = 3,σ(3) = 1 is a derangement, while the permutation τ ,
τ(1) = 2,τ(2) = 1,τ(3) = 3 is not a derangement, since 3 is a fixed point. Let Dn denote the number of derangements
of n numbers. Let D(x) be the exponential generating function of Dn.
a) Show that:

n! = ∑
k

(
n
k

)
Dn−k , ( n≥ 0 )

b) Show that D(x) = e−x

1−x , and hence deduce that:

Dn = n! (1− 1
1!

+
1
2!
− . . .+(−1)n 1

n!
)

Proof. a) The number of permutation over n numbers is just n!. We count this number by counting all permutations
that have exactly k fixed points, for every k = 0, . . . ,n, and then we sum up all such counts. Suppose k specific numbers
will be fixed points in a permutation. Then the other n−k numbers must form a derangement on n−k numbers in this
permutation, to have only k fixed points in it. We can choose the k fixed points in

(n
k

)
ways and for each such choice

we have Dn−k derangements on the other n− k numbers. Thus we get: n! = ∑
n
k=0
(n

k

)
Dn−k.

b) We now multiply both sides of the previous equation by xn/n!, and summing for all values of n we get:

∞

∑
n=0

n!
xn

n!
=

∞

∑
n=0

n

∑
k=0

(
n
k

)
Dn−k ·1k · x

n

n!

The left hand side is just 1/(1− x), while the right hand side (from the formula that gives the coefficient of xn/n! of
the product of two e.g.f.’s) is just ex (this is the e.g.f. of the sequence ai = 1,∀i ) times D(x), the e.g.f of Dn. Thus
1/(1− x) = exD(x), and D(x) = e−x/(1− x).

On a separate note, suppose that the sequence fn,n ≥ 0 has o.g.f F(x). Then F(x)/(1− x) is the o.g.f. of the
sequence ∑

n
i=0 fi, n≥ 0. The proof is straightforward from the fact that F(x)/(1−x) = ( f0 + f1x+ f2x2 + . . .)(1+x+

x2 + . . .). We also note that the coefficient of xn/n! in e−x/(1− x) is n! times the coefficient of xn in e−x/(1− x).
Since D(x) = e−x/(1− x), then the coefficient of xn in D(x) is just (from the result of the previous paragraph)

∑
n
i=0(−1)i/i!. Therefore the coefficient of xn/n! in D(x) is n! times the previous sum, that is n!(1− 1/1!+ 1/2!−

. . .+(−1)n/n!), as desired.

Exercise 6.56. Suppose a shop has k kinds of postcards and you have n friends. (i) In how many ways can you send
cards so that every friend gets one card? (ii) In how many ways can you send cards so that every friend gets at most
one card? (iii) If you buy one of each kind of card, in how many ways can you send them to friends (a friend may get
no cards, or more than one card)?

Proof. (i) For each of the n friends there are k choices. The answer is kn.
(ii) For each of the n friends there is now one more choice (the possibility of not sending a card). The answer now
becomes (k+1)n.
(iii) For each of the k cards there are n choices. The answer is nk.

Exercise 6.57. In how many ways can one select a set of 2r balls from an urn that contains r identical white balls,
r identical blue balls, 2r identical green balls, and 3r identical red balls? (The solution should be a closed form
expression in r, but don’t worry about purely algebraic simplification).

Proof. The generating function for the white and blue balls is 1+x+ . . .+xr = 1−xr+1

1−x . For the green balls it is 1−x2r+1

1−x ,

and for the red balls it is 1−x3r+1

1−x . Thus the answer is the coefficient of x2r in

(1− xr+1)(1− xr+1)(1− x2r+1)(1− x3r+1)

(1− x)4
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140 CHAPTER 6. COUNTING

We can ignore the effect of higher order terms in the numerator, so this is the same as the coefficient of x2r in

1−2xr+1

(1− x)4

This is the coefficient of x2r in (1− x)−4, minus twice the coefficient of xr−1 in (1− x)−4. This equals(
2r+3

3

)
−2
(

r+2
3

)
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Chapter 7

Asymptotic Comparison of functions

7.1 Limits, Derivatives and Integrals
A refresh on derivatives, limits and integrals.

Fact 7.1 (Limits in computing). In computing limits are used for asymptotic considerations and are for n→∞ i.e. for
asymptotically large values of some integer parameter n. The parameter n is sometimes referred to as problem size
and less often as input size. Derivatives are thus d

dn .

Fact 7.2 (Simple derivatives). For any constant k > 0, we have that

(k)′ = 0,
(

nk
)′

= k ·nk−1, (en)′ = en, (an)′ = an · ln(a), (ln(n))′ =
1
n
,

(2n)′ = 2n · ln(2)≈ 2n, (lg(n))′ ≈ 1
n

Fact 7.3 (Multiplication and Division).

( f (n)g(n))′ = f ′(n)g(n)+ f (n)g′(n),
(

f (n)
g(n)

)′
=

f ′(n)g(n)− f (n)g′(n)
g2(n)

,

Fact 7.4 (Integrals).∫
nkdn = nk+1/(k+1)+c,

∫
(1/n)dn = ln(|n|)+c,

∫
(en)dn = en +c,

∫
(an)dn = an/ ln(a)+c,

Fact 7.5 (Limits). For any constant k > 0,

lim
n→∞

n = ∞, lim
n→∞

n lgn = ∞, lim
n→∞

nk = ∞, lim
n→∞

lgn = ∞, lim
n→∞

2n = ∞

Fact 7.6.

lim
n→∞

(a/b)n =


0 a < b
1 a == b
∞ a > b

141



DRAFT. C
op

yri
gh

t (
c)

20
21

-20
24

.

Alex
. Gerb

ess
iot

is.

All r
igh

ts
res

erv
ed

Not
to

be
po

ste
d on

lin
e

or
on

the
web

or
to

be

mad
e av

ail
ab

le
ou

tsi
de

of

co
py

rig
ht

ho
lde

r’s
web

-pa
ge

142 CHAPTER 7. ASYMPTOTIC COMPARISON OF FUNCTIONS

Fact 7.7.
lim
n→∞

2n

n!
= 0

Exercise 7.1 (L’Hospital). For infinite limits, if L’Hospital is to be applied, constants from base conversions are less
of an issue and can be ignored without affecting the end result. Thus in the third equality do not spend time thinking
of whether 1/n must be multiplied with ln2 or divided by ln2 or something else.

lim
n→∞

n lgn
n2 = lim

n→∞

lgn
n

= lim
n→∞

(lgn)′

(n)′
= lim

n→∞

(1/n)
1

= 0

Fact 7.8.
(a) In general nk > lgl n for any positive constant k, l and large enough n.
(b) 2n > nk for any positive constant k and large enough n.
(c) n! > nk for any constant k and large enough n.
(d) Stirling’s formula: n! ≈ (n/e)n

√
2πn for large enough n. Sometimes we use only n! ≈ (n/e)n to derive that

lg(n!)≈ n lgn−n lge.

7.2 Growth of functions: asymptotic notation
The analysis of the performance of algorithms is done for large problem sizes and this is known as asymptotic analysis.
If problem size is n and if the performance measure is running time T (n), asymptotic analysis is considering the
running time asymptotically for large n, in other words, as n→ ∞. This analysis derives the asymptotic growth of the
running time. Note that problem size n is a non-negative integer. The discussion below however can extend to the
domain of positive real numbers.

Deriving the asymptotic growth of T (n) is equivalent to identifying the dominant function term in T (n). Thus for
example, if T (n) is such that T (n) = 2n3 + 1000n2 + 10000, we care only that T (n) has a cubic growth contributed
by the n3 term. The multiplicative constant two is irrelevant as both 2n3 and n3 are cubic functions. The remaining
terms are asmptotically negligible since n2 indicates quadratice growth (and so does 1000n2) and 1 (or 10000) indicate
constant growth. Another way to think of this is by considering lim2n3/1000n2 or lim2n3/10000 for n→ ∞: 2n3 is
asymptotically larger than 1000n2 and 10000 since the two indicated limits are infinity. A compact way to express
this is by using appropriate asymptotic notation that “hides” lower order terms but also multiplicative constants in
the dominant term. In Mathematics we could have used the notation T (n) ≈ n3 which is equivalent to saying that
limn→∞ T (n)/n3 = 1. We are going to propose a more elegant approach.

Moreover establishing the asymptotic performance of one or more algorithms, performance comparison becomes
more intricate. When we compare the performance of two algorithms, we have available through asymptotic analysis
only their asymptotic performance. Thus we perform an asymptotic comparison rather than a regular comparison of
their performance.

Thus two algorithms, one with T1(n) = 2n3+1000n2+10000 and the other T2(n) = n3 are to be declared as having
the same asymptotic performance. Their running time are asymptotically equal even if T1(n) > T2(n) for all n > 0.
This is because T1(n), T2(n) are both cubic functions.

The “best algorithm” becomes “the asymptotically best algorithm” or the “algorithm with the best asymptotic
performance”. And we prefer to use the term efficient for best. And efficient might be further refined to time efficient
if T (n) is to be used for asymptotic comparison, or space efficient if S(n) is to be used, or even comparison efficient
if we talk about a comparison-based algorithm and C(n) is known. Moreover with asymptotic efficiency one needs to
be aware of its limitations (not limits). For example if we say a person A is of height at most 6ft and a person B is of
height at most 7ft, it might be wrong to concluce B is taller than A. It might be the case that B is 5ft10in and A 5ft11in.

We introduce asymptotic notation that we will use to describe and compare the asymptotic performance of algo-
rithms. We do this on the understanding that exact comparison of two algorithms is usually futile. In practice, compiler
settings, cpu architectures, including memory speed and memory hierarchies (L1, L2, L3 caches) might misclassify
the relative performance of two algorithms.
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7.2. GROWTH OF FUNCTIONS: ASYMPTOTIC NOTATION 143

For the previous example we will use the notation T1(n) = Θ(n3) or T2(n) = Θ(n3) to denote that the two functions
are cubic. Sometimes we may even write T1(n) ∈ Θ(n3) or T2(n) ∈ Θ(n3). This is a more elegant way, and after
definition, more complete way, to denote T1(n)≈ n3. This can be read as “the order of growth of T1(n) is n3”, or “the
order of growth of T1(n) is cubic”. It should never be read literally however that “T1(n) is equal to n3” : this is plainly
wrong. Moreover the alternative writing that uses ∈ can also be read “T1(n) belongs to the set of cubic functions”,
which is the same as saying “the order of growth of T1(n) is cubic”.
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144 CHAPTER 7. ASYMPTOTIC COMPARISON OF FUNCTIONS

7.3 Asymptotic Comparison: An informal approach
Fact 7.9 (Comparison vs Asymptotic comparison). When we compare two functions f (n) and g(n) we directly
compare them using <,> etc. When we asymptotically compare two functions f (n) and g(n) we take the limit of
limn→∞ f (n)/g(n) and then we use the asymptotic symbols o,ω,Θ depending on whether the limit is 0,∞ or some
non-zero (and positive) constant.

Formally, an asymptotic comparison of functions involves limits.

Definition 7.1 (Formal Approach for asymptotic comparison of functions). In order to compare asymptotically two
functions f (n) and g(n) we consider the limit limn→∞ f (n)/g(n) for n→ ∞.

Informally, an asymptotic comparison of function WILL NEVER involve a calculator to determine what if n = 1
or n = 2 or etc n = 10.

Definition 7.2 (Informal Approach for asymptotic comparison of functions). In order to informally compare asymp-
totically two functions f (n) and g(n) we eliminate from both function all low-order terms, and turn multiplicative
constants into one and then compare the leftovers F(n) and G(n) of f (n) and g(n). Note that then a careful conclu-
sion needs to be drawn!

Example 7.1 (Asymptotic comparison of functions: a no-limit informal approach). A ”naive way” to asymptotically
compare two functions f (n),g(n) involves eliminating low-order terms and multiplicative constant terms. The left-
overs F(n) and G(n) are then directly compared using < or > or = or ≤ and ≥. A direct comparison of the F(n)
and G(n) does not imply a same-like comparison for f (n) and g(n). Only an asymptotic comparison is then possible
for f (n),g(n). Therefore special symbols are introduced as asymptotic equivalents to <,>,=,≤,≥ to establish the
relationship between f (n),g(n). These are o,ω,Θ,O,Ω respectively.

S0. Start with f (n), g(n) f (n) = 256n2 +20n+3 : g(n) = 128n2−3
S1. Eliminate low order terms first 256n2 +20n : 128n2

and go on leaving significant term 256n2 : 128n2

S2. Multiplicative constants become 1 1 ·n2 : 1 ·n2

S3. Leftovers are F(n), G(n) F(n) = n2 : G(n) = n2

S4. Compare directly F(n) : G(n) F(n)(= 1 ·n2) = G(n)(= 1 ·n2)
S5. Find Column 2 symbol for F:G F(n) = G(n)
S6. Obtain Column 1 symbol for f:g f (n) = Θ(g(n))
S6. Alternative formulation f (n) ∈ Θ(g(n))

to derive the f (n),g(n) relationship

AsymptoticComparison DirectComparison
Column1 Column2

f (n) : g(n) F(n) : G(n)

Θ =

O ≤
Ω ≥
o <

ω >

We then conclude that f (n) = Θ(g(n)) and equivalently in this case, g(n) = Θ( f (n)). We may also write (few books
use this alternate notation), f (n) ∈Θ(g(n)) and equivalently in this case, g(n) ∈Θ( f (n)).

One way or the other f (n) has the asymptotic growth of g(n) i.e. they both have the same asymptotic growth i.e.
they are asymptotically equal.
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7.4. ASYMPTOTIC NOTATION: WRITING THE SYMBOLS 145

If function f (n) and g(n) are such that f (n) = g(n) for all n, we say function f (n) is equal to function g(n).
However if f (n) = Θ(g(n)) this only means that F(n) = G(n). The function f (n),g(n) may or may not be equal

to each other. The example above indicates two such functions.

7.4 Asymptotic notation: writing the symbols
Definition 7.3 (Asymptotic notation Symbols). For positive or non-negative funtions f (n) and g(n) that depend on an
integer variable n, we shall introduce symbols to denote asymptotically smaller, asymptotically at most (no greater),
asymptotically larger, asymptotically at least (no smaller), and asymptotically equal respectively.

• o (little oh),

• O (big oh),

• ω (little omega),

• Ω (big omega), and

• Θ (big theta, or plain theta)

Definition 7.4 (Writing). We would write
f (n) =?(g(n)),

where ? is one of o,O,ω,Ω,θ to indicate the relationship between f (n) and g(n).

An alternative writing is f (n) ∈?(g(n)).

Definition 7.5 (Alternative Writing). We would write

f (n) ∈?(g(n)),

where ? is one of o,O,ω,Ω,θ to indicate the relationship between f (n) and g(n).

The ?(g(n)) denotes a set of functions. It is accurately reflected by the use of f (n) ∈?(g(n)). We ”abuse it” by
writing f (n) =?(g(n)) instead. Then the relationship f (n) =?(g(n)), becomes also a set-membership relationship. It
should be borne in mind that the left hand side of = is a function and the right hand side is a set of functions.

Remark 7.1. Never use a ≤ or ≥ nor 6=. Thus T (n)≤Θ(n) is NONSENSE.

Remark 7.2. Never write a Θ(g(n)) = f (n) since it is meaningless and wrong! The notation f (n)≥ Θ(g(n)) is also
meaningless and wrong (see previous remark)!

Remark 7.3. A T (n) 6∈ Θ(n) would mean that T (n) does not have linear growth, whereas a T (n) ∈ Θ(n) means that
T (n) has linear growth, belongs to the set of linear functions and thus is a linear function itself.

Remark 7.4. If we write Θ( f (n)) = Θ(g(n)), this is to mean that no matter how we choose a function on the left
hand side, there is a way to choose a function on the right hand side to make equality to hold.

In other words, the two sets are equal.

Definition 7.6 (Meaning of Θ). What does f (n) = Θ(g(n)) mean? It means that the two functions have the same
growth or f (n) is asymptotically equal to g(n) or g(n) is asymptotically equal to f (n), or f (n) belongs to the set of
functions that have the same growth as g(n).

Definition 7.7 (Meaning of O). What does f (n) = O(g(n)) mean? It means that the growth of f (n) is no more than
the growth of g(n) (or abusing notation that f (n) is asymptotically at most no greater than g(n)).
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146 CHAPTER 7. ASYMPTOTIC COMPARISON OF FUNCTIONS

IT DOES NOT NECESSARILY MEAN that f (n)≤ g(n). For example for f (n) = 10n and g(n) = n we have the
same growth i.e. 10n = O(n), even if 10n≥ n. It is also n = O(10n). And in fact f (n) = Θ(g(n))!

Definition 7.8 (Meaning of Ω). What does f (n) = Ω(g(n)) mean? It means that the growth of f (n) is greater than
(faster) or equal to the growth of g(n), or that f (n) is asymptotically at least (no smaller) than g(n).

IT DOES NOT NECESSARILY MEAN that f (n) ≥ g(n). For example f (n) = n and g(n) = 10n have the same
growth i.e. n = Ω(10n), even if n≤ 10n.

Definition 7.9 (Meaning of o). What does f (n) = o(g(n)) mean? It means that the growth of f (n) is slower than the
growth of g(n) or f (n) is asymptotically smaller than g(n). (It also means that the growth of g(n) is faster than the
growth of f (n) or g(n) is asymptotically larger than f (n).)

Definition 7.10 (Meaning of ω). What does f (n) = ω(g(n)) mean? It means the growth of f (n) is faster than the
growth of g(n) or f (n) is asymptotically larger than g(n). (Likewise as above for the other direction.)

A formal definition for O and Ω and Θ is given on the next page. This reminds you of the formal definition of a
limit. In fact the formal definitions of o and ω on the following page use limits for large enough n i.e. as n→ ∞.
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7.5. ASYMPTOTIC COMPARISON: THE FORMAL APPROACH 147

7.5 Asymptotic Comparison: The Formal Approach

Definition 7.11 (Θ definition). Let f (n) and g(n) be asymptotically non-negative functions. For a function g(n) we
denote by Θ(g(n)) the set of all functions f (n) that have the following property. There exist positive constant c1,c2,n0
such that

0≤ c1g(n)≤ f (n)≤ c2g(n)

for all n≥ n0. For a function f (n) that satisfies this property we write

f (n) = Θ(g(n))

or equivalently
f (n) ∈Θ(g(n)).

We read this by saying that function f (n) has the asymptotic growth of g(n) or that f (n) is asymptotically equal to
g(n).

Definition 7.12 (Ω definition). Let f (n) and g(n) be asymptotically non-negative functions. For a function g(n) we
denote by Ω(g(n)) the set of all functions f (n) that have the following property. There exist positive constant c1,n0
such that

0≤ c1g(n)≤ f (n)

for all n≥ n0. For a function f (n) that satisfies this property we write

f (n) = Ω(g(n))

or equivalently
f (n) ∈Ω(g(n)).

We read this by saying that function f (n) has at least the asymptotic growth of g(n).

Definition 7.13 (O definition). Let f (n) and g(n) be asymptotically non-negative functions. For a function g(n) we
denote by O(g(n)) the set of all functions f (n) that have the following property. There exist positive constant c2,n0
such that

0≤ f (n)≤ c2g(n)

for all n≥ n0. For a function f (n) that satisfies this property we write

f (n) = O(g(n))

or equivalently
f (n) ∈ O(g(n)).

We read this by saying that function f (n) has at most the asymptotic growth of g(n).

We can also say respectively that g(n) is an asymptotic tight bound, is an asymptotic lower bound, and is an
asymptotic upper bound of f (n) respectively.
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148 CHAPTER 7. ASYMPTOTIC COMPARISON OF FUNCTIONS

Definition 7.14 (o definition). Let f (n) and g(n) be asymptotically non-negative functions. We write

f (n) = o(g(n))

or equivalently
f (n) ∈ o(g(n)).

if and only if

lim
n→∞

f (n)
g(n)

= 0.

We then say that f (n) is asymptotically smaller than g(n) or the asymptotic growth of f (n) is smaller (slower) than
the asymptotic growth of g(n).

Definition 7.15 (ω definition). Let f (n) and g(n) be asymptotically non-negative functions. We write

f (n) = ω(g(n))

or equivalently
f (n) ∈ ω(g(n)).

if and only if

lim
n→∞

f (n)
g(n)

= ∞.

We then say that f (n) is asymptotically larger than g(n) or the asymptotic growth of f (n) is greater (faster) than the
asymptotic growth of g(n).

We can then provide an alternative definition for Θ.

Definition 7.16 (Θ alternative definition). Let f (n) and g(n) be asymptotically non-negative functions. We write

f (n) = Θ(g(n))

or equivalently
f (n) ∈Θ(g(n)).

if and only if

lim
n→∞

f (n)
g(n)

= c,

where c is a non-zero positive constant. We then say that f (n) is asymptotically equal to g(n) or the asymptotic growth
of f (n) is equal to the asymptotic growth of g(n).
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7.5. ASYMPTOTIC COMPARISON: THE FORMAL APPROACH 149

7.5.1 Asymptotic comparison: In 10 lines
Two functions f (n) and g(n) are formally asymptotically compared as follows.

Definition 7.17 (Quick o,ω,Θ). In order to asymptotically compare two non-negative functions f (n) and g(n) with
the three symbols o,ω,Θ, we first find the limit limn→∞

f (n)
g(n) and then determine which case is applicable as follows.

(c is a positive constant).

lim
n→∞

f (n)
g(n)

=

 0 ⇒ f (n) = o(g(n))
∞ ⇒ f (n) = ω(g(n))
c 6= 0 ⇒ f (n) = Θ(g(n))

Corollary 7.1 (o⇒ O implication). If f (n) = o(g(n)), then f (n) = O(g(n)).

Corollary 7.2 (ω ⇒Ω implication). If f (n) = ω(g(n)), then f (n) = Ω(g(n)).

Corollary 7.3 (Θ⇔Ω
∧

O). f (n) = Θ(g(n)), if and only if f (n) = Ω(g(n)) and f (n) = O(g(n)).

7.5.2 Bare definitions

Definition 7.18 (Little-oh). f (n) = o(g(n)), iff limn→∞
f (n)
g(n) = 0.

Definition 7.19 (Little-omega). f (n) = ω(g(n)), iff limn→∞
f (n)
g(n) = ∞.

Definition 7.20 (Big-Oh). f (n) = O(g(n)) iff ∃ positive constants c2,n0 : 0≤ f (n)≤ c2g(n) ∀ n≥ n0.

Corollary 7.4 (Big-Oh: If little-oh then Big-Oh.). If f (n) = o(g(n)), then f (n) = O(g(n)).

Definition 7.21 (Big-Omega). f (n) = Ω(g(n)) iff ∃ positive constants c1,n0 : 0≤ c1g(n)≤ f (n) ∀ n≥ n0.

Corollary 7.5 (Big-Omega: If little-omega then Big-Omega.). If f (n) = ω(g(n)), then f (n) = Ω(g(n)).

Definition 7.22 (Theta ). f (n) = Θ(g(n)) iff ∃ positive constants c1,c2,n0 : 0≤ c1g(n)≤ f (n)≤ c2g(n) ∀ n≥ n0.

Definition 7.23 (Theta –Limit definition). f (n) = Θ(g(n)), iff limn→∞
f (n)
g(n) = c, where c > 0 is a (positive) constant

(and other than zero).

Corollary 7.6 (Theta: Big-Oh and Big-Omega if-and-onlyif Theta.). f (n) = Θ(g(n)), iff f (n) = Ω(g(n)) and
f (n) = O(g(n)).

7.5.3 Corollaries
The corollaries below restate the definitions.

Corollary 7.7. We have f (n) = o(g(n)) if and only if f (n) = O(g(n)), and f (n) 6∈Ω(g(n)). (There is no way we can
write f (n) 6= Ω(g(n)) without violating what we have clearly stated earlier.)

Corollary 7.8. We have f (n) = ω(g(n)) if and only if f (n) = Ω(g(n)), and f (n) 6∈ O(g(n)).
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150 CHAPTER 7. ASYMPTOTIC COMPARISON OF FUNCTIONS

Corollary 7.9 (Antisymmetry). We have f (n) = o(g(n)) if and only if g(n) = ω( f (n)).

Corollary 7.10 (Antisymmetry). We have f (n) = O(g(n)) if and only if g(n) = Ω( f (n)).

Corollary 7.11. We have f (n) = Θ(g(n)) if and only if f (n) = O(g(n)) and g(n) = O( f (n)).

Corollary 7.12. Let limn→∞ f (n)/g(n) exists. f (n)=O(g(n)) if and only if limn→∞ f (n)/g(n)≤ c for positive constant
c.

Corollary 7.13. Let limn→∞ g(n)/ f (n) exists. f (n) = Ω(g(n)) if and only if limn→∞ g(n)/ f (n) ≤ c for positive con-
stant c.

7.6 Running time using asymptotic notation
Let A be an algorithm, and I an input instance of n keys.

Definition 7.24 (Running time of instance I for algorithm A). The running time of algorithm A on an input instance I
of n keys, i.e. of problem size n is denoted by TA(n, I).

Definition 7.25 (WA(n)). The worst-case running time of A is denoted by WA(n) and defined as follows

WA(n) = max
I,|I|=n

{TA(n, I)} .

Definition 7.26 (BA(n)). The best-case running time of A is denoted by BA(n) and defined as follows

BA(n) = min
I,|I|=n

{TA(n, I)} .

Definition 7.27 (TA(n) or T (n)). The running time of algorithm A is denoted TA(n) or T (n) and defined as follows.

TA(n) = T (n) = O(WA(n)).

If WA(n) = Θ(BA(n)), then we can also write,

TA(n) = T (n) = Θ(WA(n)).

Example 7.2. The best-case running time of InsertionSort is attained by a sorted sequence: Thus

TInsSort(n,Sorted) = Θ(n).

Example 7.3. The worst-case running time of InsertionSort is attained by a reverse sorted sequence:

TInsSort(n,ReverseSorted) = Θ(n2).

Example 7.4. The running time bound of InsertionSort is

O(max
I

TInsSort(n, I)) = O(n2).

This is because
max

I
TInsSort(n, I) = Θ(n2)

as the maximum is the running time of a reverse sorted sequence.
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7.7. NOTES AND REMARKS 151

When we say that the running time of InsertionSort is O(n2) we mean that its running time can be Θ(n2) for some
inputs, or anything that is asymptotically smaller than quadratic. This includes Θ( f (n)) for any function f (n) such
that f (n) = O(n2.

The running time of an algorithm is an expression that describes its performance on ANY and EVERY input. Thus
we CANNOT SAY that the running time of InsertionSort is T (n) = Θ(n2) because we know that for some inputs the
running time would be linear that is not Θ(n2) but ”less than” Θ(n2) or equivalently o(n2).

Likewise we CANNOT SAY that the running time of InsertionSort is T (n) = Θ(n) because for a reverse-sorted
sequence the running time would be ”much more than Θ(n) i.e. ω(n) and in fact it would be quadratic i.e. Θ(n2).
The Θ notation is used when we know that the asymptotic best case and worst case running time coincide i.e. for an
algorithm A when WA(n) = Θ(BA(n)).

7.7 Notes and remarks
Fact 7.10 (Large enough means asymptotically large). The expression “for large enough n ” means “there is a
positive constant n0 such that for all n > n0 ”, that is for “asymptotically large values of n”.

Remark 7.5. Normally, the phrase “the running time is O(n2)” is meaningless as the running time is expressed by
a number and a unit of time (e.g. 6 seconds, 10 milliseconds). This expression when used this way in this class means
that the worst-case running time (which is a function of n) is Θ(n2), and by extension, no matter what a particular
input of size n is chosen for each value of n, the running time on that set of input instances is Θ(n2) or smaller, i.e. no
worse than the worst-case running time.

Remark 7.6. A running time of Ω(g(n)) for an algorithm means that no matter what the input of size n is, for each
value of n, the running time of the algorithm will be at least cg(n), for some constant c for large enough n. For example
the running time of insertion-sort is Ω(n). Yet the running time of bubble-sort is Ω(n2).

Fact 7.11 (Polynomial functions). A function nm for any positive constant integer m > 0 is a polynomial in n i.e. a
polynomial function. The linear combination of polynomial functions is also a polynomial function.

Fact 7.12 (Polylogarithmic functions). A function lgm n for any positive constant integer m > 0 means (lgn)m and is
a polylogarithmic function.

Fact 7.13 (Polynomial vs Polylogarithmic). For any positive constant integer k,m > 0 and integer n > 0, we have that
nm > lgk n for large enough n. This means that every polynomial function is asymptotically larger than any logarithmic
function of the same variable n.

Fact 7.14 (Exponential vs Polynomial). For any positive constant integer m and integer n > 0, we have that 2n > nm

for large enough n. This means that every exponential function (base two) is asymptotically larger than any polynomial
function of the same variable n.

The results above are true even for non-integer but positive constant values for k,m. Any such constant value is
bounded between two integer constant values.

Fact 7.15 (Linear, Log-linear, Quadratic, Cubic). A linear functions is n, a quadratic function is n2 and cubic n3. A
log-linear functions is n lgn the product of a linear and a logarithmic function. A linear function is asymptotically
smaller than a log-linear function which is likewise smaller than a quadratic function and likewise (asymptotically)
smaller than a cubic function.

A log-linear function can be considered a polynomial function as n < n lgn < n2 for large enough n. Note also that
n lgn = n1+lg lgn/ lgn.

Fact 7.16.
(a) In general nk > lgl n for any positive constant k, l and large enough n.
(b) 2n > nk for any positive constant k and large enough n.
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152 CHAPTER 7. ASYMPTOTIC COMPARISON OF FUNCTIONS

(c) n! > nk for any constant k and large enough n.
(d) Stirling’s formula: n! ≈ (n/e)n

√
2πn for large enough n. Sometimes we use only n! ≈ (n/e)n to derive that

lg(n!)≈ n lgn−n lge.

Note 7.1 (Set theoretic view of O,o,Θ,ω,Ω). When we say n2 +10 = O(n2) we view O(n2) as the set containing all
quadratic functions. Thus it also contains n2 + 10 which is indeed a quadratic function. Likewise 5 = O(1) means
5 belongs to the set of all constant functions. Some textbooks are using the notation n2 + 10 ∈ O(n2) or 5 ∈ O(1)
instead of using the equal sign. And as a side note, 5 = Θ(1) or 5 ∈ Θ(1) is a better tighter description and so is
n2 +10 = Θ(n2) or n2 +10 ∈Θ(n2).

O(n2) includes not only quadratic functions, but also linear, log-linear, logarithmic and everything else in-between
or asymptotically smaller.

Note 7.2 (Non-commutative use of symbols). Θ(1) = 5 means nothing. The symbols as defined earlier appear always
to the right of the equal = sign. The set theoretic view make it easy to argue that Θ(1) ∈ 5 does not make sense.

Note 7.3 (Tomatoes vs Potatoes or < and O etc). 1 ≤ O(n) is meaningless. One can say 1 = O(n) and this was
properly defined above, or 1 = o(n). Nothing else was defined involving the <,>,≤,≥ and the five letter symbols!

Fact 7.17 (Polynomial vs Polylogarithmic: an asymptotic comparison). Some obvious results (constant m,k > 0):
nm = ω(lgk n). This derives from the fact that in general nm > lgk n for any positive constant m,k and large enough n.

Fact 7.18 (Exponential vs polynomial: an asymptotic comparison). Some obvious results (constant m > 0): 2n =
ω(nm). This derives from the fact that in general 2n > nm for any positive constant m and large enough n.

Fact 7.19 (Factorial). Some obvious results (constant m > 0): n! = ω(nm). This derives from the fact that n! > nm for
any constant m and large enough n.

Fact 7.20 (Log-factorial). Some obvious results (constant k): lg(n!) = Θ(n lgn). Also, a result of Stirling’s approxi-
mation formula for the factorial.
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7.8 Examples and Exercises
Example 7.5. 10 =?(1). Since lim10/1 = 10 as n→ ∞, we have 10 = Θ(1). By Lemma 3 we have 10 = O(1) and
10 = Ω(1) as well.

Example 7.6. n =?(lgn). Since limn/ lgn = lim1/(1/n) = ∞ as n→ ∞, we have n = ω(lgn). By Lemma 2 we have
n = Ω(lgn) as well.

Example 7.7. 2lgn =?(n). Since lim2lgn/n = limn/n = 1 as n→ ∞, we have 2lgn = Θ(n). By Lemma 3 we can also
use O and Ω.

Example 7.8. 2n =?(n). Since lim2n/n = ∞ as n→ ∞, we have 2n = ω(n). By Lemma 2 we have 2n = Ω(n) as well.

Example 7.9. n =?(n3). Since limn/n3 = 0 as n→ ∞, we have n = o(n3). By Lemma 1 we have n = O(n3) as well.

Example 7.10. 2n =?(3n). Since lim2n/3n = 0 as n→ ∞, we have 2n = o(3n). By Lemma 2 we have 2n = O(3n) as
well.

Example 7.11. n lgn=?(lg(n!)). Note that by Stirling’s approximation formula lg(n!)≈ n lgn. Since limn lgn/ lg(n!)=
c > 0 as n→ ∞, and c some constant, we have n lgn = Θ(lg(n!)). By Lemma 3 we have O and Ω as well.

Example 7.12. 2n =?(n2). Since lim2n/n2 = ∞ as n→ ∞, we have 2n = ω(n2). By Lemma 2 we have 2n = Ω(n2) as
well.

Example 7.13. n! =?(2n). Since limn!/2n = ∞ as n→ ∞, we have n! = ω(2n). By Lemma 2 we have n! = Ω(2n) as
well.

Example 7.14 (Asymptotically equal does not mean equal). 5 and 6 as number are not the same, 5 is smaller than
6 i.e. 5 is not equal to 6. But f (n) = 5 and g(n) = 6 means that ’5’ and ’6’ are both constant functions. They are
asymptotically equal as limn→∞ 5/6 is a non-zero constant. Thus functions 5 and 6 are asymptotically equal (and by
functions we mean f (n) = 5 and g(n) = 6).

Example 7.15. Functions 5n and 6n are asymptotically equal. Their limit is 5/6 (or 6/5 the other way around). They
are both linear functions.

Example 7.16. Functions 5n2 and 6n2 are asymptotically equal. Their limit is 5/6 (or 6/5 the other way around). They
are both quadratic functions.

Example 7.17. Function n is asymptoticall larger than 1,000,000,000,000. Their limit is ∞. (It does not matter what
happens if n = 1 or n = 1000 or n = 1,000,000. It only matters what happens for n→ ∞.)

Example 7.18. Which of a0 +a1n+a2n2 +a3n3 and n2 is asymptotically larger, where ai > 0 for all i?

Proof. Consider a0 + a1n+ a2n2 + a3n3. As all ai are positive, then a0 > 0 and a1n > 0 and a2n2 > 0 and thus
a0 +a1n+a2n2 +a3n3 > a3n3.

We now show that our lower bound a3n3 is Ω(n2). As a3 > 0, it is obvious that a3n3 > 1 ·n2 for any n > 1/a3 (note
that a3 > 0 DOES NOT MEAN THAT a3 > 1, as a3 is real and not necessarily an integer).

Therefore for c = 1 and n0 = 1/a3 we have shown that a0 +a1n+a2n2 +a3n3 = Ω(n2).

Exercise 7.2. Which of the two functions is asymptotically larger a0 +a1n+a2n2 +a3n3 or n4, where ai > 0 for all i?

Proof. Hint. When we intend to prove f (n) = O(g(n)), as is the case here, it sometimes helps to find an upper bound
h(n) for f (n) ie one such that f (n)≤ h(n) and then show that h(n) = O(g(n)). Since in a0 +a1n+a2n2 +a3n3 all ai
are positive we take the maximum of all ai and we call it A. Then we have that ai < A for all i. Also, Ani < An3 for
i≤ 3. Then

a0 +a1n+a2n2 +a3n3 ≤ A+An+An2 +An3 ≤ An3 +An3 +An3 +An3 = 4An3

Finally 4An3 ≤ n4 for all n > 4A.
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154 CHAPTER 7. ASYMPTOTIC COMPARISON OF FUNCTIONS

We have shown that
a0 +a1n+a2n2 +a3n3 ≤ 4An3 ≤ 1 ·n4

for all n≥ n0 = 4A, where A is the maximum of a0,a1,a2,a3. As all ai are constant, so is 4A. Therefore the constants
in the O definition are c = 1 and n0 = 4A, where A = max{a0,a1,a2,a3}.

Example 7.19. Show that n2−2n = Θ(n2). We determine POSITIVE CONSTANTS c1,c2,n0 so that for all n≥ n0.

c1n2 ≤ n2−2n≤ c2n2

We separate the O from the Ω part and then combine the two parts.
Part O first. As n2−2n≤ n2 for all n≥ 1, we have shown that n2−2n≤ c2 n2, for c2 = 1 and for all n≥ n1 = 1. This
is equivalent to showing that n2−2n = O(n2) as well.
Part Ω next. As n2/2≤ n2−2n for all n≥ 4, we have shown that c1n2 ≤ n2−2n, for c1 = 1/2 and n≥ n2 = 4. This
is equivalent to showing that n2−2n = Ω(n2) as well.
Combine the two. The n0 in the definition is the largest of n1 and n2 i.e. n0 = 4. Then, for c1 = 1/2, c2 = 1 and for
all n≥ n0 = 4, we have

c1n2 ≤ n2−2n≤ c2n2

Note 7.4. c1 = 1/2, c2 = 1 and n0 = 1000 is also a correct answer to this problem. OUR OBJECTIVE IS TO FIND A
SET OF SATISFYING CONSTANTS not THE BEST SET OF SATISFYING CONSTANTS.

Example 7.20. Since a constant is a degree 0 polynomial any constant c is such that c=Θ(1), c=O(1), and c=Ω(1).

Example 7.21. Show that n3 = ω(n). Since limn3/n = ∞ as n→∞, we have n3 = ω(n). The result can also be proved
as a consequence of n = o(n3).

Example 7.22. Show that n2/ lgn = o(n).

n2/ lgn

n
=

(2lgn)2/ lgn

n
=

22

n
=

4
n
→ 0

Thus n2/ lgn = o(n).

Example 7.23. Show that n! = ω(n). From Stirling approximation formula, n! ≈ (n/e)n. Therefore, n!
n → ∞. Thus

n! = ω(n).

Example 7.24. Show that n3 = Ω(2lgn). We have that 2lgn = n. By an earlier example, we have n3 = ω(n), and thus
n3 = Ω(n).

Example 7.25. Is 2n = 2Θ(n)? Be careful. The Θ is not on the right of the equal size. You are looking for trouble (or
not)! (We sometimes write something similar to this because it is convenient.) Let me rephrase it: Is 2n = Θ(2Θ(n))?
A function g(n) that is Θ(n) for the second Θ is g(n) = 2n. So let me rephrase the question: Is 2n = Θ(22n)? Well
2n/22n→ 0.

Example 7.26. Show that n2−10n+2 = O(n2). We are going to determine for f (n) = n2−10n+2 and g(n) = n2,
that there

∃ positive constants c2,n0 : f (n)≤ c2g(n) ∀ n≥ n0.

Towards this
f (n) = n2−10n+2≤ n2 +0+2≤ n2 +0+2n2 ≤ 3n2

Note that −10n≤ 0 is true for all n≥ 0 and thus for positive n0 and n≥ n0. Moreover 2≤ 2n2 for all n≥ 1 and this
requires n0 ≥ 1.
Conclusion. There exist c2 = 3 and n0 = 1 such that f (n) = n2−10n+2 = O(n2) for all n≥ n0 = 1.
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7.8. EXAMPLES AND EXERCISES 155

Example 7.27. Show that n2−10n+2 = Ω(n2). We are going to determine for f (n) = n2−10n+2 and g(n) = n2,
that there

∃ positive constants c1,n0 : 0≤ c1g(n)≤ f (n) ∀ n≥ n0.

Towards this
1
2

n2 ≤ n2− 1
2

n2 ≤ n2−10n≤ n2−10n+0≤ n2−10n+2.

For n2−10n≥ n2− (1/2)n2 to hold we need n2 ≥ 20n i.e. n≥ 20. Thus n0 ≥ 20; we pick n0 = 20.
Conclusion. There exist c1 = 1/2 and n0 = 20 such that f (n) = n2−10n+2 = Ω(n2) for all n≥ n0 = 20.

We can also show that n2−10n+2 = Θ(n2). This is true for c1 = 1/2 and c2 = 3 and n0 = max{20,1}= 20.

Exercise 7.3. Show that
n

∑
i=1

i2 = Θ(n3).

What are the values of c1,c2 and n0? Justify your answer.

Example 7.28. Use the definitions to show that n5−25n = Θ(n5).

Proof. We show first that n5−25 = O(n5) and then that n5−25 = Ω(n5).

Case a. Show that n5−25 = O(n5).
For all n≥ 1 we have that

n5−25 ≤ n5

Therefore there exist constant n2 = 1 and c2 = 1 such that n5−25≤ c2n5 for all n≥ n2. This proves the claim.
Technique 1. What we use in this proof is the fact that n2 ± An± B is bounded above, for positive A,B, by

n2 +An2 +Bn2 ≤ (1+A+B)n2.

Case b. Show that n5−25 = Ω(n5)
Technique 1 can not be used in this case. The next step is non-trivial. We bound n5−25 from below by n5/2. This

is so as long as

n5−25 ≥ n5/2⇔
n5/2 ≥ 25⇔

n5 ≥ 50⇔
n ≥ 3

We can do this as long as n is not zero; this is true since for all cases we assume that at least n≥ 1. Therefore there
exist constant n1 = 3 and c1 = 1/2 such that n5−25≥ n5/2 for all n≥ n1 = 3. This proves the claim. Note that 3 is
not the best possible constant. We don’t need to find the best possible constant but THE EASIEST POSSIBLE!

In order to show that n5− 25 = Θ(n5) we need to establish c1,c2 and n0. c1 and c2 are 1/2 and 1 respectively.
n0 = max(n1,n2) = 3. For these values the problem is thus shown.

Example 7.29. Show that 1000 = O(1).

Proof. There exists constant c = 2000 such that 1000 ≤ c · 1 = 2000 · 1 = 2000, for all n ≥ 1 = n0. c = 1000 works
also. Be reminded: We don’t need to find the best c or n0.
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156 CHAPTER 7. ASYMPTOTIC COMPARISON OF FUNCTIONS

Exercise 7.4. n=Ω(1), 23lgn =Ω(n2), 1000000=Ω(1), n3 =Ω(n2), n=Ω(n/ lgn), n!=Ω(n1000000), 1=Ω(1000000).
How many of the Ω are also ω?

Exercise 7.5. TRUE or FALSE?

1. lg(n!) = O(n2).

2. n+
√

n = O(n2).

3. n2 +
√

n = O(n2).

4. n3 +2
√

n = O(n2).

5. 1/n3 = O(lgn).

6. n2 sin2(n) = Θ(n2). (sin is the well-known trigonometric function).

Exercise 7.6. Prove the following.

1. (n−10)2 = Θ(n2).

2. n4 +10n3 +100n2 +1890n+98000 = Ω(n4).

3. n4 +10n3 +100n2 +1890n+98000 = Ω(n2).

4. n4−10n3−100n2−1890n+100000 = O(n4).

5. n2−20n−20 = Ω(n).

6. n2 +20n = O(n2).
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Chapter 8

Recurrence relations

8.1 Recurrences

8.1.1 Introduction
For a recursive algorithm like mergesort, its running time is described by a recurrence like the one shown below. We
call it sometimes a recurrence dropping the relation from recurrence relation.

T (n) = T (n/2)+T (n/2)+Θ(n) = 2T (n/2)+Θ(n).

Likewise the number of comparisons in mergesort (upper bound of number of comparisons) is also described by the
following recurrence

C(n) = 2C(n/2)+(n−1) C(1) = 0.

In order to solve the former recurrence we need a boundary condition for the base case of the recurrence. The base
case for the running time of merge-sort is the running time for an input of size 1 or in general, of some small constant
size. In this case, we may assume that T (1) = 1, or T (1) = Θ(1) i.e. the sorting of a one-key sequence takes one step
or constant time. The solution for this recurrence was claimed to be T (n) = Θ(n lgn) (proof by induction or by using
a recursion tree).

Floors and Ceilings. In the recurrence above, we ignored floors and ceilings. When we solve recurrences, we
first remove floors/ceilings, show the claimed bounds and then check whether the existence of floors/ceilings would or
could have made a difference. For the remainder of this course we assume that values like n/2 are always integer, and
so the effect of the removal of floors/ceilings will not be discussed.

Bounday values and Boundary value conditions. For boundary conditions we assume in general that T (k) =
Θ(1), for some small constant k, as constant problem sizes can be solved in constant time. We use T (k) =Θ(1) instead
of a more specific/explicit T (k) = l (l some constant), as such a choice affects only constants in the expression for
T (n); i.e. growth rate is preserved. In general, we shall ignore statements about boundary conditions, because this
simplifies the recurrence solution. If a boundary condition is explicitly given, the solution must be consistent with it.
By the way the value k is a boundary value and Θ(1) or T (k) = Θ(1) is the corresponding boundary condition.

8.1.2 Three methods
We introduce three methods to solve recurrences.

• Master method: Provides a solution formula for recurrences of certain form such as T (n) = aT (n/b)+ f (n),
for constant a≥ 1 and b > 1 and asymptotically positive f (n).

• RecursionTree/Iteration method: Unfold recurrence by turning it into a sum.

• Substitution or “guess and check” method: Guess solution and then verify/check it (eg. proof by induction).

157
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158 CHAPTER 8. RECURRENCE RELATIONS

The Master method only provides a tight Θ asmptotic bound.
The Recursion tree (iteration) method is more versatile and can provide exact or asymptotic answers but is math

manipulation intensive.
The substitution method is more versatile and can provide exact or asymptotic answers it is math manipulation

intensive, uses (strong) induction and one needs to have a good guess. Usually the good guess is after spending some
time with the recursion tree or iteration method.

We start the discussion of the master method on the next page.
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8.2. MASTER METHOD 159

8.2 Master method

The master method is one of three methods to solve recurrence relations. The solution however it provides is an
asymptotic one and it works only for recurrences of a certain form.

Method 8.1 (Master method). Let T (n) = aT (n/b)+ f (n) be such that a ≥ 1, b > 1 are constant and f (n) is an
asymptotically positive function. Then T (n) is bounded as follows.

M1 If f (n) = O(nlgb a−ε) for some constant ε > 0, then T (n) = Θ(nlgb a).

M2 If f (n) = Θ(nlgb a), then T (n) = Θ(nlgb a lgn).

M3 If f (n) = Ω(nlgb a+ε) for some constant ε > 0, and if a f (n/b)≤ c f (n) for some constant 0 < c < 1 and for large
n, then T (n) = Θ( f (n)).

There is an alternative formulation for Case 2 (aka M2) of the master method. Sometimes the condition a ≥ 1 is
stated as a > 0.

Method 8.2 (Master method alternative formulation of case M2).

• M2′ If f (n) = Θ(nlgb a(lgn)k), for some non-negative constant k, then T (n) = Θ(nlgb a(lgn)k+1).

Method 8.3 (Alternative form of Master method). Let T (n) = aT (n/b)+ f (n) be such that a > 0, b > 1 are (real)
constant and f (n) is an asymptotically positive function. Then T (n) is bounded as follows.

M1 If f (n) = O(nlgb a−ε) for some constant ε > 0, then T (n) = Θ(nlgb a).

M2′ If f (n) = Θ(nlgb a(lgn)k), for some non-negative constant k, then T (n) = Θ(nlgb a(lgn)k+1).

M3 If f (n) = Ω(nlgb a+ε) for some constant ε > 0, and if a f (n/b)≤ c f (n) for some constant 0 < c < 1 and for large
n, then T (n) = Θ( f (n)).

8.3 Master method Examples
Example 8.1. Solve the recurrence relation using the master method.

T (n) = 2T (n/2)+n.

Proof. a = 2 > 0,
b = 2 > 1 and
lgb a = 1 i.e. nlgb a = n,
f (n) = n

Obviously f (n) = Θ(nlgb a) i.e. n = Θ(n) thus CASE 2 is applicable. Then T (n) = Θ(n lgn).

Example 8.2. Solve the recurrence relation using the master method.

T (n) = 8T (n/2)+n2.

Proof. a = 8 > 0,
b = 2 > 1 and
lgb a = lg2 8 = 3 i.e. nlgb a = n3,
f (n) = n2

Obviously f (n) = O(nlgb a−1) i.e. n2 = Θ(n3−1) thus CASE 1 is applicable with ε = 1 > 0. Then T (n) = Θ(n3).
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160 CHAPTER 8. RECURRENCE RELATIONS

Example 8.3. Solve the recurrence relation using the master method.

T (n) = 2T (n/2)+n2.

Proof. a = 2 > 0,
b = 2 > 1 and
lgb a = 1 i.e. nlgb a = n,
f (n) = n2

Obviously f (n) = Ω(nlgb a+1) i.e. n2 = Ω(n1+1) with ε = 1 > 0, i.e. CASE 3 might be applicable. For that we
need to verify the second condition a f (n/b)≤ c f (n).

a f (n/b) ≤ c f (n)

2 f (n/2) ≤ c f (n)

2(n/2)2 ≤ cn2

n2/2 ≤ cn2

If we choose c = 1/2 < 1 the secondary condition is also true. Then T (n) = Θ(n2).

Example 8.4. Note that algn/ lgb = 2lga lgn/ lgb = nlga/ lgb. Consider T (n) = 9T (n/3)+ f (n). Then a = 9, b = 3 and
lgb a = 2 i.e. nlgb a = Θ(n2). If f (n) = n, then T (n) = Θ(n2). If however f (n) = n2, then T (n) = Θ(n2 lgn).

Example 8.5. T (n) = T (n/2)+ f (n), where a = 1 and b = 2, and nlgb a = n0 = 1. If f (n) = 1, then T (n) = Θ(lgn).
If f (n) =

√
n, then because a f (n/b) = a

√
n/b = 1

√
n/
√

2≤
√

1/2
√

n = c f (n) for c =
√

1/2, we get that T (n) =
Θ(
√

n).

We continue with the discussion of the substitution method on the next page.
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8.4. SUBSTITUTION METHOD 161

8.4 Substitution method

The second method for solving a recurrence is known as the substitution method. In order to use it either we have a
good guess of a solution, or we exhaustively search for multiple solution candidates. Here we know what the solution
would look like either through trial of error or some prior knowledge. We would like to verify indeed that this is a
solution. We verify a candidate solution by using strong induction. (Reminder a T (n/2) implies or reminds a P(n/2)
as part of the induction hypothesis.) The solution to be verified can be an exact one, an asymptotic one (Big-Oh, or
little-oh, Big-Omega, or little-omega) or a tight one (Theta).

8.4.1 Substitution method: Example 1
Example 8.6. Solve the following recurrence T (n) = T (n/5)+T (7n/10)+n where T (5) = 10.

Solution Preliminaries. This is a the recurrence for worst-case linear time selection (k order statistic problem) of a
later Subject. Thus we know that solution is supposed to be linear i.e. T (n) = Θ(n). We prove the result in two steps
first T (n) = O(n) and then T (n) = Ω(n), utilizing the definition of O and Ω

Proof.
T (n)=Ω(n). We will find two positive constant c1,n0 such that c1n≤T (n) for all n≥ n0. We define P(n) : T (n)≥ c1n .

Base case (n = 5). Show P(5) is true. This is equivalent to T (5) ≥ c1 · 5. For the latter to be true utilizing the base
case we need to have the following.

P(5) is true?
T (5) ≥? c1 ·5

10 ≥? c1 ·5
2 ≥? c1

Thus if c1 ≤ 2, then P(5) is true and base case is proved.

Inductive Step.
P(5)∧ . . .∧P(n/5)∧ . . .∧P(7n/10)∧ . . .∧P(n−1)⇒ P(n)

There is not much to be done. Starting with the recurrence T (n) = T (n/5)+T (7n/10)+n ≥ 0+0+n we conclude
that T (n)≥ 1 ·n.

Conclusion. From the base case we have T (n)≥ c1n for c1 ≤ 2. From the inductive we have T (n)≥ c1n with c1 ≤ 1.
Reconciling the two we pick c1 = 1 with n0 the base case value i.e. n0 = 5.

We continue with the second part and proving that

T (n)=O(n). We will find two positive constant c2,n0 such that T (n)≤ c2n for all n≥ n0. We define P(n) : T (n)≤ c2n .

Base case (n = 5). Show P(5) is true. This is equivalent to T (5) ≤ c2 · 5. For the latter to be true utilizing the base
case we need to have the following. P(5) is true?

T (5) ≤? c2 ·5
10 ≤? c2 ·5

2 ≤? c2

Thus if c2 ≥ 2, then P(5) is true and base case is proved.
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162 CHAPTER 8. RECURRENCE RELATIONS

Inductive Step.
P(5)∧ . . .∧P(n/5)∧ . . .∧P(7n/10)∧ . . .∧P(n−1)⇒ P(n)

X: P(n/5) and Y : P(7n/10) . The induction hypothesis implies P(n/5) and P(7n/10) i.e. X: T (n/5)≤ c2n/5

and Y: T (7n/10)≤ c2(7n/10) . We then use the recurrence and X and Y as follows.

T (n) = T (n/5)+T (7n/10)+n

≤X c2n/5+T (7n/10)+n

≤Y c2n/5+ c2(7n/10)+n

≤ c2(9n/10)+n

We have shown so far that T (n)≤ c2(9n/10)+n. If we manage to prove that c2(9n/10)+n≤ c2n then by transitivity
we have shown P(n) : T (n)≤ c2n and we are done.

c2(9n/10)+n ≤? c2n

n ≤? c2n− c2(9n/10)
n ≤? c2n/10
1 ≤? c2/10

10 ≤? c2

In the previous derivation n was cancelled out provided n > 0. Since by the definition of big-Oh n is integer we
use n ≥ 1. Now if T (n) ≤ c2(9n/10)+ n and c2(9n/10) ≤ c2n provided n ≥ 1 and c2 ≥ 10 we have also shown by
transitivity T (n)≤ c2n and thus we conclude the inductive step.

Conclusion. By the base case c2 ≥ 2 and n0 = 5. By the inductive step n0 = 1 and c2 ≥ 10. To reconcile we use n0 = 5
and c2 = 10.

O and Ω reconciliation. For the Ω part we used n0 = 5 and c1 = 1. For the O part we have n0 = 5 and c2 = 10. Thus
c1 = 1,c2 = 10,n0 = 5 and

1 ·n≤ T (n)≤ 10 ·n ∀n≥ 5.

8.4.2 Substitution method: Example 2
Example 8.7. Solve the recurrence T (n) = 2T (n/2) + n using the substitution (a.k.a. guess-and-check) method.
(Implicit assumption is that T (n) is nonnegative and defined for all positive n, or for arbitrarily large n).

Since no boundary condition is given we can thus choose k and l constants greater than zero so that T (k) = l. We
choose k, l in such a way to make the inductive proof as simple as possible. Let us choose T (1) = 0.

Proof. A. Guess Step: T (n) = O(n lgn). We guess T (n) = O(n lgn), i.e. ∃ pos. constant c2,n0 : T (n) ≤ c2n lgn,
∀n≥ n0.

A.0 Check Step (Strong Induction). We shall prove our claim by using induction. Our P(n), the proposition to be
proven true would be T (n)≤ c2n lgn for arbitrarily large values of n≥ n0, for some positive constant n0.

A.1. Base Case of Induction. We show P(1) is true is T (1) ≤ c2 · 1 · lg1. Since T (1) = 0 it is trivially true that
0 = T (1)≤ c2 ·1 · lg1 = 0 for all choices of a positive and constant c2. Base case completed.
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A.2. Inductive Step. P(1)∧ . . .∧P(n/2)∧ . . .∧P(n− 1)⇒ P(n). We show that if P(i) is true for all i < n then we
will show that P(n) is also true. P(n) is T (n)≤ c2 ·n · lgn. If P(i) is true for all i < n, since n/2 < n then P(n/2) is also
true. Then by the inductive assumption for i = n/2 we have T (n/2) ≤ c2(n/2) lg(n/2). We then use the recurrence
and utilize the inductive hypothesis for T (n/2)

T (n) = 2T (n/2)+n

= 2

P(n/2): T (n/2)≤c2(n/2) lg(n/2)︷ ︸︸ ︷
T (n/2) +n

≤ 2c2(n/2) lg(n/2)+n = c2n lgn− c2n+n

To complete the inductive step we must show that the rightmost expression c2n lgn− c2n+ n is at most c2n lgn. For
that to be true i.e c2n lgn− c2n+n≤ c2n lgn we need −c2n+n < 0 i.e. c2 ≥ 1.

Thus if we choose a c2 = 1 which is ≥ 1 and for the n0 of the base case i.e. n0 = 1 we have that

T (n)≤ n lgn ∀n≥ 1.

Can we do better in the guessing game? Let us try a lower bound.
B. Guess Step: T (n) = Ω(n lgn). We guess T (n) = Ω(n lgn), i.e. ∃ pos. constant c1,n0 : T (n)≥ c1n lgn, ∀n≥ n0.

B.0 Check Step (Strong Induction). We shall prove our claim by using induction. The P(n) is T (n) ≥ c1n lgn for
arbitrarily large values of n≥ n0, for some positive constant n0.

B.1. Base Case of Induction. We show P(1) is true: T (1) ≥ c1 ·1 · lg1. Since T (1) = 0, it is true that 0 = T (1) ≥
c1 ·1 · lg1 = 0 for all choices of a positive and constant c1. Base case completed.

B.2. Inductive Step. P(1)∧ . . .∧P(n/2)∧ . . .∧P(n− 1)⇒ P(n). We show that if P(i) is true for all i < n then we
will show that P(n) is also true. P(n) is T (n)≥ c1 ·n · lgn. If P(i) is true for all i < n, since n/2 < n then P(n/2) is also
true. Then by the inductive assumption for i = n/2 we have T (n/2) ≥ c1(n/2) lg(n/2). We then use the recurrence
and utilize the inductive hypothesis for T (n/2).

T (n) = 2T (n/2)+n

= 2

P(n/2): T (n/2)≥c1(n/2) lg(n/2)︷ ︸︸ ︷
T (n/2) +n

≥ 2c1(n/2) lg(n/2)+n = c1n lgn− c1n+n

To complete the inductive step we must show that the rightmost expression c1n lgn− c1n+ n is at least c1n lgn. For
that to be true i.e c1n lgn− c1n+n≥ c1n lgn we need −c1n+n > 0 i.e. c1 ≤ 1.

Thus if we choose a c1 = 1 which is ≤ 1 and for the n0 of the base case i.e. n0 = 1 we have that

T (n)≥ n lgn ∀n≥ 1.

Well we have just proven that T (n) ≥ n lgn. We also proved (previous page) that T (n) ≤ n lgn. Both of them prove
that T (n) = n lgn ! (The last mark is an exclamation mark, not a factorial!)

Thus while our objective was to prove a tight asymptotic bound the derivation of the three constants n0,c1,c2
allowed us to determine an exact bound.

C. Guess Step : T (n) = An lgn+Bn+C. Let us guess an answer that contains a log-linear, a linear and a constant
term. Let’s try to compute the constant values A, B and C. Only condition is that A should be positive.

C.1. Base Case utilization. We have T (1) = 0 substituting 1 for n in T (n) = An lgn+Bn+C we get 0 = T (1) =
A ·1 · lg1+B ·1+C i.e. B+C = 0.
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C.2. Recurrence utilization. Since T (n) = 2T (n/2)+n we have that

T (n) = 2T (n/2)+n

An lgn+Bn+C = 2(An/2lg(n/2+Bn/2+C)+n

An lgn+Bn+C = An lgn+(B−A+1)n+2C

In the last equality the first term of both sides cancels out. We then equate the coefficients of n and the constant terms
and solve for A,B,C also utilizing the base case B+C = 0.

The constant terms C and 2C should be equal to each other for C = 0. Since B+C = 0 we also have B = 0.
The linear term coefficients B and (B−A+ 1) should be equal to each other B = B−A+ 1. This results to an

A = 1. Thus the guessed function T (n) = An lgn+Bn+C gets resolved to having A = 1 and B =C = 0 leading to the
same result with the iteratiion or previous substitution method. No need to explicitly do induction.

8.4.3 Substitution method: Example 3

Let us try to guess the solution of a variant where the linear term is replaced now with a constant term.

Example 8.8. What if we try to solve T (n) = T (n/3)+T (2n/3)+7?

Proof. If we try to prove that P(n) : T (n)≤ cn utilizing P(n/3) and P(2n/3) we end up with proving

T (n)≤ cn/3+ c2n/3+7≤ cn+7

not T (n) ≤ cn. The +7 is causing us problems. How do we fix this “tiny” problem? By subtracting something
smaller than the high order term from the solution i.e. try for a solution a T (n)≤ cn−a. (cn−a MUST be positive as
well i.e. n > a/c). We then get

T (n)≤

P(n/3)︷ ︸︸ ︷
cn/3−a+

P(2n/3)︷ ︸︸ ︷
2cn/3−a+7≤ cn−a+(7−a).

In order to prove that T (n) ≤ cn− a we must show that T (n) ≤ cn− a+(7− a) ≤ cn− a i.e. 7− a ≤ 0. For the
assumption to hold it suffices that a≥ 7.

Remark. What if we try to solve T (n) = T (n/2)+T (n/3)+10n? Guess T (n) = Θ(n) (note that 1/2 of n/2 plus 1/3
of n/3 is 5/6 < 1).

Remark. What if we try to solve T (n) = T (2n/3) + T (n/3) + 10n? Guess T (n) = O(n lgn) as 2/3 + 1/3 = 1.
T (n) = Θ(n lgn) is the tightest possible bound.

Remark. What if we try to solve T (n) = T (4n/3)+T (n/3)+10n? Guess T (n) = O(nα) or T (n) = Θ(nα) for some
constant α > 1.

Remark. Useful Tricks: Change of variables might help. Remember to derive the correct boundary conditions when
changing variables. T (n) = T (

√
n)+ lgn. Change variables H(m) = T (2m).

8.4.4 Substitution method: Example 4
Example 8.9. Solve the following recurrence using the substitution method : T (n) = T (n/3)+T (n/5)+90n, T (1) =
45.

Proof. 1. Showing Ω directly, not by induction.
For n = 1, T (n) is given by the base case and for all other natural values, T (n) is given by the recurrence. We

observe that because T (n) = T (n/3) + T (n/5) + 90n, we have obviously T (n) = T (n/3) + T (n/5) + 90n ≥ 90n.
Therefore let us try to establish Q(n) : T (n)≥ 90n. Q(n) is true for all n > 1. Is this, however, true for n = 1 as well?
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For n = 1 using the base case we have 45 = T (1). However establishing Q(1) is true is not possible. 45 = T (1)≥
90 ·1 is false! Therefore we can not show that T (n)≥ 90n for all n≥ 1!

This is easily fixable by observing that T (n) = T (n/3) + T (n/5) + 90n ≥ 45n. Therefore we shall prove that
P(n) : T (n)≥ 45n is true for all n≥ 1 by also showing that it is true for n = 1, given that by the recurrence T (n)≥ 45n,
for n > 1. Using the base case for n = 1 45 = T (1)≥ 45 ·1 we derive P(n) true for all n≥ 1.

Therefore T (n)≥ 45n for all n≥ 1, i.e. there exist positive constant c1 = 45 > 0 and n1 = 1 such that for all n≥ n1.
This shows that T (n) = Ω(n).

2. Showing O(n) using induction.
We show that T (n) = O(n) using strong induction, i.e we are going to show that “there exist positive constants

n2 and c2 such that T (n)≤ c2n for all n≥ n2 ”. We shall call P(n) the T (n)≤ c2n, and show P(n) true for all n≥ n2
for some postivie n2,c2. 2’s Base Case. This is for n = 1. We are going to show P(1) is true. For n = 1 we have
T (1) = 45. By P(1), 45 = T (1) ≤? c2 · 1 is true as long as c2 ≥ 45. Therefore P(1) is true for all n ≥ 1, as long as
c2 ≥ 45. Our current values for c2,n2 are ≥ 45 and 1 respectively.

2’s (Strong) Inductive Hypothesis. We are going to use strong induction i.e. we are going to establish that “if
P(j) is true for all j = n2, . . . ,n−1, then P(n) will also be true”.

This is equivalent (since n2 = 1) to “If T ( j)≤ c2 j for all j = 1, . . . ,n−1, then T (n)≤ c2n”.
2’s (Strong) Inductive Step. We show the inductive step using the recurrence. By the Inductive Hypothesis since

j = n/3 < n and also j = n/5 < n, we have that P(n/3) and P(n/5) are both true and thus T (n/3) ≤ c2(n/3) and
T (n/5) ≤ c2(n/5). We apply the inductive hypothesis twice in the first and second terms of the first equation below,
whereas our objective is to establish the inequality on the fifth line.

T (n) = T (n/3)+T (n/5)+90n

= c2(n/3)+T (n/5)+90n

= c2(n/3)+ c2(n/5)+90n

= c2(8n/15)+90n

≤? c2n

For the latter to be true we need to have c2 ≥ 200 as is shown in detail below.

c2(8n/15)+90n ≤? c2n

90n ≤? 7c2n/15

1350 ≤? 7c2

200 ≤? c2

Therefore the inductive step is true for all n and c2 ≥ 200. Again, 200 is not the best possible constant, 1350/7 is less
than 200, more accurate but more cumbersome. This (c2 ≥ 200) supersedes the c2 ≥ 45 of the base case; the induction
is valid for all n ≥ 1 and c2 ≥ max(45,200) = 200. Therefore there exist c2 = 200 and n2 = 1 such that T (n) ≤ c2n
for all n≥ n2. Thus T (n) = O(n).

We proved O and Ω i.e. T (n) = Θ(n).
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166 CHAPTER 8. RECURRENCE RELATIONS

8.5 Iteration or Recursion tree method

If the method is done graphically it is sometimes called the recursion tree method. The traditional name is iteration
method.

Method 8.4 (Iteration method). Expand the recurrence all the way down to the base case and sum up or combine the
residuals.

In order to avoid problems with floors and ceilings we are going to make an assumption that n is a power of 2 and
thus n/2 , n/4, n/8 etc are all integer, or a similar, along to the same line assumption, as needed. Otherwise one may
have to make use of identities such as that for all integers n, a, b, we have bbn/ac/bc= bn/(ab)c.

8.5.1 Iteration method: Example 1

Example 8.10. Solve exactly T (n) = 2T (n/2)+n, T (1) = 0. You may assume that n is a power of two.

Proof. In order to compute T (n) we need to establish T (n/2). Likewise in order to compute T (n/2) we need to
establish T (n/4). We iterate i iterations until T (n/2i) with the intent of making n/2i equal to the base case value 1. If
n/2i = 1 then we know that T (n/2i) = T (1) = 0. For n/2i = 1 we have n = 2i and solving for i we get i = lgn. Thus
unfolding the recurrence involves i = lgn iterations!

n→ n/21→ n/22→ n/23→ . . .n/2i . . . until n/2i is base case1.

T (n) = 2T (n/2)+n = 2

T (n/2)︷ ︸︸ ︷(
2T (n/22)+n/2

)
+n

= 22T (n/22)+2n = 22

T (n/22)︷ ︸︸ ︷(
2T (n/23)+n/22)+2n

= 23T (n/23)+3n

. . .

= 2iT (n/2i)+ i ·n Now, Substitute i = lgn

= 2lgn ·T (n/2lgn)+ lgn ·n = n ·T (1)+ lgn ·n = n lgn

• Keep track of number of iterations/depth of recursion tree.

• Keep track of sum of terms per iteration/level of recursion tree.

• Sometimes, the two previous steps and experience allow us to guess the solution correctly. We can then stop the
solution with this method and switch to the substitution method instead.

Example redone

Example 8.11. Solve exactly T (n) = 2T (n/2)+n, T (2) = 1. Assume n is a power of 2.
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8.5. ITERATION OR RECURSION TREE METHOD 167

Proof. Same recurrence but different formulation. The recurrence becomes formula (A1). We then substitute n/2,
n/22, n/23, etc for n in (A1). This way we generate (A2), (A3), through (Ai). (Note that T (n) = 2T (n/2)+ n gets
rewritten as T (n/20) = 2T (n/21)+n/20.

A1 is T (n/20) = 2T (n/21)+n/20

A2 is T (n/21) = 2T (n/22)+n/21

A3 is T (n/22) = 2T (n/23)+n/22

A4 is T (n/23) = 2T (n/24)+n/23

. . .

Ai is T (n/2i−1) = 2T (n/2i)+n/2i−1

Moving forward, we use (A2) to rewrite (A1) then (A3), then (A4) all the way to (Ai).

T (n) = 2T (n/2)+n =(A2) 2
(
2T (n/22)+n/21)+n/20 = 22T (n/22)+2n

= 22T (n/22)+2n =(A3) 22 (2T (n/23)+n/22)+2n = 23T (n/23)+3n

= 23T (n/23)+3n =(A4) 23 (2T (n/24)+n/23)+3n = 24T (n/24)+4n

. . .

= 2iT (n/2i)+ i ·n

Thus T (n) = 2iT (n/2i)+ i ·n. We want to reach the base case i.e. T (n/2i) = T (1). This implies n/2i = 1 i.e. i = lgn.
Continuing from where we stopped using i = lgn we have the following.

T (n) = 2i ·T (n/2i)+ i ·n
= 2lgn ·T (n/2lgn)+ lgn ·n
= n ·T (1)+n lgn = n ·0+n lgn

= n lgn

We conclude that T (n) = n lgn as needed.

Example re-redone

Example 8.12. Solve exactly T (n) = 2T (n/2)+n, T (2) = 1. Assume n is a power of 2.

Proof. Same recurrence but different re-formulation.

A1 is T (n) = 2T (n/2)+n

A2 is T (n/21) = 2T (n/22)+n/21

A3 is T (n/22) = 2T (n/23)+n/22

A4 is T (n/23) = 2T (n/24)+n/23

. . .

Ai is T (n/2i−1) = 2T (n/2i)+n/2i−1

We notice that the left-hand side appears in the right-hand side of the previous equation. Thus we can multiply each
equation with some quantity and then add up the resultin equations. For the base case we reutilize that T (n/2i) = T (1)
implies i = lgn as before. T (n) = 2T (n/2)+n

21×T (n/21) = 21×
(
2T (n/22)+n/21)

22×T (n/22) = 22×
(
2T (n/23)+n/22)

23×T (n/23) = 23×
(
2T (n/24)+n/23)

. . .

2i−1×T (n/2i−1) = 2i−1×
(
2T (n/2i)+n/2i−1)
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We then have
T (n) = 2T (n/2)+n

2T (n/21) = 22T (n/22)+n

22T (n/22) = 23T (n/23)+n

23T (n/23) = 24T (n/24)+n

. . .

2i−1T (n/2i−1) = 2iT (n/2i)+n

All but the first term of the left hand side cancel out. The n terms of the right hand side are retained. The inner terms
of the right hand side cancel out except for the last term. The end result is that T (n) = 2iT (n/2i)+ n. We conclude
that T (n) = n lgn as needed.

8.5.2 Iteration method: Example 2
This is a variation of Example 1.

Example 8.13. Solve exactly T (n) = 2T (n/2)+n where T (4) = 12. You may assume n is a power of 2.

Proof.

A1 is T (n/20) = 2T (n/21)+n/20

A2 is T (n/21) = 2T (n/22)+n/21

A3 is T (n/22) = 2T (n/23)+n/22

A4 is T (n/23) = 2T (n/24)+n/23

. . .

Ai is T (n/2i−1) = 2T (n/2i)+n/2i−1

Moving forward, we use (A2) to rewrite (A1) then (A3), then (A4) all the way to (Ai).

T (n) = 2T (n/2)+n =(A2) 2
(
2T (n/22)+n/21)+n/20 = 22T (n/22)+2n

= 22T (n/22)+2n =(A3) 22 (2T (n/23)+n/22)+2n = 23T (n/23)+3n

= 23T (n/23)+3n =(A4) 23 (2T (n/24)+n/23)+3n = 24T (n/24)+4n

. . .

= 2iT (n/2i)+ i ·n

Thus T (n) = 2iT (n/2i) + i · n. We want to reach the base case i.e. T (n/2i) = T (4). This implies n/2i = 4 i.e.
i = lgn−2. Continuing from where we stopped using i = lgn−2 we have the following.

T (n) = 2i ·T (n/2i)+ i ·n
= 2lgn−2 ·T (n/2lgn−2)+(lgn−2) ·n
= (n/4) ·T (4)+n(lgn−2)
= n/4 ·12+n(lgn−2)
= n lgn+n

We conclude that T (n) = n lgn+n as needed. This is the closed form solution (answer).
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8.5.3 Iteration method: Example 3

The previous examples were straightforward and uncomplicated. Let’s go back to the merge-sort recurrence to estimate
an upper bound on the number of comparisons. We use T (n) below to count for the number of comparisons (upper
bound) of MergeSort.

Example 8.14. Solve exactly T (n) = 2T (n/2)+n−1, T (1) = 0. You may assume n is a power of two.

Proof. Again we shall terminate recursion for T (n/2i) when n/2i = 1 and solving for i we shall get i = lgn. We shall
also need the geometric sequence result 20 +21 + . . .+2i−1 = 2i−1.

T (n) = 2T (n/2)+n−1
= 2

(
2T (n/22)+n/2−1

)
+n−1 = 22T (n/22)+2n−1−2

= 22 (2T (n/23)+n/22−1
)
+2n−1−2 = 23T (n/23)+3n−20−21−22

. . .

= 2iT (n/2i)+ i ·n−20−21− . . .−2i−1 = 2iT (n/2i)+ i ·n− (2i−1)
= 2iT (n/2i)+ i ·n− (2i−1) Now, Substitute i = lgn

= 2lgn ·T (n/2lgn)+ lgn ·n− (2lgn−1)
= n ·T (1)+ lgn ·n−n+1 = n lgn− (n−1)

The previous recurrences were generating an additive term which was the same in each iteration: n. This one
generates a term that is iteration dependent: n−2i−1 for iteration i. Thus for i = 1 we get n−1, for i = 2 we get n−2,
and so on.

The answer for T (n) with the (−(n− 1) low-order term) is the one we got through the recursion tree method as
well.

8.5.4 Iteration method: Example 4

Example 8.15. Solve exactly the recurrence T (n) = 2T (n/2)+n, T (2) = 5. Assume n is a power of 2.

Proof. Substituting n/2 for n in the recurrence we get. T (n/2) = 2T ((n/2)/2)+n/2 = 2T (n/22)+n/2.
Substituting n/4 = n/22 for n we get. T (n/22) = 2T ((n/4)/2)+n/4 = 2T (n/23)+n/22

Substituting n/8 = n/23 for n we get. T (n/23) = 2T (n/24)+n/23

Similarly we can substitute n/24, . . . ,n/2i−1, . . . for n to resolve the 4, . . ., i−1-st iteration all the way to the base
case, and get similarly stated recurrences. We utilize all the derived recurrences to expand T (n) by observing that T (n)
is 2T (n/2)+n. Then we use the derivation for T (n/2) to formulate the expression in terms of T (n/22), then T (n/22)
is expressed in terms of T (n/23) and so on . . . in terms of T (n/2i). This goes on until we reach the based case of n = 2
since T (2) = 5 is given. We establish what value of i provides the base case by equating T (2) = T (n/2i) and solving
for i. The unfolding of the recurrence stops then and all the terms unfolded get combined (summed). A closed form
solution for T (n) can then be found.

T (n) = 2T (n/2)+n = 2(2T (n/22)+n/2)+n = 22T (n/22)+2n

= 22(2T (n/23)+n/22)+2n = 23T (n/23)+n+2n = 23T (n/23)+3n

= . . .= 2iT (n/2i)+ i ·n

From the boundary condition T (2) = 5, we decide when to stop the unfolding of T (n). The expansion ends at
n/2i = 2 since then T (n/2i) = T (2) = 5. We solve for i by taking logarithms base two of both sides. Then we get that
lgn− i = 1 ie i = lgn−1. Then, for i = lgn−1, we get that.
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170 CHAPTER 8. RECURRENCE RELATIONS

T (n) = 2T (n/2)+n = . . .= 2iT (n/2i)+ i ·n
= 2lgn−1T (n/2lgn−1)+(lgn−1) ·n
= (n/2)T (2)+(lgn−1) ·n = (n/2)5+(lgn−1) ·n
= (3n/2)+n lgn

Thus we have obtained the following solution to the recurrence: T (n) = 3n/2+n lgn.

Solution verified

Question 8.1. Is the obtained solution the correct one?

Answer. Yes, unless we missed something.

Question 8.2. How can we be sure?

Answer.
Check the solution i.e. make sure that T (n) = 3n/2+n lgn is such that

(a) T (2) = 5 (i.e. boundary condition can be verified), and
(b) T (n) = 2T (n/2)+n (i.e. recurrence can be verified).

Verify boundary condition.
T (2) = 3 ·2/2+2lg2 = 3+2 = 5.

Since T (2) = 5 indeed by the boundary condition, our solution satisfies the boundary condition.

Verify recurrence. We obtained the solution

T (n) = 3n/2+n lgn.

Substituting n/2 for n we get that

T (n/2) = 3n/4+(n/2) lgn/2 = 3n/4+(n/2)(lgn−1) = n/4+(n/2) lgn.

We start from the right hand side of the recurrence using the preceding equality.

2T (n/2)+n = 2(n/4+n/2lgn)+n = 3n/2+n lgn = T (n)

The last term is T (n). We have thus proved that for T (n) = 3n/2+ n lgn, we have that T (n) = 2T (n/2)+ n, i.e. the
recurrence is satisfied.

By (a) and (b) the solution satisfies both the recurrence and the boundary condition, i.e. it is indeed a solution to
the recurrence.

8.5.5 Iteration method: Example 5

This is the master method recurrence with f (n) = 0.

Example 8.16. Solve exactly T (n) = aT (n/b) where T (1) = 1. a,b as in the master method.
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8.5. ITERATION OR RECURSION TREE METHOD 171

Proof. First we generate (A1) through (Ai) as needed.

T (n) = aT (n/b)

T (n/b0) = aT (n/b1)

T (n/b1) = aT (n/b2)

T (n/b2) = aT (n/b3)

T (n/b3) = aT (n/b4)

. . .

T (n/bi−1) = aT (n/bi)

As there are no additive terms above, we can multiply all the equations but the first together (The second equation is
the first equation rewritten; it makes no sense to use both of them). The result is T (n) = aiT (n/bi). We then equate
T (n/bi) with the base case T (1) and solving for i we determine the number of iteration needed. n/bi = 1 implies
i = lgn/ lgb.

T (n) = aiT (n/bi)

= algn/ lgbT (n/blgn/ lgb)

= 2lga lgn/ lgbT (n/2lgb lgn/ lgb)

= nlga/ lgbT (n/2lgn)

= nlgb aT (n/n)

= nlgb aT (1)
= nlgb a.

Thus T (n) = nlgb a.

8.5.6 Iteration method: Example 6

Example 8.17. Solve the recurrence T (n) = 8T (n/2) + n using the iteration/recursion tree method. Assume that
T (1) = 5.

Proof.

T (n) = 8T (n/2)+n

= 8(8T (n/22)+n/2)+n

= 82T (n/22)+8n/2+n

= 82T (n/22)+(8/2)1n+(8/2)0n

= 82(8T (n/23)+n/22)+(8/2)1n+(8/2)0n

= 83T (n/23)+82n/22 +(8/2)1n+(8/2)0n

= 83T (n/23)+(8/2)2n+(8/2)1n+(8/2)0n

= . . .

= 8iT (n/2i)+(8/2)i−1n+ . . .+(8/2)1n+(8/2)0n
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172 CHAPTER 8. RECURRENCE RELATIONS

Again the boundary case is T (1) = 5. We set n/2i = 1, ie i = lgn. Then for i = lgn, T (n/2i) = T (1) = 5. We therefore
get for i = lgn.

T (n) = 8T (n/2)+n

= 8iT (n/2i)+(8/2)i−1n+ . . .+(8/2)1n+(8/2)0n

= 8lgnT (n/2lgn)+
(8/2)lgn−1

8/2−1
·n

= 23lgnT (1)+
(4)lgn−1

3
·n

= n3T (1)+
(4)lgn−1

3
·n

= 5n3 +
n2−1

3
n

To verify our calculations we observe that T (1) = 5+(1−1)/3 = 5 and

T (n) = 8T (n/2)+n

= 8(5(n/2)3 +
(n/2)2−1

3
n)+n

= 5n3 +
n2−1

3
n

= T (n),

ie the recurrence is verified.

8.5.7 Iteration method: Example 7

Example 8.18. Use the iteration method to solve the recurrence, T (n) = 4T (n/2)+n, T (4) = 6.

Proof.

T (n) = 4T (n/2)+n

= 4
(

4T
( n

22

)
+
(n

2

))
+n

= 42T
( n

22

)
+

41n
21 +n

= 42
(

4T
( n

23

)
+
( n

22

))
+21n+20n

= 43T
( n

23

)
+22n+21n+20n

= . . .

= 4iT
( n

2i

)
+2i−1n+ . . .+21n+20n

= 4iT
( n

2i

)
+n
(
2i−1

)
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8.5. ITERATION OR RECURSION TREE METHOD 173

The base case is T (4) = 6. We set n/2i = 4, i.e. n = 2i+2. If we solve this for i, we get i = lgn−2. Then T (n/2i) =
T (4) = 6. In addition, 2i = n/4, 4i = 2i ·2i = n/4 ·n/4 = n2/16. Therfore the formula for T (n) becomes.

T (n) = 4iT
( n

2i

)
+n
(
2i−1

)
= (n2/16)T (4)+n(n/4−1)
= 3n2/8+n2/4−n

= 5n2/8−n

Note 8.1. It is easy to verify for example that T (4) = 5 ·42/8−4 = 6. This can serve as a checking mechanism that
the solution that you have established satisfies at least the base case.

8.5.8 Recursion tree method: Example 8
We have already solved two recurrences with this method. The first one was the running time of the Fibonacci divide-
and-conquer time and space inefficient solution. The second one was the running time (comparison upper bound) of
MergeSort.

If the recurrence is complex then the iteration method will not work (easily). Moreover floors and ceilings will
complicate things. Suppose T (n) = T (n/4)+T (3n/4)+n. Try to use a recursion tree. Start with a tree with one node
labeled T (n). Expand the T (n) node by replacing it with a new node that is labeled with the non-recursive part of the
recurrence i.e. n. Make that node have two children, the T (n/4) and T (3n/4) recursive parts of the recurrence. (If
one had 2T (n/2) instead write it as T (n/2)+T (n/2). Then expand similarly (using the recurrence) the two nodes
labeled T (n/4) and T (3n/4). Expansion is shown. The recursion tree can be lopsided (Fibonacci case) or not. In
this case it does not show after two iterations but it will be lopsided. The left-most path goes n, n/4, n/42 and so
on. It reaches some constant value, say 1, after n/4i = 1 i.e. lg(n)/2 = log4 n iterations and it is lgn/2 levels deep
(or hight). The righmost path it goes n, 3n/4, (3/4)2n, and it reaches some constant value 1 after (3/4)in = 1 which
solves for i = log4/3 n = lgn/ lg(4/3). (Note that parentheses are dropped and thus the last expression should be read
lg(n)/ lg(4/3).) The right path is longer/deeper/higher by maybe a factor of 4 or more. After i iterations the tree’s
height is i. The tree is lopsided (the Fibonacci sequence tree for the recursive solution was also lopsided). Deepest
subtree is the rightmost one of depth lgn/ lg(4/3). Total time is thus O(n lgn). A Θ becomes too cumbersome to
derive.

T(n) ---> n ----> n nodes at this level add up to n

/ \ / \

T(n/4) T(3n/4) n/4 3n/4 nodes at this level add up to n

/ \ / \

2/ \ 2 / 2 \ 2 2

T(n/4 ) T(3n/4) T(3n/4) T(3/4n) nodes would also add up to n

but would stop doing so when the tree becomes lopsided (i.e. nodes missing)

Note 8.2. The T (n/42) and T (3n/42) that appear in the third level of the tree in the figure above look awkward. And
even more the T ((32/42)n) last term shown.
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Chapter 9

Graphs

9.1 Undirected Graphs
Definition 9.1 (Undirected graph). An undirected graph G is an (ordered) pair (V,E). V is a finite set of vertices,
and E is a finite set of edges. An edge is an unordered pair of vertices. Therefore G = (V,E) denotes an undirected
graph G on set of vertices V and set of edges E. The number of vertices of G is denoted by n and therefore, |V | = n.
The number of edges of G is denoted by m and therefore, |E|= m.

V is called the vertex set or set of vertices, and E is called the edge set or set of edges of G. The elements of both
V and E are called respectively the vertices and edges of G.

Remark 9.1. One may use the notation G = (V (G),E(G)) if more that one graph is defined in a given context.

Remark 9.2 (Alternative definition). An undirected graph G = (V,E) is an (ordered) pair, where V is a finite set of
vertices, and E is a finite set of edges. An edge is a set of two vertices. This definition will NOT be utilized in the
remainder.

Definition 9.2 (Edges and Edge Labels). An edge is an unordered pair of vertices or a set of two vertices. Thus for
graph G = (V,E), let u,v ∈V . Then (u,v) defines an edge. If (u,v) ∈ E it is an edge of graph G. We can also assign a
label on the edge: e1 = (u,v). Thus edge e1 ∈ E has end points u and v. Because the graph is undirected the order of
appearance of u and v in the pair is irrelevant. Therefore edge (v,u) is the same as edge (u,v).

Definition 9.3 (Adjacent and Incident). For edge e1 = (u,v) ∈ E of an undirected graph G = (V,E) we say that
vertices u and v are adjacent to each other, or u is adjacent to v, or v is adjacent to u. We also say that edge e1 is
incident on vertex u and vertex v.

Example 9.1. {{1,2,3},{e1 = (1,2),e2 = (2,3),e3 = (1,2),e4 = (2,2)}} is an undirected graph. If we write however,
V = {1,2,3}, and E = {e1 = (1,2),e2 = (2,3),e3 = (1,2),e4 = (2,2)} we can define G = (V,E). The graph has
multiple edges between vertex 1 and vertex 2. There are two edges e1,e3 incident on vertices 1 and 2. Moreover graph
G has a self-loop e4 = (2,2), i.e. an edge whose two end-points coincide.

Definition 9.4 (Multiple edges and self-loops). A self-loop is an edge (u,u) whose two end-points coincide. Multiple
edges means that there more than one edge incident on the same two vertices u ∈V and v ∈V of a graph G = (V,E).

Definition 9.5 (Simple Undirected Graph). An undirected graph is simple if it contains no self-loops and no multiple
edges (between the same two end-points). In the remainder, all undirected graphs will be simple. (Multiple edge are
sometimes referred to as parallel edges.)

175
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176 CHAPTER 9. GRAPHS

Remark 9.3 (Vertex, Node). We prefer to use the term vertex (plural vertices) to refer to the elements of set V . Later
we are going to use the term vertexto refer to the vertices of a class of graphs known as trees. Some other times the
term vertexcan be used instead of the term vertex especially for the case of a directed graph (to be defined).

Remark 9.4 (Edge, Arc). We prefer to use the term edge to refer to the elements of set E. Some other times the term
arc can be used instead of the term edge especially for the case of a directed graph (to be defined).

Definition 9.6 (Set incidence). For an undirected graph G = (V,E), let S ⊆ V . an edge is incident on S if exactly
one of the edge’s endpoints is in S.

Definition 9.7 (Degree of a vertex). For an undirected graph G = (V,E) the degree of vertex u is the number of edges
incident on u. We use the notation d(u) or deg(u) for the degree of u.

Remark 9.5. If an undirected graph has a self-loop and a degree computation is to be realized, the degree of the
vertex counts it as a two. If a directed graph has a self-loop and a degree computation is to be realized, the degree of
the vertex counts it as a two, in-degree as one, and out-degree as one.

The same edge e = (u,v) is counted twice in a degree computation. Once to derive d(u), the degree of u, and once
to derive d(v), the degree of v. Thus the following theorem can be derived.

Theorem 9.1 (Degree sum). For a (simple) undirected graph G = (V,E) with |V | = n and |E| = m, the sum of the
degrees of all the vertices of the graph is an even number. Moreover this sum is 2m.

Proof. Every edge e = (u,v) is counted twice once to the degree of one end-point i.e. d(u) and once to the degree of
the other end-point i.e. d(v). Thus

∑
w∈V

d(w) = 2m

Example 9.2. Let G = (V,E) with V = {1,2,3}, and E = {e1 = (1,2),e2 = (2,3)} This graph is simple, n = 3 and
m = 2. Degree-wise, d(1) = 1, d(2) = 2 and d(3) = 1. Therefore ∑w∈V d(w) = d(1)+ d(2)+ d(3) = 1+ 2+ 1 =
4 = 2 ·m. In the remainder, we either write E = {(1,2),(2,3)}, or E = {e1,e2}, and define separately e1 = (1,2) and
e2 = (2,3).

Example 9.3 (Sync Monks). Two monks A, and B on the opposite of a mountain range are moving in opposite
directions starting at the same elevation. They never move at a lower elevation than their common starting one, and
they always move in sync and staying at the same elevation. Will they swap locations? (I.e. (A,B) becomes (B,A).)

Example-Proposition 9.4. The number of vertices of odd degree is even.

Proof. If the number of vertices of odd degree were odd, then their contribution to the sum ∑w∈V d(w) would have
been odd× odd which is an odd number. The contribution of the even degree vertices, whether the number of such
vertices is odd or even would be an even number.

Adding the contributions of odd-degree and even-degree vertices is equivalent to adding an odd number and an
even number. The result is an odd number. We do know from a prior theorem that this result 2m i.e. an even number.
Thus the number of vertices of odd degree MUST be odd!

Theorem 9.2. In an undirected graph G = (V,E) with at least two vertices we have at least two vertices with the same
degree. (Reminder: graph is simple i.e. no self-loops, no multiple vertices.)

Proof. We prove the result by induction.
Base case. If we have two vertices and they are isolated, their degree is 0. If there is an edge connecting them the

degree of both vertices is one. Base case completed.
Inductive step. Let the result be true for all graphs with n or fewer vertices.
Suppose we have a graph G with n+1 vertices.
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9.2. DIRECTED GRAPHS 177

Case 1. One vertex say u has degree 0 i.e. it is an isolated vertex. Then the remainder G− u has n vertices. By
induction there are two vertices say a,b with the same degree. Adding to G−u the isolated vertex u would not changes
the degrees of a,b. Result proven.

Case 2. All vertices have degrees greater than zero i.e. 1 ≤ d(u) < n. There are n vertices and n−1 degrees the
values 1,2, . . . ,n− 1. By the pigeonhole principle there are must be two vertices of the same degree (value). Result
Proven.

Proof completed.

9.2 Directed Graphs
Definition 9.8 (Directed graph). A directed graph, also known as digraph, G is an (ordered) pair (V,E). V is a finite
set of vertices, and E is a finite set of edges. An edge is an ordered pair of vertices. Therefore G = (V,E) denotes a
directed graph G on set of vertices V and set of edges E. The number of vertices of G is denoted by n and therefore,
|V |= n. The number of edges of G is denoted by m and therefore, |E|= m.

For a directed graph G = (V,E), E is a binary relation on V i.e E is a subset of V ×V which means E ⊆V ×V .
V is called the vertex set or set of vertices, and E is called the edge set or set of edges of G. The elements of both

V and E are called respectively the vertices and edges of G.

Remark 9.6. One may use the notation G = (V (G),E(G)) if more that one graph is defined in a given context.

Definition 9.9 (Edges and Edge Labels). An edge is an ordered pair of vertices. Thus for graph G = (V,E), let
u,v ∈ V . Then (u,v) may define a different edge from (v,u). The former has direction from u to v, whereas the latter
has direction from v to u. If (u,v) ∈ E, then it is an edge of graph G. This does not necessarily imply that (v,u) ∈ E.
The latter might or might not be the case. We can also assign a label on an edge: e1 = (u,v). Thus edge e1 ∈ E has
end points u and v. Because the graph is directed, the order of appearance of u and v in the pair matters. Therefore
edge (v,u) is different from edge (u,v), if both exist.

Definition 9.10 (Adjacent and Incident). For edge e1 = (u,v)∈ E of a directed graph G= (V,E) we say that vertices
u and v are adjacent to each other, or u is adjacent to v, or v is adjacent to u. We also say that edge e1 is incident from
vertex u and incident to vertex v. Note that adjacency does not convey direction information but incidence does.

Remark 9.7. The term ”incident on” is used for an undirected graph and ”on” does not imply direction. The terms
”incident from” and ”incident to” are being used in directed graphs and ”from” indicates direction (source) and
likewise ”to” indicates direction (destination).

Definition 9.11 (Set incidence). For an undirected graph G = (V,E), let S ⊆ V . an edge is incident on S if exactly
one of the edge’s endpoints is in S.

Example 9.5. {{1,2,3},{e1 = (1,2),e2 = (2,3),e3 = (1,2),e4 = (2,2)}} is a directed graph. If we write however,
V = {1,2,3}, and E = {e1 = (1,2),e2 = (2,3),e3 = (1,2),e4 = (2,2)} we can define G = (V,E). The graph has
multiple edges from vertex 1 to vertex 2. There are two edges e1,e3 incident from vertex 1, and incident to vertex 2.
Moreover graph G has a self-loop e4 = (2,2), i.e. an edge whose two end-points coincide.

Definition 9.12 (Multiple edges and self-loops). A self-loop is an edge (u,u) whose two end-points coincide. Multiple
edges means that there are more than one edge from a vertex u ∈V to a vertex v ∈V of a graph G = (V,E).

Definition 9.13 (Simple directed Graph). An directed graph is simple if it contains no self-loops and no multiple
edges. In the remainder, all directed graphs will be simple.

Remark 9.8 (Vertex, Node, Edge, Arc). We prefer to use the term vertex (plural vertices) to refer to the elements of
set V . Some other times the term vertexcan be used instead of the term vertex. Then the term arc is used instead of
edge. Then G = (N,A) and thus the set of nodes(vertices) is denoted by N and the set of arcs (edges) is denoted by A.
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178 CHAPTER 9. GRAPHS

Definition 9.14 (Degree of a vertex). For an undirected graph G = (V,E) the degree of vertex u is the number of
edges incident from u or incident to u. We use the notation d(u) or deg(u) for the degree of u. Furthermore the out-
degree of u, denoted by o(u) or out(u), is the number of edges incident from u. Likewise, the in-degree of u, denoted
by i(u) or in(u), is the number of edges incident to u.

The same edge e = (u,v) is counted twice in a degree computation. Once to derive d(u), the degree of u, and once
to derive d(v), the degree of v. Moreover the edge is being used to derive the o(u) as well. Furthermore the edge is
being used to derive the i(u) as well. Thus the following theorem can be derived.

Theorem 9.3 (Degree sum). For a (simple) directed graph G = (V,E) with |V | = n and |E| = m, the sum of the
degrees of all the vertices of the graph is an even number. Moreover this sum is 2m.Thus the following is true.

∑
w∈V

d(w) = 2m

Furthermore,
∑

w∈V
i(w) = m = ∑

w∈V
o(w)

Proof. Every edge e = (u,v) is counted twice once to the degree of one end-point i.e. d(u) and once to the degree of
the other end-point i.e. d(v). Thus

∑
w∈V

d(w) = 2m

The rest follows immediately.

Example 9.6. Let G = (V,E) with V = {1,2,3}, and E = {e1 = (1,2),e2 = (2,3),e3 = (2,1)} This graph is simple,
n = 3 and m = 3. Degree-wise, d(1) = 2, d(2) = 3 and d(3) = 1. Therefore ∑w∈V d(w) = d(1) + d(2) + d(3) =
2+3+1 = 6 = 2 ·m. Furthermore, i(1) = 1, i(2) = 1, i(3) = 1, and ∑w∈V i(w) = 3 = m. Finally, o(1) = 1, o(2) = 2,
o(3) = 0, and ∑w∈V o(w) = 3 = m.

9.3 Other definitions on graphs
Definition 9.15 (Bipartite Graphs). A graph G = (V,E) is bipartite if its vertices V can be partitioned into two sets
V1,V2 such that V1∩V2 = /0, V1∪V2 =V and each edge of E is incident on one vertex of V1 and one vertex of V2.

Definition 9.16 (Subgraphs). Let G1 = (V1,E1) and G2 = (V2,E2). G1 is a subgraph of G2 if V1 ⊆V2 and E1 ⊆ E2.

Definition 9.17 (Induced Subgraph). Let G1 = (V1,E1) and G2 = (V2,E2). G1 is an induced subgraph of G2 by its
vertices V1 if all its edges E1 are the edges in E2 whose end-points belong to V1.

Definition 9.18 (Induced Subgraph). Let G = (V,E). Let u ∈ V . Then G− u is the subgraph of G obtained after
deleting u from V and also all edges of E that are adjacent to u (incident on, or from, or to u).

Definition 9.19 (Induced Subgraph). Let G = (V,E). Let e ∈ E. Then G− e is the subgraph of G obtained after
deleting e from E.

Theorem 9.4. The following are equivalent for a graph G: (a) G is 2-colorable, i.e. every vertex is assigned one of
two colors so that no edge contains vertices of the same color, (b) G is biparite, and (c) every cycle in G has even
length (we count edges).

Proof. Let G be two colorable. Let B and W are the two colors. Color the vertices. Then the B vertices form V1 and
the W vertices form V2. The induced graph is a bipartite graph.

Let G be a bipartite graph. Let V1 and V2 be a bipartition. A cycle that starts from u ∈V1 can only then go to a v in
v ∈V2. (if it went to a vertex v such that v ∈V1 we would have a violation of the bipartition property.) The last edge of
the cycle must end to the starting vertex u of V1. This means the cycle is of even length.

Let every cycle of G is of even length. We pick an arbitrary vertex and we color B. All its neighbors are colored
W . If a vertex is W all of its neighbors would be colored B. There is no danger that two adjacent vertices would be
colored the same color because that would imply an odd-length cycle.
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9.4. PATHS ON GRAPHS 179

Definition 9.20 (Complete (undirected) graph Kn). A complete graph on n vertices is an undirected graph such
that every pair of vertices is adjacent. It is denoted by Kn and contains n(n−1)/2 edges.

Definition 9.21 (Regular or k-regular (undirected) graph). A graph is k regular if and only if every vertex of it has
degree k.

Definition 9.22 (Complete (undirected) bipartite graph Ka,b). The complete bipartite graph Ka,b is defined as a
graph with n = a+ b vertices, where |V1| = a and |V2| = b and all a× b possible edges from V1 to V2 are in E. The
graph is denoted by Ka,b and contains ab edges.

Definition 9.23 (Isomorphic Graphs). Two graphs G1 = (V1,E1) and G2 = (V2,E2) are isomorphic if there exist a
bijection (surjective and injective function) f from V1 to V2 such that (u,v) ∈ E1 is mapped to ( f (u), f (v)) ∈ E2.

9.4 Paths on graphs

Definition 9.24 (Paths on graphs). Let G = (V,E) be a graph. Let u,v ∈ E be two vertices of V . We denote a path

starting at u and ending in v by u ; v, u ;
G

v, u k
; v, u k

;
G

v, where the wavy line indicates a path rather than

edge, the length of the path is over the wavy line and underneath it the graph name might or not appear. A path
starting at u and ending in v is defined as follows.

u ; v or u k
; v : 〈u0,u1, . . . ,uk〉= 〈u,u1, . . . ,v〉 with (ui,ui+1) ∈ E for 0≤ i < k, and u0 = u,uk = v.

We say that there is a path from u to v and indicate it as u ; v or we say that there is a path of length k from u to v
and indicate it as u k

; v, if there is a sequence 〈u0,u1, . . . ,uk〉 of k+ 1 distinct vertices such that u0 = u and uk = v,
and consecutive vertices map to distinct edges i.e. (ui,ui+1) ∈ E, 0 ≤ i < k. The vertices u0 = u and uk = v are the
endpoints of the path. The length of the path is the number of (distinct) edges in it. We also say that ui is reachable
from u.

Definition 9.25 (Simple paths). A path as defined is by default simple, if the are no duplicate vertices (i.e. all vertices
in the path are distinct). In a path we have unique (distinct) vertices and edges.

Definition 9.26 (Subpath of a path). A subpath of a path is a contiguous subsequence of its (path’s) vertices.

Definition 9.27 (Walk). A walk has a definition similar to that of a path. In a walk all edges are also distinct; but
vertices are not necessarily distinct (unique).

Definition 9.28 (Alternative Definition Walk and Path). A walk is (alternatively) a sequence of alternate vertices
and edges

(u0,e0,u1,e1, . . . ,uk−1,ek−1,uk) , such that ei = (ui,ui+1), ∀0≤ i≤ k−1.

thus defining a walk of length k from u0 = u to uk = v. A path is likewise defined as a walk in which no vertex appears
twice.

Definition 9.29 (Chain). A chain is a sequence of edges (u0,u1), . . . ,(uk−1,uk) such that the uis are distinct including
the end-points.

Definition 9.30 (Tour). A tour has a definition similar to that of a cycle. In a tour all edges are also distinct; but
vertices are not necessarily distinct (unique). A closed walk is known as a tour.

Remark 9.9 (Paths, Cycles, Circuits, Walks, Tours). The definition sometimes vary from one source to the other.
Pay attention to a particular definition.
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180 CHAPTER 9. GRAPHS

Definition 9.31 (Cycle). In a directed graph G = (V,E), A cycle (or circuit) of length k ≥ 0, is a path with at least
one edge whose endpoints close. That is 〈u0,u1, . . . ,uk〉 defines a cycle of length k if and only if

(ui,ui+1) ∈ E,∀0≤ i < k, and (uk,u0) ∈ E

Sometimes the cycle is indicated 〈u0,u1, . . . ,uk,u0〉. A cycle in an undirected graph is defined identically. A self-loop is
a cycle of length 1. (Self-loops are not allowed in general in graphs under consideration as those graphs are simple.)

Definition 9.32 (Simple cycle). A cycle is simple if all u1, . . .uk are distinct. (This is true by definition of a path.)

Definition 9.33 (Acyclic graph). A graph with no cycles is called acyclic.

1 2

3

4

Figure 9.1: A directed graph

1 2

3

4

Figure 9.2: An undirected graph

Example 9.7. These are two examples of a directed and an undirected graph. In the directed graph, there exists a
path of length two from 1 to 2 i.e. 1 2

; 2 since 1→ 4→ 2. The same obviously applies to the undirected graph.

|V|=n=4 and |E|=m=6 |V|=n=4 and |E|=m=5

V={1,2,3,4} V={1,2,3,4}

E={(1,2),(2,3),(4,3),(1,4),(1,3),(3,1)} E={(1,2),(2,3),(1,3),(3,4),(1,4)}

i(1)=1 o(1)=3 d(1)=4 d(1)=3

i(2)=1 o(2)=1 d(2)=2 d(2)=2

i(3)=3 o(3)=1 d(3)=4 d(3)=3

i(4)=1 o(4)=1 d(4)=2 d(4)=2

Cycle: <1,3> or <1,3,1> Cycle <1,2,3> or <1,2,3,1>

Cycle: <1,4,3> <1,4,3,1> Hamiltonian*Cycle <1,4,3,2> or <1,4,3,2,1>

9.4.1 Hamiltonian paths and cycle
Definition 9.34 (Hamiltonian cycle). A Hamiltonian cycle is a (simple) cycle that contains all the vertices of the
graph.

Definition 9.35 (Hamiltonian path). A Hamiltonian path is a path that contains all the vertices of the graph.

Lemma 9.1 (Auxiliary Hamiltonian Cycle Result (AHCR)). Let G be an undirected graph G = (V,E). Let d(u)+
d(v)≥ n for two non-adjacent vertices. If G+(u,v) is Hamiltonian, then G is also Hamiltonian.

Proof. Suppose that G+(u,v) has a Hamiltonian cycle c. If c does not utilize edge (u,v) then this means c is also a
Hamiltonian cycle in G and we are done.

If c utilizes edge u,v, then c contains a path p such that p = c− (u,v). For the sake of simplicity let us relabel the
vertices of the cycle/path as follows is u1 = u,u2,u3, . . . ,un−2,un−1,un = v.

We form two sets
F = {ui : (u,ui−1) ∈ E, and3≤ i≤ n−1}
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9.4. PATHS ON GRAPHS 181

G = {ui : (v,ui) ∈ E, and3≤ i≤ n−1}

utilizing
H = {u3, . . . ,un−1}

which contains n−3 vertices. Since d(u)+d(v)≥ n we have

|F |+ |G|= d(u)−1+d(v)−1 = d(u)+d(v)−2 > n−2.

by the pigeonhole principle there must be an i i.e. ui ∈ F and ui ∈ G. Then we can do the following to generate a new
Hamiltonian cycle

ui ; u1 = u ; u2 ; u3 . . .; ui−1 ; un = v ; un−1 ; . . .; ui

by reusing segments of the
u1 = u ; u,u2 ; u3 . . .; un−2 ; un−1 ; un = v.

A Hamiltonian cycle has been obtained for G from the Hamiltonian cycle c of G+(u,v).

Theorem 9.5 (Dirac’s Theorem). In an undirected graph G = (V,E), with n ≥ 3, if every vertex u has d(u) ≥ n/2,
then G has a Hamiltonian cycle.

Proof. Note that for every two vertices a and b since d(a) ≥ n/2 and d(b) ≥ n/2 for all a,b ∈ V we also have
d(a)+d(b)≥ n.

Case 1. G has a Hamiltonian cycle. Done.
Case 2. G does not have a Hamiltonian cycle. Utilizing AHCR, if there are two vertices u,v unconnected, we

explore whether G+ (u,v) has a Hamiltonian cycle. If it does by AHCR so should G contradicting the ”G does
not have a Hamiltonian cycle”. Thus we go on adding edges to unconnected vertices in G until it eventually gets a
Hamiltonian cycle (in the worst case it becomes Kn). Then we undo the addition of edges using AHCR to show that G
must have a Hamiltonian cycle contradicting the assumption that ”G does not have a Hamiltonian cycle”. Thus Case
2 does not exist.

9.4.2 Graph connectivity

Connectivity is defined for undirected graphs only.

Definition 9.36 (Connected (undirected) Graph). An undirected graph is connected if and only if each vertex v is
reachable from every other vertex u. That is ∀u,∀v ∈V we have that there exists a path ∃u ; v. By symmetry there is
also a path v ; u from v to u.

G is connected:∀u ∈V,∀v ∈V,∃u ; v

Definition 9.37 (Connected components). The connected components of a graph are the equivalence classes under
the “ is reachable from” relation or in other words they are the maximal connected subgraphs of G.

Lemma 9.2 (Connected Graph’s connected components). An undirected graph is connected if the number of its
connected components is one.

Strong connectivity is defined for directed graphs only.

Definition 9.38 (Strongly Connected (directed) Graph). A directed graph is strongly connected if and only if each
vertex v is reachable from every other vertex u. That is ∀u,∀v ∈V we have ∃u ; v and ∃v ; u. We say then that u,v
are mutually reachable.

Definition 9.39 (Strongly Connected components). The strongly connected components of a graph are the equiva-
lence classes under the “are mutually reachable” relation.
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182 CHAPTER 9. GRAPHS

9.4.3 Eulerian tours
Example 9.8 (The bridges of Köningsberg (Kalinigrad)). Define an undirected graph G = (V,E) with multiple
edges such that

V = {1,2,3,4}

and
E = {e1 = (1,2),e2 = (1,2),e3 = (2,3),e4 = (2,3),e5 = (1,4),e6 = (2,4),e7 = (3,4)}.

The question that the people of Köningsberg asked the famous mathematician Leonhard Euler was the following ”Is
there a closed walk (tour) of this graph?” The graph represents the two shores of the city of Köningsberg indicated as
vertices 1 and 3, separated by river Pregel and the two islands of Kneiphof and Lopse represented by vertices 2 and 4.

Proof. We show that there is no Euler tour neither an Euler walk.

In this discussion we assume that the graphs have NO self-loops even if they have multiple edges.

Definition 9.40 (Euler tour). An Euler (or Eulerian) tour is a tour that contains all the vertices and all the edges of
a graph G = (V,E). (It is also known as Euler or Eulerian cycle and sometimes as an Euler or Eulerican circuit.)

Definition 9.41 (Euler walk or Euler path). An Euler (or Eulerian) walk is a ”path” that contains all the vertices
and all the edges of a graph G = (V,E). (We extend the notion of the path as defined in this work to allow for any
vertex to be listed more than once. This is known as a walk or alternatively as an Euler path or Eulerian path.)

Theorem 9.6 (Euler tour / Euler cycle). If G = (V,E) has an Euler tour then G is connected and every vertex has
even degree.

Proof. If there is an Euler tour we isolate for any u and any v the walk from u to v. If it is also a path it means
there is a path from u to v. If it is not a path, it is a walk and it meanse there is a vertex w that appears multiple
times. We remove the edges of the walk between after the first appearance of w through the last appearance of w. (For
example: (1,2,3,4,5,6,3,7,8) with w = 3 would be reduced to (1,2,3,7,8) by eliminating the cycle (3,4,5,6).) In
the remainder w appears only once (the first encounter). The reduced walk (or path) still allows us to go from u to v
as one or more cycles or tours were removed. We do so for other vertices q that appear multiple times until we are left
with a path from u to v. We repeat this for every u and v. This concludes that G is connected.

If there is an Euler tour every visit of a vertex v that progresses to another vertex includes an in-visit followed by
an out-visit of v thus consuming two edges out of the degree d(v) of v. Thus if G has an Euler tour the graph must
be connected to be able to in-visit and out-visit a given vertex v for all v. If G were not connected a vertex v would
have been unreachable and thus there would have been no tour, contradicting to the existence of the Eulerian tour
(moreover, an isolated vertex v has d(v) = 0 which is an even number). If G is connected there can be no isolated
vertex v and there can be no vertex v with odd degree. Every visit to an arbitrary vertex v and progress to another vertex
away from v consumes two from the degree of v. If there was a vertex v of odd degree, let that v had d(v) = 2k+ 1,
an odd number, we could in-visit and out-visit v k times without problems but then the k+1-st time an in-visit leads
to getting stuck at v as there would be no unvisited edge for the out-visit. (A symmetric case would be a sequence of
out-visits followed by in-visit.) This completes the proof.

Theorem 9.7 (Euler’s Theorem). An undirected connected graph G = (V,E) has an Euler tour (walk) if and only if
either none or exactly two vertices have odd degree. This implies that all vertices have even degree or two vertices
have odd degree and every other vertex has even degree. In the former case we talk about an Euler tour and in the
latter case about an Euler walk.

Proof.
1. Necessary part.
1a. Euler tour case. If there is an Euler tour, then this means that the graph is connected. This was shown in the
previous result. Moreover we showed in the previous result that every vertex has even degree.
1b. Euler walk case. If there is an Euler walk, then this means that the graph is connected. It can be shown in the
same way the previous result was shown. Moreover we showed in the previous result that every vertex has even degree



DRAFT. C
op

yri
gh

t (
c)

20
21

-20
24

.

Alex
. Gerb

ess
iot

is.

All r
igh

ts
res

erv
ed

Not
to

be
po

ste
d on

lin
e

or
on

the
web

or
to

be

mad
e av

ail
ab

le
ou

tsi
de

of

co
py

rig
ht

ho
lde

r’s
web

-pa
ge

9.4. PATHS ON GRAPHS 183

for the case of an Euler tour. But in case of a walk the starting and ending vertices can be of an odd degree if there is
no Euler tour.

Therefore in the case of an Euler tour or Euler walk in a connected undirected graph either all vertices have even
degree or 2 vertices have odd degree and the remaining one have even degree. The two vertices with odd degree are
the starting and ending vertices of the Euler walk.
2. Sufficient part.

We show by induction the following.

If there are only two vertices u and v with odd degree then there exists an Euler walk that starts from u and ends in
v; if there are no vertices with odd degree, then graph has an Eulerian tour.

We prove this by induction on m, the number of edges of G. We shall assume that the statement above is true for
all graphs with k edges, where k < m, and show that it is also for a graph G with m dges. We assume that there are two
vertices u,v of odd degree.

Let us start with u to create a walk W . We move along by never visiting an edge twice. If we reach q 6= v, through
an edge there is a way out of through another edge since w has even degree. (If d(q) = 2k and we had visited q k−1
times there are two unvisited edges, one on the way into q and one on the way out of q.) When it is no longer possible
to move it means we have reached v. It is possible then that not all edges have been visited (used) in walk W .

After we remove the visited (used) edges from G, the remainder of the graph is such that every vertex has even
degree (including u and v). Let G1,G2, . . . ,Gk be the connected components of G that have at least one edge (ie.
at least two vertices). By induction they have Euler cycles c1,c2, . . . ,ck. Since G is connected the original walk W
encounters all of G1, . . . ,Gk. Let W encounters G1 at vertex r1, G2 at vertex r2, and so on. Then we generate the walk
by combining W , c1, . . . ,ck.

W (u ; x1); c1 ;W (x1 ; x2); c2 ; . . .W (xk ; v)

The resulting walk is an Euler walk (or The resulting tour is an Euler tour).

Theorem 9.8 (Euler tour / Euler cycle). If G is a connected graph and every vertex has even degree, then G has an
Euler tour.

Proof. Direct consequence of previous theorem.

Example 9.9 (The bridges of Köningsberg (Kalinigrad)). To conclude this problem the bridges of Köningsberg
graph is a graph where all 4 vertices are of odd degree. Thus there is neither an Euler walk nor an Euler tour.

Note that the discussion on Euler tours and Euler walks can be extended to directed graphs adjusted accordingly.
(Thus a vertex of even degree becomes a vertex whose in degree is equal to its out degree; two odd degree vertices
become vertices where one has out degree excess of one and the other in degree excess of one.)

Example 9.10. A DeBruijn graph of order m = 3 is defined as a directed graph G = (V,E) where the vertices are
m-bit sequences. Thus n = 2m. There is an edge from a1a2a3 to a2a3a4, for all 0≤ ai ≤ 1. Thus for the m = 3 case the
vertex set is

V = {000,001,010,011,100,101,111}.

Moreover, the edge set E is

E = {(000,000),(000,001),(001,010),(001,011),(010,100),(010,101),(011,110),(011,111),(100,000),(100,001),(101,010),(101,011),(110,100),(110,101),(111,110),(111,111),}.

An edge such as (000,000) may be labeled 000,0, whereas (000,001) may be labeled 000,1. Assuming the self-loop
of vertices 000 and 111 contibutes two two the degree of those vertices, the graph has an Eulerian walk.
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9.5 Forests and Trees
The following definitions are for undirected graphs.

Definition 9.42 (Forest). A forest is an acyclic undirected graph.

Definition 9.43 (Tree). A (free) tree or just a tree is a connected acyclic undirected graph.

A connected forest is thus a tree.

Theorem 9.9. Let G be an undirected graph. The following statements are equivalent

1. G is a free tree.

2. Any two vertices in G are connected by a unique single path.

3. G is connected but if any edge is removed from E the resulting graph is disconnected.

4. G is connected and |E|= |V |−1.

5. G is acyclic and |E|= |V |−1.

6. G is acyclic but if any edge is added to E the resulting graph contains a cycle.

Proof. We show how 1 leads to 4 and 5. If G is a free tree it is both connected and acyclic. We show |E|= |V |−1⇒
m = n−1 by induction as follows.

For n = 1 and n = 2 the result is true by inspection since m = 0 and m = 1 respectively. Pick edge e = (a,b) and
remove it from the tree. The graph (tree) G is split into a number (two) of connected components. This is because
otherwise there would still be a path from a to b and adding to that path e the tree would have had a cycle. Let the
two connected components be T1 and T2 with n1,n2 vertices respectively where n1 +n2 = n. Each one has n1 < n and
n2 < n and are both connected and acyclic inheriting the properties of T thus by induction m1 = n1−1 and m2 = n2−1.
The m = m1 +m2 + |{e}|= n1−1+n2−1+1 = n−1. Both have been shown.

(An alternative inductive step. Pick a path P of maximum length in tree. The last vertex has degree one. Call it
u and the edge leading to it e. (If its degree was two, it would lead either to a longer path, or to a previously traverse
vertex indicating a cycle in a tree, an impossibility). Then G−u has one fewer vertex and one fewer edge as e the edge
leading to u is not in G−u. By induction G−u is (a tree of course) and has n−1 vertices and n−2 edges. Adding u
and e we obtain G has n vertices and n−1 edges.)

Corollary 9.1. Every tree has at least two vertices of degree 1.

Proof. Let d(i) be the degree of vertex i. We know that ∑i d(i) = 2(n−1) = 2n−2. Moreover assume there is only
one vertex of degree one. Let that vertex be vertex 1 (or rename vertices otherwise). Then d(1) = 1 and d(i)≥ 2. Then
∑i d(i) = d(1)+ d(2)+ . . .+ d(n) ≥ 1+ 2(n− 1) = 2n− 1. The latter however is larger than the sum of the degrees
2n−2, an impossibility.

Definition 9.44 (Spanning Tree). For an undirected graph G = (V,E) a spanning tree T ′ = (V,E ′), E ′ ⊆ E is a
subgraph of G that is a tree and touches all of the vertices of G, in other words for every vertex u ∈V there is an edge
e′ ⊆ E ′ such that e′ is incident on u.

Definition 9.45 (Minimum Cost Spanning Tree). For an undirected graph G = (V,E) whose edges have weights W
(where wi j is the weight of edge (i, j)) a minimum cost spanning tree of G is a spanning tree T ′ = (V,E ′), E ′ ⊆ E that
also has the following property: the ∑(i, j)∈E ′ wi j is minimized over the edgeset E ′ of T i.e. every other spanning tree
T2 = (V,E2) has ∑(k,l)∈E2

wkl ≥ ∑(i, j)∈E ′ wi j. If for every T2 we have > instead of ≥, the T ′ is known as the minimal
cost spanning tree of G.

Minimal means only one has the minimum cost. Minimum is used if there are multiple instances that have the
minimum cost. In the latter case we pick one out of them!
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9.5. FORESTS AND TREES 185

Definition 9.46 (Rooted tree). A rooted tree is a free tree in which one of the vertices is distinguished from the others
and is called the root. The root of a tree T will be represented sometimes by r.

Definition 9.47 (Vertex in Graph, Node in a tree). Vertices of a tree are also called nodes. The same u can be a
vertex (of the graph) in one context and node (of a tree that is the graph) in another context.

Definition 9.48 ( Ancestor, Descendant). In a rooted tree T , let P be a path from root r to some vertex (node) x. Then
any node y of the unique path from r to x is called an ancestor of x. x is a descendant of y (including r and itself).
If x 6= y then the x is a proper descendant of y and y is a proper ancestor of x. x is an ancestor/descendant of x. The
subtree rooted at x is the tree induced by descendants of x rooted at x.

Definition 9.49 ( Degree of Vertex, degree of Node). The degree of a vertex that is a node of the tree is as previously
defined. The degree of a (rooted tree) node is the number of its children. For a rooted tree we can define relationships
such as descendant, ancestor, child and parent relative to the root. The number of children of the root (of a rooted
tree) define the ’degree’ of the root. Likewise we can define the degree of a node as the number of its own “children”

Definition 9.50 (Parent, Child, Sibling). In a rooted tree T , let P be a path from root r to some vertex (node) x. If in
P the last edge is (z,x) z is called parent of x, x is called child of z. If x and u are both children of z they are called
siblings.

Definition 9.51 (Leaf or an external node; Internal node). A node with no children is called a leaf or an external
node. A non-leaf is called an internal node. The root is also an internal node unless there is only one node in the
tree, that node is the root, and the root is also a leaf, i.e. an external node.

Definition 9.52 (Depth). The length of the path from the r of a rooted tree to a node x is the depth of x. A root r has
depth d(r) = 0. If v is a rooted tree node then d(v) = d(p(v))+1 where p(v) is parent of v.

Definition 9.53 (Tree height: depth-based definition). The largest depth of any node is the height of the tree T .

Definition 9.54 (Height of a node). In a rooted tree T with root r, the height of a leaf v is h(v) = 0. For a non-leaf
node u, h(u) = (maxw h(w))+ 1, where w runs over all the children of u. In other words the height of a node is the
length of the longest path from the node to a descendant leaf.

Definition 9.55 (Tree height: height-based definition). The height of a rooted tree is the height of its root.

Definition 9.56 (Ordered tree). An ordered tree is a (rooted) tree in which the children of every node are ordered
(i.e. we can talk of the first, second node, etc).

Definition 9.57 (Binary tree). A Binary Tree is a rooted and ordered tree that either

• contains no nodes (i.e. it is empty), or

• it consists of three disjoint sets of nodes: a root node, a binary tree called left-subtree and a binary tree called
right-subtree.

Example 9.11. The number of binary trees with n = 1 is 1. The number of binary trees with n = 2 is 2. The number
of binary trees with n = 3 is 3. Show that the number of binary trees with n = 4 is 14. Show that the number is
C(n) = (1/(n+1))

(2n
n

)
, the Catalan number of order n.

n=1 n=2 n=3
x x x x x x x

x / , \ / / / \ \ \
x x x x x x x x

/ \ / \
x x x x

The root of the left subtree is called the left child of the root and that of right subtree the right child of the root.
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186 CHAPTER 9. GRAPHS

Definition 9.58 (Binary tree vs ordered tree). If a node has only one child it matters whether it is a left or a right
child in a binary tree, as opposed to ordered trees, where it doesn’t matter. Binary trees maintain left and right notion,
ordered trees do not.

Definition 9.59 (A full binary tree). A full binary tree is a tree where each node has degree 2 or 0 (leaf).

Definition 9.60 (A complete binary tree). A complete binary tree (CBT), is a tree where each leaf has the same depth
and all internal nodes have degree two.

Remark 9.10. Several textbooks call a full binary tree what we defined as a complete binary tree.

Example-Proposition 9.12 (Height h of CBT). The number of vertices (nodes) in such a tree of height h is

1+2+22 + . . .+2h = 2h+1−1.

Example-Proposition 9.13 (Number of internal nodes). The number of internal nodes in a CBT of height h is 2h−1.

Example-Proposition 9.14 (Number of internal nodes). The number of external nodes in a CBT of height h is 2h.

Question 9.1. Question: A complete binary tree has n nodes. How many of them are leaves, and how many of them
are internal nodes ?
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9.6. PLANAR GRAPHS 187

9.6 Planar graphs
Definition 9.61 (Planar graphs). A graph is planar if it can be drawn on the plane without intersecting edges.

Example 9.15. K2,3 is a planar graph. ( V1 = {1,2} and V2 = {3,4,5}. )

1 Face A: interior of 1,3,2,4,1
/ | \ Face B: interior of 1,4,2,5,1

3 4 5 Face C: outside of 1,3,2,5,1
\ | /

2

n (# vertices) = 5
m (# edges) = 6 n-m+f = 5-6+3 = 2
f (# faces) = 3

Example 9.16. K4 is a planar graph. )

_________
| | Face A: interior of 1,3,2,1
1----2 | Face B: interior of 2,3,4,1
| /| | Face C: interior of 1,2,4,1
| / | | Face D: outside of 1,3,4,1
| / | |
|/ | |
3----4----

n (# vertices) = 4
m (# edges) = 6 n-m+f = 4-6+4 = 2
f (# faces) = 4

Theorem 9.10 ((Yet another) Euler’s theorem). A planar graph with n vertices, m edges and f faces satisfies the
following equality.

n−m+ f = 2.

Proof. Base case n = 1, m = 0 and then f = 1 obviously. Base case n = 2, m = 1 and then f = 1 obviously. Both by
inspection.

Induction on m. Assume it is true for all planar graphs with m edges of less.
Pick a planar graph with m+1 edges and pick one of the m edges call it e.
Case 1: Edge e connects an isolated vertex to G.
Graph G let us say it has n vertices m+ 1 edges and f faces. We want to calculate n− (m+ 1)+ f and confirm

it is equal to two. Remove e i.e. G− e. Graph has n− 1 vertices m edges and the same number of faces as before.
Moreover it is still planar. Thus by induction (n− 1)−m+ f = 2. Then n− (m+ 1)+ f = (n− 1)−m+ f = 2 and
the result has been proven.

Case 2. Edge e connects two vertices that are not isolated.
Graph G let us say it has n vertices m+1 edges and f faces. We want to calculate n− (m+1)+ f and confirm it

is equal to two.
Graph G−u in this case still has n vertices m edges. The removal of e joins two faces on either side into one thus

the number of faces becomes f −1. Therefore by induction

n−m+( f −1) = 2⇒ n− (m+1)+ f = 2,

and the result has been proven. Proof is thus complete by case analysis.

Example-Proposition 9.17. K5 is not planar.

Proof. Say K5 is a planar graph. K5 has n = 5 and m = 10 and then n−m+ f = 2 implies f = 7.
Each face must be surrounded by at least 3 edges. Let then b be the number of boundarye (edges) of those faces

i.e. b ≥ 3 f . Moreover b = 2m since an edge is used as a boundary twice (one side is a face, the other side is another
face).

Then b = 2m≥ 3 f implies m≥ 3/2 f . But then 10 6≥ 3/2 ·7, since m = 10 and f = 7.
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188 CHAPTER 9. GRAPHS

Example 9.18. Show K3,3 is not planar.

Corollary 9.2. In any connected planar graph with at least two faces m≤ 3n−6.

Proof. Every face has at least 3 edges.
Each edge is shared by two faces
Thus 2m≥ 3 f and m≥ 3 f/2.
Using n−m+ f = 2 we have f = 2−n+m and m≥ 3(2−n+m)/2 which leads to

m≤ 3n−6,

as required.

Definition 9.62. A planar embedding of a graph is a drawing of a graph in the plane with out crossing edges.

Definition 9.63. A graph G1 = (V1,E1) is homomorphically embeded into graph G2 = (V2,E2) if there is an 1-1
mapping p : V1→ V2 such that for all edges (u,v) ∈ E1, edge (u,v) of G1 maps to path p(u); p(v) of G2 such that
the paths are vertex disjoints except for the end-points.

Theorem 9.11. A graph is planar if and only if it contains no homomorphic emdedding of K5 or K3,3.

9.7 Coloring
Definition 9.64 (Vertex Coloring). Given a graph G = (V,E) a vertex coloring is an assignment of distinct colors to
its vertices such that no pair of adjacent vertices have the same color.

Definition 9.65 (Edge Coloring). Given a graph G = (V,E) an edge coloring is an assignment of distinct colors to
its edges such that no pair of edges incident on the same vertex have the same color.

Definition 9.66 (Chromatic Number). The chromatic number γ(G) (or χ(G)) of G is the smallest number of colors
needed in a vertex coloring.

Definition 9.67 (Chromatic Index). The chromatic index χ(G) (or γ(G)) of G is the smallest number of colors needed
in an edge coloring.

Example 9.19. For K4, we have γ(K4) = 4 and then χ(K4) = 3.

Let D = maxud(u).

Example 9.20. For Kn1,n2 , we have γ(Kn1,n2) = 2 and then χ(Kn1,n2) = D.

Example 9.21. For a generic graph G, we have 2≤ γ(G)≤ D+1 and then D≤ χ(G) = D+1.

Theorem 9.12 (Kempe (1875)). Every planar graph G = (V,E) is 5-vertex colorable.

Proof. The result will be proven by induction on the vertices of the planar graph G = (V,E).
Before that we utilize Corollary 9.2.

Claim 9.1. In every planar graph there must be a vertex of degree 5 or less.

The proof is by way of Corollary 9.2. Otherwise every vertex has degree 6 or more. Given that the sum of the
degrees is twice the number of the edges we can then show 2m = ∑i d(i)≥ 6n which implies m≥ 3n that would then
contradict the m≤ 3n−6 of Corollary 9.2.

Base case (n = 1). It is true for n = 1 obviously.

Inductive step. Suppose it is true for all planara graphs with k < n vertices. Consider a k+1 vertex planar graph G.
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9.7. COLORING 189

Case 1. Vertex v, d(v) < 5. Pick a vertex v of degree d(v) ≤ 5. If the degree of v is less than 5 i.e. d(v) < 5 by
induction, G− v can be colored with 5 colors, and then v can be colored with a color not utilized by its four or fewer
neighbors to provide a 5-coloring to G.

Case 2. Vertex v, d(v) = 5. Suppose v has d(v) = 5. Similarly as before, G− v by induction can be colored with
5 colors. Let v1,v2,v3,v4,v5 be the five vertices ordered according to the planar embedding of G, whose edges are
incident on v. If Vertices v1, . . . ,v5 have fewer than 5 distinct colors altogether, G can become 5-colorable by the
argument of the previous case.

In the remainder we discuss the case where vertices v1, . . . ,v5 have 5 distinct colors. Let without loss of generality
the color of vi be i. Let Vi be the set of vertices of G− v with color i.

Claim 9.2. In G13 = (V1∪V3,E ∩V1×V3), v1 and v3 are in the same connected component of G13.

Proof. If they were not we could flip the color of one or the other in one connected component, and thus we would
color v1,v3 with the same color, free one color, and use it to color v with the fred color.

For the same reason,

Claim 9.3. In G14 = (V1∪V4,E ∩V1×V4), v1 and v4 are in the same connected component of G14.

Likewise,

Claim 9.4. In G25 = (V2∪V5,E ∩V2×V5), v2 and v5 are in the same connected component of G25.

Because of the planarity of G, then the path/chain v1 ; v3 would intersect or the path/chain v1 ; v4 would intersect
a chain v2 ; v5 contradicting the planarity of G, unless one of v2,v5 are in a in a different component than the other
and then we save up a color (2 or 5) to color v.

Theorem 9.13 (Appel+Haken+computer(1976)). Every planar graph is 4-vertex colorable.
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9.8 Matchings in bipartite graphs
In the remainder of this section, all graphs are undirected (and simple).

Definition 9.68 (Matching). For a bipartite graph G= (A∪B,E), where V =A∪B, and A and B define the bipartition
of the vertices, a matching M is is a subset of E such that for every vertex of A there is exactly one edge of M that
is incident on it (and the other end point of the edge is in B) and no vertex b of B belongs to more than one edge in
M. Thus if dM(u) defines the degree of vertex u in the subgraph (A∪B,M), we have dM(a) = 1 and dM(b)≤ 1 for all
a ∈ A and all b ∈ B.

Definition 9.69 (Saturating set). For a matching M the vertices of the matching belong to the saturating by the
matching vertex set S(M), i.e. S(M) = {z|(z,b) ∈M, OR (a,z) ∈M}.

Definition 9.70 (Saturating vertex). A vertex u is saturated or is a saturating vertex if edge (u,v) belongs to a
matching M. Saturation is with respect to a matching and thus u is a saturating vertex with respect to M if u ∈ S(M).

The definition can extend to an arbitrary graph. In the edges of a matching a vertex appears only (at most) once.
Sometimes it is known as a complete matching. A complete matching covers A completely i.e. |M|= |A|.

Definition 9.71 (Maximum Matching). For a bipartite graph G = (A∪B,E), a maximum matching is a matching M
of maximum cardinality that saturates as many vertices of A as possible. Thus |M| ≤ |A|. (It is also possible that we
have more matchings of the same cardinality |M|.)

For a graph rather than a bipartite graph, a maximum matching saturates as many vertices of V as possible.

Definition 9.72 (Complete Matching). For a bipartite graph G = (A∪B,E), a complete matching is a matching M
of maximum cardinality that saturates all vertices of A. Thus |M|= |A|.

For a graph rather than a bipartite graph, a complete matching is of size bn/2c.

Definition 9.73 (Perfect Matching). For a bipartite graph G = (A∪B,E), a perfect matching is a matching M of
maximum cardinality that saturates all vertices of A and of B. Thus |M|= |A|= |B|.

For a graph rather than a bipartite graph, a perfect matching is of size n/2, n is even.

Definition 9.74 (Maximal Matching). It is a matching M of maximum cardinality |M|, and every other matching has
cardinality less than |M|. (That is there can be no two or more matchings of the same cardinality |M|.)

A perfect matching M is such that |M|= |A|= |B|.

Definition 9.75 (Neighborhood N of a set of vertices). For a bipartite graph G = (A∪B,E), where V = A∪B, and
A and B define the bipartition of the vertices, and some set S⊆ A, we define by N(S) the vertices of B that are adjacent
to at least one vertex of S. We can define N(S) for a set S⊆ B likewise.

Theorem 9.14 (Hall’s theorem). Let G = (A∪B,E) be a bipartite graph, where V = A∪B and A and B define the
bipartition of the vertices V of G. Then G has a (complete) matching M saturating A if and only if

∀S⊆ A : |N(S)| ≥ |S|

where
N(S) = {v ∈ B : ∃u ∈ S : (u,v) ∈ E}.

Proof.
Only if. If G has a matching M, it must be |N(S)| ≥ |S| for all S ⊆ A. This is because if there is a T such that
|N(T )|< |T |, then there are not enough vertices in B to match the N(T )⊆ B vertices to the |T | vertices of T .

If. Proof by induction. Assume result is true for all graphs with fewer than n vertices, i.e is true for all m < n vertices
of A. That is

∀G∀A, |A|= m, if ∀S⊆ A, |N(S)| ≥ |S| ⇒ G has a (complete) matching.
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9.8. MATCHINGS IN BIPARTITE GRAPHS 191

Base case is n = 1. True by inspection.
Inductive step.

Case 1 of inductive step : ∀S⊆ A,S 6= /0,S 6= A : |N(S)|> |S|.
Pick an edge e = (a,b) ∈ E and remove edge e and also all other edges incident on a,b from graph G to get say

graph G′ = G− a− b. Graph G′ has one fewer vertex in A after the removal of a (and also b and all those relevant
edges). Furthermore, for all S ⊆ A, N(S) has descreased possibly by one and thus |N(S)| ≥ |S|. The remaining graph
has one fewer vertex in A and one fewer in B and thus the induction hypothesis applies and a (complete) matching
exists in G′. Such a matching saturates A−{a}. Adding e to this matching we get a matching of size one more that
saturates all of A. Case completed.

Case 2 of inductive step : ∃Z ⊆ A,Z 6= /0,Z 6= A : |N(Z)|= |Z|.
We split A into Z and A−Z. Z maps to N(Z) and we have by assumption that |N(Z)| = |Z|. Moreover A−Z’s

neighborhood is N(Z) and B−N(Z). Because Z 6= A, Z is at least one smaller than A, i.e. |Z|< |A|= n or |Z| ≤ |A|−1.
Then the subgraph, G1 = (Z∪N(Z),E ∩Z×N(Z)), with |Z|< n satisfies the inductive hypothesis and a complete

(and perfect) matching exists that saturates Z and its equal sized N(Z).
The rest of the graph consists of A−Z and N(A−Z)⊆ N(Z)∪B−N(Z). Since Z 6= emptyset, A−Z is such that

|A−Z| < |A| and thus the inductive hypothesis is potentially applicable. For this to be indeed the case, we need to
dismiss the possibility that there exists an A2 ⊆ A−Z such that |N(A2)|< |A2|. Then the induction hypothesis would
apply.

For the dismissal of that possibility we work as follows.
We first observe that Z ∪ A2 has |N(Z ∪ A2)| ≤ |N(Z)|+ |N(A2)| ≤ |Z|+ |A2|. This contradicts the induction

hypothesis |N(S)| ≥ |S| for all S including S = Z∪A2. This completes the proof.

Corollary 9.3. Let G = (A∪B,E) be a bipartite graph. If |A|= |B| and G is k-regular then there is perfect matching
for all a ∈ and b ∈ B.

Proof. If there is no perfect matchine from the theorem above there exists an S such that |N(S)| < |S|. Set S has
vertices that have degree k. Thus the contribution of the sum of the degrees of those vertices is |S|k. If |N(S)| < |S|
and the sum of the degrees of those vertices should also be |S|k but intstead it is something smaller: |N(S)|k since to
|N(S)|k < |S|k. This cannot be the case.

Definition 9.76 (Alternating chain with respect to matching M). Let M be a matching of a bipartite graph G =
(A∪B,E). An alternating chain (also relative to M) is a set of edges alternating between edges of M end edges in
E−M (i.e. not in M).

Lemma 9.3. Let M1 and M2 be two matching of a bipartite graph G = (A∪B,E). Consider the subgraph of G
G = (A∪B,M1 +M2) with edge-set M1 +M2, the symmetric difference of M1 and M2, i.e. M1 +M2 = (M1−M2)∪
(M2−M1). Each connected component of the symmetric difference is one of the following types.

(1) An isolated vertex,

(2) A cycle of even length with edges alternating in M1 and M2,

(3) An alternating chain with end-points distinct and both unsaturated in either one or the other matching.

Proof. Let a ∈ A. We do a case analysis
Case 1: a 6∈ S(M1−M2) and a 6∈ S(M2−M1). This means a is an isolated vertex.
Cases 2,3: a ∈ S(M1−M2) and a 6∈ S(M2−M1) and its symmetric case. This means a is in matching M1 and

moreover it is in M1−M2. There is no other edge in M1−M2 incident on a because a is in matching M1.
Moreover no edge of M2−M1 is incident on a either. Furthermore, a 6∈ S(M2) since otherwise a would be on an

edge of M2, but then it could not be a ∈ S(M1−M2).
Case 4. a∈ S(M1−M2) and a∈ S(M2−M1) there exists an edge in M1−M2 incident on a and an edge in M2−M1

incident on a and no other edge is such.
In case 1 a is of degree 0, in Cases 2 and 3 of degree 1 and in case 4 of degree 2.
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192 CHAPTER 9. GRAPHS

Theorem 9.15 (Berge’s theorem). A matching M is maximum (i.e. of the longest size) if and only if there can’t be an
alternating chain between two vertices that do not belong to S(M). S(M) = {z|(z,b) ∈M, OR (a,z) ∈M}.

Proof.
Only-If. Let M be a maximum matching and let us assume that an alternating chain exists with end points outside
of the matching M. Then we can extend the matching by one contradicting to the maximality of M by picking in the
alternating chain the edges not in M to become the edges of a new matching M′ that is one larger than M in (matching)
size.

If. Let M be a matching. Let us assume that an alternating chain DOES NOT exist between two vertices that do
not belong to S(M). Then we show that M is a maximum matching.

Say M (for the sake of contradiction is not a maximum matching) and let M1 be a maximum matching i.e. of
size at least one more. Consider G1 = (A∪B,M +M1) where M +M1 is the symmetric difference of M and M1 i.e.
M +M1 = (M−M1)∪ (M1−M). Naturally |M1| > |M|. In G1 based on the previous theorem, a vertex a is either
isolated, or have degree 2 and is on a cycle of even length, or is in a chain. The first two cases are neutral with respect
to the number of edges of M versus M1. Only in the case of chain can we have either M or M1 contributing one more
edge if both end-points are from M or M1 respectively. Given that |M1| > |M|, there must then be a chain whose
end-points are in M1. Thus we found an alternating chain with respect to M that is not supposed to exist! Thus M is a
maximum matching.

Example 9.22. We have a chessboard that we have remove the top left square and bottom right square. (A square is
indicated by T.) We want to cover all the board (of 62 squares) with domino pieces. A domino piece is a rectangle that
can cover horizontally or vertically two squares. Can we cover the incomplete square with 31 domino pieces?

T T T T T T T W B W B W B W

T T T T T T T T W B W B W B W B

T T T T T T T T B W B W B W B W

T T T T T T T T W B W B W B W B

T T T T T T T T B W B W B W B W

T T T T T T T T W B W B W B W B

T T T T T T T T B W B W B W B W

T T T T T T T W B W B W B W

Proof. If we color the square B and W for black and white that the chessboard is, the two missing squares are of the
same type. Thus a domino piece can only cover one B and one W. If there 30 of one type and 32 of another type they
cannot be covered by 31 domino pieces.

For a graph-theoretic proof, build a bipartite graph with one set containing the B squares and the other the W
squares. An edge determines whether two squares are next to each other in the North, Sourth, East, West direction.
The problems becomes a matching problem.

A maximum matching of G = (A∪B,E) is a matching M of largest cardinality.

Definition 9.77 (Deficiency). The deficiency δ (X) for a set X ⊆ A is defined as

δ (X) = |X |− |N(X)|.

The deficiency of graph G is defined as the maximum deficiency of a subset of A.

δ (G) = max
X⊆A

δ (X)≥ δ (X)

We have δ (G)≥ 0 since δ ( /0) = 0.

Theorem 9.16. In any bipartite graph G = (A∪B,E) the size of a maximum matching is |A|−δ (G).

Proof. Let X ⊆ A such that δ (G) = δ (X) = |X |− |N(X)|. Since at most |X |− δ (G) vertices in B forming N(X) can
be matched to a vertex in A that is X , we have that m = |M| is such that

m≤ |A|−δ (G).
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9.8. MATCHINGS IN BIPARTITE GRAPHS 193

We show now that a matching M of size at least ≥ |A|−δ (G) exists. We add δ (G) new vertices in B and connect
them to every vertex in A. We call the new augmented graph G1. In the new graph for every X ⊆ A we have

|NG1(X)|= |NG(X)|+δ (G) = |X |−δ (X)+δ (G)≥ |X |.

since δ (G) ≥ δ (X). Thus by Hall’s theorem G1 has a maximum matching. If we remove from that matching δ (G)
edges/vertices mapped to the newly inserted vertices into B, we get a matching of size at least |A|− δ (G), i.e. m ≥
|A|−δ (G). The two conditions m≤ |A|−δ (G) and m≥ |A|−δ (G) lead to m = |A|−δ (G).

Definition 9.78 (Vertex Cover). A vertex cover V ′ ⊆V of a graph G = (V,E) is a set of vertices such that every vertex
of G is incident on some vertex in V ′.

Definition 9.79 (Line). A line is a row or a column of a matrix.

Definition 9.80 (Order of a matrix). For a square matrix n×n its order is n.

Theorem 9.17 (König - Egervary). In a 0-1 matrix of order let n be the minimum number of lines that contain all
the ones is equal to the maximum number of ones that are in distinct rows and columns (In other words a maximum
matching is equal to a minimum vertex cover.)

Proof. The 0-1 matrix can be viewed as an adjacency matrix of a bipartite graph with the row indexes mapping to
vertices in A and column indexes to vertices in B, where G = (A∪B,E).

Let (C) be the minimum number of lines that contain all the ones. Let (M) be the maximum number of ones that
are in distinct lines.

It is clear that (C) ≥ (M). A minimum cover contains all the vertices of a maximum matching. A vertex in a
minimum cover can cover a maximum of one edge of the maximum matching.

In order to show that (C)≤ (M), we first note that a maximum matching M is of size m such that m = |A|−δ (G).
Let X ⊆ A whose deficiency is δ (X) = δ (G).
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194 CHAPTER 9. GRAPHS

9.9 Representation of a graph
For a graph G = (V,E), let n = |V | and m = |E|, as already noted.

Definition 9.81 (Dense graph). A graph G is dense if m� n. The condition m� n can be restated as m = Θ(n2).
Therefore, a graph G is dense if and only if m = Θ(n2).

Definition 9.82 (Sparse graph). A graph G is sparse if m 6� n. The condition m 6� n can be restated as m = o(n2).
Therefore, a graph G is sparse if and only if m = o(n2).

There are two major ways one can use to represent a graph in the memory of a computer: (a) the adjacency matrix,
and (b) the adjacency list representation.

9.9.1 Adjacency matrix
In the remainder of this discussion for a matrix A that is, a two dimensional array, the element at the intersection of
row i and column j will be denoted interchangeably as Ai j or Ai, j or A(i, j) or A[i][ j]. Likewise for a linear array B that
is, a column vector, the element at index i or row i will be denoted by Bi or B(i) or B[i].

Definition 9.83 (Adjacency matrix representation). A graph G = (V,E) on n vertices and m edges is represented
by an n×n adjacency matrix A (a two dimensional array) A = [ai j]

i=n, j=n
i=1, j=1. Element a(i, j) is 1 if there is an edge (i, j)

in the graph, otherwise it is 0.

ai j =

{
1 if (i, j) ∈ E
0 otherwise, i.e.(i, j) 6∈ E

The amount of space used for the representation is Θ(n2).

Remark 9.11 (Adjacency matrix for directed graphs). The number of ones in A is equal to m, the number of edges.

Remark 9.12 (Adjacency matrix for undirected graphs). For undirected graphs, A will be a symmetric matrix since
for every edge (i, j) ∈ E we have ( j, i) ∈ E and thus both a(i, j) = a( j, i) = 1 in that case. The number of ones in A is
equal to 2m.

Example-Proposition 9.23 (Outdegree, Indegree). The outdegree of vertex i can be found by scanning row i of the
adjacency matrix and counting the number of ones. Likewise, The indegree of vertex i can be found by scanning
column i of the adjacency matrix and counting the number of ones. The degree of vertex i can be found by adding
the indegree and outdegree of vertex i. The running time of all these operations is Θ(n), as a row or column with n
elements needs to be scanned.

Example-Proposition 9.24 (Degree of a vertex of an undirected graph). The degree of vertex i can be found by
scanning row i (or column i) of the adjacency matrix and counting the number of ones. The matrix is symmetric and
thus it does not matter whether it is row i or column i. The running time of all this operation is Θ(n), as a row or
column with n elements needs to be scanned.

When edges of the graphs have numeric labels sometimes we call these labels invariably weights, distances or
costs. We can use a representation similar to the adjacency matrix in addition to the adjacency matrix, or we can
use a representation that also captures the information of the adjacency matrix of a graph G = (V,E) with weights
(distances, costs).

Definition 9.84 (Weight matrix representation). If the edges of the graph have weights assigned to them, then
instead of using an 1 to indicate an edge from vertex i to vertex j, we store the weight of the edge instead. Because 0
can be a weight, we use ∞ for the cost of a non-edge. The diagonal elements capture the weight of an edge from i to i
that is a self-loop that does not exist for simple graphs. We artificially populate the diagonal elements with 0 or some
other value, as needed. Thus a weight matrix representation of a graph G = (V,E) utilizes a weight matrix W such
that W = [wi j]

i=n, j=n
i=1, j=1.

ai j =

{
1 if (i, j) ∈ E
0 otherwise, i.e.(i, j) 6∈ E
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9.9. REPRESENTATION OF A GRAPH 195

wi j =

 wi j weight of edge (i, j) ∈ E, i 6= j
0 weight of “edge” (i, i) ∈ E
∞ otherwise, i.e. (i, j) 6∈ E

We can use a separate W (or D or C) matrix to store this information or capture it into A instead. The amount of space
used for the representation is Total space requirements are still Θ(n2).

In the remainder the ai would be denoted as a(i, j).

Theorem 9.18. Let G = (V,E) has adjacency matrix A. Form the matrix products A,A2 = A∗A,A3 = A2 ∗A, . . . ,Ak.
Then ak(i, j) is the (i, j) entry of Ak. The following properties are shared by Ai, where i = 1, . . . ,k. A i.e. a(i, j) gives
the number of paths of length 1 from a vertex i to a vertex j. A2 i.e. a2(i, j) gives the number of paths of length 2 from
a vertex i to a vertex j. Ak i.e. ak(i, j) gives the number of paths of length k from a vertex i to a vertex j.

Proof. Proof by induction. Base case is obvious. Let Am shows the number of paths of length m from i to j.
We compute Am+1 = Am ∗A. Note that

am+1(i, j) =
p=n

∑
p=1

am(i, p)∗a(p, j)

The first term of the sum am(i, p) shows by induction the number of paths from i to a given vertex p of length k.
Likewise a(p, j) shows the number of path from p to j of length 1. Thus am(i, p)∗a(p, j) gives the number of path of
length m+ 1 from i to j through penultimate vertex p. We repeat this for every candidate p and the total number of
paths becomes ∑

p=n
p=1 am(i, p)∗a(p, j). Result is shown.

Theorem 9.19. Let G = (V,E) has adjacency matrix A. For B = A+A2 +A3 + . . .+Ak. Then b(i, j) gives the number
of path of length at most k from i to j.

Theorem 9.20. Let G = (V,E) has adjacency matrix A. For C = A+A2 +A3 + . . .+An−1. Then c(i, j) gives the
number of path of length at most n− 1 from i to j. Form T such that Ti j = T (i, j) = 1 if C(i, j) > 0 and Ti j = 0 if
C(i, j) = 0. The matrix T is known as the transitive closure of graph G = (V,E). The element Ti j = T (i, j) is one if
there is a path from i to j, and zero if there is no path from i to j.

Theorem 9.21. Graph G is connected, or graph G is strongly connected if and only if T contains n2 ones. (We assume
Tii = 1 for all 1≤ i≤ n by default.)

Question 9.2. What is the running time for finding whether (i, j is an edge or not in a graph, if the adjacency matrix
representation is used?

9.9.2 Adjacency list
Definition 9.85 (Adjacency list representation). A graph G = (V,E) on n vertices and m edges is represented by an
adjacency list A. A is an array of length n. Each element of A is a linked list (usually doubly-linked). Element A(i)
stores the adjacency list of vertex i that is all vertices j such that (i, j) ∈ E. The length of A(i) is o(i) for a directed
case and d(i) for an undirected graph. The amount of space used for the representation is Θ(n+m).

We examine in more detail the directed case first.
The adjacency list representation of a graph G = (V,E) utilizes n linked lists, one linked list for each vertex i ∈V .

The linked list of vertex i is known as the adjacency list of vertex i and is denoted by A(i). Thus the adjacency list
representation uses an array A of linked lists of length n. A(i) is (points to) the adjacency list of vertex i.

The adjacency list A(i) stores information about the edges that are incident from vertex i. If there is an edge
e = (i, j) ∈ E, edge e will be stored in the adjacency list of i i.e. in A(i). We do not need to store in A(i) both end-
points i and j of edge e. We just store the endpoint j of edge e = (i, j) since i is already known by way of dealing with
liist A(i).
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196 CHAPTER 9. GRAPHS

Thus in the adjacency list of A(i) we only store vertices j for which (i, j) ∈ E. Equivalently these correspond to
the 1s of row i of the adjacency matrix A of the graph. There is no reason to store the vertices k for which Aik = 0.
Since Aik = 0 this means (i,k) 6∈ E and thus k should not be in A(i).

How long is the adjacency list of A(i)? The answer is simple: it is o(i) i.e. out-degree of verte i long.
To summarize the space requirements for an adjacency list scheme. We account first the use of an array A of linked

lists. The array is of length n thus space requirements for the array are Θ(n). Every adjacency list A(i) has length equal
to the out-degree of vertex i. Thus in total the length of all linked lists and thus the amount of space used by them is

∑
u∈V

o(u) = Θ(m)

since the sum of the outdegrees of all vertices of the graph is equal to the number of its edges.
(In an implementation, through A(i) we might provide a pointer to the head of the linked list, a pointer to the tail

of the linked list, and sometimes a count variable that indicates the lengh of the linked list. Moreover the linked list
can be singly-linked or doubly-linked. These are implementation details that are skipped in this description.)

Thus the storage requirements of an adjacency list scheme is Θ(n+m). The Θ(n) contribution is for the array A
itself, and the Θ(m) contribution is for the information linked by the elements of the array A i.e. the A(i)’s.

We now examine the case of an undirected graph.
The scheme is the same with some minor observations and adjustments. In A(i) we store information for all edges

e = (i, j) that are incident on vertex i by storing the end-point j in A(i). For an undirected graph, if (i, j) ∈ E, this edge
is incident both on vertex i and vertex j. Therefore not only j ∈ A(i) but also i ∈ A( j). Thus the same edge is stored in
two adjacency lists but a different end-point is stored in each list.

The length of the adjacency list A(i) is now the degree d(i) of i rather than the out-degree o(i) of i. The sum of the
length of the adjacency lists is altogether 2m instead of m since ∑u∈V d(u) = 2m as opposed to ∑u∈V o(u) = m. But the
storage requirements of this scheme are still Θ(n+m).

Definition 9.86 (Weight list representation). For a graph G = (V,E), if every edge e = (i, j) ∈ E is associated
with a weight (distance, cost) wi j, we can extend the adjacency list representation and turn it into a weighted list
representation. A weight list is an enriched adjacency list. In an element of adjacency list A(i) we store not only the
end-point j associated with edge (i, j) but we also store wi j the weight of edge (i, j). The space requirements of this
representation remain Θ(n+m).

Question 9.3. What is the running time for finding whether (i, j is an edge or not in a graph, if the adjacency list
representation is used?

1 2

3

4

Figure 9.3: A directed graph

A =


0 1 1 1
0 0 1 0
1 0 0 0
0 0 1 0


Figure 9.4: Its adjacency matrix

2 3 4 /

3 /

1 /

3 /

1

2

3

4

Figure 9.5: Its adjacency list A



DRAFT. C
op

yri
gh

t (
c)

20
21

-20
24

.

Alex
. Gerb

ess
iot

is.

All r
igh

ts
res

erv
ed

Not
to

be
po

ste
d on

lin
e

or
on

the
web

or
to

be

mad
e av

ail
ab

le
ou

tsi
de

of

co
py

rig
ht

ho
lde

r’s
web

-pa
ge

9.9. REPRESENTATION OF A GRAPH 197

1 2

3

4

Figure 9.6: An undirected graph

A =


0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0


Figure 9.7: Its adjacency matrix

2 3 4 /

1 3 /

1 2 4 /

1 3 /

1

2

3

4

Figure 9.8: Its adjacency list A

1 2

3

4

5

9

11

13

15

Figure 9.9: A weighed directed
graph

A =


0 1 0 1
0 0 1 0
1 0 0 0
0 0 1 0


Figure 9.10: Its adjacency matrix

2 4 /

3 /

1 /

3 /

1

2

3

4

Figure 9.11: Its adjacency list A

W =


0 5 ∞ 9
∞ 0 11 ∞

15 ∞ 0 ∞

∞ ∞ 13 0


Figure 9.12: Its weight matrix

2,5 4,9

3,11 /

1,15 /

3,13 /

1

2

3

4

Figure 9.13: Its weight list W

9.9.3 Incidence matrix
Definition 9.87 (Incidence matrix representation). The incidence matrix of a directed graph G = (V,E), where
|V |= n and |E|= m, is an m×n matrix B = [Bik]

i=n,k=m
i=1,k=1 . such that bik =−1 if edge k leaves vertex i, bik =+1 if edge

k enters vertex i, bik = 0 otherwise.

bik =

 −1 k = (i, j), for some j ∈V
+1 k = ( j, i), for some j ∈V
0 otherwise

The space requirements of this scheme are Θ(nm).
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198 CHAPTER 9. GRAPHS

9.10 Tree Traversals
A tree traversal is a process of visiting each of the vertices of a rooted tree exactly once.

For rooted trees preorder, postorder tree traversals are defined.
For the specific case of a binary tree, three such traversals are quite known: inorder, postorder, preorder.
In a preorder traversal a parent is visited before its children.
In a postorder traversal a parent is visited after its children.
In all (binary tree or just rooted tree) traverals left children are visited before right (or higher ordered) children.
An inorder traversal has a meaning only for binary trees: the left subtree of a parent is visited before the parent,

followed by a visit of the right subtree of the parent.
Because a rooted tree may or may not be ordered, inorder is not well-defined/meaningful for arbitrary rooted trees.

pre-visit(u) :: {pre[u]=pre++; print(<u,pre[u]>);} ;

in-visit(u) :: {in[u]=in++; print(<u,in[u]>);} ;

post-visit(u) :: {post[u]=post++; print(<u,post[u]>);} ;

BT-Inorder(u) BT-Preorder(u) BT-Postorder(u)

1. if u != NULL { if u != NULL { if u!= NULL {

2. BT-Inorder (left(u)); pre-visit(u); BT-Postorder(left(u));

3. in-visit(u) ; BT-Preorder(left(u)); BT-Postorder(right(u));

4. BT-Inorder (right(u)); BT-Preorder(right(u)); post-visit(u);

} } }

/* Not defined */

BT-Perform-All-Three(u) { Euler-tour(u)

1. pre-visit(u); 1. left-visit(u);

2. if left(u) != NULL 2. if left(u)!=NULL

3. BT-Perform-All-Three (left(u)); 3. Euler-tour(left(u));

4. in-visit(u); 4. down-visit(u);

5. if right(u) != NULL 5. if right(u) != NULL

6. BT-Perform-All-Three (right(u)) 6. Euler-tour(right(u));

5. post-visit (u); 7. right-visit(u);

}

9.10.1 Breadth-first order traversal
Definition 9.88 (Breadth-first order traversal). A breadth-first order (BFO) traversal is obtained as follows.

RT-BFO(root(RT)) // RT is a rooted (not necessarily binary) tree

1. visit(root(RT)); // visit[root(RT)]=i++; print(visit[root(RT)]);

2. repeat until all vertices are visited

3. visit an unvisited child of the LEAST RECENTLY VISITED

vertex with an unvisited child

END_BFO

If LEAST RECENTLY is replaced by MOST RECENTLY, a depth-first order (DFO) traversal is obtained.

Definition 9.89 (Depth-first order traversal). A depth-first order (DFO) traversal is obtained as follows.

RT-DFO(root(RT)) // RT is a rooted (not necessarily binary) tree

1. visit(root(RT)); // visit[root(RT)]=i++; print(visit[root(RT)]);

2. repeat until all vertices are visited

3. visit an unvisited child of the MOST RECENTLY VISITED

vertex with an unvisited child

END_DFO

Example 9.25. A DFO and BFO traversals on a rooted tree is shown in this example. The root is the higher level
node i.e. the node with label 1. (There is an r next to it to indicate that it is indeed the root; in most cases that r would
be omitted.)
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9.10. TREE TRAVERSALS 199

Stack in DFO Queue in BFO
1 r | time|

/ \ | 1 |1
2 6 | 4 2 |2 6

/ \ | 333 5 3 |6 3 5
3 5 | 2222222 6 4 |3 5 4

/ |11111111111 - 5 |5
4 ============== 6 |4

time: 12345678901 ======================
Tie breaker: Lowest labeled node

DFO output: 1 2 3 4 5 6 BFO: 1 2 6 3 5 4
(output when Pushed) (output when Dequeued)

9.10.2 DFO and BFO on graphs
We can extend these two traversals from rooted trees to graphs. If G is a graph and s is an arbitrary starting vertex,
we use this vertex as the “root” of the traversal by visiting s first and then repeating the following step until there is no
unexamined edge (u,v) such that vertex u has been visited.
Search Step. Select an unexamined edge (u,v) such that u has been visited and examine this edge, visiting vertex v if
v has not been visited yet.
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9.11 Union-Find

Definition 9.90 (Disjoint sets of elements: Data). A disjoint-set data structure maintains a collection of S =
{S1,S2, . . .Sk} of disjoint dynamic sets that is consisting of n elements of a set E. Thus

E = {e1,e2, . . . ,en}

S = {S1,S2, . . . ,Sk} for some 1≤ k ≤ n where

Si∩S j = /0 and ∪k
i=1 Si = E.

Thus a collection of disjoint sets is characterized by the tuple (n,k,E,S1, . . . ,Sk). Each set Si is identified by a repre-
sentative that is a leader of set Si which is some arbitrary member of that set. We denote the representative of set Si
by rep(Si).

The collection of disjoint sets of elements is a dynamic collection, thus its structure changes with time. “Dynamic”
characterizes the sets S1, . . . ,Sk and thus k. Initially the starting state is (n,0,E, /0). Operations defined on the collection
can change its state

Definition 9.91 (Disjoint sets of elements: Operations). The following operations are defined on a collection of
disjoint sets of elements with initial state (n,0,E, /0), where n is the number of elements of a set E of elements.

• Operation MakeSet( er ) that creates a single element set provided that the elements is not currently in any of
the sets of the collection.

• Operation Find( er ) that finds the set of the collection to which er belongs (or not).

• Operation Union( er,es ) that forms the (set theoretic) union of the two distinct sets of the collection that contain
er and es.

More information about the semantics of the operations follows. The data structure that implements the data organi-
zation that support these three operations is referred to frequently as the Union-Find data structure.

9.11.1 Operation MakeSet

Operation: MakeSet(er)

Input. Element er ∈ E (and collection state (n,k,E,S1, . . . ,Sk)).

Output. A set is formed containing er with representative er itself provided that er 6∈ Si for all 1 ≤ i ≤ k. Thus
rep({er}) = er.

Side effects. The state of the collection changes. As a by product of this operation the number k of sets of the collection
increases by one. There is one more set in the collection. Thus MakeSet is a dynamic modifying operation.

9.11.2 Operation Find

Operation: Find(er)

Input. Element er ∈ E (and collection state (n,k,E,S1, . . . ,Sk)).

Output. The set S j that contains er is found and the representative rep(S j) of S j is returned.

Side effects. The state of the collection does not change. Thus Find is a static probing operation.
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9.11.3 Operation Union

Operation: Union(er,es)

Input. Element er,es ∈ E such that er ∈ Si1 and es ∈ Si2 for some 1 ≤ i1, i2 ≤ k and i1 6= i2, (and collection state
(n,k,E,S1, . . . ,Sk)).
Output. The union Si1 ∪Si2 is formed of the sets containing r and s respectively. The rep(Si1 ∪Si2) is one of rep(Si1)
rep(Si2).
Side effects. The state of the collection changes. As a by product of this operation the number k of sets of the
collection decreases by one. Sets Si1 ,Si2 are replaced by their union Si1 ∪Si2 . There is one fewer set in the collection.
Thus Union is a dynamic modifying operation.

9.11.4 Union-Find State
Definition 9.92. Union-Find state For a Union-Find problem we shall assume that its initial state is given by the tuple
(n,0,E, /0;n,m), where (n,0,E, /0) is that starting state of the disjoint sets of elements associated with the Union-Find
problem, and n is the number of elements of E, and m is the number of MakeSet, Find, and Union operations that will
be associated with the Union-Find.

Theorem 9.22 ( (n,0,E, /0;n,m)). The number of MakeSet operations can be no more than n as there are n elements in
E. The number of Union operations is at most n−1. Thus the number of Find operations is at least m−n− (n−1) =
m−2n+1.

Proof. The number of MakeSet operations is at most n, one for each element. The number of elements in E is n. The
operations MakeSet, Union and Find maintain a collection of disjoint sets of elements. If er is part of the collection
er was created through a MakeSet operation. There can be no more than n MakeSet operations as for each er in the
collection at most one such operation can be performed since the sets of the collection are disjoint.

The number of Union operations is (at most) n−1. If the number of MakeSet operations is n all n elements are in
the collection of the disjoint sets. Every Union operation decreases the number of sets by 1. If we start with N sets after
K Union operations were are left with N−K (disjoint) sets. Since N ≤ n−1 and K > 0, we have that N−K ≤ n−1.

The number of Find operations is m minus the upper bound of n and n−1 of the number of MakeSet and Union
operations.

Exercise 9.1. In the example depicted below we have performed a number of MakeSet operations, and a number of
Union operations to end up with the two sets as depicted. Answer the following questions
(a) Who is the rep(x)?
(b) Who is the rep(z)?
(c) How many MakeSet operations were issued if the initial state of the collection was (?,0,E, /0) ?
(d) How many Union operations were issued if the initial state of the collection was (?,0,E, /0) ?
(e) After the Union operation performed to get one (final) set what is the cost of the Union in term of representative
element updates?

Proof.
(a) Element x belongs to the set who representative is 5.
(b) Element z belongs to the set who representative is 8.
(c) The number of MakeSet operations is equal to number of elements found in the two disjoint sets. This is 9.
(d) The number of Union operations. is 9− 2 = 7. The nine participating elements are the results of 9 MakeSet
operations. There are two sets left. Therefore the number of Union operations to go from 9 sets down to 2 is 7.
(e) After the Union operation Union(x,z) the representative member of the union is the element of the larger of the
two sets. This is element 8. We did so because such a choice causes the smallest number of representative member
updates. Element x belongs to a set of cardinality 4, and since the cardinality of the set containing z is 5, and 4 < 5
this choice of a representative member causes the smallest number of representative element updates: 4.

Moreover the cardinality of the new set created after the Union is 9 which is more than twice the cardinality of the
smaller of the two sets of the Union (who representative member got updated).
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Example : The representative of the set appears as a superscript
5 5 5 5 8 8 8 8 8

Example : { x, 2, 3, 5 }, {z, 8, 7, 6, 4 }

8 8 8 8 8 8 8 8 8
Union(x,z) = { x, 2, 3, 5, z, 8, 7, 6, 4 }

9.11.5 A (simple) data structure for Union-Find
Definition 9.93 (A data structure for Union-Find). There is a simple data structure for Union-Find that is based
on using an Array of Linked Lists. To keep things simple we assume the elements of E are the subscripts of its
elements, thus E = {1,2, . . . ,n} rather than E = {e1,e2, . . . ,en} or using the latter is also trivial yet a bit cumbersome
to describe.

• A set Si is maintained as a doubly-linked list of elements that are member of Si. The elements appear in Si in an
arbitrary order. The linked list has a head and tail pointer pointing to the first and last of its elements. Every
element of the list has a previous, next pointes associated with the linked list structure, a name field indicate the
name of the element (i for ei), and a representative pointer to the element that is the representative member of
the set.

– a previous pointer called prev ,

– a next pointer called next ,

– a name field called name ,

– a rep pointer called rep.

• An array E of linked lists is used to represent the elements and their properties. The length of the array E is n,
where n is the number of elements of the set E of elements represented by the name-sake array E. Every element
of E is associated with a number of attributes. Thus E[i] maintains the following information for element ei.

– A pointer p to the element itself, if element ei has been created and belongs already to a set.

– A head list pointer. If element e j is the representative member of a set this pointer points to the first element
(head) of the linked list representing the set.

– A tail list pointer. If element e j is the representative member of a set this pointer points to the last element
(tail) of the linked list representing the set.

– A car field. If element e j is the representative member of a set this field shows the cardinality of the set
that is the length of the linked list representing the set.

We call such a data structure UF-DS.

Theorem 9.23. In a UF-DS data structures over a set of elements E with cardinality n, the running time of operations
MakeSet, Find and Union have the following properties.

1. In UF-DS the running time of a MakeSet(er) operation is constant i.e. Θ(1).

2. In UF-DS the running time of a Find(er) operation is constant i.e. Θ(1).

3. In UF-DS the running time of a Union(er,es) operation is O(n) where n is the cardinality of E, under reasonable
assumptions.

4. In UF-DS the running time of an arbitrary number of possible Union operations that can be defined on the set
E of n elements is O(n lgn), where n is the cardinality of E.

5. In UF-DS the running time of m > n operations that include an arbitrary set of MakeSet, Union and Find
operations is O(m+n lgn), under reasonable assumptions.
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Proof.
1. MakeSet(er). Operation MakeSet requires constant time.

(a) We first create a single element set S represented by a doubly linked list that contains er and set its prev, next

pointers to NULL. The name field is set to r. The rep field points to the linked-list element just created.
(b) Furthermore in array E and in particular Er we set the p pointer to point to element just created in step (a)

above, and so do we the head and tail pointers as er is the representative of the set containing er. The car field is
set to 1 as the cardinality of the set which is also the length of the linked list just created is 1.

Obviously all those steps require Θ(1) time.

2. Find(er). Operation Find requires constant time.
For element er we first access E[r]. If pointer p is invalid (e.g. NULL) the element does not belong to a set (yet).

Otherwise, through pointer p we access the element, and through its rep we find the representative of the set to which
r belongs. We return that linked list element (not r, nor er not E[r]).

Obviously all those steps require Θ(1) time.

3. Union(er,es). Operation Union requires O(n) time.
We first find in constant time the rep(er) and rep(es) and let them be a and b respectively. If a == b we stop, there

is no need for a Union. Otherwise we proceed as follows.
We then access the car fields of E[a] and E[b], the larger of the two decides the representative member of the

Union Union(er,es). Let ea be the element whose E[a].car is the largest. This implies that we need to update the
representative pointers of the smaller of the two sets which is the one with rep the other element, in this example eb.
Through the E[b] information (head pointer) we scan the linked list of the smaller of the two sets and update the rep
information to point to Find(ea) which is Find(er). We then concatenate the two linked lists updating information
in E[a] and invalidating information in E[b] including its head, tail, car fields. The presence of head, tail

pointers allow us to concatenate the two linked lists in constant time. Finaly the car field of E[a] will be set to the
sum of its previous value and the car field of E[b].

The most expensive step is the update of the representative pointers of the smaller of the two sets (in this example
the one having a representative element, element eb). This update can be Θ(n) in the worst case and O(n) in general.
For example think of a scenario where n/2 elements in the larger of the two sets and n/2−1 elements in the smaller
of the two sets and those sets are to be united.

Obviously all those steps require O(n) time, in general. The running time of a Union operation is thus O(n).

4. Several Union operations. The collective running time of all n−1 possible Union operations that can involve the
n elements of E is no more than O(n lgn).

The proof is as follows.
Pick an arbitrary element 5. How many times do we update the representative pointer of 5? Every time we update

it, it means two things: (a) 5 was in the smaller of two sets on which a Union was performed, and (b) the size of the
new set is at least double of the size of the set containing 5. (that fact that 5 had its representative pointer updated
means that 5 belongs to the smaller of the two sets of the Union operation.)

The number of times we update (the representative pointer of 5) is the number of times we can double the size of
the set containing 5. Originally 5 is in a set of size 1. Thus 1→ 2→ 4→ . . . shows that the number of updates for 5 is
no more that lgn. This is true for all elements, not just for element 5. We have n elements, thus the collective cost of
updating all the representative pointers of all the elements in all those at most n−1 Union operations is no more than
O(n lgn).

Thus any number of Union operations on a set E of n elements has running time O(n).

5. Running time of m > n operations. The collective running time of all those m operations is no more than
O(m+n lgn).

There can be no more than n MakeSet operations. Each one is constant time thus the total number of MakeSet is
O(n) in general.

There can be no more than n− 1 Union operations. Each one is O(n) time but if there are several of them the
collective running time of those several one is O(n lgn.
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There can be at least m−n− (n−1 and thus at most m Find operations. The cost of a Find operations is constant,
the collective cost of all of them is O(m).

Adding all contributions the running of m > n arbitrarily mixed Find, Union and MakeSet operations is the sum of
those three contributions i.e. O(m+n lgn).

Definition 9.94 (Amortized Analysis of Union). One Union Operation can be O(n) or Θ(n). Yet n− 1 Union
operations can and will be O(n lgn). Thus the amortized cost of a Union operation is defined as the cost of all Union
operations divided by the number of Union operations. Thus the amortized cost of a Union is O(lgn.

E S

------------- ----------- ......> next ptr
|p | | |
|car | | element |
|head | | |
|tail | | |
------------ previous ptr <....... --------|--

|
v representative pointer

---------
1 |p -|-------------------------------------

|car 1 | v
|head _|________________________________>---------...> NULL
|tail _|________________________________>| 1 |
--------- NULL<...------------

2 |p --|-------------------------------- ^...| <..representative ptr
|car 3| | to 1 itself
|head __|______ |
|tail __|______|______________________________________
--------- | | |

3 |p ....|......|........... | |
| | | v v v
| | _______>-------......>-------- .....>------- ....>NULL
| | | 3 | | 2 | | 4 |
--------- NULL<.....-------<.....--------<.....---------

4 |p ----|--. |________^ ^ ^_| | ^
| | . |________________| |
| | ..................................................
| |
---------

9.11.6 Connectivity of an undirected graph
Example 9.26. An application of disjoint sets is in finding the connected components of an undirected graph G.

Definition 9.95 (Decision Problem). A decision problem is problem with a YES or NO answer.

Here is a list of problems tha are related to the connectivity of an undirected graph and can be solved using a
UF-DS.

Problem 1: Is G connected?
Input. A (undirected) graph G = (V,E) with the appropriate representation.
Output. YES if G is connected, NO if G is not connected.

Problem 2: Path connectivity between u,v ∈V in G.
Input. A (undirected) graph G = (V,E) with the appropriate representation and two vertices u,v ∈V .
Output. YES if there is a path from u to v, NO otherwise.

Problem 3: Number of connected components of G.
Input. A (undirected) graph G = (V,E) with the appropriate representation.
Output. Print number of connected components of G.

Problem 4: Give connected component of u in G.
Input. A (undirected) graph G = (V,E) with the appropriate representation and a vertex u ∈V of G.
Output. Find the connected component of u.
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Problem 5: Give vertex info of connected component of u in G.
Input. A (undirected) graph G = (V,E) with the appropriate representation and a vertex u ∈V of G.
Output. List all the vertices that are in the same connected component as u.

Problem 6: Give cardinality of connected component of u in G.
Input. A (undirected) graph G = (V,E) with the appropriate representation and a vertex u ∈V of G.
Output. Print the number of vertices in connected component of u.

Theorem 9.24. Algorithm CC can be utilized for solving a variety of problems associated with the connectivity of an
undirected graph G = (V,E).

CC(G) // CC: Connected Compondent

1. for each vertex u in V {

2. MakeSet(u);

3. }

4. cc=n;

5. for each edge (u,v) in E {

6. if Find(u) != Find(v)

7. Union(u,v);

8. cc--;

9. }

Analysis of CC. We use a UF-DS as previously described and analyzed. We build the UF-DS by utilizing the structure
of graph G = (V,E). A set of UF-DS will map to a connected component of the graph. The number of connected
components of the graphs will be equal to the number of sets available at the end of the execution of the CC algorithm.

If edge e = (u,v) exists this means u and v must be in the same connected component. Thus the algorithm starts
with a number of candidate connected components equal to n, each connected component being an individual vertex
and then considers all the edges of the graph one by one. Edge (u,v) can trigger one of two events: (a) nothing if u,v
already belong to the same component i.e. they are in the same set of a collection of disjoint sets maintained, (b) the
union of u,v if currently u and v are in different sets (which implies that so far there has been no indication that would
put them into the same connected component of G) and then the discovery of e = (u,v) leads to the conclusions that
u and v should be in the same connected component along with the vertices u′ that are already in the same connected
component as u, and the vertices v′ that are already in the same connected component as v. Those vertices are in the
sets of UF-DS to which u and v currently belong. The set is then extended by the discover of e through the union
operation of line 7.

The elements of UF-DS are the elements of V that is the n vertices of the graph. Each vertex triggers a MakeSet
operation on the vertex itself. The number of MakeSet operations is thus n. The collective running time of MakeSet
operations is thus Θ(n).

Each edge of the graph possibly triggers a Union operation. Two vertices joined by an edge i.e. an edge being
incident on those two vertices makes those two end-points belonging to the same connected component by way of
them belonging to the same set of a UF-DS. The number of Find operations are 2 per edge (two endpoints of an edge).
Thus the collective running time of all Find operations is Θ(2m) = Θ(m).

The Union operations is no more than n−1. It is in fact n minus the number of connected components of graph G
or equivalent n minus the number of sets available at the completion of the execution of CC.

Based on previous claims the collective running time of all Union is O(n lgn). Thus the running time of CC is
O(m+n lgn).
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Example 9.27 (Problems 1-3). We provide solutions for Problem 1, Problem 2, Problem 3.

Proof. Problem 1 solution. Problem 2 solution Problem 3 solution

isGconnected(G) Path(G,u,v) nofCC(G)

1. CC(G); 1. CC(G); 1. CC(G);

2. if (cc==1) 2. retun(sameCC(G,u,v)); 2. return(cc);

3. return(YES)

4. else sameCC(G,u,v)

5. return(NO) 1. return(Find(u)==Find(v));

Question 9.4 (Problems 4-6). Reason about the proof of correctness as shown for Problems 1-3. Solve the remaining
Problems 4-6 similarly.

Example 9.28.

2 4

/ \ / 6

/ \ /

1 ----- 3 5

1 2 3 4 5 6

Initially: {1 } {2 } {3 } {4 } {5 } {6 } : Lines 1-3 of CC.

cc=6 \ / / \ / : Line 4

2 2 / \ /

(1,2) edge { 1, 2 } / | / : Line 5-7

cc=5 \ / | | : Line 8

2 \ 2 / 2 | |

(2,3) edge {1, 2, 3 } | | : Line 5-7

| |

cc=4 2 == 2

(1,3) edge 1 3 : Line 5

| 5 | 5 : Line 8

(4,5) edge { 4, 5 } : Line 5-7

cc=3 : Line 8

nomore edges

Edges were examined in this order (1,2) (2,3), (1,3), (4,5)

Edge (1,3) discarded

cc =3 : number of connected components is 3

2 2 2 5 5 6

1 2 3 4 5 6

Vertex set of connected component 2 has {1,2,3}

Vertex set of connected component 5 has {4,5}

Vertex set of connected component 6 has {6}
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9.12 Graph Search
Depth-Search Search (DFS for short) is a method for traversing graphs. In essence it is a generalization on a graph of
the depth-first order traversal on trees described earlier. Below we give a very brief outline of how the method works
for the case of an undirected graph.

9.12.1 Depth First Search on Undirected graphs
Method 9.1 (DFS on Unidirected Graphs).

graph G(V,E);

boolean d[|V|] = false; // d for discovered

label t[|E|] = unlabeled; // t for tree

// It just explores all vertices reachable from u

U-DFS(G,u) // Graph G=(V,E) is undirected.

0. d[u] = true;

1. for all edges e incident on u

2. if edge e has not been labeled

3. let v be the other end-point of e i.e. e=(u,v)

4. if v is unexplored // i.e. d[v] == false

5. t[e] = tree;

6. U-DFS(G,v);

7. else

8. t[e] = back;

Starting from u we check the adjacency list of u. For every edge e = (u,v) in this adjacency list we identify the
other end-point leading from u to it. If v is undiscovered, the edge e is labeled as a tree edge, and a new depth-first-
search exploration is initiated at v. Otherwise, if v has already been explored, we label e as a back edge. We can keep
track of explored/unexplored vertices v through an array of vertices where we mark an explored vertex.

Procedure U-DFS has some interesting applications. The following problem can be solved easily. We have seen
solutions to those problems earlier by utilizing a Union-Find data structure. DFS might provide a faster solution.

9.12.2 Undirected DFS example
In picking a vertex from the adjacency list of a vertex, say u we are going to use the convention lowest vertex label
first. This means that vertices of the adjacency list of a vertex u are visited in increasing Vertex label.

1---------

/ \ |

t/ t\ |

/ \ |

2 3 |

t/ | b

/ |

/ |

4----------

Application 9.1 (Reachability). Determine whether w is reachable from u.

Solution. Run U-DFS(u). If discovered[w] is true it means w is reachable from u.

Application 9.2 (Connectivity). Determine whether graph is connected.



DRAFT. C
op

yri
gh

t (
c)

20
21

-20
24

.

Alex
. Gerb

ess
iot

is.

All r
igh

ts
res

erv
ed

Not
to

be
po

ste
d on

lin
e

or
on

the
web

or
to

be

mad
e av

ail
ab

le
ou

tsi
de

of

co
py

rig
ht

ho
lde

r’s
web

-pa
ge

208 CHAPTER 9. GRAPHS

Solution. Run U-DFS(u). If for some vertex z discovered[z] is false it means z is unreachable from u, i.e. the
graph is not connected.

Application 9.3 (Cycles). Does G have a cycle that includes u?

Solution. Run U-DFS(u). If there is a cycle that includes u then in the U-DFS one of its edges would be labeled as
back. The existence of such an edge indicates a cycle. To determine whether that cycles contains u, we must trace the
cycle. For that in line 5 of U-DFS we add a line that does parent[v]=u i.e. it keeps track of tree edges in an alternate
form. Alternatively, we can trace the cycle by walking back the path/cycle in a more laborious way. If for example we
are in v we check the adjaceny list of v and identify the edge e that is tree that leads to v from some other vertex. The
other end-point (i.e. u) is traced similarly and so on.

Application 9.4 (Connected Components). Find the connected components of G.

Solution. We start with U-DFS(u) for an arbitrary u. This gives the connected component of u. If there is a vertex w
that is still undiscovered (we can check this by checking discovered[]) we then initiate a U-DFS(w) to discover the
connected component of w, and go on until we discover all vertices.

Application 9.5 (Bipartiteness). Determine whether the graph is bipartite, i.e whether we can color the vertices R or
B so that no two adjacent vertices have the same color.

Solution. Left as an exercise.

9.12.3 Depth First Search on Directed graphs
A more general framework for DFS is shown on the following page(s). It searches a whole graph, not only the portion
reachable from a given vertex such as u. It works for both directed and undirected graphs.

This generalized framework labels all vertices with two timestamps:

• D[u] first visit or discovery of vertex u,

• F [u] final visit of vertex u, when all vertices in the adjacency list of u have been discovered and searched.

In addition DFS labels the edges of the graph with a total of four different labels for the directed case.

• Label tree (t),

• Label back (b),

• Label forward (f),

• Label cross (c),

For the undirected case it only uses the tree and back labels as it also does the variant of the previous section
(U-DFS). Although the labelings are different for an undirected and a directed graph, in both cases, an edge labeled b
indicates the existence of a cycle in the graph. The collection of all this information in depth-first-search (for a directed
graph) can facilitate the easy solution of the problem of topological sorting.

Starting DFS on a directed graph.

Let G = (V,E) with |V | = n and |E| = m be a directed graph. A DFS invocation includes the initialization of the
appropriate Data Structures (arrays) by calling DFS(G) and then a complete and exhaustive search of the Graph by
issuing d f s(G,u) function calls for every vertex u that has been left unexplored in previous invocations. The argument
to DFS(G) implies that G has the appropriate representation either adjacency matrix or adjacency list as needed.
Several times we only need to issue one or few dfs(G,u) calls. Then we initialize as needed DFS(G), and issue only
the relevant function call invocations instead if performing an exhaustive exploration.
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DFS data structures: Time, L.

Scalar value time is used to timestamp entries of D and F . Timestamps are integers from 1 to 2∗n. L is not used by
default but it can collect information about the topological sorting of the vertices of the graph, if this is possible. If a
topological sorting exists, at the conclusion of DFS, traversing L head to tail, would list the vertices of G on a line so
that all edges could be drawn in a left to right direction: this is the definition of topological sorting.

More DFS data structures: color, D, F, p arrays

All arrays are of length n and indexed by a vertex.

• color[u]. Every vertex of G is colored during DFS of G. the Color of a vertex is W, G, B. Initially, every vertex
is a W (white). After exploration of u starts (d f s(G,u) starts) the color of a vertex u becomes G (gray), and
when it is about to complete (d f s(G,u) ends) the color of u becomes B (black) and stays so. For an undirected
graph only W and B are possible.

• D[u] records the time the exploration of u with d f s(G,u) starts (when the color of u would change from W into
G).

• F[u] records the time the exploration of u with d f s(G,u) ends (when the color of u would change from G into
B).

• p[v] records the edge (u,v) that is traversed to reach v for the first time; following this traversal v will be explored
in a d f s(G,v) exploration that starts immediately after the setting of p[v] = u.

Edge labels

Edges can be labeled t, f , c, and b for a directed graph G, similarly to the labels t and b utilized in the DFS of an
unidirected graph.

• Edge label tree (t); an edge (u,v) is labeled t to indicate a tree edge when we traverse (u,v) and determine
color[v]=W.

• Edge label back (b); an edge (u,v) is labeled b to indicate a back edge when we traverse (u,v) and color[v]=G.
A b also indicates the existence of a cycle. If a cycle exists a graph CANNOT have a topological sorting.

• Edge label cross (c); an edge (u,v) is labeled c to indicate a cross edge when we traverse (u,v) and color[v]=B
but D[u]< D[v].

• Edge label forward (f); an edge (u,v) is labeled f to indicate a forward edge when we traverse (u,v) and
color[v]=B but D[u]> D[v].

DFS: pseudocode.
//For an undirected graph, DFS labels edges b,t

//For a directed graph, DFS labels edges b,t,f,c

//The code thus for f,c is erased for an undirected graph

dfs(G,u)

1. color[u]=G;

2. time++;

3. D[u]=time;

4. foreach (edge (u,v) in E ) { // Visit edge (u,v)

5. if (color[v]== W ) { // if v is W first visit

6. p[v]=u; // (u,v) is t, tree edge

7. dfs(G,v); // Go Visit v i.e. Discover v

8. }// if

9. } // foreach --------->9a elseif (color[v]==G )

10. color[u]=B; 9b (u,v) is b, back edge
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11. time++; 9c else if (color[v]==B)

12. F[u]=time; 9d if D[u]<D[v] (u,v) is f, forward edge

9e else (u,v) is c, cross edge

9g } //This is line 9 closing brace of line 4

DFS(G) //G=(V,E)

1. for each vertex u {

2. color[u]=W; D[u]=F[u]=-1;

3. p[u] = NULL;

4. }

5. time=0; L=NULL; // Start timer ; L is optional

6. for each vertex u { // Start Search

7. if color[u] == W { // Node u non visited yet?

8. dfs(G,u); // Go for u!

9. }

10. }

The following is an alternative to function DFS(G) when we search only one vertex called w!

search(G,w)

1. for each vertex u { //Initialize 9h

2. color[u]=WHITE;D[u]=F[u]=0;

3. p[u] = NULL;

4. }

5. time=0; L= NULL ; // Start timer ; init L (optional)

6. dfs(G, w);

DFS example

In picking a vertex from the adjacency list of a vertex, say u we are going to use the convention lowest vertex label
first. This means that vertices of the adjacency list of a vertex u are visited in increasing Vertex label.

We could use some of the arrays of the directed graph DFS to enhance the capabilities of the undirected graph
DFS pseudocode given earlier. For example, we can collect D[u], F [u]) information for every vertex. In the examples
below, both for an undirected and also a directed graph this information is shown as a pair of labels (D[u],F [u]) on the
side of a vertex label.

(1,8) 1--------- Undirected DFS with (D[u],F[u]) labels

/ \ |

t/ t\ |

/ \ |

(2,3) 2 3 (4,7)|

t/ | b

/ |

/ |

(5,6) 4----------

Edges (1,2), (1,3), (3,4), (1,4), (1,5), (5,6), (5,4) in directed graph below.

Directed DFS

|-------->-----| t Stack of invocations

(1,12) 1----->--- | 4->/

t / \ | | 2 3->4 3->4*

/ \t f V 5 (8,11) 1->2,3,4 1->2*,3,4 1->2,3*,4 1->2,3*,4

V V | / \

(2,3) 2 3 (4,7)| | \t [1st] [2nd] [3rd] [4th]

t/ | v v

V / | 6 (9,10) 3->4/

4<----<--/ | 1->2,3*,4 1->2,3,4* 5->6

(5,6) ^ c | [5th] [6th] [7th] [8th]

|------------ 6->/

5->6* 5->6/

[9th] [10th] [11th]
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9.12.4 Analysis of DFS

Theorem 9.25 (DFS running time). The running time of DFS(G), where G = (V,E) is a directed graph depends
on the representation of graph G. For an adjacency matrix representation the running time T (n,m) of DFS(G) is
T (n,m) = Θ(n2). For an adjacency list representation the running time T (n,m) of DFS(G) is T (n,m) = Θ(n+m).

Proof. Number of d f s calls. In order to assist the search process, vertices are colored with three colors during DFS,
W, G and B. Initially all vertices are W (i.e. undiscovered). A call to d f s(u) or d f s(v) is always preceded by a check
of the corresponding vertex’s color: see line 5 of d f s(G,u) or line 7 of DFS(G). As soon as the corresponding dfs

operations starts (line 7 of d f s(G,u) or line 8 of DFS(G)) the color of the vertex being visited changes from W into a
G. Eventually it will be changed into a B prior to the conclusion of the d f s operation. Every vertex is visited through
d f s once and only once. If the vertex is not visited through the dfs of another vertex (Line 7 of d f s), then it will be
visited through DFS in line 8 of DFS(G). Thus the total number of d f s(.) calls is the number of vertices and it is n.

Number of edge (u,v) visits. Every edge (u,v) is visited once through line 4 of d f s(G,u).
Running time of DFS. Every vertex is visited once: this means a dfs call on vertex u is issued only once. This

implies an Ω(n) bound contribution to the running time. Every edge is visited once this implies an Ω(m) bound
contribution on the running time for an adjacency list representation. For an adjacency matrix representation the m
edges must be extracted (identified) out of the n2 entries of the adjacency matrix (separate the ones from the zeroes)
and this would require Ω(n2) time instead. We use T (n,m) to denote the running time of DFS We next a running time
bound that depends on the representation of graph G.

AdjacencyMatrix : T (n,m) = Ω(n2)

AdjacencyList : T (n,m) = Ω(n+m)

We know show that those bounds are tight and thus can replace the Ω with a Θ instead.
The best way to conceptualize the process of analyzing the recursive pseudocode of DFS(G) that call recursively

dfs(G,u) that can then call recursively dfs(G,v) is to consider using n+ 1 stop watches. One of them is active when
the code runs DFS(G). We stop the time of the stopwatch when line 8 is reached. The other n stopwatches are
associated with the d f s(G,u) and stop measuring time when a d f s(G,v) invocation starts in line 7 and resumes when
the semicolon of line 7 is encountered. (Program stack invocations trigger a resume or a stop of the corresponding
stopwatch.)

For the adjacency matrix representation we observe the following: the number of invocations of d f s(G,u) is n and
each invocation spends Θ(n) time overall within d f s(G,u) since the adjacency list of u is formed by scanning row u
of the adjacency matrix and we extract the vertices corresponding to the one entries of the adjacency matrix, a Θ(n)
operation. Therefore,

T (n,m)

n dfs(.) calls︷︸︸︷
Θ(n) + ∑

u∈V

row u of adjacency Matrix︷︸︸︷
Θ(n) = Θ(n)+Θ(n2) = Θ(n2)

Thus T (n) = T (n,m) = Θ(n2).
For the adjacency list representation we observe the following: the number of invocations of d f s(G,u) is still n

and each invocation spends Θ(outd(u)) overall within d f s(G,u) since the adjacency list A(u) of u is outd(u) vertices
long, contains vertices v such that (u,v) ∈ E, and it is fully traversed in steps 4-9 of d f s(G,u). Therefore

T (n,m) =

n dfs(.) calls︷︸︸︷
Θ(n) + ∑

u∈V

A(u) of adjacency List︷ ︸︸ ︷
Θ(outd(u)) = Θ(n)+Θ(m) = Θ(n+m)

Thus T (n,m) = Θ(m+m).



DRAFT. C
op

yri
gh

t (
c)

20
21

-20
24

.

Alex
. Gerb

ess
iot

is.

All r
igh

ts
res

erv
ed

Not
to

be
po

ste
d on

lin
e

or
on

the
web

or
to

be

mad
e av

ail
ab

le
ou

tsi
de

of

co
py

rig
ht

ho
lde

r’s
web

-pa
ge

212 CHAPTER 9. GRAPHS

9.12.5 Applications of DFS
Application 9.6 (Topological sorting).
Input: A graph G = (V,E) that does not have a cycle.
Output: Listing of its edges on a line so that edges can be drawn in a left to right direction.
(More fomally, a topological sort is a linear ordering of all its vertices such that if G contains an edge (u,v) then u
appears before v in the ordering.)

Solution 1 for topological sorting. There are two solutions available at the conclusion of DFS for topological sorting.
We provide first a simple solution that utilizes linked list L.

TopologicalSort(G)

1. DFS(G);

2. if G has no b edge print L

The running time of topological sorting is O(DFS)+Θ(n). The latter term is because L can have n vertices to
list.

Solution 2 for topological sorting. We provide a simple solution that utilized linked list L.

TopologicalSort(G)

1. DFS(G);

2. if G has no b edge

3. print vertices of V in decreasing order of F[u]

The running time is O(DFS)+Θ(n) which is O(DFS). The linear bound of the second term absorbd DFS-related
costs but lso the cost of CountSort that is being used to sort the vertices of the graph in decreasing F [u] order. We have
n vertices to sort. Each F [.] label is an integer from 1 to 2∗n. This range is thus a subset of 0..2n. The running time
of CountSort is Θ(n+(2n+1)) = Θ(n).

As we have mentioned earlier, a decision problem is a problem whose output is either a YES or a NOT (or
equvalently a 1 or a 0).

Application 9.7 (Cycle).
Input. Graph G
Output. YES if G has a cycle, NO otherwise.

Solution. The solution is part of Topological sorting.

Cycle(G)

1. DFS(G);

2. if G has a b edge print YES

3. else print NO

Application 9.8 (Social network of u: “friend”).
Input. Graph G and vertices u,v ∈V .
Output. YES if in G u ; v, NO otherwise.

Solution.

Friend(G,u,v)

1. search(G,u);

2. if color[v]==B print YES

3. else print NO
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Application 9.9 (Social network of u: “friends”).
Input. Graph G and vertex u ∈V .
Output. List of friends of u i.e. all v such that u ; v.

Solution.

Friends(G,u)

1. search(G,u);

2. for all v in V and v !=u do

3. if color[v]==B print v is friend of u

A directed graph is strongly connected if for every two vertices u,v there is a path from u to v and also a path from
v to u. One way to determine whether G is strongly connected is to initiate a DFS (more precisesly a dfs(u)) starting
from every vertex u of the graph. A better way is to replace the top call of DFS(G) with a call to search(G,u), the
alternative to DFS(G) highlighted earlier. This needs to be repeated for all possible u. This is equivalent to running
DFS n times altogether. A better approach requires only two DFS calls. how we can determine strong connectivity in
just O(n+m) time instead.

Application 9.10 (Strong Connectivity).
Input. Graph G.
Output. YES if G is stronly connected and NO otherwise.

Solution.

StrongConnectivity(G,V,E)

1. Pick arbitrary u of V.

2. dfs(u,G); // Use G as input; otherwise identical to dfs(u) of page 5

3. If there is a vertex w with color[w] == WHITE

4. return("G is not strongly connected");

5. else // all vertices are reachable from u

6. create G’=(V,E’) where E’ contains the reverse of the edges of E

7. i.e. for every e=(a,b) of E add e’=(b,a) to E’

8. dfs(u,G’) // page 5 dfs; use G’ not G as input

9. if there is a vertex w with color[w] == WHITE

10. return("G is not strongly connected");

11. else

12. return("G is strongly connected");

The dfs call of line 2 can only determine whether G is NOT strongly connected. If lines 6-12 are executed, this
means that all vertices are reachable from u. We then reverse the directions of all the edges of G to get G′. In G′ we
run DFS from u again as we did in line 2 for G. If all vertices are reachable from u in G′ (i.e. we are in line 12 rather
than line 10), this means that in G′ we can go from u to every other vertex w. Given that G′ is the reverse of G this
means that we can go from every w to u in G.

Therefore reaching line 12 we can do two things: (a) From u we can reach every other w (line 2 leads to line 6),
and (b) from every w we can reach u (line 6 leads to line 12). This is equivalent to saying that G is strongly connected.
If we want to go from a to b, we first go from a to u and then from u to b. Of course this defines not necessarily a path,
but probably a tour. But it suffices to show that G is strongly connected anyway. A refinement can show how one can
determine a path from this potential tour.

9.12.6 Breadth First Search
In BFS we explore vertices starting from a given vertex s by first finding all vertices adjacent to s, then all vertices
reachable from s within two edge traversals, i.e. at distance two, then those at distance three, and so on.

This graph exploration process can be summarized as follows.
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BFS (s)

1. label[s] = REACHED;

2. QUEUE= <s>;

3. while QUEUE is not empty {

4. remove u from queue; // A Dequeue operation

5. for every vertex v in adjacency list of u do {

6. if label[v] != REACHED {

7. add v to QUEUE; // An Enqueue operation

8. label v REACHED;

9. Maintain fact that v was discovered while traversing (u,v);

10. }

11. }

A more robust implementation of the pseudocode, label vertices by assigning them colors as before for DFS. Step
9 requires a single array and is equivalen to assigning p[v] = u i.e. indicating that the parent of v is vertex u. The
QUEUE is implemented as a FIFO queue. In addition we may keep track of the distance of a vertex v from s by using
a distance array d[] and in step 9 also performing the update step d[v] = d[u]+1.

BFS(s) //s is the start vertex of the search process on Graph G=(V,E)

1. for each u in V-{s} {

2. color[u]=W;

3. d[u] = infinity; // d[u] gives the distance of u from s.

4. p[u] = NULL // p[u] represents the parent of u in BFS search

5. }

6. color[s]=G;

7. d[s]=0;

8. p[s]=NULL;// s is to be expanded first

9. queue= <s> //A single queue containing s.

10. while queue != <> { // <> stands for an empty queue

11. u = Dequeue(queue) //remove an element from queue

12. foreach ((u,v) an edge of E) {

13 if (color(v)== W) {

14. color[v]=G;

15. d[v]=d[u]+1;

16. p[v]=u;

17. queue = Enqueue(queue,v);

18. } // if statement ends

19. } // foreach statement ends

20. color[u]=B // We are done with u (all its neighbors examined)

21. } // while loop ends

9.13 All-pair shortest path problem
Application 9.11 (All-pair shortest path proble).
Input. Graph G = (V,E) and its associated weight matrix or weight list W.
Output. For every i ∈V and every j ∈V the weight of the path with minimal total weight from i to j maintained in a
matrix Di, j.

In this problem we do not minimize the number of edges in the path; we minimize the sum of the weights of the
edges of the path. The weight of the minimal weight path from i to j will be maintained in Di, j. If the cost of a shortest
path is ∞, then it will mean that no such path exists. A minimal weight path may not be the “shortest” in terms of
number of edges in the path.

The term shortest path, minimum weight path, and minimum cost path will be used interchangeably in the
remainder.

A solution to this problem for a special class of graphs utilizes dynamic programming. Dynamic programming,
like the divide-and-conquer method, solves problems by dividing a problem into subproblems, solving the subprob-
lems, and combining the solutions to subproblems. In divide and conquer, subproblems are usually independent of
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9.13. ALL-PAIR SHORTEST PATH PROBLEM 215

each other. Dynamic programming however, is used in cases where subproblems are not independent. A dynamic
programming algorithm solves subproblems once, saves the solutions in a table and avoids recomputing the answer
for a problem that has already been solved before. The development of a dynamic programming algorithm is broken
into a sequence o steps.

(1) Characterize the structure of an optimal solution.

(2) Recursively define the value of an optimal solution.

(3) Compute the value of an optimal solution in a bottom-up fashion.

(4) Construct an optimal solution from computed information.

Solution for All-pair shortest path. A dynamic-programming based algorithm due to Floyd and Warshall can be used
to solve the all-pairs shortest path problem (i.e. all-pair minimal weight path problem). The algorithm works correctly
even in the presenece of negative edge weights as long as there are NO NEGATIVE COST CYCLES.
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9.13.1 Floyd-Warshall algorithm
The algorithm works with graphs with negative weight edges. The graphs however should not have a negative cost
cycle: this is a cycle where the sum of the weights of the edges of the cycle is negative.

FloydWarshall(G,A,W)

(0)

1. D (i,j)=d(i,j)

2. for k=1 to n

3. for i=1 to n

4. for j=1 to n

(k) (k-1) (k-1) (k-1)

5. D (i,j)=MIN(D (i,j) , D (i,k)+D (k,j));

n

6. return(D=D );

Theorem 9.26 (Floyd-Warshall). Algorithm FloydWarshall computes in D(n)
i, j the cost of the minimal weight path

from i to j. The running time of FloydWarshall is T (n) = Θ(n3).

Proof. We first analyze the performance of algorithm FloydWarshall. The Algorithm has three nested for loops. Thus
its running time is T (n) = Θ(n3). Although one may consider its space requirements as being Θ(n3) since it seems to
need a new n×n matrix in every iteration, in truth, we can fullfil the computation with two copies, one for the previous
and one for the current iteration. Thus S(n) = Θ(n2) for the space requirements, if S(n) are the space requirements for
FloydWarshall.

We provide a proof correctness using induction.
Inductive assumption. At completion of iteration k, D(k)

i, j is the cost of the minimal weight path from i to j that ONLY
USES in-between vertices from set {1, . . . ,k}.
Basis of induction k = 0. Before the loop is executed for the first time, all paths with no internal vertices are single
edges; D(0)

i, j =Wi, j is the cost of an edge path between i and j with NO internal vertices i.e. k ≤ 0, noting that vertex
indexes are positive.
Inductive Step: k−1 to k. Assume that the inductive hypothesis is true for k−1 and consider the triangular inequality
for k, ie.

D(k)
i, j = min{D(k−1)

i, j ,D(k−1)
i,k +D(k−1)

k, j }

We have two cases to consider.
Case 1. If shortest path from i to j with inbetween vertices at most k does not go through k then the part utilizing the
first term of the min correctly update D for iteration k (D(k)

i, j = D(k−1)
i, j ).

Case 2. If shortest path from i to j with inbetween vertices at most k does go through k we need to check D(k−1)
i, j vs

D(k−1)
i,k +D(k−1)

k, j . By inductive assumption all D(k−1)
i, j ,D(k−1)

i,k ,D(k−1)
k, j are optimal.

Conclusion: At the conclusion of iteration D(n)
i, j gives the cost of the shortest path from i to j.

Example 9.29. Run Floyd-Warshall on the graph whose W is D(0).

Proof.

(0) | 0 8 5 |

D = | 3 0 oo |

|oo 2 0 |

2.1 1.3

(1) | 0 8 5 | path 2 to 3 through 1 min( oo, 3 + 5 } =8 through 1

D = | 3 0 8_1|

|oo 2 0 | 3.1 1.2

path 3 to 2 through 1 min( 2 , oo+ 8 ) = 2 no change
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1.2 2.3

(2) | 0 8 5 | path 1 to 3 through 2 min( 5 , 8 + 8) = 16 no change

D = | 3 0 8_1|

|5_2 2 0 | 3.2 2.1

path 3 to 1 through 2 min(oo, 2 + 3) = 5 through 2

1.3 3.2

(3) | 0 7_3 5 | path 1 to 2 through 3 min( 8, 5 + 2 )= 7 through 3

D = | 3 0 8_1|

|5_2 2 0 | 2.3 3.1

path 2 to 1 through 3 min( 3, 8 +5) = 3 no change

Application 9.12 (Transitive Closure Problem).
Input: A graph G = (V,E) and its adjacency matrix or list.
Output: A matrix T , the transitive closure matrix. A Ti, j = 1 indicates there is a path from i to j, and Ti, j = 0 otherwise.

Solutions.
Solution 1. Run n DFS operations in other words, run search(G,i) for all i = 1, . . . ,n. Set Ti, j = 1 if color[j]=B,
otherwise Ti, j = 0. One DFS is Θ(n+m) or Θ(n2), and thus n DFS operations lead to an Θ(n(n+m)) or Θ(n3)
algorithm.
Solution 2. Form a weight matrix W with Wi, j = 1 if edge (i, j) ∈ E and 0 otherwise. Maintain ∞ in the diagonal
entries. Run the all-pairs shortest path FloydWarshall. If for a non-diagonal entry of Dk we have Dk(i, j) > 0 it
means there is a path from i to j of length that value. This is equivalent to solving the transitive closure problem. We
have also solved the strong connectivity problem by extension.
Solution 3. Modify line 5 of Floyd Warshall. The MIN can be replaced by an OR and the + by an AND. Explain why
this works as claimed.

Question 9.5. Is Floyd-Warshall faster than Solution 1 ? Explain.

Question 9.6. How can we keep track of the paths rather than just the lengths of these paths in Floyd-Warshal?
Explain.

Question 9.7. Think of the MIN as a + and the + as a x (times). Can you relate Floyd-Warshall with matrix multipli-
cation? What is An ?

Question 9.8. How fast can you compute An?
(Hint. Think of Strassen and the exponentiation problem applied to matrices).

9.14 Single source shortest path problem

We examine now a simple version of the all-pair shortest path problem. It is the single source shortest path problem
sometimes known as SSSP.

Application 9.13 (Single source shortest path).
Input. Graph G = (V,E) and its associated weight matrix or weight list W; a source vertex s ∈V .
Output. For every u ∈V , D[u] maintains the weight of the minimal weight path from s to u.

Solution. A greedy algorithm due to Dijkstra can be used to solve the single source shortest path problem. The
algorithm is sensitve and to work correctly the graph must not have negative edge weights.
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9.14.1 Dijkstra algorithm
The algorithms works with graphs that have no negative weight edges. Thus the class of graphs for Dijkstra algorithm
is more restrictive than that of Floyd-Warshall.

Dijkstra(G,W,s)

1. for every u in V

2. D[u]= oo ; p[u] = NULL

3. S={ }; D[s]=0;

4. Q=V ; BuildMinHeap(H,[V,D]);

5. while Q is not empty do

6. u= RemoveMin(H); //EXTRACT node u with min D(u)

7. S=S U {u}; Q=Q-{u};

8. for each v in A(u) AND v in Q do

9 if (D[v] < D[u] + W[u][v])

10 D[v] = D[u] + W[u][v];

11. p[v] = u;

Theorem 9.27 (Dijkstra). Algorithms Dijkstra computes in Du the weight of the minimal weight path from a given
input source vertex s to u. The running time of Dijkstra for a heap-based implementation is T (n,m) = Θ((n+m) lgn),
which for m > n is T (n,m) = Θ(m lgn).

Proof. We provide an analysis of the running time of Dijkstra’s algorithm first. The analysis assume an adjacency
list representation of the graph. Q is implementated as a priority queue that utilizes a MINHEAP with priorities the
elements of D[.]. The operation of line 10 decreases the element v of the heap with priority D[v] to a lower value
D[u]+W [u][v]. Such an operation in MINHEAP with n keys takes time O(lgn) to resolve

Lines 1-3 take Θ(n) time and so the Building of a MINHEAP in line 4. The while loop is performed n times total.
For vertex u line 6 is O(lgn) by Subject 5. Line 7’s Θ(1) is absorbed to that cost. Lines 8-10 are executed outdeg(u)
time with a cost O(lgn) as explained earler and a total cost for one vertex u of outdeg(u)×O(lgn). The total cost over
all n iterations of Dijkstra is thus

Lines 1−3︷︸︸︷
Θ(n) +

Lines 6−7︷ ︸︸ ︷
∑
u

O(lgn)+

Lines 8−9︷ ︸︸ ︷
∑
u

outdeg(u)×O(lgn) = O(n lgn)+O(m lgn) = O((n+m) lgn).

Thus Dijkstra’s running time for m > n is T (n,m) = O(m lgn).
We provide a proof of correctness of Dijkstra’s algorithm. It is by induction on the cardinality of S.
In Dijkstra’s algorithm, initially |S|= 0 and |Q|= n, and during the course of the execution, the size of S increases

by one in every iteration, and the size of Q decreases by one. Therefore, at the conclusion of the execution of Dijkstra’s
algorithm |S|= n and |Q|= 0.

The following invariants will be maintained as part of the inductive hypothesis.
Invariant-1. For u ∈ S, D[u] is the length of the shortest path from s to u.
Invariant-2. For u 6∈ S, D[u] is the length of the shortest path from s to u with intermediate vertices in S.

Base case |S| = 1. In the first execution of line 6, s is extracted from Q and moved into S. D[s] is 0 by default and
given that there are no negative weights we have concluded the base case.

Moreover, Invariant-1 is true for s when it records D[s] = 0, the only member of S by default. For Invariant-2, we
note that D[.] =W [s][.] in line 9-11 is the length of the shortest edge path from s to an arbitrary . if such edge exists.
Thus both invariants are true.
Inductive Step: from |S| = k to |S| = k+ 1. Let the inductive hypothesis apply to any set S of size k, i.e. |S| = k.
We are going to prove that the hypothesis is true for a set S such that |S|= k+1 (inductive step). Let u be the vertex
outside S with MINIMUM D[u]. Thus any other b ∈ Q is such that D[b] > D[u]. Then the shortest path from s to u
(by rule 2 above) is internal in S except for a single edge that goes from a vertex of S directly to u and u ∈ Q. Let us
call this path P. For otherwise, if P was not the shortest path, then there would be another path P′ whose intermediate
vertices were not internal in S and thus there would be another vertex say b in P′ from s to u that is also in Q and that
is closer to s than u, a contradiction to the minimality of D[u]. That is, if the shortest path would not be internal in S,
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9.15. SPANNING TREES 219

there would be a path P′ of the form s ; a, a→ b and b ; u, where all vertices of the path from s to a are internal in
S, b is the first node in Q, i.e. outside of S, and then the path from b to u might also include nodes internal or external
to S. Then cost(P′)< cost(P) and therefore cost(s ;P′ b)+ cost(b ;P′ u)< cost(s ;P u). The first term is D[b] and
the last term is D[u] thus D[b]+ cost(b ;P′ u)< D[u]. Given that all edges are positive this means D[b]< D[u] which
contradicts D[b]> D[u] i.e. the minimality of D[u]. This satisfies Invariant-1 for u just inserted into S. Moreover, the
line 9 update with respect to D[u] guarantees the maintenance of Invariant-2, for vertices still in Q.

Remark 9.13. Invariant-1 and Invariant-2 look only on paths where intermediate vertices are in S. They ignore all
paths with intermediate vertices in Q. Why? Because of the greedy principle behinds Dijkstra. When Dijktrar pulls a u
from Q into S the recorded D[u] which by induction show the shortest path cost from s to u using intermediate vertices
in S can not be beatern by an path that use an a ∈ Q. The reaon is that u is pulled into S because its D[u]< D[a]. Any
path utilizing a would be longer than D[u] up to a, let alone the remainder from a to u. The latter is going to make the
path through a even more expensive than D[u] since the edges cannot be negative. The absence of negative edges is of
paramount importance.

Example 9.30. Run Dijkstra’s algorithm on the graph whose weighed adjacency list is know below. (In a weighed
adjacency list A(i), in addition to j, such that (i, j) ∈ E, we also store Wi, j.)

Solution.

Graph G=(V,E)

1 ----> 2 [5] --> 3[9] --> 4[12] --> /.

2 ----> 3 [3] --> 4[6] --> /.

3 ----> 4 [2] ---> /.

4 ----> ./

_ _ _ _

S={ } Q={ 1 , 2 , 3 , 4 }

0 oo oo oo

_ 1 1 1

S={1 } Q={ 2 , 3 , 4 }

0 5 9 12

_ 1 2 2

S={1 , 2 } Q={ 3 , 4 }

0 5 8 11

_ 1 2 3

S={1 , 2 , 3 } Q={ 4 }

0 5 8 10

_ 1 2 3

S={1 , 2 , 3 , 4 } Q={ }

0 5 8 10

3 2 1 _

Path 4 <---3 <--2<---1

10 8 5 0

10-8 8-5 5-0

4 <---3 <--2<---1

2 3 5

9.15 Spanning Trees
The discussion on minimal cost spanning trees (MCST) is for undirected graphs. Recalling our earlier discussion, a
tree is a connected acyclic undirected graph.



DRAFT. C
op

yri
gh

t (
c)

20
21

-20
24

.

Alex
. Gerb

ess
iot

is.

All r
igh

ts
res

erv
ed

Not
to

be
po

ste
d on

lin
e

or
on

the
web

or
to

be

mad
e av

ail
ab

le
ou

tsi
de

of

co
py

rig
ht

ho
lde

r’s
web

-pa
ge

220 CHAPTER 9. GRAPHS

Fact 9.1. A tree with n vertices has n−1 edges.

Therefore Depth First Search on a tree would only take Θ(n) time.

Definition 9.96 (Spanning tree of undirected graph G). A spanning tree of an undirected connected graph G is a
tree that saturates every vertex of the graph and also has n−1 edges.

Definition 9.97 (Minimal cost spanning tree). If graph edges have weights (also known as distances, costs), a
minimal cost spanning tree (MCST) is a spanning tree for which the sum of the weights of the edges of the tree is
minimal.

Definition 9.98 (Minimal Cost Spanning Tree: Problem Definition).
Input. Undirected graph G = (V,E) and its associated weight matrix/list W.
Output. A spanning tree T = (V,E ′), where E ′ ⊆ E, of minimal total weight cost, i.e. a minimal cost spanning tree T
of G.

1. Algorithmic design principle to be used. For this problem, the solution is going to be through a greedy algorithm.
We present below two algorithms for finding minimal cost spanning trees: one due to Kruskal and one due to Prim.
Both algorithms are greedy algorithms.
2. Greedy principle of a MCST algorithm: Pick the edge with the lowest cost to attempt to add it to a tree that is
being formed (and thus currently has fewer than n− 1 edges, if its number of vertics is n) and do add if the addition
does not cause the tree to have a cycle.

9.15.1 Kruskal’s method
Proposition 9.1 (Kruskal’s method). Algorithm Kruskal works as claimed.

Kruskal(G,W) // Graph with edge weights

// Input G=(V,E) and W

// Output minimal spanning tree T=(V, E(T)), |E(T)| = n-1

1. T= { };

2. while (T has fewer than n-1 edges)

3. add to T the SHORTEST edge that does not make T have a cycle

Proof. (By contradiction.) We are going to use the following Lemma.

Lemma 9.4. Let G = (V,E) be a connected graph, and T = (V,E(T ) be a spanning tree of G. Then

(1) For all u,v the path from u to v is unique.

(2) If an edge E−E(T ) is added to T it causes T have a (unique) cycle.

(3) If an edge E−E(T ) is added to T it causes T have a (unique) cycle; furthermore if another edge gets deleted
from the resulting cycle, a new spanning tree is obtained.

The tree obtained by Algorithm Kruskal is a spanning tree as long as G is a connected graph. Let T = {e1, . . . ,en−1}
be the tree generated by Kruskal’s algorithm. If G is connected there is no isolated vertex in G.

Let T be not a minimal spanning tree. Let T ′ be the minimal spanning tree of G with the maximal number of edges
(starting with e1) common with T , and let this number be k−1.

Then ek = (a,b) is the first edge in T that is not in T ′. It can’t be the other way i.e. ek 6∈ T and ek ∈ T ′ because this
would imply ek caused a cycle in Kruskal (and thus was not picked). Then it would also cause a cycle in T ′ as up to
that point both of the algorithms have common edges!

Let P be the path in T ′ that connects a,b since ek = (a,b) is not in T ′. (The addition of ek would cause P plus ek
to become a cycle.)
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There must be an edge w(e′)> w(ek) in P. If there was no such edge, Kruskal would have picked all those edges
for T (they are lighter than ek) and by including afterwards the heavier edge ek would have generated a cycle: a
contradiction. Thus an e′ > ek exists. Consider then T ′− e′+ ek. It is a spanning tree better that T ′, a contradiction.
(Moreover it has more edges in common with T a contradiction to the maximality of T ′.)

(Alternatively, let Gk be the connected component containing {e1, . . . ,ek−1} that touches a. Then there exists an
edge e in P connecting Gk to a vertex outside Gk. Since Kruskal chooses ek over e in T , ek ≤ e. But T ′− e+ ek is a
spanning tree at least as cheap as T ′, but with one more edge in common with T than T ′ a contradiction to the choice
of T ′.)

Example 9.31 (Kruskal’s method: example). An example that highlights the operations in Kruskal’s algorithm is
shown below.

1------ 3----- 4 Step 0: T: 1 3 4

| 8 7 /

| / T={} 2

| 4 / ----------------------------------------

| / Step 1: Pick (1,2) T: 1 3 4

| 12 / cost is 4 |

| / T={(1,2)} no cycle 2

| / ----------------------------------------

| / Step 2: Pick (3,4) T: 1 3-----4

| / cost is 7 |

| / T={(1,2),(3,4)} no cycle 2

| / ----------------------------------------

| / Step 3: Pick (1,3) T: 1------3-----4

| / cost is 8 |

|/ T={(1,2),(3,4),(1,3)} 2

2 no cycle T has n-1 edges STOP

Proposition 9.2 (Kruskal’s algorithm implementation using UF-DS). Let G = (V,E) with |V | = n and |E| = m
and W be the weight matrix or list associated with G. An implementation of Kruskal’s algorithm using a Union-
Find data structure is shown below. Its running time is T (n,m) = O(m lgn+ n lgn) and for m > n it simplifies to
T (n,m) = O(m lgn).

Kruskal(G,W) // G is connected

1. Order the edges so that ’pick SHORTEST edge’ is possible efficiently

2. T=empty;

3. for each u in V

4. do MakeSet(u);

5. while there are still edges to be picked {

6. Pick SHORTEST edge (u,v) available (that has not already been picked)

7. if Find(u) != Find(v)

8. T=T U {(u,v)} ;

9. Union(u,v);

10.}

Proof. (Analysis of the algorithm’s running time.)
Running Time (Union-Find operations). Lines 3-4 perform n MakeSet operation which collectively cost Θ(n)
(Subject 3). The number of Find operations is 2m since we can have m edges and each edge has two end-points. Cost
is O(m). (It is not clear for a given G if we exhaust all the edges or complete the tree T before hand.) Moreover
the number of Union operations is no more than n− 1. Thus line 10. will be executed no more than n− 1 times and
thus collectively all those operations have a cost O(n lgn) (per Subject 3 implementation of Union-Find). Therefore
Union-Find related time is O(m+n lgn)
Running Time (Edge ordering). We can sort the edges in Θ(m lgm) time in Line 1. Then Line 6 is a constant step
per edge, and thus the total execution time of Line 6 overall edges is a O(m). Combining the two we get Θ(m lgm).
Alternatively, we can build a MINHEAP in Θ(m) time in Line 1. Then Line 6 involves an ExtractMIN operation in
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O(lgm) time, and thus the total execution time of Line 6 overall edges is a O(m lgm). Combining the two (Line 1 and
Line 6 costs) we get O(m lgm).

Therefore running time of Kruskal using Union-Find is T (n,m) = O(n lgn+m lgm).
In most cases m > n, and because the graph is connected m≥ n−1. Then it simplifies to T (n,m) = O(m lgm).

Example 9.32 (Kruskal example using UF-DS). We show below an example when a UF-DS is being used in the
implementation of Kruskal’s algorithm.

8 7 Kruskal’s method (graph not in same scale as on the left)
1------ 3----- 4 Step 0: Sort edges { 4_1,2 , 7_3,4 , 8_2,3 12_1,4}
| /
| / {1} {2} {3} {4} : n MakeSet
| 4 / \ / \ /
| / 1st edge: 4_1,2 7_3,4 : 2nd edge
| 12 / {1,2} {3,4} : n-1 Union
| / \ / : <= 2m Find
| / \ /
| / 3rd edge: 8_2,3
| / {1,2,3,4}
| /
| / T= { (1,2)_4 , (3,4)_7 , (2,3)_8 }
| / cost of T : 4 + 7 + 8 = 19
| /
|/

9.15.2 Prim’s method
Proposition 9.3 (Prim’s method). Algorithm Prim works as claimed.

Prim(G,W)

// Input G=(V,E) and W

// Output minimal spanning tree T=(V, E(T)), |E(T)| = n-1

1. T= { } ; X={4}; Q= V: // 4 is an arbitrary vertex of V;

2. while ( X != V) {

3. let e=(x,q) be SHORTEST edge from an x in X to a q in Q

4. T= T U {(x,q)};

4. X=X U {x}; Q= Q - {q};

5. }

Proof. (By contradiction.) We are going to use the following Lemma.

Lemma 9.5. Let G = (V,E) be a connected graph, and T = (V,E(T ) be a spanning tree of G. Then

(1) For all u,v the path from u to v is unique.

(2) If an edge E−E(T ) is added to T it causes T have a (unique) cycle.

(3) If an edge E−E(T ) is added to T it causes T have a (unique) cycle; furthermore if another edge gets deleted
from the resulting cycle, a new spanning tree is obtained.

Let X ⊂V . If (u,v) is the lowest cost edge from X to Q =V −X , then there is a minimum cost spanning tree that
includes (u,v).

The tree obtained by Algorithm Prim is a spanning tree as long as G is a connected graph. Let T = {e1, . . . ,en−1}
be the tree generated by Prim’s algorithm. and let Tk = {e1, . . . ,ek} be the Prim tree after k iterations. We claim that T
is a minimal spanning tree.

Let us assume that T is not a minimal spanning tree, and let T ′ be a minimal spanning tree that has as the maximum
number of edges n common with T .

We show by contradiction that T ′ = T or we have a tree whose cost is smaller than the minimal spanning tree T ′.
Let T ′ has k−1 edges in common with T and k−1 is thus the maximum number of edges a minimal spanning tree

has in common with T .
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9.15. SPANNING TREES 223

The first edge T ′ and T differ is edge ek = (a,b). Let S(Tk−1) be the set of vertices saturated by the first k−1 edges
common to T ′ and T . Let us assume a ∈ S(Tk−1).

Since T ′ is a minimal spanning tree there is a path P in it from a to b. We have a ∈ S(Tk−1) and b 6∈ S(Tk−1). Thus
the path P has an edge (u,v), where u ∈ S(Tk−1) and v 6∈ S(Tk−1).

Consider edge (u,v) versus edge (a,b). Then form T1 = T ′− (u,v)+(a,b). T1 is a spanning tree of G.
We have the following possibilities for T1.
Case 1: w(a,b) < w(u,v). Prim chose (a,b) because it is of the lowest cost. The end results is that T1 has cost

c(T1)< c(T ′). We have found a spanning tree T1 of cost smallest than the minimal cost spanning tree. Contradiction.
Case 2: w(a,b)> w(u,v). Prim chose (a,b) instead of (u,v). Impossible because Prim always picks the smallest

edge and should have picked (u,v). Contradiction to Prim’s algorithmic choices.
Case 3: w(a,b) = w(u,v). The two edges have the same cost and thus T1 is such that c(T1) = c(T ) and thus T1 is a

minimal spanning tree. It is possible that Prim picked one over the other of equal cost edges. Since Prim did not pick
at that stage (u,v) it means that (u,v) is not one of the edges of Tk−1. But now we have found minimal spanning tree
T1 that has k edges in common with T versus T ′’s k−1 edges. This is a contradiction to the ”maximality” of T ′.

All three cases lead to contradiction because we assumed that there was something better than Prim. Prim is
optimal.

Example 9.33 (Prim’s method: example). An example that highlights the operations in Prim’s algorithm is shown
below.

1------ 3----- 4 Step 0: X={4} Q={1,2,3} 1 3 4 l.c. means

| 8 7 / T={} lowest

| / (3,4) l.c. from X to Q 2 cost

| 4 / ---------------------------------------------

| / Step 1: X={4,3} Q={1,2} 1 3---- 4

| 12 / T={(3,4)}

| / (1,3) l.c. from X to Q 2

| / ---------------------------------------------

| / Step 2: X={4,3,1} Q={2} 1------3-----4

| / T={(3,4),(1,3)}

| / (1,2) l.c. form X to Q 2

| / ---------------------------------------------

| / Step 3: X={4,3,1,2} Q={} 1------3-----4

| / T={(3,4),(1,3),(1,2)} |

|/ T has n-1=3 edges 2

2 STOP

Proposition 9.4 (Prim’s algorithm implementation using a Priority Queue). Let G = (V,E) with |V |= n and |E|=
m and W be the weight matrix or list associated with G. An implementation of Prim’s algorithm using a priority queue
is shown below. Its running time is T (n,m) = O(m lgm+n lgn) and for m > n it simplifies to T (n,m) = O(m lgm).

Prim (G,W) // G is a connected graph

1. for every u in V

2. cost[u]= oo ; p[u] = NULL

3. cost[1]= 0;

4. Q=V;X=empty; BuildMinHeap(H,[V,cost]); //Priorities in heap H are the cost[.]

5. while Q is not empty do

6. u= ExtractMin(H);

7. X=X U {u}; Q=Q-{u};

8. for each v in A(u) i.e. for each edge (u,v) and v in Q do

9 if W[u][v] < cost[v];

10 cost[v]= W[u][v]

11. p[v] = u;

Proof. (Analysis of the algorithm’s running time.) Prim’s algorithm uses the structure of Dijkstra’s algorithm. Thus
the analysis of the running time is identical to that of Dijkstra’s. Note that the test in line 8 of membership in Q is
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implemented by having one extra bit per vertex. This bit is set to 1 for a vertex in Q. For a removed vertex it is set to
0. Thus the use of X is redundant.

Prim’s running time for m > n is T (n,m) = O(m lgn).

Example 9.34 (Prim example using a priority queue). We show below an example when a priority queue is being
used in the implementation of Prim’s algorithm.

1------ 3----- 4 Step 0: _ _ _ _

| 8 7 / X={ }; Q={1 , 2 , 3 , 4 }

| / 0 oo oo oo

| 4 /

| / Step 1: _ 1 1 _

| 12 / X={1 }; Q={ 2 , 3 , 4 }

| / 0 4 8 oo

| /

| / Step 2: _ 1 1 2

| / X={1 ,2 }; Q={ 3 , 4 }

| / 0 4 8 12

| /

| / Step 3: _ 1 1 3

| / X={1 ,2 , 3 }; Q={ 4 }

|/ 0 4 8 7

2

Step 4: _ 1 1 3

X={1 ,2 , 3 , 4 }; Q={ }

0 4 8 7

T is { (1,2),(1,3),(3,4) }

Spanning tree T cost is 4 + 8 + 7 = 19
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9.16 Ramsey numbers
The discussion below is for simple undirected graphs.

Definition 9.99 (A complete undirected graph). A complete graph with n vertices denoted by Kn is an undirected
graph where every vertex is connected to every other of the n−1 remaining vertices. The graph has

(n
2

)
= n(n−1)/2

edges.

Definition 9.100 (k-clique). A k-klique is a graph that is isomorphic to Kk, the complete graph on k vertices. In other
words, each vertex of the clique is connected to the remaining k−1 vertices of the clique.

Definition 9.101 (k-independent set). A k-independent set is a graph whose complement is isomorphic to Kk. In
other words, each vertex of the independent set is NOT connected to the remaining k− 1 vertices of the clique. We
shall call it k-is in short.

Definition 9.102 (Ramsey numbers). For any two positive integers p,q, there exists a minimum positive integer R(p,q)
that is known as the Ramsey number R(p,q) such that for r ≥ R(p,q) if we arbitrarily color the edges of the complete
graph with r vertices red or blue then we get

• either a red-complete graph with p vertices,

• or a blue-complete graph with q vertices.

Number r is noted as the R(p,q) Ramsay number. [Another way to describe this problem is to say that that there is
either a p-clique or a q-independent set.]

A further interpretations is that a p clique is p people each one knowing the other p−1, and q-independent sets is
a group of q people where noone knows anyone else of the set.

Example 9.35. There is a party of two students. Either they know each other or they do not know each other. Thus
2 = R(2,2).

Example 9.36. Consider R(3,3). If you consider coloring the edges of K5 you realize that R(3,3)> 5.

Example 9.37. There is a party of 6 students. We claim that: either (i) some 3 people know each other (this is a
3-clique), or (ii) some 3 people do not know each other (this is a 3-independent-set).

Proof. Let the 6 students be A,B,C,D,E,F .
Case 1. (A knows three or more). Let A know three others and let them be B,C,D. If two of the three friends of

A know each other then A and those two know each other, (i) is true and we are done.
If none of them knows each other then B,C,D satisfy (ii) and we are done.
Case 2. (A knows two or less). Let A otherwise know two or less people and let those people be B,C. Then A does

not know D,E,F . If D,E,F know each other we have found a triplet that satisfies (i) and we are done. If however
there are two of D,E,F that do not know each other, and let those two be D,F , then consider the triplet A,D,F : none
knows the other two and thus they satisfy (ii).

Consequently we proved R(3,3)≤ 6. Given (from the previous example) that R(3,3)> 5, we have R(3,3) = 6.

Example 9.38. For R(p,q) we expect p > 1 and q > 1, since a complete graph with one vertex has no edges.

Lemma 9.6. For all p,q > 0 we have R(p,q) = R(q, p).

Lemma 9.7. For all k > 0 we have R(1,k) = 1 and R(2,k) = 1.

Theorem 9.28. Show that R(4,3)≤ 10. That is in a 10-vertex graph either there is a 4-clique or a 3-independent set.

Proof.
Case 1: A knows at least 6 people. By the R(3,3) = 6 result among the 6 there is either a 3-clique or a 3-is. In the
first case the 3 plus A give a 4-clique. Done.
Case 2: A knows at most 5 people. That is A does not know 4 (total of 1+5+4 = 10). Either all those 4 know each
other and we found a 4-clique, or there are two who do not know each other. Those two plus A form a 3-is. Done.
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Theorem 9.29. R(4,4)=18.

Theorem 9.30 (Ramsay Theorem). For p≥ 2,q≥ 2 we have

R(p,q)≤ R(p−1,q)+R(p,q−1)

Proof.
A. Use a people interpretation.

Consider a number of people. Among them pick 5. Call A the set of people who know 5. Call B the set of people
who do not know 5.

We claim R(p,q)≤ R(p−1,q)+R(p,q−1) and thus c(A)+ c(B)+1 = R(p−1,q)+R(p,q−1).

• c(A)≥ R(p−1,q). Set A of size at least R(p−1,q) either contain p−1 people knowing each other or q people
who do not know each other. The p−1 people who know each other also know 5 thus generating, including 5,
a set of p people who know each other. Thus one way or the other for A∪5 we get p people knowing each other
and for A we also have q people not knowing each other. Case completed.

• c(B) ≥ R(p,q− 1) We then argue as follows for set B. Set B includes all people who do not know 5. B is of
cardinality at least R(p,q− 1) and by induction either there exist p people in B who know each other or there
are q−1 who do not know each other. In the latter case the addition of 5 generates q people not knowing each
other. One way or the other the result has been proven.

• Otherwise c(A) < R(p− 1,q) and c(B) < R(p,q− 1) i.e. c(A) ≤ R(p− 1,q)− 1 and c(B) ≤ R(p,q− 1)− 1
thus giving c(A)+ c(B)+ 1 ≤ R(p− 1,q)− 1+R(p,q− 1)− 1+ 1 ≤ R(p− 1,q)+R(p,q− 1)− 1. But this
contradicts c(A)+ c(B)+1 = R(p−1,q)+R(p,q−1) i.e. this cases IS NOT a case, it does not exist.

Thus R(p,q)≤ R(p−1,q)+R(p,q−1).

B. We use a coloring of Kn interpretation.
Let n = R(p−1,q)+R(q, p−1). We claim that R(p,q)≤ R(p−1,q)+R(q, p−1).
Consider random coloring the edges of Kn with two colors, red and blue. Pick an arbitrary vertex of Kn and call

it 5. Among the n− 1 edges incident on 5 P are red and Q are blue where P+Q = n− 1 and thus P+Q+ 1 =
R(p−1,q)+R(q, p−1).

We do a case analysis
Case 1: P ≥ R(p−1,q). Then the red edges’s end-points either contain a red Kp−1 or a blue Kq. We are done in

the latter case; in the former case adding 5 we turn the red Kp−1 into a red Kp. Thus one way or the other a red Kp or
a blue Kq is generated.

Case 2: Q≥ R(p,q−1). The the blue edges’ end-points either contain a red Kp or a blue Kq−1. In the former case
we are done; in the latter case adding 5 to the q−1 blue edge end-points, we generate a blue Kq. Thus one way or the
other a red Kp or a blue Kq is generated.

Theorem 9.31. R(p,q) is finite for all p > 1 and q > 1.

Proof. Proof is by induction of p+q.
Base case. The base case is for p = q = 1. Either a red or a blue 1-subgraph results and the statement is true by

inspection trivially.
Inductive step. Now suppose that R(p− 1,q) and R(p,q− 1 are finite. We proved before that R(p,q) ≤ R(p−

1,q)+R(p,q−1). Thus R(p,q) is finite as it is bounded by the sum of two finite numbers.

Example 9.39. Show that R(p,q)≤
(p+q−2

p−1

)
.

Proof. It follows by induction from R(p,q)≤ R(p−1,q)+R(p,q−1) and simple algebraic manipulations.
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Theorem 9.32. Show R(k,k)≤
(2k−2

k−1

)
≤ 22k.

Theorem 9.33. For any k > 4, show R(k,k)≥ 2k/2.

Proof. The number of n vertex graphs is 2(
n
2).

The number of n vertex graphs containing at least one k-clique is at most
(n

k

)
·2(

n
2)−(

k
2).

The number of n vertex graphs containing either at least one k-clique or at least one k-is is at most 2 ·
(n

k

)
·2(

n
2)−(

k
2).

Thus if 2 ·
(n

k

)
·2(

n
2)−(

k
2) < 2(

n
2), then there is some n vertex graph that has neither a k-clique nor k-inpdendent set.

For this we need to show

2 ·
(

n
k

)
< 2(

k
2)

or equivalently
2 ·nk/k! < 2k(k−1)/2

and for n = 2k/2 it suffices to show that
k!/(2 ·2k/2)> 1

which is true for k ≥ 4.

Theorem 9.34 (Schur’s Theorem). For any finite coloring of the positive integers there exist x,y,z such that x+y = z
and all three are of the same color.

Proof. Color the numbers 1...S(r) with different colors. S(r) = R(3,3, . . . ,3 i.e. the Ramsey number of order 3 and
multiplicity r. Consider KS(r). Color edge (a,b) with |b−a|’s color. By definition of Ramsey numbers There exists a
triangle x > y > z whose edges are of the same color. Then A = x− y,B = y− zC = x− z have the same color. Note
that A+B = x− y+ y− z = x− z =C.

9.17 Exercises
Exercise 9.2. A wolf, a goat, and a cabbage are on one bank of a river. A boatman will take them across, but can take
only one at a time. The wolf and goat cannot be left together on either bank of the river without the boatman, nor can
the goat and the cabbage. Using a graph model determine the shortest time required for the boatman to achieve his
task.

Proof. Let the W (olf), G(oat), and C(abbage) be initially on the left bank of the river. We must show that the B(oatman)
can take them to the right bank without any losses and in the shortest time possible. We use the following graph
representation of the problem. The vertices below correspond to legal occurrences of W, C, G, B on the left bank of
the river, and our aim is to find a shortest path between vertex WGCB (all on the left bank) to � (none on the left
blank). The edges of the graph correspond to legal moves under which the boatman can take some of the animals
from(to) the left bank to(from) the right without causing any losses of animals on either bank.

Let the W (olf), G(oat), C(abbage), and Boatman be initially on the left bank of the river. We use the following
graph representation of the problem. The vertices below correspond to legal occurrences of W, C, G, B on the left
bank of the river, and our aim is to find a shortest path between vertex WGCB (all on the left bank) to /0 (none on the
left blank). The edges of the graph correspond to legal moves under which the boatman can take some passenger from
(to) the left bank to (from) the right without attrition on either bank.

Exercise 9.3. Show that if every vertex in an n vertex graph (where n is even) has degree at least n/2, then the graph
has a perfect matching.

Proof. By Dirac’s theorem, such a graph has a Hamiltonian cycle of length n. Taking every second edge from this
cycle gives a matching, since no vertex will be included more than once. Because n is even, every vertex will be
included once, so the matching is perfect.
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Exercise 9.4. Using Eulerian tours find a circular arrangement of nine A’s, nine B’s and nine C’s such that each of
the 27 subsequences of length 3 are distinct.

Proof. We give first the definition for the generalized De Bruijn graph. Let h, k ≥ 2 be natural numbers and set
V = {1,2, . . . ,h}k. The De Bruijn graph B(h,k) has vertex set V and every vertex a = (a1,a2, . . . ,ak) is adjacent to
every vertex b= (a2,a3, . . . ,ak,∗) (left shift) by an edge ( a, b ), where ∗ denotes an arbitrary element of {1,2, . . .h}.
The following is immediate from the definition.

Claim 9.5. The de Bruijn graph B(h,k) has order ( number of vertices) hk and indegree = outdegree = h.

Since for every vertex indegree = outdegree we conclude that there exists a closed Eulerian walk in B(h,k).
For the solution of this exercise, we need to construct B(3,2) where V = {A,B,C}2 (the square here means Carte-

sian product), and find an Eulerian tour in this graph.
The following shows a circular arrangement with the desired properties (with 9 A’s, 9 B ’s , 9 C’s):
AAACACBCCBBBCBAABABBACCCABC

Exercise 9.5. Let G be an n vertex graph with no isolated vertices and with every vertex having degree at most d. If
ν is the number of edges in a maximum matching for G, show that

ν ≥ n
d +1

Proof. Suppose M is a maximum matching for G of size ν . Let X be the vertex of G matched in M, and let Y be the
vertices of G unmatched in M. No two vertices in Y may have an edge between them, since otherwise adding that
edge to M would give a larger matching. If (u,v) is in M, and u has a neighbor w ∈ Y , then v cannot be adjacent to
any vertexz 6= w in Y . Otherwise there would be an M-augmenting path w,u,v,z which contradicts the assumption that
M is maximum. Since there are no isolated vertices, each of the n−2ν vertices in Y is connected to some vertexin X .
But each of the ν pairs of vertices in X can have at most only d−1 distinct neighbors in Y . Therefore it follows that

n−2ν ≤ ν(d−1)
n ≤ ν(d +1)

ν ≥ n
d +1

Exercise 9.6. onsider the problem of covering an 8×8 checker board with dominos, where each domino occupies two
adjacent squares along the same row or column, and no two dominos overlap. It is possible to completely cover the
checker board with 32 dominos. If two diagonally opposite corner squares are removed, prove or disprove that the
remaining 62 squares can be covered with 31 dominos.

Proof. This is not possible. Any placement of a domino will cover one black and one white square, but two opposite
corner squares are the same color. Of the remaining 62 squares, 30 are one color and 32 are the other. No more than
30 dominos may be legally placed.

(The graph representation of this problem is a bipartite graph where one side corresponds to the black squares, the
other side corresponds to the white squares, and the edges correspond to adjacency between squares. The question
then becomes whether this graph has a perfect matching.

Exercise 9.7. Show that if G is a connected undirected graph with k vertices of odd degree (k > 0) then there are k/2
walks no two of which share an edge, that between them contain all the edges.

Proof. First, one must show that the problem is well defined in the sense that k is always even. This follows form the
following claim

Claim 9.6. The number of odd-degree vertices in a graph G = (V,E) is even.
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Proof. Counting Argument. 2
We have that k is an even number. Let k = 2m. We divide the k points into m pairs and we form a new graph G

′
by

adding to G m new edges, each joining a pair of the odd degree vertices (even if such edges already exist). Then we
have that G

′
is a connected graph, all of whose vertices have even degree. From Euler’s theorem, we get that there’s a

cycle C in G
′

that crosses each edge exactly once. We now remove from C the m edges we added, breaking the cycle
into m segments such that the remaining edges consist of m paths that use all edges of G each path starting from an
odd vertexand ending in another. In any collection of paths using all edges of G, every odd vertex must be the end of
a path and so with k odd degree vertices we cannot cover all edges of G using less than m paths.

Exercise 9.8. A set of 2k+ 1 people plan to have dinner together around a circular table on k successive nights in
such a way that no pair sit next to each other more than once. Show that this is possible for k = 5.

Proof. For the case k = 5 one can find the following ordering of the people around a circular table ( assuming a circular
order of the lists below)

• First night: 1,2,3,4,5,6,7,8,9,10,11.

• Second night: 1,3,5,7,9,11,2,4,6,8,10.

• Third night: 1,4,7,10,2,5,8,11,3,6,9.

• Fourth night: 1,5,9,2,6,10,3,7,11,4,8.

• Fifth night: 1,6,11,5,10,4,9,3,8,2,7.

We now show how we can find k circular orderings of the 2k+ 1 people for any k. Initially, each person can sit
next to anyone else. We represent this relationship with a graph. The vertices of the graph are the people, and we
have an edge between a and b if a can be seated next to b. The graph constructed is the K2k+1 (complete graph on
2k+ 1 vertices). Here’s is how we can find the k orderings. We put 2k of the points on a circle and the other point
in the center, and we construct the initial ordering shown there. Figure 1 below illustrates this construction. Figure 2
shows the initial ordering for k = 4 while Figure 3 shows how we can get a new ordering (edge disjoint ) by a right
one step rotation of Figure 2. Rotating Figure 1 clockwise, in the sense shown in Figure 3, by 1,2, . . .k steps, we get
all possible orderings we need..

We now only need to prove that all these orderings do not use the same edge twice, i.e. that the k hamiltonian
cycles of the K2k+1 complete graph generated by these rotations are edge-disjoint, and so the traversal of the vertices
of each cycle gives a valid ordering.

One can see, using the labelling of the vertices in Figure 1, that two vertices (on the circle) are adjacent in Figure 1
if their sum is 2 or 3 modulo 2k. If we rotate this first ordering clockwise by one step the sum of two adjacent vertices
on the circle becomes 4, or 5 modulo 2k. Another rotation gives a sum of 6, 7 modulo 2k and so on. It is easy to
see, that the ”diameter edges” are disjoint for these k orderings. Therefore the rotation of the original ordering can be
repeated a total of k−1 times before getting the original one. Hence, in that way we get k edge-disjoint Hamiltonian
cycles i.e. the orderings of people we would like to have .

Exercise 9.9. Show that any edge in a regular bipartite graph can be included in some perfect matching.

Proof. Let G = (X ∪Y,E) where E ⊆ X×Y be a regular degree k bipartite graph. By the corollary to Hall’s theorem,
every regular bipartite graph has a perfect matching. Find a perfect matching M for G and consider G′=(X∪Y,E−M).
This is also a regular bipartite graph, of degree k−1. So G′ has a perfect matching which may be removed leaving a
regular bipartite graph of degree k−2, and so on, until we are finally left with a graph that has no edges. Since every
edge was removed as part of some perfect matching for G, this proves the claim.

Exercise 9.10. Show that a regular degree k bipartite graph has at least k! different perfect matchings.
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Proof. This can be shown by induction on n =| X | in the statement: If G = (X ∪Y,E) is a bipartite graph such that
∀v∈X ,deg(v)≥ k, and if G has a perfect matching, then G has at least k! different perfect matchings. (We’re actually
claiming a slightly stronger result than required, since G need not be regular).

For n = k (n’s smallest possible value), we have a complete bipartite graph, and all of the conceivable n! = k!
matchings are legitimate. Now assume the statement is true for n ≤ n̂ and consider a case where n = n̂+ 1. Call a
subset A ⊂ X critical if | R(A) |=| A |. If X has no critical subsets, any edge may be put in the matching (k choices
for x1 ∈ X), and the graph remaining after deleting this edge, its endpoints, and all of their edges will still satisfy
the criterion of Hall’s theorem and hence have a perfect matching. | X −{x1} |= n̂, and every vertexof this graph
has degree at least k− 1, so by induction, we get the k(k− 1)! = k! bound. If A is critical, there must be a perfect
matching consisting only of edges between A and R(A) and between X −A and Y −R(A). Any combination of two
such matchings forms a perfect matching for G, and every perfect matching for G must be a combination of two such
matchings. Matching A and R(A) is a similar problem of smaller size, so by the inductive hypothesis there are at least
k! possible solutions.

Exercise 9.11. Show that for any regular degree three graph with a Hamiltonian cycle χ(G) = 3. (Recall χ(G) and
γ(G) are the minimum numbers of colors used in edge and vertexcolorings resepectively of G).

Proof. Since the graph is regular of degree 3, it has an even number of vertices, otherwise the sum of the degrees of the
vertices would be odd. Therefore the Hamiltonian cycle is of even length and we can color its edges alternately using
two colors, say 1 and 2. If we delete the edges of the Hamiltonian cycle from the original graph, we get a matching
(we reduce the degree of each vertexby 2 by removing the cycle, and every vertexhad initially degree 3). We color the
edges of the matching using a third color, say 3.

Exercise 9.12. An edge cover of a graph is a set of edges that touch every vertex. If M is a maximum matching, C is a
minimum edge cover, and n is the number of vertices in the graph, show that |M |+ |C |= n.

Proof. Let G = (V,E) a graph. Let M be a maximum matching. We get a cover C′ from that by adding edges to M that
saturate, unsaturated vertices (assuming a minimum cover exists, such edges always exist, otherwise edges between
vertices in V −S(M) exist, contradicting to the maximality of the matching M (since in that case, we could extend the
maximum matching by adding to it edges that connect vertices in V −S(M))).

C′ = M∪{e = (a,b) : e ∈ E,a ∈ S(M) b 6∈ S(M)}

where S(M) is the set of saturated vertices due to the matching M. The number of saturated vertices is equal to 2 |M |.
Each edge we add to the matching to get a covering saturates one previously unsaturated vertex. Therefere the number
of such edges we must add to get a covering is equal to n−2 |M |, where n is the number of vertices of G. Therefore,

|C′ |=|M |+(n−2 |M |)

and
|C′ |+ |M |= n (9.1)

Now suppose, we have a minimum covering, let it be C. We can get a matching from C as follows ( we give a ’high
level’ description). Remove edges from C which are incident to vertices of degree greater than 1, until each vertex
would be of degree 1. In that way, we get a matching (each vertex is touched by at most 1 edge), and, let it be M′.
Since paths (chains) of length 3 cannot exist in C (otherwise, if a path v1e1v2e2v3e3v4 were part of C, then, we could
get a minimum covering of size one less by using only the edges e1, e3 which cover all 4 vertices, a contradiction to
the minimality of C), the removal of an edge from C creates exactly one unsaturated vertex. Therefore, we have:

|C | − |M′ |= (number o f unsaturated vertices created) = n−2 |M′ |

which is equivalent to
|C |+ |M′ |= n (9.2)
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C is a minimum covering, therefore, |C |≤|C′ | This implies (from (1), (2)) that:

n− |C |≥ n− |C′ | ⇒|M′ |≥|M |

Since M is a maximum matching, we must have

|M |=|M′ |

and again from (1),(2), we get
|C |=|C′ |

This means M,M′ are both maximum matching and C,C′ are minimum coverings of the same size. This implies that:

|M |+ |C |= n

Exercise 9.13. Let G1 = (V1,E1) and G2 = (V2,E2) (where V1 and V2 need not be disjoint). Define G1 ∪G2 =
(V1∪V2,E1∪E2). Show that

γ(G1∪G2)≤ γ(G1)γ(G2)

Proof. Let α be a minimum coloring for G1, i.e. a mapping that maps vertices of G1 onto the γ(G1) colors we need
to color G1. Let β be the corresponding coloring for G2. Then we color a vertex v of G1∪G2 using color (α(v),β (v))
(the ”colors” are ordered pairs here). If a vertexexists only in G1 or in G2 then we ”fill” the other part of the pair with
a color arbitrarily chosen from the set of colors used to color G2 (or G1 respectively). It is easy to see, that such a
coloring is a valid one (since by its definition it doesn’t color with the same color two vertices that are adjacent in
G1∪G2 because that would imply that these two vertices which must be adjacent in G1 or G2 must also be colored the
same color there, a contradiction to the validity of the initial coloring of G1 and/or G2) and the total number of colors
used is equal to at most γ(G1) · γ(G2)

You can show that equality holds in the case where G1 is a circuit on 6 vertices and G2 is K6−G1. One can see
that γ(G1) = 2 and γ(G2) = 3 while γ(G1 ∪G2) = γ(K6) = 6. This also serves as a counterexample to an incorrect
claim that γ(G1∪G2)≤ γ(G1)+ γ(G2). A counterexample to a claim γ(G1∪G2)≤ γ(G1)+ γ(G2)−1 is to have K8
instead of K6 above.

Exercise 9.14. Let Kn denote the n vertexcomplete graph. Show that

χ(K2k) = 2k−1

and
χ(K2k+1) = 2k+1

Proof. Left empty.

Exercise 9.15. If G = (V,E) and V1 ⊂V , let G(V1) = (V1,E ∩ (V1×V1)).

(i) Show ∃V1,V2 ⊂V such that V =V1∪V2 and γ(G(V1))+ γ(G(V2)) = γ(G).

(ii) Show ∃V1,V2 ⊂V such that V =V1∪V2, V1∩V2 = /0, and γ(G(V1))+ γ(G(V2))> γ(G) (Hint: Let G(V1) be a
maximum complete subgraph of G).

Proof. The first part is rather easy. Color G with γ(G) colors. Let V1 be the set of vertices of G colored with a
particular color (among the γ(G) colors), and V2 be the rest of the vertices of G. Therefore, a coloring of G also colors
G(V1),G(V2), hence, we have that γ(G(V1))+γ(G(V2))≤ γ(G). The < cannot hold in the previous inequality because
otherwise we could color G with less than γ(G) colors (using the γ(G(V1))+ γ(G(V2)) colors of the subgraphs, and
coloring the vertices of G as they were colored in G(V1),G(V2)) , a contradiction to the minimality of γ .

First note that, γ(G(V1))+γ(G(V2))≥ γ(G) is always true since a valid coloring of G(V1) and G(V2) is also a valid
one for G (assuming the colors used to color V1 are different from those used for coloring the V2 vertices). We would
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232 CHAPTER 9. GRAPHS

now prove that for G(V1) = Kk, the maximum complete subgraph of G, equality cannot hold in the previous inequality.
We prove it by contradiction.

Let’s assume we can color both G(V1), G(V2) with γ(G) colors, i.e. γ(G(V1)) = k, γ(G(V2)) = γ(G)− k. Then,
we would prove that we can eliminate one color from G(V1), and therefore color G with only γ(G)− 1 colors, a
contradiction to the minimality of γ(G). Suppose, w.l.o.g., we color G(V1) with colors 1, . . . ,k and G(V2) with colors
k+1, . . . ,γ(G). Then, w.l.o.g., we would eliminate color 1 from G(V1) and color the vertex colored with color 1 (only
one such vertex exists since G(V1) is a complete graph) with say (w.l.o.g.) color γ(G).

Let v be the vertex colored with color 1 in G(V1). We then consider all the neighbors of v in G that belong to
G(V2) and are colored with color γ(G). Let these neighbors be w1, . . . ,wl . No two w vertices are connected with an
edge since that would contradict to the identical coloring of these vertices. In graph theoretic terms, the set of vertices
w1, . . . ,wl is called independent set. Each of the w vertices is not connected to at least one of the vertices in G(V1)
(otherwise, we could get a complete subgraph of size one more). Let w is not connected to u of G(V1) (in case we have
more than one choices for coloring w we choose one color arbitrarily).

Then, we can color this w with the color of the vertex u in G(V1), and repeating this for all w vertices we can finally
color all neighbors w1, . . . ,wl of v (initially colored γ(G)) with colors taken from the set {1, . . . ,k}. Note, that some
of the w might be colored with the same color, but this is admissible, since the w’s form an independent set. Now we
color v with γ(G) since this color is available ( we make it available for v by recoloring all its γ(G)-colored neighbors).
Now, color 1, does not participate in the coloring of G (since only vertex v was colored 1 and now is colored γ(G)),
and therefore we have a γ(G)−1 coloring of G, a contradiction.

Exercise 9.16. (i) Show that the number of faces in a planar graph is at most 2n−4, where n is the number of vertices.

(ii) Show that if a planar graph has 6 vertices and 12 edges then every face is bounded by exactly 3 edges.

Proof. (i) Recall Euler’s theorem that any planar embedding of a connected graph with e edges and n vertices has f
faces where

f = e−n+2

In a graph with k connected components, then this is true for each component. Summing, we get

k

∑
i=1

fi =
k

∑
i=1

ei−
k

∑
i=1

ni +2k

k

∑
i=1

fi = e−n+2k

The external face is being counted k times in this sum, once for each component, so

f +(k−1) = e−n+2k

f = e−n+ k+1
f ≥ e−n+2

Furthermore each edge contributes to only two faces, and each face is formed by at least three edges (assuming
e≥ 3), so e≥ 3

2 f . Substituting, we get

f ≥ 3
2

f −n+2

−1
2

f ≥ −n+2

f ≤ 2n−4



DRAFT. C
op

yri
gh

t (
c)

20
21

-20
24

.

Alex
. Gerb

ess
iot

is.

All r
igh

ts
res

erv
ed

Not
to

be
po

ste
d on

lin
e

or
on

the
web

or
to

be

mad
e av

ail
ab

le
ou

tsi
de

of

co
py

rig
ht

ho
lde

r’s
web

-pa
ge

9.17. EXERCISES 233

(ii) Substituting n = 6 and e = 12 into f ≥ e− n+ 2, we find that f ≥ 8. Suppose one of these faces has four or
more edges. Then by drawing a new edge diagonally across it we can get another planar graph that has 13 edges and
at least 9 faces. But this contradicts e≥ 3

2 f .

Exercise 9.17. Show that there exists a graph G which does not contain K4 as a subgraph but requires at least 4 colors
for a vertex coloring.

Proof. An example is a wheel like graph. The outside cycle is of odd length and therefore requires three colors. A
fourth is needed for the center point and its spikes.

Exercise 9.18. Show that if the vertices of a bipartite graph G = (X ∪Y,E) have degree ≤ k, then there exists a
matching that saturates (touches) all vertices of degree k.

Proof. Let G = (X ∪Y,E) be a bipartite graph, which has degree ≤ k. We make G regular of degree k by adding extra
edges and possibly extra vertices. Note, that by doing so, we add no edges incident to vertices that already have degree
k. In that way, we get a k-regular graph. By the Corollary of Hall’s theorem proven in class, the new graph has a
perfect matching. The edges of the perfect matching that are incident to vertices of degree k in G are edges in E. If we
collect these edges we get a matching that touches all vertices of degree k in G.

Exercise 9.19. An independent set is a set of vertices such that no two are connected by an edge. Let i(G) be the
maximum size of all independent sets in a graph G and γ(G) be its chromatic number. Show that

i(G) · γ(G)≥ n

where n is the number of vertices of G.

Proof. In every coloring of G with γ(G) colors, the set of vertices colored the same form an independent set. Let the
colors used in a minimum coloring of G be 1, . . . ,γ(G). Let Vk be the set of vertices of G colored with color k. We
have that ∑

γ(G)
k=1 |Vk |= n where n is the number of vertices of G and | · | represents the cardinality of a set. Since each

Vk is an independent set, we get that |Vk |≤ i(G) ∀k. Therefore,

i(G) · γ(G)≥
γ(G)

∑
k=1
|Vk |= n.

Exercise 9.20. Show that there exist two graphs G1 = (V,E1), G2 = (V,E2) where G1 ∪G2 = (V,E1 ∪E2) = K2k
(again, K2k is the complete graph on 2k vertices), such that γ(G1) = 2 and γ(G2) = k.

Proof. Take k vertices from K2k and form a complete bipartite graph Kk,k with the other k vertices (this complete
bipartite graph has k2 edges). We can color Kk,k with two colors. The rest of K2k, when we delete the edges of Kk,k,
becomes disconnected and the two connected components of it are two complete graphs Kk. We can color them using
k colors (use the same k colors to color both of them). We know that γ(Kk) = k, and therefore our two graph G1,G2
are: G1 = Kk,k and G2 = K2k−Kk,k.

Earlier in another problem we presented an example, such that equality holds in the equality γ(G1∪G2)≤ γ(G1) ·
γ(G2).

Exercise 9.21. A path is an alternating sequence of vertices and edges such that no vertex appears twice. Given two
vertices u,v ∈ V of a graph G = (V,E), consider all possible paths from u to v and let l(u,v) be the length of the
longest one. Define l(G) = max l(u,v). Show that in a connected graph G = (V,E), any two paths of length l(G) have
a vertex in common.
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234 CHAPTER 9. GRAPHS

Proof. Suppose P1 = {u1, . . . ,ul} and P2 = {v1, . . . ,vl} are two maximum length paths in G that are vertexdisjoint.
Any pair of vertices in G have a path between them, so we can find a ui and v j such that the path between them has no
intermediate vertices from either P1 or P2.

Assume without loss of generality that i, j ≥ l/2 (we can always reverse the labelings along the paths to achieve
this). Then the walk u1,u2, . . . ,ui, . . . ,v j,v j−1, . . . ,v1 is a path and has length at least l+1, contradicting our assumption
the P1 and P2 were maximum.

Exercise 9.22. Show that if an undirected graph G = (V,E) (with no self loops or multiple edges) has more than
1
2 (n−1)(n−2) edges, then it must be connected.

Proof. Assume that G is not connected. We can therefore separate V into two non-trivial partitions V1 and V2, where
V = V1 ∪V2 and E contains no edges from V1×V2. The maximum possible number of edges in an n vertexgraph
is n(n−1)

2 (each of n vertices is connected to n− 1 other vertices, so there are n(n− 1) end points and half as many
edges). But |V1 ||V2 | of those potential edges cannot appear in G. Since |V1 |+ |V2 |= n and both sets are non-empty,
that product is at least n− 1 (the minimum of x(n− x) on the range 1 ≤ x < n). Thus the number of edges in an n
vertexunconnected graph is at most

n(n−1)
2

− (n−1) =
1
2
(n−1)(n−2)

Exercise 9.23. How many different (up to rotation) de Bruijn sequences of length 8 are there? Construct a de Bruijn
sequence of length 32 (Use Eulerian walk arguments in each case).

Proof. The number of distinct deBruijn sequences of length 8 (excluding those obtainable by rotations) corresponds
to the number of closed Eulerian walks in the four vertexdeBruijn graph. This is seen to be two (11101000 and
11100010), depending on whether the loop between the 01 and 10 vertices is taken before or after visiting the 11
vertex. (Note these two sequences are each other’s reverse). Here is the deBruijn graph on 16 vertices. From the

indicated Eulerian tour we can construct the deBruijn sequence 01111100110001001010110111010000.

Exercise 9.24. Show that for every undirected multigraph G = (V,E) there exists a closed walk that covers every edge
of the graph exactly twice.

Proof. Take G and create a modified multigraph G′ = (V,E ′) where E ′ is just E with every edge repeated. Clearly
every vertex in G′ has even degree. G′ therefore has a closed Eulerian walk, which when mapped back to G crosses
every edge exactly twice.

Exercise 9.25. Show that binary Gray codes exist for every n (n is the length of a word of the code).
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9.17. EXERCISES 235

Proof. This is shown by induction on n. The basis where n = 1 is trivial as 0,1 suffices. Now assume the hypothesis
is true for n = k. Let u1,u2, . . . ,u2k be a Gray code. Construct the code 0u1,0u2, . . . ,0u2k ,1u2k ,1u2k−1, . . . ,1u1. This
is a Gray code for n = k+ 1 since each pair of adjacent strings differ in only one bit. This is shown by induction on
n. The basis where n = 1 is trivial as 0,1 suffices. Now assume the hypothesis is true for n = k. Let u1,u2, . . . ,u2k be
a Gray code. Construct the code 0u1,0u2, . . . ,0u2k ,1u2k ,1u2k−1, . . . ,1u1. This is a Gray code for n = k+1 since each
pair of adjacent strings differ in only one bit.

Exercise 9.26. Prove the following version of Dirac’s theorem. If we have an undirected connected graph G = (V,E)
such that for any two non-adjacent vertices u, v we have that d(u)+d(v)≥ n ( d(w) is the degree of a vertex w in G),
then G must have a Hamiltonian cycle.

Proof. The argument is virtually identical to that used for Dirac’s theorem in class. Add additional edges to G until
no more can be added without forming a Hamiltonian cycle. Let x and y be two non-adjacent vertices. There must be
a Hamiltonian path x = z1→ z2→ . . .→ zn−1→ zn = y. If for some 2≤ j ≤ n we have x adjacent to z j and y adjacent
to z j−1 then x = z1→ z2→ . . .→ z j−1→ zn = y→ zn−1→ . . .→ z j→ z1 = x is a Hamiltonian cycle. But if there is no
such j then the degree of y can be at most (n−1)−d(x) which contradicts the assumption that d(x)+d(y)≥ n.

Exercise 9.27. Show that every bipartite graph G = (X ∪Y,E) has a matching that saturates all vertices of maximum
degree (in X or Y ).

Proof. Let G = (X ∪Y,E) be a bipartite graph, which has degree ≤ k. We make G regular of degree k by adding extra
edges and possibly extra vertices. Note, that by doing so, we add no edges incident to vertices that already have degree
k. In that way, we get a k-regular graph. By the Corollary of Hall’s theorem proven in class (multigraph case), the
new graph has a perfect matching. The edges of the perfect matching that are incident to vertices of degree k in G are
edges in E. If we collect these edges we get a matching that touches all vertices of degree k in G.

Exercise 9.28. Show that if G = (V,E) is an n vertexgraph with n = 2r for some integer r, and the degree d(x)> r for
every vertexx ∈V , then every edge in E is included in some perfect matching.

Proof. Since the undirected graph has an even number of vertices a perfect matching is feasible. Suppose we want
to show that a particular edge say {x,y} is in some particular perfect matching M. One edge of this matching will be
edge {x,y}. We pick the other edges as follows.

Each vertex of G originally had degree at least r+ 1 where n = 2r. We remove from G the vertices x,y and all
edges adjacent to x or y. The resulting graph G′ has n−2 = 2r−2 vertices and each vertex in this graph has degree at
least r−1, since the degree of a vertex connected only to either x or y is decreased by 1 while the degree of vertices
adjacent to both x and y is decreased by 2. For graph G′ we have 2r−2 vertices and each one has degree at least r−1,
therefore, from Dirac’s theorem G′ has a Hamiltonian cycle. Since the cycle is of even length we get a matching on
these 2r−2 vertices by picking every other edge of the Hamiltonian cycle. This gives a matching of size r−1 which
along with {x,y} gives a perfect matching M for G. Since edge {x,y} was chosen arbitrarily, we get a proof for our
problem.

Exercise 9.29. Suppose G = (V,E) is a graph with matchings M and M′ where | M′ |≥| M | +k. In the graph
(V,(M−M′)∪ (M′−M)),

(i) What is a non-trivial lower bound on the number of alternating chains with both end points saturated by M′?

(ii) If M′ is a maximum matching, what must be true of all the alternating chains?

Proof. Let4 denote the symmetric difference of two sets, i.e M4M′ = (M−M′)∪ (M′−M).
i) Since M′ has at least k matched edges more than M, and since isolated points, cycles and alternating chains of

even length have the same number of matched edges of M and M′ in M4M′, then only alternating chains with both
end points in either S(M) or S(M′) may contribute one more edge in M and M′ respectively. Let c and c′ be the number
of such chains respectively (c,c′ ≥ 0). Since M′ has at least k edges more than M we must have that c′− c ≥ k and
therefore c′ ≥ k.
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ii) If M′ is a maximum matching we can’t get a matching of size at least one more than M′ and so, among the
alternating chains in M4M′ we can’t have alternating chains where both end-points are in S(M), since otherwise by
flipping the edges of that chain we can get a matching of size one more than M′, a contradiction to the maximality of
M′.

Exercise 9.30. Show that an n vertexgraph with more than 1
2 (n−1)(n−2)+2 edges must have a Hamiltonian cycle.

Proof. We use in this problem the result of that if for all pairs of non-adjacent vertices u,v of G we have d(u)+d(v)≥ n
then G must be Hamiltonian. Suppose we have a graph G which has at least 1

2 (n− 1)(n− 2)+ 2 vertices. We prove
that way.

Assume for contradiction that the graph is not Hamiltonian. Then there must exist a pair of non-adjacent vertices
such that d(u)+d(v)< n since, otherwise all pairs of non-adjacent vertices are as in the statement of a prior problem
and therefore a Hamiltonian cycle exists, a contradiction to our assumption. We now find an upper bound on the
number of edges G might have. The n−2 vertices of G other than u,v may be at most connected in a complete graph
fashion and among them we might have at most 1

2 (n−2)(n−3) edges. Vertex u is connected to d(u) of these vertices
and v to d(v), since u and v are not connected each other. Therefore, the maximum number of edges in G is

| E |≤ 1
2
(n−2)(n−3)+d(u)+d(v)≤ 1

2
(n−2)(n−3)+n−1≤ 1

2
(n−1)(n−2)+1

since we assumed that d(u) + d(v) < n⇒ d(u) + d(v) ≤ n− 1. But we have at least 1
2 (n− 1)(n− 2) + 2 edges,

a contradiction. Therefore no pair of non-adjacent vertices with d(u) + d(v) < n exists, and the graph has thus a
hamiltonian cycle.

Exercise 9.31. Suppose G = (X ∪Y,E) is a bipartite graph where for all x ∈ X d(x)≥ k, and for all y ∈ Y d(y)≤ 2k.
Show G has a matching of size at least |X |2 .

Proof. Take a set A of X vertices. There are at least | A | k edges leaving A and since every vertexof R(A) must have
degree at most 2k, we must have that | R(A) |≥| A | /2. We now take an extra copy of Y , let it be Y ′, and we add new
edges between vertices in X and Y ′ so that the graph between X and Y ′ is an exact copy of G. In this way, for every
set A of X we double the range of A in Y ∪Y ′ and therefore | R(A) |≥ 2 |A|2 =| A |. Therefore the resulting graph G′ has
a complete matching. Let y′ be the image in Y ′ of vertex y of Y (i.e. we connect y′ to X the same way we connected
y to X in the original graph G). We get a complete matching of G′, let it be M. If both y and y′ are in S(M) for some
vertex y of Y , we delete from M the edge incident to y′. If y′ is in S(M) but not y, let the edge incident to y′ be (x,y′).
Then we delete this edge from M and we add to M edge (x,y). These actions are legal since if (x,y′) is an edge in G′

so is (x,y). We then repeat the above step for every vertexin Y ∪Y ′ and the resulting matching M may be of size at
least | X | /2 and this bound is achieved if the initial matching M contains as many pairs of image vertices y and y′as
possible.

Exercise 9.32. Two Latin squares are distinct if they differ at any position. Show that the number of distinct n× n
Latin squares is at least n!(n−1)! . . .2!. (Hint: Prove that a regular degree k bipartite graph has at least k! different
perfect matchings).

Proof. We first show how we can fill a Latin Square of order n× n by using a bipartite graph representation of the
problem. We get a bipartite graph G = (X ∪Y,E) where | (| X) =| (| Y ) = n and let each of the xi ∈ X corresponds to
column i and y j corresponds to number j and we would like to fill legally this Latin Sqaure with numbers 1 thru n.
Initially we connect every vertexxi of X to every vertexy j of Y and get a complete bipartite graph, which is regular of
degree n. We find a perfect matching in this graph (we know such a matching exists). Let it be M1. If (xi,y j) is an
edge in this matching, then we fill the i− th column of the first row of the Latin Square with number j. We repeat this
for every other matched edge and we therefore at the end of this step have filled the first row of the Latin Square. We
delete the matching from the regular degree n graph and thus get a regular degree n− 1 degree graph and repeat this
procedure for the remaining rows.
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If a regular k-degree graph has at least k! perfect matchings (we prove that this holds below) then we can choose a
matching and fill the first row of a Latin Square in at least n! possible ways, the second row in (n−1)! ways, and so
on, so that we finally get the desired lower bound.

We prove now that a regular degree k simple bipartite graph G(X ∪Y,E) has at least k! perfect matchings. We will
actually prove a weaker result. The proof resembles the proof of Hall’s theorem. We prove the lower bound using
simultaneous induction on k and | X | on the statement ’if every vertex in X of G has degree at least k and G has a
perfect matching, then G has at least k! perfect matchings’.

Suppose that for every set A such that /0 6= A 6= X we have | R(A) |>| A |. Pick any vertex in X , say without loss
of generality vertex x. Since x has degree k, we have k choices among the edges incident to x, to add to a perfect
matching. Let (x,y) be one of the edges . Then we delete from G the x,y vertices and all edges incident to them.
The resulting graph is such that for every set B of X −{x} we have | R(B) |≥| B | as in Hall’s theorem, i.e. we get
a complete matching for this graph and a perfect matching for the original graph which includes edge {x,y}. Every
vertex in X−{x} of the resulting graph has degree at least k−1 and from the inductive hypothesis has at least (k−1)!
complete matchings. Each of these matchings combined with one of the k choices of the edge {x,y} give a complete
matching for G i.e. we get that at least k(k−1)! = k! perfect matchings exist.

Now if there exists a set A0 such that | A0 |=| R(A0) |, following the arguments in the proof of Hall’s theorem
we claim that there exists a complete matching between A0 and R(A0) and between X −A0 and Y −R(A0) and these
two partial matching give a complete matching for G. From the inductive hypothesis, each vertex in A0 has degree k
and assuming the bipartite graph is simple (no multiple edges) we get at least k! complete matchings between A0 and
R(A0) and therefore for G.

Exercise 9.33. Show that for every graph G we have that γ(G) ≥ n2

n2−2m where, n, m are the number of vertices and
edges of G. You may use, if you wish, Cauchy’s inequality

(a2
1 + . . .+a2

k)(b
2
1 + . . .+b2

k)≥ (a1b1 + . . .+akbk)
2.

Proof. Let V1, . . .Vγ(G) be a partition of G’s vertices according to some γ(G) coloring of the graph. G can contain no
edges from Vi×Vi for any of these subsets. Consider the n× n adjacency matrix for G. There are n2 entries, all but
2m of which are 0 (consider the diagonal entries to be 0). These 0 entries include all those corresponding to edges
between vertices from the same Vi. Thus,

|V1 |2 + . . .+ |Vγ(G) |2≤ n2−2m

Cauchy’s inequality tells us (chosing all the bi’s to be 1)

(|V1 |2 + . . .+ |Vγ(G) |2)γ(G)≥ (|V1 |+ . . .+ |Vγ(G) |)2 = n2

Combining these two relations, we get

n2−2m≥ n2

γ(G)

from which the desired result follows.

Exercise 9.34. Show that the following inequalities hold for a graph G and its complement Ḡ:

γ(G)+ γ(Ḡ)≤ n+1

n≤ γ(G)γ(Ḡ) ,

where n is the number of vertices of G.

Proof. We show that γ(G) + γ(Ḡ) ≤ n+ 1 by induction on n. A one vertexgraph and its complement both have
chromatic number one, so base case is trivial. Now assume the relation holds for all graphs of size n−1 and consider
an n vertexgraph G. Let x be some arbitrary vertex of G, and let G′ be the graph obtained by deleting x and its incident
edges from G. By induction we know that γ(G′)+ γ(Ḡ′)≤ n. Clearly γ(G)≤ γ(G′)+1 and γ((̄G))≤ γ(Ḡ′)+1 as we
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can always color x differently from all other vertices in G′ or Ḡ′ to obtain a legal coloring. If one of those inequalities
is strict, then we have γ(G)+ γ(Ḡ) ≤ γ(G′)+ γ(Ḡ′)+ 1 ≤ n+ 1, and the relation holds. Thus the only remaining
case is when both γ(G) = γ(G′)+ 1 and γ(Ḡ) = γ(Ḡ′)+ 1. The former implies that the degree d(x) ≥ γ(G′), since
otherwise x cannot be adjacent to all colors in G′, and may be colored with one already present. Similarly the latter
implies d(x) ≤ (n− 1)− γ(Ḡ′) as otherwise x would have fewer than γ(Ḡ′) neighbors in Ḡ′. These two inequalities
imply

γ(G′)≤ (n−1)− γ(Ḡ′)

Combined with the previous inequalities this yields

γ(G)+ γ(Ḡ)≤ (n−1)+2 = n+1

which proves the theorem.

To show n≤ γ(G)γ(Ḡ), consider any coloring of G with γ(G) colors. Clearly some color appears on at least n
γ(G)

vertices. None of these vertices are adjacent in G, so Ḡ contains the complete subgraph on these vertices. This implies

γ(Ḡ)≥ n
γ(G)

from which the claim immediately follows.

Exercise 9.35. If G = (X ∪Y,E) is a bipartite graph of degree ∆ then for every p≥ ∆ there exist p disjoint matchings
M1,M2, . . . ,Mp such that E = M1∪M2∪ . . .∪Mp and for 1≤ i≤ p we have that:

b | E |
p
c ≤|Mi |≤ d

| E |
p
e ,

where bxc ( dxe respectively) is the largest (smallest) integer less (greater) than or equal to x.

Proof. We showed in class that for a bipartite graph χ(G)≤ ∆. Thus we can color the edges of G with p colors, and
each color class will form a matching (some possibly empty). Thus there do exist p disjoint matchings whose union
is E. To show their sizes can be balanced, it suffices to prove the claim that if M,N ⊆ E are two disjoint matchings
with | M |>| N | then there exist disjoint matchings M′ and N′ with M′ ∪N′ = M∪N, but with | M′ |=| M | −1 and
| N′ |=| N | +1. So if M has two or more edges than N, we can decrease the difference, and hence we can take any
M1, . . . ,Mp and cause no pair differ by more than one.

Now let’s prove the claim. Each component of G′ = (X ∪Y,M∪N) is either an even cycle alternating in M and
N, a path alternating in M and N, or an isolated vertex. If |M |>| N |, there must be an alternating path beginning and
ending with edges from M. Swap all edges from M to N and vice versa along that path.

Exercise 9.36. Suppose we want to construct a solid polyhedron using n pentagons (not necessarily regular), so that
exactly three pentagons meet at a point. For what values of n is this feasible?

Proof. This is an application of Euler’s theorem on a closed surface ( f = e−v+2). We can think of such a polyhedron
as a planar graph where the vertices are the points where three pentagons meet, the edges are the lines between adjacent
pentagons, and the faces are the pentagons themselves. Each vertex has exactly three edge endings, so 3v = 2e. Each
edge borders exactly two faces, so 2e = 5 f . Substituting into Euler’s formula we get

f =
5
2

f − 2
3
(

5
2

f )+2

Solving this gives f = 12, so there must be exactly 12 polygons forming the polyhedron (as in for example a regular
dodecahedron).

Exercise 9.37. A forest is a graph composed of the union of disjoint trees. Show that an n vertexforest of p trees has
n− p edges.
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9.17. EXERCISES 239

Proof. Let the vertexdisjoint trees be T1, . . . ,Tp, with sizes (number of vertices of each tree) ni i = 1, . . . p each,
such that ∑i ni = n (because of the vertexdisjointness). Then, the number of edges in the forest of trees is equal to
∑i(ni−1) = n− p.

Exercise 9.38. Given a graph G, the weight of a path is the sum of the weights of edges belonging to that path. Define
the MAXIMUM PATH problem as follows: Given a graph G, find a simple path (i.e. a path with no cycles) that has
maximum weight.

(i) Give an efficient algorithm for the MAXIMUM PATH problem on acyclic graphs.

(ii) It is believed that no efficient algorithm exists for testing whether an arbitrary graph has a Hamiltonian path.
Based on this fact show that you don’t expect there to be an efficient algorithm that solves the MAXIMUM PATH
problem in the general case.

Proof. (i) Apply Floyd’s Algorithm to our graph (it doesn’t matter if we have negative weights since no problem-
causing negative weight cycles exist). Since the graph is acyclic a path between two vertices is maximal and minimal
simultaneously, so the shortest path algorithm is a maximum path algorithm as well for acyclic graphs.

(ii) Take an arbitrary graph, put weight 1 on each edge of it, and if a MAXIMUM PATH algorithm for general
graphs exists apply this algorithm to this graph. If the graph has a hamiltonian path between two of its vertices then
the MAX PATH algorithm will return a path with weight n−1 (if MAX PATH gives a path of weight < n−1 then no
Hamiltonian path exists). Therefore, an efficient algorithm for the MAX PATH problem for general graphs, will give
immediately an efficient algorithm for the Hamiltonian problem (but we believe no such efficient algorithm exists).

Exercise 9.39. Show, by a slightly more careful analysis than the one given in class, that

r(k,k)≥ k
e
√

2
2

k
2 ,

where e = 2.71 . . ..

Proof. The number of n vertexlabeled graphs with a k-clique (which by symmetry is the same as the number of n
vertexgraphs with a k-independent set) is at most (

n
k

)
2(

n
2)−(

k
2).

This comes from the observation that for each possible k-clique, there are
(n

2

)
−
(k

2

)
ways to complete the graph. To

prove a lower bound for r(k,k) it suffices to show that for smaller values of n,(
n
k

)
2(

n
2)−(

k
2) <

1
2

2(
n
2).

If fewer than half the graphs have a k-clique, and fewer than half have a k-independent set, then some must have
neither.

That relation is equivalent to (
n
k

)
2−(

k
2) <

1
2
,

which is certainly true if
nk

k!
2−(

k
2) <

1
2
.

Substituting for n and expanding k choose 2, the left hand side becomes

kk2
k2
2

ek2
k
2 k!
· 2

k
2

2
k2
2

=
kk

ekk!
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By Stirling’s formula we know

k!≥ (
k
e
)k
√

2πke
1

12k+1 ≥ (
k
e
)k
√

2πk

And so the left hand side is at most 1/
√

2πk, which is indeed less than 1
2 for k ≥ 1.

Exercise 9.40. Show that there exists a tournament on n vertices that has no transitive subtournament of size d2logn+
1e.

Proof. Let T be the class of all tournaments on n vertices, i.e. | T |= 2(
n
2) and let Ts be the class of subsets of T which

contain a transitive subtournament of size s. Then

Ts = ∪A⊆{1,...,n}|A|=s∪σ an ordering over A τA,σ

It is clear that | τA,σ |= 2(
n
2)−(

s
2). Then, | Ts |≤

(n
s

)
s!2(

n
2)−(

s
2) where the first term gives the number of ways of choosing s

out of n points, the second the number of orderings (permutations) on s points (and each of them gives a transitive
tournament on s vertices) and the last term is just τA,σ for fixed A, σ . Then,

| Ts |
| T |

≤
(

n
s

)
s!2−(

s
2) <

ns

s!
s!2−(

s
2) = ns2−s(s−1)/2

The last term is smaller than 1 if
ns2−s(s−1)/2 ≤ 1 ⇒ s≥ 2logn+1

or equivalently s≥ d2logn+1e. Therefore, even for the smallest possible value of s we can find a tournament with no
transitive subtournament of that size.

Exercise 9.41. We give here the definition of the generalized Ramsey number rl(k1, . . . ,kl) as the smallest value of n
so that if we arbitrarily color the edges of the complete graph Kn with l colors (say {1, . . . , l}) then for some index i
there exists a complete subgraph of size ki whose edges are all colored with color i.

Show that for rl(3) = rl(3, . . . ,3) (i.e. ki = 3 ∀i ∈ {1, . . . , l}) we have that:

rl(3)≤ e · l!+1 , e = 2.7182 . . .

Proof. We use induction on l. The result trivially holds for l = 1 and for l = 2 we use the result given in class for
r(k,k) in the base case k = 3. Now suppose that it holds for all values of l up to l−1. We are then going to prove that
rl(3)≤ el!+1. Take the complete graph on n+1 = bel!c+1 vertices. Pick a point x. This points has n edges incident
to it. Since

bel!c= b
∞

∑
i=0

l!
i!
c=

l

∑
i=0

l!
i!
= 1+ l

l−1

∑
i=0

(l−1)!
i!

= 1+ lbe(l−1)!c,

We got the third term from the second one because the l +1 first terms of the sum are integers and the missing terms,
if one uses the remainder Rl , (which gives an upper bound on the sum of all terms from the i = l+1-st one to infinity)
of the Taylor expansion of el! sum up to at most eθ

l+1 < 1 , 0 ≤ θ ≤ 1. We thus get that among the n edges incident
to x there must exist a set of be(l−1)!c+1 edges colored the same color, say, without loss of generality color l. Let
the other end points of all these edges incident to x form set X . If there exists an edge, among the edges between the
points in X , colored l, a triangle colored l is found. Otherwise, all the edges in the subgraph on the points of X are
colored with 1, . . . , l−1 colors and the size of X is be(l−1)!c+1 and therefore from our inductive hypothesis we are
done. This gives that indeed rl(3)≤ bel!c+1.

Exercise 9.42. Show that there exists a graph that requires at least four colors for a vertex coloring but it does not
contain K4 as a subgraph.

Proof. In the graph shown below, the loop of length 5 requires 3 colors for any vertex coloring of it since it’s of
odd length. Therefore the central vertex requires a fourth color since it is connected to every vertex of the loop. By
inspection the graph does not contain K4 as a subgraph.
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Exercise 9.43. Consider arrangements in a line of a collection of r characters where one designated character appears
k times, and each of the remaining r−1 characters appears once. Assuming k ≤ r, how many such arrangements are
there where no two occurrences of the designated character are consecutive?

Proof. First consider arranging the r− 1 characters that appear just once. This can be done in (r− 1)! ways. Now
there are r slots (including the beginning and the end) where we can insert instances of the repeated character. We may
place one instance in any such slot, but no more than one. Thus the total number of arrangements

(r−1)!
(

r
k

)

Exercise 9.44. Show that if G is an undirected connected graph with n vertices and m edges, then G has at least
m−n+1 cycles. (Two cycles are considered distinct if they differ in at least one edge).

Proof. Fix a spanning tree of graph G (such a spanning tree exists since G is connected). Let T be this tree. It has
n− 1 edges, and there are m− n+ 1 edges of G not in T . If we add any edge e among these m− n+ 1 edges to T it
introduces a cycle (and for different e we get different cycles). Therefore since we have m− n+ 1 different e edges
and each one introduces a different cycle, G has at least m−n+1 different cycles.

Exercise 9.45. Suppose an n×n table has the first m rows, as well as the first entry in row m+1, filled with integers
from 1 to n, where no number appears twice in any one row or column. Show that the table can be completed to form
a Latin square.

Proof. Consider just the first m rows of the table. As we saw in class this can be completed to form a Latin square.
Such a Latin square must have some row from m+1 to n that has the same entry in column 1 as row m+1 of the table
(since each number from 1 to n must appear once in column 1). If we switch that row with row m+ 1 in the Latin
square, we get one that is a completion of the table. (Another way of solving this is observing that every edge of a
regular bipartite graph is included in some perfect matching).

Exercise 9.46. Given a procedure to find a minimum weight spanning tree in a graph, show how one can instead find
a spanning tree that has minimum weight among those spanning trees containing a fixed given forest as a subgraph.

Proof. Let G = (V,E), and suppose V1, . . . ,Vf are the connected components of the forest F ⊆ E (possibly including
isolated vertices). Contract G to form a new graph G′ whose vertices are the sets Vi, and whose edges are {(Vi,Vj) |Vi×
Vj ∩E 6= /0} (i.e. some pair of vertices in Vi and Vj are adjacent in G). Let the weight of such edges be the minimum
weight of any edges between Vi and Vj. Now just run the minimum spanning tree algorithm on G′ and combine its
ouput with the forest to form a spanning tree for G in the obvious manner. That is if the MST includes edge (Vi,Vj),
the spanning tree for G will include the cheapest edge between a vertexin Vi and a vertexin Vj.

Clearly what we produce contains F as a subgraph. And it will be connected (as each component of F is conected
by edges from G′) and have no cycles (as there can only be one path between components of F), and hence be a
spanning tree. Furthermore any spanning tree for G containing F can be constructed in this manner from a spanning
tree for G′, and the cost is just a constant amount more (the weight of F). Thus this spanning tree is minimum.

Exercise 9.47. Give an example of a regular degree three graph that has no perfect matching.

Proof. The graph shown below is a regular degree-3 graph on 16 vertices and does not have a perfect matching. The
reason for the latter is quite simple. The graph consists of a central vertex and three symmetric components of 5
vertices each. For a perfect matching to exist, the fifth vertex of one of the 3 components must be matched to the
central vertex (while the other four vertices can only be matched to vertices within the component). Then, the fifth
vertices of the other two components can’t be matched to each other or to any other vertex of the graph i.e no perfect
matching exists in G.

Exercise 9.48. Show that there is an ordering of the decimal numbers of length n (00 . . .0−99 . . .9) where each pair
of cyclicly adjacent numbers differs in only one digit.
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Proof. This is a slight generalization to (i), which again we show by induction on n. If the hypothesis is true for
n = k let u1,u2, . . . ,u10k be a Gray code. Construct the code that begins 0u1,0u2, . . . ,0u10k , 1u10k ,1u

210k−1
, . . . ,1u1,

continues 2u1,2u2, . . . ,2u10k , 3u10k ,3u
210k−1

, . . . ,3u1, then has 4u1,4u2, . . . ,4u10k , 5u10k ,5u
210k−1

, . . . ,5u1, and so on
up to 8u1,8u2, . . . ,8u10k , 9u10k ,9u

210k−1
, . . . ,9u1, This is a Gray code for n = k+1 since each pair of adjacent strings

differ in only one bit.

Exercise 9.49. Show that all deBruijn graphs have Hamiltonian cycles. A deBruijn graph is defined as G = {V,E}
where V = {α1 . . .αn | αi ∈ {0,1}} and E = {(α1 . . .αn,α2 . . .αn+1) | αi ∈ {0,1}}.

Proof. Let Gn be the de Bruijn graph of 2n vertices where an Eulerian cycl e corresponds to a de Bruijn sequence
of all strings in {0,1}n+1. In the special case where n = 1 this graph clearly has a Hamiltonian cycle (0→ 1→ 0).
Otherwise, consider a consider the de Bruijn sequence that includes all strings in {0,1}n. Each substring of n bits from
that sequence is a vertexin Gn. Every two adjacent substrings α1 . . .αn and α2 . . .αn+1 are vertices that are adjacent in
n. Thus this de Bruijn sequence describes a sequence of edges in Gn that is a walk, touches every vertex(since every
substring is in the sequence), touches each vertexexactly once (no substring appears more than once), and is closed.
This is a Hamiltonian cycle.

Exercise 9.50. Show that every regular, degree 3, Hamiltonian graph has exactly 3 edge-disjoint perfect matchings.
A graph is Hamiltonian if it possesses a Hamiltonian cycle.

Proof. Let G = (V,E) be a 3-regular, Hamiltonian graph. Since every vertex has degree 3 and the sum of the degrees
of all the vertices is an even number, the number of vertices of the graph must be even. We know the graph has a
Hamiltonian cycle, let it be C. From this Hamiltonian cycle, we can get 2 edge disjoint matchings, one by taking every
other edge of the cycle (and we saturate every vertex because we have an even number of them), the other by taking
the edges that are left on the cycle. By deleting C from G, we decreased the degree of every vertex by 2, i.e. every
vertex has degree 1, and this is the third matching, edge disjoint from any previous one. Since the degree of every
vertex is 3, we can have at most 3 edge disjoint perfect matchings.

Exercise 9.51. A chess King is on the upper left square of an 8x8 chessboard (shown below), and a Queen is on the
lower right square. The King wishes to visit the Queen at the lower right square, and he can move to any adjacent
square but cannot move diagonally. Is it possible for him to visit each square of the chessboard exactly once, en route
to the Queen? Explain your answer in graph theoretic terms.

Proof. We can find a solution to this problem, if there exists a hamiltonian path from the upper left corner to the lower
right corner of the chessboard. We get a graph G = (V,E) modelling the problem by representing every square with a
vertex and the at most four possible moves from a square with edges to adjacent vertices. From the chessboard, we can
see, that a move from one square to its adjacent ones flips the color of the square (diagonal moves are not allowed).
If there were to exist a Hamiltonian path from King’s initial position to the Queen’s position it should have been of
length 63. But after 63 moves (an odd number) the color of King’s initial square is flipped, i.e. the King must be on
a black square (since the color of its initial square was white), but the Queen is sitting on a white square. Therefore
it’s not possible for the King to meet the Queen and visit all the squares of the chessboard exactly once en route to the
Queen (when diagonal moves are not allowed).

Exercise 9.52. Let G = (V,E) be an undirected connected graph such that for every two vertices u,v we have that
d(u)+d(v) ≥ n (| V |= n), where d(w) is the degree of vertex w. Show that for an even n, G has a perfect matching
(i.e. a complete matching that saturates all the vertices of the graph).

Proof. One must first prove that under the restriction that d(u)+ d(v) ≥ n, graph G must have a Hamiltonian cycle.
The proof is identical to the Dirac’s Theorem proof (note that there, we only needed the fact that the sum of the
degrees of two non-adjacent vertices is at least n, and this condition holds for this problem too). Therefore, G has a
Hamiltonian cycle and since it has an even number of vertices, we can find a perfect matching by deleting from the
cycle every other edge. What is left is a matching that saturates all the vertices of G, i.e. a perfect matching (and what
has been deleted is a second perfect matching!).
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Exercise 9.53. Let X = {1,2, . . . ,n}, and let Xr denote the set of all subsets of X of cardinality r. Use Hall’s Theorem
to prove that: a) For r < n/2, there exists a 1-1 function fr : Xr→ Xr+1, such that A⊂ fr(A) for every A ∈ Xr.
b) For r > n/2, there exists a 1-1 function gr : Xr→ Xr−1, such that gr(A)⊂ A for every A ∈ Xr.

Proof. a) We draw a bipartite graph G = (X ∪Y ,E ) with X = X∇ and Y = X∇+∞. For an A ∈X , and B ∈ Y
we draw an edge from A to B iff A ⊆ B. The degree of every such A vertex is n− r (we can increment A to a set of
size r+1 by filling the extra position in n− r ways) while the degree of every B vertex is r+1 (there are r+1 ways
we can delete an element from a set of size r+ 1 to get a set of size r). We now get a set S ⊆X . Every element in
S (S is a set of sets) is joined to n− r elements in R(S), and every element in R(S) is joined to at most r+1 elements
is S. Following the proof technique that proved that an r-regular bipartite graph has a perfect matching, we claim that
the edges going out of S, which are | S | (n− r) are among the ones going into R(S) and the latter ones are at most
| R(S) | (r+1), and we thus get | S | (n−r)≤| R(S) | (r+1). We also have that r < n/2 (and therefore (n−r)≤ (r+1),
which finally shows that | R(S) |≥| S |, i.e. Hall’s theorem holds and G has a complete matching that saturates X . If
we map every element A ∈X to its matched element B ∈ Y , we get the desired 1-1 function fr (every element in X
is mapped to exactly one element in Y and no two elements in X are mapped to the same Y element).

b) Part (b) is a direct consequence of part (a) when we replace each set by its complement with respect to X .

Exercise 9.54. Show that in a bipartite graph G = (X ∪Y,E) (| Y |≥| X |), a necessary and sufficient condition for
there to exist a matching that simultaneously saturates X and B⊂ Y is that:
a) X can be matched into Y , and
b) B can be matched into X.

Proof. One direction is straightforward. If there exists a matching that simultaneously saturates X and B this matching
matches X into Y and B is also matched into X . The other direction is interesting.
Let M1 be a matching that saturate all the vertices in X , and M2 a matching that saturates B ⊂ Y . If M1 saturates all
vertices in B, i.e. B ⊆ S(M1)∩Y , then we are done, M1 is the desired matching. Suppose now that there exists a
vertex v ∈ B that is not saturated by M1 (we will repeat the procedure to be described below, for all such vertices in B).
Our initial candidate for a matching that saturates both X and B is M1. We’ll modify this matching to get a new one
that saturates X , all previously saturated B vertices, plus v. We then take the longest alternating chain that alternates
between edges in M2−M1 and edges in M1−M2, starting from v with an edge from M2−M1 (such an edge exists due
to the existence of M2). Let w be the other endpoint of this chain C. Vertex w can’t be in X because otherwise we can
extend C by picking the edge in M1 that saturates w, a contradiction to the maximum length of C. It can’t also be in
B for a similar reason (we can extend it then thru an edge of M2). The only case left is for w to be a point in Y −B
(and C is of even length then). In this case we flip the edges of the chain C (so that M2 edges become M1 ones, and
vice versa). In that way, we include in the new M1 matching, vertex v (a previously unsaturated by M1, B vertex) and
drop w off the matching. All other vertices of C are still in S(M1) but thru different edges. We repeat this procedure
for all other vertices in B still unsaturated by the new M1 matching, and the M1 we’ll finally get will saturate both X
and B.

Exercise 9.55. Show whether the graph G = (V,E) defined as follows is planar.

V = {x0, . . . ,x6,y0, . . . ,y6}
E =

⋃
0≤i≤6

{(xi,xi+1 mod 7),(yi,yi+1 mod 7),(xi,y7−2i mod 7)}

Proof. This graph G is not planar, as demonstrated by an embedding of K3,3 into G.

Exercise 9.56. Suppose the entries in a p×q rectangle are filled in with integers from 1 to n (p,q≤ n) with no integer
appearing more than once in any row or column. Show that this can be extended to an n×n Latin square if and only
if each number appears in the p×q rectangle at least p+q−n times.
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Proof. we used the corollary to Hall’s theorem for regular bipartite graphs to show that any legal setting for the first
p rows can be extended to complete a Latin square. Thus we need to show that we can complete the remaining n−q
columns of the first p rows if and only if each number appears at least p+q−n times in the first q columns of those
rows.

Suppose some number k appears fewer than p+ q− n times in the first q columns of the first p rows. In the
remaining n− q columns there may be at most n− q more occurrences of k (otherwise two would be in the same
column). Whatever we do, therefore, k must appear fewer than (p+q−n)+(n−q) = p times in the first p rows, so
the rectangle cannot be extended to a Latin square.

Otherwise consider the bipartite graph G = (X
⋃

Y,E) where X = {1, . . . , p}, Y = {1, . . . ,n}, and
E = {(i, j) | the i’th row of the rectangle does not contain the number j}. Each vertexin X has exactly n−q neighbors.
Since every number appears in at least p+q−n rows, every vertexin Y has at most p− (p+q−n) = n−q neighbors.
As shown in class we can edge color a bipartite graph of this degree with n−q colors (call the colors {1, . . . ,n−q}).
If edge (i, j) is colored k, we complete the first p rows by placing the number j in the entry at row i and column q+k.
Note that each vertexin X must have exactly one incident edge from each color class, so this will indeed assign an
entry to each remaining square in the first p rows. A number cannot be placed twice in the same column as this would
imply it had two incident edges of the same color, nor can a number be placed twice in the same row with a valid
coloring.

Exercise 9.57. Let Kn denote the n vertexcomplete graph. Show that

χ(K2k) = 2k−1

and
χ(K2k+1) = 2k+1

Proof. (i) We first prove that χ(K2k) = 2k− 1. We use color 1 to color the edges shown in Figure 1 below, where
one of the 2k points is located in the center of a circle and the other 2k− 1 are on it. By rotating the edges one step
clockwise around the center point, we get a new set of edges and we color them using color 2. We repeat the rotations
until we color all the edges with colors from 1, . . . ,2k− 1. Each of these rotations uses a different set of edges and
all the rotations exhaust all edges. From Vizing’s theorem this is the best possible coloring we can find. (ii) We start

with Figure 2 and rotate its edges around the center of the cycle (no point on the center now), to get all 2k+1 possible
colorings (note, that for each rotation, one vertex doesn’t have an edge incident to it colored with the color used for
the edges of this rotation). Now, we only have to prove that this number of colors is minimum, i.e. χ(K2k+1) = 2k+1.
Using the same argument with that presented in class for K5, if we try to color K2k+1 with only 2k colors, since the
total number of edges is k(2k+1), there must exist k+1 edges colored with the same color. This is a contradiction,
since it implies a matching of size k+1 in a graph with 2k+1 vertices.

Exercise 9.58. Choose n points on a circle so that no three chords meet at a point, and draw all possible chords. Use
Euler’s theorem to determine the number of regions into which the circle is divided by the chords.
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9.17. EXERCISES 245

Proof. This is an application of Euler’s theorem for planar graphs ( f = e−v+2). The number of regions of the circle
is the number of interior faces of a graph, whose vertices are the points on the circle and the points of intersection
inside the circle, and whose edges are the lines between vertices. For each set of four points outside the circle there
is an additional point inside the circle where two chords cross. Thus there are n points on the circle and n(n−1)(n−
2)(n−3)/24 points inside the circle; so v = n+n(n−1)(n−2)(n−3)/24. Each of the outside points has degree n+1
(for a chord going to each other point, and the sides of the circle), and each of the inside points has degree 4. Thus the
total degree is n(n+1)+n(n−1)(n−2)(n−3)/6, and e = n(n+1)/2+n(n−1)(n−2)(n−3)/12. Now,

f =
n(n+1)

2
+

n(n−1)(n−2)(n−3)
12

−n− n(n−1)(n−2)(n−3)
24

+2

=
n(n−1)

2
+

n(n−1)(n−2)(n−3)
24

+2

The answer is one less than this (since we do not include the outside face), which is

n(n−1)
2

+
n(n−1)(n−2)(n−3)

24
+1

Exercise 9.59. The Doughnut Problem. Draw a K6 graph on the surface of a doughnut (also known to mathematicians
as a torus).

Proof. I lack the drawing skills to draw it using a computer!

Exercise 9.60. The construction of a cottage requires the performance of certain tasks. The following table lists the
various tasks with their priority relationships. The last column gives the tasks that are linked to the given task, in the
sense that they must be completed before the given task is performed. Two fictitious tasks α (start) and ω (finish), are
added. α is linked to A and K is linked to ω .

Work starts at time 0, and it is required to find a schedule which minimizes the total duration of the work, i.e. the
time of its termination. No task can start before all those tasks which link it to the initial start have been completed.
Let ti, Ti denote the earliest, latest time to start task i. Then the slack, mi, of task i is defined to be the difference
between the earliest and the latest time (i.e. mi = Ti− ti). The tasks whose slacks are zero are called critical tasks. If
one of these is delayed, to whatever extent, the minimal duration of the project will be increased to the same extent.

What is the minimum duration tω of the project? Find the earliest and the latest (if the duration of the project is to
be tω ) possible dates of each task of the given scheduling problem by modelling it as a graph. Which of the tasks are
critical? How can you solve the general problem, when a task graph, like the one described in the table, is given?

Proof. Let us model the problem as a graph. The vertices of the graph will be the tasks of the scheduling problem,
and if task i is joined to task j (so that i must be completed before we perform task j), we draw a directed edge from i
to j with weight the duration of task i. The graph for this problem is given in the Figure below. The graph is obviously
acyclic and in general it should be so, otherwise some task will wait itself to be completed before it is performed, an
absurdity. Let us call this graph G = (V,E,D), where D is the distance matrix that contains the distances assigned to
the edges of G(and its elements are d j distances, the time to complete task j). Note that D will be an one dimensional
matrix, since the distance assigned to edge (i, j) depends on i only (the duration of this task) and not on j.
We’ll first find ti for all i. Let j runs through all vertices j such that ( j, i) is an edge in G. Then, the earliest time ti to
start task i is therefore given by

ti = max j,( j,i)∈E(t j +d j)

which says that the earliest time to start ti is the maximum among all j, such that j precedes i in G, of t j (the earliest
time to start j) plus d j (the duration of task j). This is (if we replace the max by a min) the dynamic programming
formula, presented in class, that finds shortest paths from a given vertex (and in our case this vertex will be α) to
all the other vertices of an acyclic graph (be careful, the algorithm I presented in section for finding longest paths in
undirected acyclic graphs does not work, as it was presented there, it might be the case that we have more than one
directed paths from i to j, but no path from j to i exists to give a cycle). Since we have max instead of min, we find
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longest paths here, instead of shortest ones. And that’s the answer to our problem. Therefore, to find ti for all i we use
this formula and get:

tα = 0, tA = 0, tB = 7, tD = 7, tC = 10, tG = 15, tE = 15, tF = 15, tH = 16, tJ = 19, tK = 21, tω = 22.

That way we have also found tω = 22. Now we compute Ti for all i for the given duration tω .
If the duration of the project is given by tω , then the latest time Ti to start task i is given by

Ti = min j,(i, j)∈E(Tj−di)

with Tω = tω . This says that the latest time to start i is the minimum, among all j such that the execution of task j
assumes the completion of i, of the difference between Tj, the latest time to start j, and the time to complete i. We can
thus work backwards, starting from ω , and find Ti for all i. We also note that Ti = tω −L(i,ω), where L(i,ω) gives the
length of the longest path from i to ω .

Tα = 0,TA = 0,TB = 11,TD = 7,TC = 14,TG = 20,TE = 19,TF = 15,TH = 16,TJ = 19,TK = 21,Tω = 22.

If we take the difference Ti− ti for all i we can find the critical tasks (the ones with slack 0). Hence, the critical tasks
are A,D,F,H,J,K.

Exercise 9.61. Construct, for every k ≥ 1, a graph with a unique perfect matching so that every vertex of this graph
is of degree at least k.

Proof. We use an inductive construction to build a graph Gk with a unique perfect matching, and where every vertexhas
degree at least k. To do this we use two copies of Gk−1 as subgraphs. (Note that for k = 1 we can form G1 simply by
joining two points with a single edge). For a larger k, build Gk as indicated in the drawing, where the new vertices x
and y are connected to all the vertices in separate copies of Gk−1. Since Gk−1 has a perfect matching it must have an
even number of vertices. Thus the only way we can have a perfect matching in Gk is to match x with y. The existence
and uniqueness of the matching follow from the uniqueness and existence of perfect matchings for Gk−1.

Exercise 9.62. Find the minimum number of vertices a graph must have to ensure there are at least two different
3-cliques or at least two different 3-independent sets, or a 3-clique and a 3-independent set. Two cliques (resp.
independent sets) are different if they differ by at least one vertex.

Proof. Six vertices are necessary and sufficient to guarantee a graph has two 3-independent sets and/or 3-cliques. It is
easy to construct a five vertex graph without this property (e.g. consider a cycle). We now prove that six vertices are
sufficient. Let {x1, . . . ,x6} be those vertices. As shown in class there must be at least one 3-clique or 3-independent set.
Without loss of generality assume that {x1,x2,x3} form a 3-clique. If there are edges between each pair in {x4,x5,x6}
then those vertices form another 3-clique set, and we’re done. Otherwise suppose (w.l.o.g.) there is no edge between
x4 and x5. If any y∈ {x1,x2,x3} is adjacent to neither x4 nor x5, then {y,x4,x5} is a 3-independent set, and we are done.
Otherwise assume each such y is adjacent to x4 and/or x5. Then either x4 or x5 (say the former w.l.o.g.) is adjacent to
two vertices in {x1,x2,x3} (say x1 and x2). But then {x1,x2,x4} is a 3-clique.

Exercise 9.63. Show that if we color the points of the plane with 3 colors, there will be two points, 1 inch apart, with
the same color.

Proof. Consider four points as below that are the vertices of two equilateral triangles with one inch sides. If the claim
is not true then point y must have the same color as point x (since points u and v must have the other two colors). Now
consider rotating this figure around point x. All the points on the circle traced by the path of point y must be assigned
the same color. But this circle as radius

√
3, and hence contains points that are an inch apart.

Exercise 9.64. Show that any n vertexgraph G with more than n2

4 edges has γ(G)≥ 3.

Proof. Suppose that γ(G) < 3. Then, γ(G) is either 1 (a trivial case that holds for trivial graphs with no edges, but
we have at least one edge) or 2. For the latter case, G = (V,E) is bipartite. Let X ∪Y be a bipartition of the vertices
in G. The maximum number of edges of G is then | X || Y |=| X | (n− | X |). This quantity is maximized when
| X |=| Y |= n/2, and therefore G can have at most n2/4 edges, a contradiction (we have more than this number of
edges). This proves that γ(G)≥ 3.
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Exercise 9.65. There are rs couples at a dance. The men are divided into r groups, with s men in each group, according
to their ages. The women are divided into r groups, with s women in each group, according to their heights. Show that
r couples can be selected such that every age group and height group is represented.

Proof. Consider the standard bipartite graph for the marriage problem where the men are on one side, the women on
the other, and there are edges between the two members of a couple. Now condense the women into r super vertices,
where each super vertexconsists of the s women of the same height. Do likewise for the men according to age. For
each edge in the original graph there is an edge between the two super vertices containing the man and the woman
of the original couple. The condensed graph is a regular degree s bipartite graph (as each super vertexhas s edges
coming out of it). By the corollary to Hall’s theorem it has a perfect matching (actually the condensed version may
be a multigraph, but Hall’s theorem still applies). The edges of such a perfect matching represent r couples with the
desired property that each age and height is represented.

Exercise 9.66. Consider the problem of covering an 8× 8 chess board with dominos, where each domino occupies
two adjacent squares along the same row or column, and no two dominos overlap. It is possible to completely cover
the chess board with 32 dominos. If two diagonally opposite corner squares are removed, prove or disprove that the
remaining 62 squares can be covered with 31 dominos.

Proof. This problem is a variation of another similar problem. The two corners that are removed must be of the same
color. So, if we remove them (and, say they are white squares) there are left 30 squares of one color (white) and 32
squares of the other color (black). Every domino piece covers, because of the way it is placed on the chessboard,
one black and one white square. Since we have 32 black squares, there’s no way we can cover them with 31 domino
pieces.

Exercise 9.67. Prove that in a connected planar graph where every vertex has degree at least three, there exists a
region with fewer than six edges in its boundary.

Proof. Assume this is not true (i.e. for some such graph every boundary has at least six edges). We use Euler’s theorem
( f = e− v+2) to derive a contradiction. Since every vertexhas degree at least three, the total degree in the graph (2e)
must be at least 3v. Substituting e ≥ 3

2 v into Euler’s theorem gives us f ≥ 1
2 v+ 2. Since every face has at least six

edges, the total number of face borders (2e, since each edge borders two faces) must be at least 6 f . Substituting e≥ 3 f
into Euler’s theorem gives us f ≥ 3 f − v+2, and hence f ≤ 1

2 v−1. Thus we have a contradiction.

Exercise 9.68. Let G = (V,E) be any bipartite graph and suppose k ≥ 1. Show that G is the union of k edge disjoint
spanning subgraphs G1, . . . ,Gk (i.e. Gi = (V,Ei) with Ei ⊂ E, Ei∩E j = /0 for i 6= j, and

⋃
Ei = E) such that⌊

d(x)
k

⌋
≤ dGi(x) ≤

⌈
d(x)

k

⌉
(where d(x) is the degree of vertexx in G, dGi(x) is the degree of x in Gi, and bc and de represent the floor and ceiling
functions respectively).

Proof. We draw a new graph G′ from graph G. For every vertex x in the graph we split this vertex into d d(x)
k e vertices,

so that b d(x)
k c of them have degree k and the last one has degree d(x)−kb d(x)

k c. Then every edge incident to x, touches
now one of the new vertices. Every vertex of this new graph is of degree at most k, and from a very well known
Corollary, the edges of this new graph is the union of k matchings (or χ(G′) = k). Now we identify the vertices
of G′ that correspond to the same vertex of G, and then, the k matchings, let them be M1, . . . ,Mk, correspond to k
subgraphs of G, call them G1, . . . ,Gk. Since Mi is a matching, there is at most one edge of it incident to any of the
d d(x)

k e vertices of G′ that correspond to x in G. Therefore dGi(x)≤ d
d(x)

k e. On the other hand, there are b d(x)
k c vertices

of G′ corresponding to x of G of degree k. There must be an Mi edge saturating each one of these b d(x)
k c vertices, and

hence, dGi(x)≥ b
d(x)

k c. This proves the theorem, and Gi are the desired subgraphs.

Exercise 9.69. In how many ways may you line up twenty (distinct) boys and ten (distinct) girls so that no two girls
stand next to each other?
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Proof. There are 20! ways to permute the boys. However this is done, there are 21 slots between boys where one (but
more) girl may be positioned (the front and back count as valid slots. We complete the process by choosing 10 of these
slots, and ordering the girls within them. Thus the answer is(

21
10

)
10!20! =

21!20!
11!

Exercise 9.70. Using generating functions (and not induction) prove the following equality for all n≥ 0, where fn is
the n’th Fibonacci number:

f0 + f1 + f2 + . . .+ fn = fn+2−1

(Recall that fn is the coefficient of xn in the generating function F(x) = 1
1−x−x2 ).

Proof. Multiplying both sides by xn and summing for n = 0 to ∞, for the right hand side we get
∞

∑
n=0

fn+2xn−
∞

∑
n=0

xn =
F(x)− x−1

x2 − 1
1− x

=

1
1−x−x2 − x−1

x2 − 1
1− x

=
1− x+ x2 + x3−1+ x+ x2

x2(1− x− x2)
− 1

1− x

=
2+ x

1− x− x2 −
1

1− x

=
(2+ x)(1− x)− (1− x− x2)

(1− x− x2)(1− x)

=
F(x)
1− x

For the left hand side we get
∞

∑
n=0

( f0 + f1 + . . .+ fn)xn =
F(x)
1− x

Exercise 9.71. Solve the following divide and conquer recurrence relation exactly for the case where n is a power of
two

S(n) = S(n/2)+3n, S(1) = 1

Proof. Let n = 2k. Then from S(n) = S(n/2)+3n, S(1) = 1 we get:

S(n) = S(2k) = S(2k−1)+32k

= S(2k−2)+32k−1 +32k

= S(2k−3)+32k−2 +32k−1 +32k

=
...

= S(20)+3(21 +22 + . . .2k)

= 1+3(21 + . . .+2k)

= 1+3 ·2 · (2k−1) = 6 ·2k−5 = 6n−5
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Exercise 9.72. How many of the integers 1,2,. . . ,100, are divisible by at least one of 2, 3, or 7? (Show your work,
don’t use brute force).

Proof. Apply the inclusion/exclusion principle. If Sn is the number of integers between 1 and 100 divisible by n, the
answer is

S2 +S3 +S7−S6−S14−S21 +S42 = 50+33+14−16−7−4+2 = 72
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Chapter 10

Probability

10.1 Probability Spaces
Definition 10.1 (Experiment or Trial). An experiment (or trial) is any procedure that can be repeated and generate
a well-defined set of outcomes.

Definition 10.2 (Sample Space). The set of outcomes of an experiment is known as sample space.

Definition 10.3 (Element of Sample Space). An element of the set that is sample space is known as a sample point.
That is, an outcome of an experiment is an element of the sample space.

Definition 10.4 (Event). An event is a set of outcomes that is a subset of the sample space of an experiment.

Definition 10.5 (Mutually exclusive events). Two events A,B are mutually exclusive if and only if A∩B = /0. Three
events or more are mutually exclusive if every two of them is mutually exclusive.

Definition 10.6 (Finite Probability Space). Let S be a finite sample space S = {s1, . . . ,sn}. A probability model or
finite probability space is obtained by assigning to each point si ∈ S a real number pi (or p(i)), the probability of si,
that satisfies the following properties.

• Each pi is nonegative pi ≥ 0, and

• the sum of pi is one i.e. ∑1≤i≤n pi = p1 + p2 + . . .+ pn = 1.

Definition 10.7 (Equiprobable space). For a finite probability space S of n sample points, if each sample point has
the same probability as any other one, the sample space is called equiprobable space.

Definition 10.8 (Event probability). The probability of an event A denoted by P(A) is the sum of the probabilities of
the points of A.

Definition 10.9 (Event probability properties). The probability function P defined on the class of events of a finite
probability space has the following properties.

• For every event A, we have 0≤ P(A)≤ 1,

• P(S) = 1, and

• if events A,B are mutually exclusive P(A∪B) = P(A)+P(B).

Corollary 10.1. Let A be an event and the probability function P defined on the class of events of a finite probability
space. Then P(A{) = 1−P(A).

251
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252 CHAPTER 10. PROBABILITY

We can provide some more formal definition of a probability space.

Definition 10.10 (Probability Space). A probability space is a triplet (S,Σ,P), where

• S is a sample space that is, a set of outcomes,

• Σ ⊆ 2S is a σ -algebra on S, that is a collection of subsets containing S and closed under complement, closed
under union (of a countable number of sets), and closed under intersection (of a countable number of sets), and

• P is a countably additive measure on Σ with P(S) = 1.

The set S is known as the sample space and the elements of S are known as outcomes or elemetary events. For an event
A ∈ 2S, we define P(A) the probability of event A. The probability of an event A is the sum of the probabilities of the
elementary events of A.

If S is finite, it is a finite probability space. If S is finite and Σ = 2S the probability measure is determined by
its values on elementary events. Thus the probability space assigns through p : S→ [0,1] a probability p(s) to every
element of s of S such that p(s) ≥ 0, with ∑s∈S p(s) = 1. Then for an event A ∈ 2S, the probability of the event A is
the sum of the probabilities of the elements of S in A i.e. the sum of the probabilities of the elementary events that is
P(A) = ∑s ∈ Ap(s).

Lemma 10.1. For any collection of events A1, . . . ,An,

P(A1∪ . . .∪An)≤∑
i

P(Ai).

Proof. Consider
Bi = Ai− (A1∪ . . .∪Ai−1)

Then ∪iBi = ∪Ai and P(Bi)≤ P(Ai) and the events Bi are disjoint. By additivity of the probability measure we have

P(A1∪ . . .∪An) = P(B1∪ . . .∪Bn) = ∑
i

P(Bi)≤∑
i

P(Ai)

Lemma 10.2 (Independent Events). Two events A and B are independent if

P(A∩B) = P(A)P(B)

Theorem 10.1 (Properties of events). Consider two events A,B of probability space (S,Σ,P).

P( /0) = 0,

P(A−B) = P(A)−P(A∩B),

and for A⊆ B we have
P(A)≤ P(B).

Moreover P(A∪B) = P(A)+P(B)−P(A∩B).

Example 10.1. For a sample space S, and s ∈ S, we call {s} an elementary event. Moreover /0 and S are also events.
The impossible event or null event is /0. If A,B are events so are A∩B and A∪B or A{.

Example 10.2. An experiment is performed by throwing (tossing) a coin. The experiment is repeated twice. The com-
bination of the results of two experiments is the experiment in question. The sample space S is S = {HH,HT,T H,T T}
and indicates the outcomes of the first and second toss of the coin: H indicates heads, T indicates tail as an outcome.
AB indicates that A is the outcome of the first experiment, B is the outcome of the second experiment, where A,B is H
or T. Event X is X = {HH,T T} i.e. even number of H. Event Y is Y = {HH,HT,T H} i.e. at least one H.



DRAFT. C
op

yri
gh

t (
c)

20
21

-20
24

.

Alex
. Gerb

ess
iot

is.

All r
igh

ts
res

erv
ed

Not
to

be
po

ste
d on

lin
e

or
on

the
web

or
to

be

mad
e av

ail
ab

le
ou

tsi
de

of

co
py

rig
ht

ho
lde

r’s
web

-pa
ge

10.2. CONDITIONAL PROBABILITIES 253

Example 10.3. An experiment is performed by tossing a coin. The experiment is repeated until an H is encountered.
The sample space is infinite. Why? Because S = {T,T H,T T H,T T T H,T T T T H, . . .}.

Example 10.4. (The singular form of dice is die.) An experiment is performed by throwing a (pair of) dice and records
the number indicated at the top of the dice (opposite to the base that sits on a surface). Each die has six faces with six
possible numbers, one on each face of a die. Then sample space has 36 outcomes

S = {(a,b) : 1≤ a,b≤ 6}

Example 10.5. Deck of cards. A deck of card consists of 52 cards. There are 4 suits known as clubs(C), diamonds(D),
hearts(H), and spades(S). Each suit contains 13 cards numbered 2 through 10, three face cards, jack (J), queen (Q),
and king (K), and ace (A). The hearts and diamonds are red and spades and clubs are black.

Example 10.6. A coin is tossed twice. The number of heads is recorded. The sample space is S = {0,1,2}. The
following probability model is assigned p(0) = 1/4, p(1) = 1/2, p(2) = 1/4. Event A = {1,2} with p(A) = 3/4, and
event B = {2} with p(B) = 1/4,

Example 10.7. From a deck of cards we select one card c. We define two events A and B as follows.

A = {c is diamond }, B = {c is a face card }.

Compute P(A), P(B), P(A∩B).

Proof. P(A) = 13/52 = 1/4. P(B) = (3∗4)/52 = 3/13. P(A∩B) = 3/52.

Example 10.8. A (pair of) dice is tossed. The probability of any point of S is 1/36. The probability that a dice is 5 if
the sum is 6 is 2/5. Let B be the event the sum is 6.

B = {(1,5),(2,4),(3,3),(4,2),(5,1)}

and A be the event a disce is 5. Then
A = {(1,5),(5,1)}

We have P(A|B) = 2/5. This is because P(A∩ B) = 2/36. This is because P(B) = 5/36. And P(A|B) = P(A∩
B)/P(B) = (2/36)/(5/36) = 2/5.

Example 10.9 (Uniform distribution). P(A) = c(A)/c(S) for all A⊆ S.

10.2 Conditional Probabilities
Theorem 10.2 (Conditional Probability). Let A,B be two events of finite probability space (S,Σ,P) and P(B) > 0.
The probability that an event A occurs conditional on event B had already occurred is known as the conditional
probability of A given B and denoted P(A|B). It is given by

P(A|B) = P(A∩B)/P(B).

Moreover
P(A∩B) = P(A|B)P(B).

Theorem 10.3 (Generalization of Conditional Probability).

P(A1∩A2∩ . . .∩An) = P(A1) ·P(A2|A1) ·P(A3|A1∩A2) ·P(A4|A1∩A2∩A3) · . . . ·P(An|A1∩A2∩A3∩ . . .∩An−1)
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254 CHAPTER 10. PROBABILITY

Definition 10.11 (Properties of Independent Events). Let A,B be two events of finite probability space (S,Σ,P). A
is independent of B if

A is independent of B ⇔ P(A) = P(A|B).

From P(A|B) = P(A∩B)/P(B) since P(A|B) = P(A) we have P(A) = P(A∩B)/P(B) which implies that P(A∩B) =
P(A)P(B). Moreover P(B|A) = P(B).

Definition 10.12 (Independent Repeated Experiments). Let S,P be a finite probability space. A space of n indepen-
dent trials is space Sn consisting of ordered n-tuples of elements of S with the probability of an n-tuple defined to be
the product of the probabilities of its components.

P((s1, . . . ,sn)) = P(s1) . . .P(sn).

Definition 10.13 (Bernoulli Trials). An experiment has two outcome. A Bernoulli trial is the independent repetition
of this experiment. Independent means the outcome of an experiment is not indepdendent of previous outcomes. One
outcome is called a success and the other a failure. Let p be the probability of success and q = 1− p be the probability
of failure. Let B(n, p) denote a binomial experiment of a fixed number of Bernoulli trials. Then B(n, p) denotes a
binomial experiment of n repetition of independent trials with probability of success p.

Theorem 10.4. The probability of k successes in a binomial experiment B(n, p) is denoted by B(n, p;k) and given by

B(n, p;k) =
(

n
k

)
pk(1− p)n−k.

Corollary 10.2. The probability of one or more success is 1−B(n, p;0) = 1− (1− p)n = 1−qn, where q = 1− p is
the probability of failure.

Corollary 10.3. We toss a (fair) coin 8 times. Thus p = q = 1/2. The probability of no heads is 1/28 = 1/256. The
probability of at least one head is is 1− (1−1/2)8 = 1−1/256.

The sample space S of an experiment or trial has outcomes that might be number or might not be numbers. Think
about the experiment of tossing a coin. Sometimes instead of using symbolic values or names to an outcome such as
H or T we prefer to use numeric values such as 1 and 0 respectively.

10.3 Random Variable
Definition 10.14 (Random Variable). A (real) random variable X on a probability space (S,Σ,P) is a function

X : S→ R

that is P-measurable, and assigns numeric values to outcomes of a sample space S. That is for any r ∈ R, {s ∈ S :
X(s)≤ a} ∈ Σ.)

Theorem 10.5 (Range). The range R(S,X) of random variable X is the set of numeric values assigned to outcomes
of a sample space S by random variable X. For function X it is the range R(S,X).

Definition 10.15 (Convention). For a random variable X, when we write X ∈A for A⊆R, we mean {s ∈ S : X(s) ∈ A}.
Then,

P(X ∈ A) = P({s ∈ S : X(s) ∈ A}).

Example 10.10. For tossing a pair of dice sample space S has 36 ordered pairs (a,b) as elements where a shows the
number (top face) of one die and b shows the number of the other die during a toss.

S = {(a,b) : 1≤ a,b≤ 6}
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10.3. RANDOM VARIABLE 255

Random variable X is defined as follows

X : S→ R where X(s) = X((a,b)) = a+b, s ∈ S.

Thus for an element s = (a,b) of S, random variable X assigns a value to this element that is equal to the sum of the
numbers of the faces of the two dice. The range of X is R(S,X) = {1,2,3,4,5,6,7,8,9,10,11,12}. Random variable
Y is defined as follows

Y : S→ R where Y ((a,b)) = min(a,b).

Thus for an element s = (a,b) of S, random variable Y assigns a value to this element that is equal to the minimum of
the two values of the two faces of the two dice. The range of Y is R(S,Y ) = {1,2,3,4,5,6}.

Definition 10.16 (Sum and Product of a random variables). Let X ,Y be two random variables on the same prob-
ability space (S,Σ,P). Then X +Y , X ·Y and a ·X, a ∈ R are also random variable and functions on S defined as
follows.

∀s ∈ S : (X +Y )(s) = X(s)+Y (s), ∀s ∈ S : (X ·Y )(s) = X(s) ·Y (s), ∀s ∈ S,a ∈ R : (a ·X)(s) = aX(s).

Likewise for any polynomial function f (x,y, . . . ,z) we define f (X ,Y, . . . ,Z) to be a function on S defined analogously.

∀s ∈ S : f (X ,Y, . . . ,Z)(s) = f (X(s),Y (s), . . . ,Z(s)).

Definition 10.17 (Expectation or mean of r.v. X). Let X ,Y be two random variables on the same probability space
(S,Σ,P). Then the mean or expectation of r.v. X is defined as follows.

E[X ] = µ = ∑
s∈S

X(s)p(s)

Theorem 10.6. If X and Y are independent random variables for a finite probability space then

E[XY ] = E[X ] ·E[Y ].

Proof. Let R(S,X) and R(S,Y ) be the set of values attained by X and Y respectively. The by independence we have,
a ∈ R(S,X) and b ∈ R(S,Y ) P(X = a∧Y = b) = P(X = a)P(Y = b).

E[XY ] = ∑
a∈R(S,X),b∈R(S,Y )

abP(X = a∧X = b)

= ∑
a∈R(S,X),b∈R(S,Y )

abP(X = a)P(X = b)

=

(
∑

a∈R(S,X)

aP(X = a)

)
·

(
∑

b∈R(S,Y )
bP(X = b)

)
= E[X ]E[Y ].

Theorem 10.7. Let X ,Y be r.v. and a,b ∈ R. Then

E[aX +bY ] = aE[X ]+bE[Y ].

Proof.
E[aX +bY ] = ∑

s∈S
(aX +bY )(s)p(s) = a∑

s
X(s)p(s)+b∑

s
Y (s)p(s) = aE[X ]+bE[Y ].
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256 CHAPTER 10. PROBABILITY

Definition 10.18 (Indicator Random Variable). For an event A we define the indicator random variable IA as follows.

• IA(s) = 1 if s ∈ A, and

• IA(s) = 0 if s 6∈ A.

Theorem 10.8. For any event A, we have
E[IA] = P(A).

Proof.
E[IA] = ∑

s∈S
IA(s)p(s) = ∑

s∈A
IA(s)p(s)+ ∑

s6∈A
IA(s)p(s) = ∑

s∈A
IA(s)p(s)+ ∑

s 6∈A
0 · p(s) = P(A)

Theorem 10.9. Let X = IA1 + . . .+ IAn . Then

E[X ] = E[IA1 + . . .+ IAn ] = sumiP(Ai).

Example 10.11. The number of fixed points on a random permutation p on {1, . . . ,n} is one. We define a random
variable A with

A(p) = |{i : p(i) = i}|
Then we generate Ai(p) = 1 if p(i) = i and 0 otherwise. Then A(p) = ∑i Ai(p).

E[Ai] = P[p(i) = i] = 1/n.

and
E[A] = ∑

i
E[Ai] = n ·1/n = 1.

Example 10.12. A coin is tossed twice. The sample space S = {HH,T H,HT,T T}. We count the number of heads and
this becomes random variable X. Thus R(S,X) = {0,1,2}. The probabilities assigned by function f (xi) = P(X = xi)
are as follows.

P(X = 0) = 1/4,P(X = 1) = 1/2,P(X = 2) = 1/4.

Then the expecation of r.v. X becomes

µ = E[X ] = 0 ·P(x = 0)+1 ·P(X = 1)+2 ·P(X = 2) = 0 ·1/4+1 ·1/2+2 ·1/4 = 1

(We thus expect half of the tosses to be H.)

Definition 10.19 (Independent random variables). Two real random variable X ,Y are independent if we have for
every two measurable sets A,B ∈ R)

P(X ∈ A and Y ∈ B) = P(X ∈ A) ·P(Y ∈ B).

Example 10.13. From a prior example of dice tossing. Random variable Y is defined as follows

Y : S→ R where Y ((a,b)) = min(a,b).

Thus for an element s = (a,b) of S, random variable Y assigns a value to this element that is equal to the minimum of
the two values of the two faces of the two dice. The range of Y is R(S,Y ) = {1,2,3,4,5,6}. We can compute

P(Y = 1) = 11/36,P(Y = 2) = 9/36,P(Y = 3) = 7/36,P(Y = 4) = 5/36,P(Y = 5) = 3/36,P(Y = 6) = 1/36

For example, P(Y = 1) is derived from the fact that the tosses
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(3,1),(4,1),(5,1),(6,1) have 1 as the minimum value. Furthermore the
following outcomes (4,4),(4,5),(4,6),(5,4),(6,4) have all minimum value equal to 4, and so on. Thus

µ = E[Y ] = 1 ·11/36+2 ·9/36+3 ·7/36+4 ·5/36+5 ·3/36+6 ·1/36 =
11+18+21+20+15+6

36
= 2.527.
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10.4. MISCELLANEA 257

Definition 10.20 (Variance of r.v. X). Let X be a random variable on a probability space S i.e. (R(X ,S;P = f ). Let
f (xi) = P(X = xi) be the distribution of f . Then the variance of r.v. X is defined as follows.

Var(X) = E[(X−µ)2] = E[(X−E[X ])2].

Definition 10.21 (Standard deviation of r.v. X). Let X be a random variable on a probability space S i.e. (R(X ,S;P=
f ). Let f (xi) = P(X = xi) be the distribution of f . Then the standard deviation σX of r.v. X is defined as follows.

σX =
√

Var(X).

Sometimes we write σ2
X to indicate the variance of X for obvious reasons.

Theorem 10.10 (Markov’s inequality). For r.v. X with mean µ that is non negative and every positive r > 0 we have

P(X ≥ a)≤ E[X ]/a

Proof. If X is non negative then X(s)≥ 0

E[X ] = ∑
X(s)

X(s)p(s) = ∑
X(s)≥0

X(s)p(s)≥ ∑
X(s)≥r

X(s)p(s)≥ ∑
X(s)≥r

rp(s) = rP(X(s)≥ a) = rP(X ≥ a).

Theorem 10.11 (Tsebyshev’s inequality). For r.v. X with mean µ and standard deviation σ and every positive r > 0
the probability that X lies in the interval [µ− rσ ,µ + rσ ] is given by the expression below.

P(|X−µ| ≤ rσ)≥ 1− 1
r2 .

Equivalently,

P(|X−µ| ≥ rσ)≤ 1
r2 .

If we repeat an experiment n times we can consider the outcome of each experiment a random variable and thus
talk about A1,A2, . . . ,An, where Ai is the random variable associated with the i-the outcome. If the experiments are
independent of each other, then P(Ai = xk,A j = xl) = P(Ai = xk)P(A j = xl).

Definition 10.22 (Sample Mean, Average). Let X be a r.v. with mean µ and standard deviation σ . Let an experiment
is repeated n time with repetitions independent of each other. Let Xi be the random variable associated with the i-th
repetition. Then the sample mean or average of X1, . . . ,Xn is defined as follows.

X̄ =
X1 +X2 + . . .+Xn

n
.

The sample mean X̄ is also a random variable.

Definition 10.23 (Law of Large Numbers). For any r > 0 the probablity that the sample mean X̄ of n independent
experiments has a value in the interval [µ− r,µ + r] is to the limit for large n equal to 1.

limn→∞P(|X−µ| ≤ r) = 0

10.4 Miscellanea
Fact 10.1. From prior discussion n!≤ nn and n!≈ (n/e)n. Moreover

(n/e)n ≤ n!≤ en(n/e)n
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258 CHAPTER 10. PROBABILITY

Also for
(n

k

)
we have

(n
k

)
≤ nk or

(n/k)k ≤
(

n
k

)
≤ (ne/k)k

For all k ≤ n we have (
n
k

)
≤ 2n.

Furthermore for
(2n

n

)
we have

22n

2
√

n
≤
(

2n
n

)
≤ 22m
√

2m
.

Fact 10.2. For all real x ex ≥ 1+ x. Moreover (1− x)n for x > 0 and small (1− x)n ≤ exp−np. Also 1− x ≥ e−2x if
x≤ 1/2. For all x > 1 we have 1−1/x < 1/e.

Theorem 10.12 (Binomial Distribution B(n, p;k)). For the binomial distribution, we have that P(X = k)=B(n, p;k)=(n
k

)
pkqn−k, where q = 1− p. Then

µ = E[X ] = ∑
k

kP(X = k) = np.

Var(X) = E[(X−µ)2] = npq.

σ(X) = σX =
√

npq.

10.5 Proof by Probabilistic Arguments
Lemma 10.3 (Birthday Problem). We have m people that have birthdays that take n values, and let for siplicity they
are drawn from the set {1,2, . . . ,n}. The probability that all m have different birthdays is

p =
n(n−1) . . .(n−m+1

nm

How large should m be so that this p at least 1/2 = 1−1/2, 1−1/4, 1−1/8, etc 1−1/210.

Proof. Let m− 1 = k
√

n where k is some small integer. We can also use that for x ≤ 1/2 we have e−2x ≤ 1− x or
equivalently 1− x≥ e−2x. Then (1− i

n )≥ e−2i/n.

p = (1− 1
n
)(1− 2

n
)(1− 3

n
) . . .(1− m−1

n
)

≥ exp(−2 ·1/n) · exp(−2 ·2/n) · exp(−2 ·3/n) · . . .exp(−2 · (m−1)/n)

≥ exp(
−2m(m−1)

2n
)≥ exp−k2

Lemma 10.4 (Coupon Collector). Let {1,2, . . . ,n} be a set of n cards (coupons). In a collection of m coupons
how large should m be sort that there is at least one instance of each one of the n coupons? We will show that
m = (1+ ε)n lnn for some ε > 0.

Proof. For any fixed i ∈ {1,2, . . . ,n}, the probability i is not chosen in m choices is given by pi

pi =

(
1− 1

n

)m

= exp(−m
n
)

Then the probability p1∨ p2∨ p3∨ . . .∨ pn is at most ∑i pi = nexp(−m
n ). The latter probability for m = (1+ ε)n lnn.

nexp(−m
n
) = nexp(−(1+ ε) lnn) = 1/nε .
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10.6. EXERCISES 259

Anothe way to view this problem is by introducing an indicator variable Xi = 1 if coupon i is never drawn and Xi = 0
otherwise. The number of coupons NOT drawn is X = ∑i Xi. The expected number of coupons NOT drawn is

E[X ] = E[∑
i

Xi] = ∑
i

E[Xi]

But E[Xi] = 1 ·P(Xi = 1) = (1−1/n)m. Thus

E[X ] = E[∑
i

Xi] = ∑
i

E[Xi] = n(1−1/n)m

For m = (1+ ε)n lnn this becomes E[X ] = 1/nε . Therefore if E[X ] < 1 there is a way that all coupons have been
drawn.

10.6 Exercises
Lemma 10.5 (Coin Toss again). Toss a coin n = 2m times. What is the probability of exactly n/2 = m heads?

Proof. Let pk =
(n

k

)
pk(1− p)n−k Assuming the coin is fair p = q = 1− p = 1/2 and thus n = 2m and n/2 = m, we

have

p =

(
n
k

)
pk(1− p)n−k

(
2m
m

)
pm(1− p)2m−m =

(
2m
m

)
(1/2)m(1/2)2m−m =

(
2m
m

)
(1/2)2m.=

(
n

n/2

)
(1/2)n.

Furthermore we use Stirling’s formula for n > 10 i.e. n!≈
√

2πn(n/e)n

p =
n!

(n/2)!(n/2)!
1
2n =

√
2πn(n/e)n√

2πn/2(n/2e)n/2
√

2πn/2(n/2e)n/2

1
2n =

√
2√

πn

Lemma 10.6 (Random Graph connectivity). A random graph with edge probability p is a graph that is formed by
flipping a coin with probability p and deciding to include an edge if it comes H and not include edge for a T outcome.
Let us assume that we use a fair coin p = q = 1− p = 1/2. Is the graph connected?

Proof. If the graph is not connected there exist at least two subgraphs (”components”) with no edges from one to the
other. If one subgraph G1 has i vertices and the other/others G2 has n− i vertices it means the i(n− i) vertices between
the two pieces are missing. The probability that this is the case for one possible partion of i and n− i is 2−i(n−i). This
is the probability the graph is NOT connected for a given split. For each value of i from 1 to n/2 there are

(n
i

)
ways to

pick the vertices of G1 and the remaining n− i vertices are of G2. The probability the graph G is not connected is the
probability of the union of those events which is at most the sum of those probabilities. Thus

p≤
i=n/2

∑
i=1

(
n
i

)
2−i(n−i) ≤

i=n/2

∑
i=1

ni2−i(n−i) ≤
i=n/2

∑
i=1

(n2−n+i)i ≤
i=n/2

∑
i=1

(n2−n/2)i ≤ n/2 ·n2−n/2 = n2/2n/2

For n/2n/2 < 1 i.e. n > 5, the sum is a geometric sequence. Being a bit sloppy at the end we realize that p→ 0 as
n→ ∞. Thus the graph almost always connected.

Lemma 10.7 (Random Graph connectivity). A random directed graph with edge probability p is a graph that is
formed by flipping a coin with probability p and deciding to include an edge in one direction if it comes H and include
the edge in the opposite direction for a T outcome. Let us assume that we use a biased coin with p = a/(n− 1) and
thus q = 1− p. What is the probability that for vertex i there is some edge directed into node i?
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260 CHAPTER 10. PROBABILITY

Proof. Let us call pi this probability. There are n−1 other vertices (other than i). If all of them are directed OUT of i
this occurs with probability (1−a/(n−1))(n−1) ≈ e−a. Thus pi is given by the following equation

pi = 1− e−a

What is now the probability Q that this is true for EVERY vertex?

Q = ∏
i

pi ≤ (1− e−a)n

Obviously Q→ 0 as n→ ∞. node?

Lemma 10.8 (Hamiltonian cycles in tournaments). A tournament is a directed graph which has one edge between
every pair of vertices in one or the other direction. Some tournament contains n!/2n Hamiltonian cycles.

Proof. For a given permutation of the vertices the probability it is a Hamiltonian cycles is 1/2n. There are n! permu-
tations of n vertices, so the expected number of Hamiltonian cycles is n!/2n.

Lemma 10.9 (Hamiltonian cycles in tournaments). What is the expected number of Hamiltonian cycles in the
random graph with edge probability p = a/(n−1)?

Proof. Let now i range over the n! permutations of the n vertices of the graph. Let Xi = 1 if permutation i leads to a
hamiltonian cycle, and Xi = 0 otherwise. Then

E[Xi] = (a/(n−1))n

and

E[X ] = E[∑
i

Xi] = n!(a/(n−1))n ≈ (n/e)n(a/(n−1))n ≈ (a/e)n1/(1−1/n)n ≈ (a/e)n · e≥ (a/e)n

Exercise 10.1. Show that there exists an n× n matrix of 0’s and 1’s where each row has seven 1’s, but where every
n
2 ×

n
2 submatrix (a matrix made up of the intesections of subsets of n

2 of the rows and n
2 of the columns, not necessarily

consecutive) contains at least one 1.

Proof. We count the probability that a n
2 ×

n
2 submatrix contains only 0 entries. We examine the problem for the

general case where we allow k 1’s in a row and therefore the probability we have a 1 in a row is equal to k
n . The

probability that a n
2 ×

n
2 submatrix contains only 0 entries is equal to (1− k

n )
n2
4 since a zero element appears in a row

with probability (1− k
n ) and an n

2 ×
n
2 submatrix has n2/4 elements.

The number of n
2 ×

n
2 submatrices is equal to

(
n
n
2

)2

since we can choose n
2 rows (out of a total of n) in

(
n
n
2

)
ways (the same holds for columns too).

Therefore, the probability that a n
2 ×

n
2 submatrix contains only 0 elements as entries is bounded above by(

n
n
2

)2

(1− k
n
)

n2
4

We know employ Stirling’s approximation formula. We get an upperbound by ignoring the square root terms.(
n
n
2

)2

(1− k
n
)

n2
4 ≈

(
( n

e )
n

( n
2e )

n/2( n
2e )

n/2

)2

(1− k
n
)

n
k

kn
4 ≤ 4ne−

kn
4 (10.1)

since we know that
(1− k

n
)

n
k ≤ e−1
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10.6. EXERCISES 261

From the equation above we get that

4ne−
kn
4 = (

4
ek/4 )

n

For k ≥ 6 (and therefore for k=7) the base 4
ek/4 is less than 1 and therefore equation (2) goes asymptotically to 0 when

n goes to infinity. This means that the probability that a submatrix contains only 0 elements is small and therefore the
probability that all submatrices contain at least one 1 is sufficiently large i.e. such a matrix exists.

Exercise 10.2. Show that for sufficiently large n, there exists an n× n matrix of 0’s and 1’s where each pair of rows
differs in at least 49n

100 positions.

Proof. The number of possible n× n matrices is 2n2
. We examine the complement of the problem i.e we would like

to have, for sufficiently large n, that the number of matrices with a pair of rows (at least) that differ in less than 49n
100

positions is too small (in our discussion below we would ignore constant ±1 differences in positions of the two rows).
We now estimate the number of matrices that have a pair of rows with at most 49n

100 differing positions (if we wanted to
be correct this should be 49n

100 −1 differing positions, but as we said we ignore such constants by overestimating).
An overestimate on the number of such matrices is the following

(
n
2

) 49n
100

∑
i=0

(
n
i

)
2i 2n−i 2n2−2n

The first term gives the choices of 2 rows out of n. The last term gives the number of ways of filling the other
n−2 rows of the matrix. We now explain the terms in the sum. The first term gives the number of ways of selecting
i differing positions, the second term gives the number of ways of filling these positions. Note, that if we fix these i
positions in the first row, we have the same positions in the second row fixed too (a 0 in one of these i positions in the
first row is a 1 in the corresponding position in the second row and similarly for a 1 in the first row in one of these
positions). The third term counts the number of ways of filling the n− i identical positions (since they must be the
same in the two chosen rows).

Now we divide this expression by 2n2
to find the probability that we have such a situation. Note that the sum is a

geometric series and therefore the dominating term is
(

n
49n
100

)
. Since 2i ·2n−i = 2n we can move 2n out of the sum,

which is at most twice the dominating term.(
n
2

)
2 ·
(

n
49n
100

)
2n 2n2−2n

2n2

which is (
n
2

)(
n

49n
100

)
2n−1

For the
(

n
49n
100

)
we use Stirling’s approximation formula which finally yields (after upperbounding the square

root that appears in the denominator) the following expression(
n
2

)
2αn

2n−1

where a =− 49
100 log 49

100−
51
100 log 51

100 . All logarithms are base 2. The term 2αn is the result of writing as powers of 2 the

terms (49/100)49/100n, (51/100)51/100n that appear in the approximation of the
(

n
49n
100

)
term (since bbn = 2b logb·n).
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262 CHAPTER 10. PROBABILITY

Finally, we get that the ratio of ”bad” matrices over the total number of 0-1 matrices is equal to

n2

2(1−α)n−1

The nominator and denominator in the above term become equal for n ≈ 116660 and therefore for n sufficiently
large ( say n≥ 150000, where this ratio is equal to 0.002) we have that the probability of having a ”bad” matrix goes
to 0, therefore the result we want to prove holds with high probability. The result, generally holds when instead of 49

100
we have 1

2 − ε for ε sufficiently small and positive.

Exercise 10.3. Alice and Bob have each received a sealed envelope and an assurance that each contains some money
and that one contains exactly twice as much as the other. They are given the option of making the following agreement:
they both open their envelopes and whoever has the more money gives it to the other person.

Alice convinces herself that taking up this option is advantageous to her by the following argument: Assume her
envelope contains x amount of money. Then Bob’s envelope contains either 2x or x/2, each possibility being with
probability one half. Hence Alice’s expected gain in taking up the option is

1
2
·2x− 1

2
· x = x/2 > 0

Since she has a positive expected gain it is worth her while to play the game. By an analogous argument Bob also
concludes that taking up the option gives him an expected gain. Surely this is a contradiction.

Identify the fallacy in the previous paragraph.

Proof. Alice and Bob are mistaken in assuming that the probabilities that the other envelope contains 2x and x/2 are
both one half. That depends on the distribution of how the envelopes were originally filled, which is unknown and by
no means necessarily uniform. So for different values of x, the probability that x is the larger of the two amounts is
likely to vary, in which case this expected value calculation is not correct.

Exercise 10.4. Show that for sufficiently large n, a random n×n bipartite graph where each possible edge is present
with probability .5 is very likely to have a perfect matching. (Hint: recall Hall’s theorem to decide whether a bipartite
graph has a perfect matching).

Hall’s theorem states that a bipartite graph has a perfect matching unless there is a subset of vertices A on the left
such that | A |>| R(A) |. We shall show that the probability that any A has | R(A) |≤| A | −1 is small. For a particular
A, | R(A) |<| A | only if there are at least n− | A | +1 vertices on the right to which there are no edges from A. The
chance that this happens for some A is less than the sum of the chances it happens for any particular A. Thus

Pr(there is no p.m.) ≤
n

∑
i=1

(
n
i

)(
n

n− i+1

)
(0.5)i(n−i+1)

=
n/2

∑
i=1

(
n
i

)(
n

n− i+1

)
(0.5)i(n−i+1)+

n

∑
i=n/2+1

(
n
i

)(
n

n− i+1

)
(0.5)i(n−i+1)

<
n/2

∑
i=1

nini(0.5)i(n−i+1)+
n

∑
i=n/2+1

nn−inn−i+1(0.5)i(n−i+1)

=
n/2

∑
i=1

(
n2

2n−i+1 )
i +

n

∑
i=n/2+1

(
n2

2i )
n−i+1

<
n/2

∑
i=1

(
n2

2n/2 )
i +

n

∑
i=n/2+1

(
n2

2n/2 )
n−i+1

→ 0

Thus for sufficiently large n, the chance that a random n×n bipartite graph does not have a perfect macthing is very
small.
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10.6. EXERCISES 263

Proof.

Exercise 10.5. Planet CS has an n-day year. Among a population of k people of this planet find the expected number
of triples of these people who have the same birthday. How large should k be for the expected value to be at least 1?

Proof. The number of triples of people is
(k

3

)
and the persons in a triple have all the same birthday with probability 1

n2 .
Therefore the expected number of triples of people having the same birthday is

(k
3
) 1

n2 . This value is 1 when k ≈ cn2/3

for a constant c.

Exercise 10.6. If we throw n balls into n bins, what is,
a) the expected number of empty bins?
b) the expected number of bins with exactly one ball?
c) the expected number of bins with exactly two balls?

Proof. For all the parts below, let X be a random variable that takes values 1 or 0 depending on whether a bin is
empty (for part (a)), contains exactly one ball (for part (b)), or exactly two balls (for part (c)). Then let Y be a random
variable that counts the number of empty bins for part (a), or the balls with exactly one/two ball(s) for parts (b) and (c)
respectively. It is clear that E(Y ) = nE(X).
a) Let’s consider one bin and call it for convenience only, bin 1. The probability that a ball falls in it is 1/n (and
therefore the probability that a ball does not fall in it is 1−1/n). The probability that none of the n balls falls into this
bin is thus (1−1/n)n. Then for the X variable we get that E(X) = (1−1/n)n. Summing for the n bins we get that Y
is such that: E(Y ) = n(1−1/n)n ≤ n/e.
b) Again, for bin 1, we find the probability that exactly one ball falls into that bin. Among n balls, the probability
that exactly one falls into bin 1 is equal to (n

1

)
(1/n)(1− 1/n)n−1 = (1− 1/n)n−1. As in part (a), we get E(X) = 1 · Pr(X =

1)+ 0 ·Pr(X = 0) = (1− 1/n)n−1, and therefore for Y (that gives the number of bins with exactly one ball) we find
that E(Y ) = n(1−1/n)n−1 = n2

n−1 (1−1/n)n ≤ n2

e(n−1) .
c) As in parts (a), (b), the probability that bin 1 has exactly two balls is now: (n

2

)
(1/n)2(1−1/n)n−2, and therefore the X (the

random variable that take values 1 or 0 depending on whether a given bin has exactly two ball or not) has expectation
E(X) =

(n
2

)
(1/n)2(1−1/n)n−2. Then for Y , we get that E(Y ) = nE(X) = n n(n−1)

2
1

n2
(1−1/n)n

(1−1/n)2
≤ n2

2e(n−1) .

Exercise 10.7. What is the expected value of the determinant and the permanent of a n× n matrix if each element
takes value 0 or 1 independently with probability a half? The permanent of a matrix A = [ai j] is defined to be equal to:

per(A) = ∑
all permutations σ on {1,2,...,n}

n

∏
i=1

aiσ(i)

Proof. We examine the case where n> 1, since the n= 1 is trivial (expectation 1/2). Every ai j element takes equiprob-
ably only two values. The following trivially holds. ∏

n
i=1 aiσ(i) = 1 if and only if aiσ(i) = 1 ∀i. The probability that

all aiσ(i) = 1,∀i is just 2−n, and the result holds for all permutations σ . Then:

E(
n

∏
i=1

aiσ(i)) = 1 ·Pr(
n

∏
i=1

aiσ(i) = 1)+0 ·Pr(
n

∏
i=1

aiσ(i) = 0) = 1 ·2−n = 2−n (10.2)

We first find the expected value of the permanent. We have that:

E(per(A)) = E( ∑
all permutations σ on {1,2,...,n}

n

∏
i=1

aiσ(i)) = ∑
all σ on {1,2,...,n}

E(
n

∏
i=1

aiσ(i))

since the expectation of the sum is equal to the sum of the expectations. The variable ∏
n
i=1 aiσ(i) is equal to 1 iff

∀iaiσ(i) = 1, that is with probability 1
2n . Otherwise, it is 0, and therfore, 1

2n is also the expectation of ∏
n
i=1 aiσ(i) for

each of the n! distinct permutations σ ). Thus we get,

E(per(A)) = ∑
σ on {1,2,...,n}

2−n = n! ·2−n
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264 CHAPTER 10. PROBABILITY

The computation of the determinant is very similar, useing the same observation as above. We need only to note that
half the permutations are odd (and thus of sign 1) and half even (and of sign 0). (The definition of an odd or an even
permutation can be found in the textbook.) Then (−1)sign(σ) is half of the times 1 and the other half -1.

E(det(A)) = ∑
σ on {1,2,...,n}

(−1)sign(σ)E(
n

∏
i=1

aiσ(i))) = ∑
σ on {1,2,...,n}

(−1)sign(σ)2−n = 2−n 0 = 0

We got the first equality by using the formula for the expectation of the sum of random variables, and the observation
that the value of the product does not depend on the permutation chosen but only on the values of the ai j. The second
equality is due to (1), and the third comes from the fact that n!/2 permutations are even and contribute each one of
them an 1, while n!/2 are odd and contribute −1. Another way to solve this problem is expansion by minors.
Extra Problem In a random bipartite graph (we have two sets of n vertices, the left and the right one, and a vertex of
the left set is connected to a vertex of the right set with probability p, independently of the other choices), we show that
the expected number of perfect matchings is pnn!. The number of perfect matchings is just the permanent of a matrix
with entries ai j that take values 1 or 0 with probabilitites p and 1− p respectively (and a value of 1 indicates an edge
from vertex i of the left set to vertex j of the right one). A permutation is just an 1-1 function on {1,2, . . . ,n}. Each
permutation gives a perfect matching, and a given permutation appears with probability pn (since an edge from vertex
i of the left set to σ(i) of the right set, for a permutation σ , appears with probability p). We have n! permutations,
therefore the expected number of perfect matchings is just n!pn. Take p = 1/2 and you have another solution for the
permanent part of the problem.

Exercise 10.8. Let G(n, p), 0 ≤ p ≤ 1, be an undirected graph on n labeled vertices, where each edge e (among the
n(n−1)/2 possible edges on n vertices) is included in the graph with edge probability p, independently of any other
edge. If p = (1+ε) logn

n where ε > 0 (the logarithms here are natural ones), show that with high probability (i.e. with
probability tending to 1 when n→ ∞), G(n, p) has no vertex of degree less than 11.

Proof. The probability that a given vertex has degree exactly k is equal to (n−1
k

)
pk(1− p)n−1−k . Summing for all values of k

from 0 to 10 we get the probability that a vertex has degree less than 11. If we multiply by n we get an upper bound on
the probability that some vertex has degree less than 11. It suffices to prove that the latter expression (call it P) is upper
bounded by a function ε(n) such that ε(n)→ 0, as n→∞. This can be proven as follows . We use p = (1+ε) logn/n,
ε > 0, and thus (1− p)n ≤ e−pn = 1

n1+ε , while 1/(1− p)< 2. We also use
(n−1

k

)
≤ nk.

P = n
10

∑
k=0

(
n−1

k

)
pk(1− p)n−1−k ≤ n(1− p)n

10

∑
k=0

nk (1+ ε)k logk n
nk(1− p)k+1 ≤ n

1
n1+ε

10

∑
k=0

(1+ ε)k logk n 2k+1 ≤ 11 211(1+ ε)10 log10 n
nε

→ 0 when n→ ∞.

where the last sum, was bounded above by 11 times its largest term. Note, that no matter how bad i overestimated, I
got the desired result.

Exercise 10.9. Let r = R(C3,k) be the smallest number of vertices so that no matter how the edges of Kr are colored
using k colors, Kr has a monochromatic (i.e. all edges are of the same color) C3 (a cycle of length 3) as a subgraph.
Show, by using constructive rather than probabilistic arguments, that:

2k ≤ R(C3,k)≤ 3 · k!

Proof. a) We first prove the lower bound through the use of induction (over k)! We are going to prove that R(C3,k)>
2k. For k = 1 the result is trivially true (R(C3,1) = 3). Suppose it is true for all values up to k. We are going to prove
the bound for k+ 1, namely that R(C3,k) ≥ 2k+1. Since we assume the result true for k, we pick two copies of the
complete graph on 2k vertices. We can color the first copy with k colors without a monochromatic triangle from the
inductive hypothesis, and similarly the second copy using the same k colors. Then we can color the edges that go from
the first copy of K2k to the second one with a new, k+1-st color. Since no triangle exists in any of the two copies for
the first k colors then we can’t have a triangle of the k+ 1-st color (this would require an edge of k+ 1-st color in a
single copy of K2k ) and thus, we get that the complete graph on K2k+1

is free of monochromatic triangles. We now
prove the upper bound.
b) (Exercise : Show that this bound can be as small as ek!+ 1.) We prove that R(C3,k) ≤ 3k! by induction. It is
trivially true that R(C3,1)≤ 3. Assume it is true for all colors less than or equal to k−1. We will prove the claim for k
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10.6. EXERCISES 265

colors (and let us use colors 1, . . . ,k). Let us pick a complete graph on 3k! vertices. Color its edges in some way. Pick
an arbitrary vertex and let’s call it v. Let Si be the vertices w that are connected to v thru an edge of color i. We have
k colors and 3k!− 1 vertices adjacent to v. Then there must exist a set S j for some color j of size at least 3(k− 1)!
(because if all sets had sizes at most 3(k−1)!−1, then we would have had at most 3k!− k vertices adjacent to v, but
for k > 1, we have 3k!−1 of them). If in S j we can find two vertices u, w connected by an edge of color j, then we are
done, a monochromatic triangle is (v,u,w). Otherwise no edge of color j connects any two vertices in set S j, i.e. the
edges of this set utilize the other k− 1 colors only and the size of set S j is at least 3(k− 1)!. We apply the inductive
hypothesis on this set and we can find a monochromatic triangle in S j. This completes the induction.

Theorem 10.13. For any k > 4, show R(k,k)≥ 2k/2.

Proof. Let n = R(k,k)< 2k/2.
We (uniformly at random) color the edges of Kn with red or blue color. Edges are colored independently of each

other P(red) = P(blue) = p = 1/2 = q = 1− p. Think of flipping a coin for every edge and if it comes H we interpret
it as red and we interpret T for blue. Or we interpret H for an edge to include and likewise a T for an edge not to
include

For every fixed set of k vertices, the probability that they form a clique (are all red) is p = 2−(
k
2).

Likewise for every fixed set of k vertices, the probability that they form an independent set (are all blue) is also
p = 2−(

k
2).

There are
(n

k

)
k-sets of vertices that can give rise to a clique or an independent set. If we use Lemma 10.1 the

probability of a union of events is at most their sum of probabilities. Thus

P( Graph has k-clique or k independent set ≤ 2
(

n
k

)
2−(

k
2).

Noting n < 2k/2 we have the following

2
(

n
k

)
(

1
2
)(

k
2) = (

ne
k
)k(

1
2
)k(k−1)/2

=

(
2k/2e

k

)k(
1
2

)k(k−1)/2

=

(
2k/2e

k2(k−1)/2

)k

=
( e

k2−1/2

)k

=

(√
2e
k

)k

For k > 4 the probability is less than one. Thus there are graphs that contain neither a k-clique or k-independent set.
This implies R(k,k)> 2k/2.

Exercise 10.10. Prove that there is a constant c > 0 such that for all k, r(3,k)≥ ck
lnk . Find a similar lower bound for

r(4,k). (Hint: Use a random graph argument with edge probability p appropriately chosen.)

Proof. The stated bound for R(3,k) is trivial since n≤ k. But to find the bound for R(4,k) we will use a probabilistic
argument that we present first for the R(3,k) case.
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266 CHAPTER 10. PROBABILITY

We shall prove a lower bound for R(3,k), by showing that for lesser n, the chance a random graph with edge
probability p has either a 3-clique or k-independent set is less than 1. Such a result (for any value of p) means there
must exist some graph that has neither. This probability is bounded above by(

n
3

)
p3 +

(
n
k

)
(1− p)(

k
2) ≤ n3

6
p3 +nk(1− p)

k2
4

If we pick p = n−1, then the first term becomes 1/6, and we need only prove that the second is less than 5/6. To do this
observe that each each of the following relations implies the one above it.

nk(1− 1
n
)

k2
4 ≤ 5

6

nk(1− 1
n
)

k2n
4n ≤ 5

6

nke−
k2
4n ≤ 5

6

k lnn+ ln
6
5
≤ k2

4n

lnn ≤ k
n

lnc+ lnk− ln lnk ≤ lnk
c

which is certainly true for c = 1
2 .

For R(4,k) we get the similar expression of

(
n
4

)
p(

4
2) +

(
n
k

)
(1− p)(

k
2) ≤ n4

24
p6 +nk(1− p)

k2
4

bounding the probability, and instead chose p = n−
2
3 . Following the above reasoning, it suffices to show that

lnn ≤ kn−
2
3 , or

k ≥ n
2
3 lnn

To do this we can let n = ( ck
lnk )

3
2 (with c = .5 works), thus improving our bound to be non-trivial.

Exercise 10.11. (Van der Waerden’s conjecture) Show that if n <
√

k2
k
2 then for some coloring of the integers

{1,2, . . . ,n} with two colors, neither color contains an arithmetic progression of length k.

Proof. Observe that for a random coloring the probability that any particular arithmetic progression is monochromatic
is 2−(k−1) (once the first element is assigned a color, the remaining k−1 elements must be given the same one). If N
is the number of such arithmetic progressions, and N < 2k−1, the claim must be true since that implies an upper bound
on the probability that a random coloring makes some progression monochromatic is less than one, which means
there is some chance a random coloring makes no such progression monochromatic, which means there must be some
particular coloring that fails.

To calculate the number of progressions we count the number of possible starting positions for each possible size
for the gap between elements (i). This gap must be less than n/(k−1) as otherwise the first and last elements would
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10.6. EXERCISES 267

be separated by n or more places.

N ≤
n

k−1

∑
i=1

(n− i(k−1))

=
n2

k−1
− (k−1)

n
k−1

∑
i=1

i

=
n2

k−1
− (k−1)

n
k−1

n+k−1
k−1

2

=
n2

k−1
−n

n+ k−1
2(k−1)

=
n2

k−1
− n2

2(k−1)
− n

2

=
n2

2(k−1)
− n

2

<
k2k

2(k−1)
− n

2

< 2k−1

The bound given is based on using 2−k for the probability a progression is monochromatic, and bounding the
number of progressions by (n/k)n.

Exercise 10.12. For m, r, n positive integers the set {1, . . . ,m} has property B(r,n) if for some collection of r subsets
of size n of {1, . . . ,m} any 2-coloring of {1, . . . ,m} results in some member of the collection being monochromatic.
Find a lower bound on r such that {1, . . . ,m} has property B(r,n).

Proof. The chance for a random coloring that a particular set of size n is monochromatic is 2−(n−1). If we have r
such sets, the chance that there exists one of them that is monochromatic is no more than r2−(n−1). Thus if r < 2n−1,
any collection of r sets of size n has some chance of having no monochromatic elements in a random coloring, which
means there is some particular coloring for which it has no monochromatic elements. So {1, . . . ,m} cannot have
property B(r,n) unless r ≥ 2n−1.

Exercise 10.13. Let G(n, p), 0≤ p≤ 1, be an undirected graph on n vertices where each edge e (among the possible
n(n− 1)/2 edges on n vertices) is included in the graph with edge probability p independent of any other edge. If
p = 1

2 show that:
a) With high probability (i.e. with probability tending to 1 as n→ ∞) the maximum size of an independent set in
G(n, 1

2 ) is no more than (4+ ε) logn, for any ε > 0.
b) Deduce then, that for some constant c > 0, with probability tending to 1 as n→ ∞,

cn
logn

≤ γ(G),

where γ(G) is the chromatic number of G.

Proof. The probability that an n vertexgraph with edge probability 1
2 has a k independent set is at most(

n
k

)
2−(

k
2) ≤ nk2−

k2
4

For k = (4+ ε) lgn, this means the chance there is an independent set larger than that is no more than

(n2−
k
4 )k ≤ (nn−1− ε

4 )k

= n−εk
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Which converges to 0 for all ε > 0.
For part b), simply recall that the vertices of any color class in G must be an independent set. As no color is used

more times than the size of the largest independent set, the fact that with high probability no independent set is larger
than 5lgn implies that with high probability γ(G)≥ n

5lgn .

Exercise 10.14. Show that any bipartite graph G(X ∪Y,E) (| X |=|Y |= n) with edge probability p = 1
2 has a perfect

matching with high probability (i.e. with probability tending to 1 as n→ ∞).

Proof. Hall’s theorem states that a bipartite graph has a perfect matching unless there is a subset of vertices A on
the left such that | A |>| R(A) |. We shall show that the probability that any A has | R(A) |≤| A | −1 is small. For a
particular A, | R(A) |<| A | only if there are at least n− | A |+1 vertices on the right to which there are no edges from
A. The chance that this happens for some A is less than the sum of the chances it happens for any particular A. Thus

Pr(there is no p.m.) ≤
n

∑
i=1

(
n
i

)(
n

n− i+1

)
(0.5)i(n−i+1)

=
n/2

∑
i=1

(
n
i

)(
n

n− i+1

)
(0.5)i(n−i+1)

n

∑
i=n/2+1

(
n
i

)(
n

n− i+1

)
(0.5)i(n−i+1)

<
n/2

∑
i=1

nini(0.5)i(n−i+1)+
n

∑
i=n/2+1

nn−inn−i+1(0.5)i(n−i+1)

=
n/2

∑
i=1

(
n2

2n−i+1 )
i +

n

∑
i=n/2+1

(
n2

2i )
n−i+1

<
n/2

∑
i=1

(
n2

2n/2 )
i +

n

∑
i=n/2+1

(
n2

2n/2 )
n−i+1

→ 0

Thus for sufficiently large n, the chance that a random n×n bipartite graph does not have a perfect matching is very
small.

Exercise 10.15. For an undirected connected graph G = (V,E), let d(i, j) be the shortest path (for graphs with no
weights, the length) between vertex i and vertex j . The diameter (diam(G)) of G is defined to be the maximum among
all the shortest paths between any two vertices in G, i.e.

diam(G) = max
i, j∈V i 6= j

d(i, j)

Show that for an appropriate p all Gn,p graphs have diameter 2 with high probability (i.e. with probability tending
to 1 as n→ ∞).

Proof. A graph has diameter 2 if between any two distinct points there exist either an edge or a path of length 2,
therefore for the second case, for every two points x, z there exists a point y connected to both x, z. For Gn,p (we’ll fix
p at the end of our discussion) graph y is connected to both x,z with probability p2. We examine the complement of the
problem, namely we’ll try to find the probability (an upper bound) that there exists a set of two points not connected
by a path of length 1 or 2. This is at most(

n
2

)
(1− p)(1− p2)(n−2) ≤ n2

2
e−p2(n−2)

since, we can choose two points x,z in
(n

2

)
ways and no other point y (among the other n− 2 points) is in the path

between x,z with probability (1− p)(n−2). Therefore the above expression is an upper bound on the probability that
there exists two points not connected by a path of length 2 (note that we ignore the case that the graph has diameter 1
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10.6. EXERCISES 269

which occurs with probability pO(n2) since this term is finally absorbed by the term shown above). Let p=
√

(2+ε) logn
n .

Then the above expression is bounded above by

1
nε
→ 0 as n→ ∞

and therefore the probability that the graph is of diameter 2 tends to 1 for large n.

Exercise 10.16. We may view a tournament Tn on n vertices as a tournament on n players, where an edge exists
between vertex i and vertex j in Tn, if player i beats (or outranks) player j. A tournament Tn has property Sk if for
every k players x1, . . . ,xk there is some other player y who beats all of them. Show that for every k, there is a finite Tn
with property Sk. Find the smallest possible value of n you can, in terms of k, so that a tournament on at least so many
vertices, has property Sk.

Proof. We use a probabilistic argument to show that for n sufficiently large, the probability a random tournament does
not have property Sk is less than 1. This probability is at most(

n
k

)
Pr(a particular x1, . . . ,xk are not all beaten by some vertexy)

For any set of k vertices, the probability some other particular vertex“beats” them all is 2−k. So the chance it does not
beat them all is 1−2−k, and the chance that none of the other vertices beat the entire set of k is (1−2−k)n−k. Thus the
probability that a random tournament does not have property Sk is at most(

n
k

)(
1− 1

2k

)n−k

< nke−
n−k
2k

For this to be less than 1, we want e
n−k
2k ≥ nk, or equivalently n−k

2k ≥ k lnn, and hence n ≥ k2k lnn+ k. This can be
achieved by picking n≥ 2k22k.

Exercise 10.17. The Noisy Ramsey number NR(k,k) is defined to be the minimal number of vertices a graph can
have so that it has a k-noisy-clique or a k-noisy-independent set. A k-noisy-clique is defined to be what we get from a
k-clique if we delete 1

10 k2 edges. A k-noisy-independent set is a set of k vertices joined by 1
10 k2 edges (or if we delete

so many edges, when no multiple edges are allowed, then we get a k-independent set). Show that NR(k,k) ≥ 2εk, for
some properly chosen ε .

Proof. To find a lower bound for NR(k,k) we show that for sufficiently small n, the probability that a random n
vertexgraph has either a k-noisy independent set or a k-noisy clique is less than one. This means some graph must
have neither. For a random n vertexgraph G,

Pr(G has a k-noisy clique) ≤
(

n
k

)
Pr(A particular set of k vertices is a noisy clique)

≤
(

n
k

)( (k
2

)
k2/10

)
2−
(
(k

2)−k2/10
)

≤
(

n
k

)(
k2/2

k2/10

)
2−
(

k(k−1)
2 − k2

10

)

≤ nk
(

k2/2
k2/10

)
2−.4k2+k/2
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To bound this, observe the following (the second step uses a crude form of Stirling’s approximation that n!≥ (n/e)n).(
k2/2

k2/10

)
≤

(
k2/2

)k2/10

(k2/10)!

≤
(
k2/2

)k2/10

(k2/10e)k2/10

= (5e)k2/10

Using this result and substituting 2εk for n we get the upper bound

Pr(G has a k-noisy clique) ≤ 2k2ε(5e)k2/102−.4k2+k/2

Since this bound also applies for a k-noisy independent set, it suffices to chose ε such that this quantity is less than
1/2. I.e. we must have

2k2(ε−.4)2(k
2/10) lg5e2k/2 <

1
2

This is true as long as ε ≤ .4− 1
k2 − 1

2k −
lg5e
10 ≈ .0235− 1

k2 − 1
2k . As k gets large, chosing ε = .02 suffices. (One could

get a better bound by more careful approximation).

Exercise 10.18. Let Gn,p be a undirected random graph on n vertices generated by independently including each edge
with probability p. What is the expected number of (exactly) ten vertexcycles if p = 2

n ? How does this expectation
grow with n (as n goes to ∞)?

Proof. We first find the number of cycles we can form with k fixed objects (we will fix k to be 10 at the end). There are
k! permutations among k objects, and k!/k = (k− 1)! cyclic permutations among them (snce any cyclic permutation
gives rise to k ordinary permutations) and these cyclic permutations define (k− 1)!/2 unique cycles (since a cyclic
permutation and its reverse define the same cycle, e.g. 1→ 2→ 3→ 1 ≡ 3→ 2→ 1→ 3). We can choose k among
n vertices in

(n
k

)
ways. From a cyclic permutation we get a cycle in a graph if all the k edges implied by the cyclic

permutation appear, and this occurs with probability pk. For k = 10 we have
( n

10

)
(9!/2) distinct cycles of length 10

and each of them appears with probability p10, therefore the expected number of cycles of length 10 is:

E =

(
n
10

)
9!
2

pk =
n!

10!(n−10)!
9!
2
(

2
n
)10 =

n!
n10(n−10)!

210
2 ·10

=
n(n−1)(n−2) . . .(n−9)

n10
210

2 ·10

where we substituted p = 2/n. For n→ ∞,

n(n−1) . . .(n−9)
n10 → 1,

so we have

E→ 210

2 ·10
= 102.4

Exercise 10.19. Suppose an n by n bipartite graph is generated randomly by including each edge independently with
probability p.
i) What is the expected number of perfect matchings?

ii) For what value of p is this approximately 1?

iii) For the value of p from ii), show that the probability that the graph has a perfect matching is exponentially small.
(Hint: Consider the probability that there is an isolated vertex).
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10.6. EXERCISES 271

Proof. i) This part has been solved in problem Set 6 (extra problem). Once again, every perfect matching in a bipartite
graph G = (X ∪Y,E) with X = {x1, . . . ,xn}, Y = {y1, . . . ,yn}, corresponds to a permutation of the elements of X onto
the elements of Y . We have n! permutations (and each mapping of an element of X to an element of Y corresponds to
an edge of a perfect matching) and each one of them has probability pn to appear, and therefore the expected number
of perfect matchings is n!pn.
ii) n!pn = 1 gives p≈ e/n (if we use Stirling’s aprroximation for the factorial).
iii) A given vertex of X is isolated with probability (1− p)n = (1− e/n)n ≈ e−e. The probability that a vertex is not
isolated is (1− e−e). The probability that all vertices of X are not isolated is (1− e−e)n (since all these probabilities
are independent of each other). The probability that there exists a perfect matching that saturates X is at most the prob-
ability that all vertices of X are not isolated, and therefore this probability is at most (1−e−e)n which is exponentially
small( 1− e−e < 1 and therefore the (1− e−e)n→ 0 exponentially fast).
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Chapter 11

Bits and Bytes

11.1 The SI system and prefixes
The International System of Units (ISU or SI) is the most widely used system of measurement. The SI (Systeme
Internationale) define prefixes (or prefices) for units of measurement that are multiple or submultiples of 10.

Thus the unit of time is the second and the unit symbol for a second is s. If we write ms or µs or ns The m the µ

and n prefix is for a submultiple. An m indicates 10−3 thus 1ms = 10−3s, an µ indicates 10−6 thus 1µs = 10−6s, and
an n indicates 10−9 thus 1ns = 10−9s. We read ms,µs,ns as millisecond, microsecond and nanosecond respectively.

The International Electrotechnical Commission introduced the prefices Ki, Mi, Gi, Ti, Pi, Ei etc to indicate
powers of 2. Thus if one uses the SI system’s prefixes the prefix multiplier is a power of 10; if one uses an IEC prefx,
the prefix multiplie should be interpreted as a power of 2. Any other interpretation is wrong.

Power Value
20 1
21 2
24 16
28 256
210 1024
216 65536
220 1048576
230 1073741824
240 1099511627776
250 1125899906842624

Figure 11.1: Powers of two

Prefix Name Multiplier
d deca 101 = 10
h hecto 102 = 100
k kilo 103 = 1000
M mega 106

G giga 109

T tera 1012

P peta 1015

E exa 1018

d deci 10−1

c centi 10−2

m milli 10−3

µ micro 10−6

n nano 10−9

p pico 10−12

f femto 10−15

Figure 11.2: SI system prefixes

Prefix Name Multiplier
Ki kibi or kilobinary 210

Mi mebi or megabinary 220

Gi gibi or gigabinary 230

Ti tebi or terabinary 240

Pi pebi or petabinary 250

Ei exbi or petabinary 260

Figure 11.3: IEC binary prefixes

11.1.1 Bit and bit

Remark 11.1 (Joke: ’Bits and bytes’ capitalization). The capitalization in the section header is English grammar
imposed and intended as an unintentional joke! Read through the end of this section in order to get it!

Definition 11.1 (Bit). The word bit is an acronym derived from binary digit and it is the minimal amount of digital
information. The correct notation for a bit is a fully spelled lower-case bit.
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276 CHAPTER 11. BITS AND BYTES

A bit can exist in one of two states: 1 and 0, or High and Low, or Up and Down, or True and False, or T and F, or t
and f.

Remark 11.2 (Lower case b is nonsense). A lower-case b should never denote a bit! Several publications mistakenly
do so, however!

The notation 9b should be considered nonsense.

Remark 11.3 (Plural unit). If we want to write down in English 9 binary digits we write down 9bit. Not 9bits.
Units have no plural.

For a transfer rate we then write 9.2bit/s.
Consider a writing of 2ms. Is it 2 meters (plural) or 2 milli-seconds or the correct 2 milli-second?

11.1.2 Byte can bite
Definition 11.2 (Byte). A byte is the minimal amount of binary information that can be stored into the memory of a
computer and it is denoted by a capital case B.

Definition 11.3 (Word). Word is a fixed size piece of data handled by a microprocessor. The number of bit or some-
times equivalently the number of bytes in a word is an important characteristic of the microprocessor’s architecture.

Etymologically, a byte is the smallest amount of data a computer could bite out of its memory! We cannot store
in memory a single bit; we must utilize a byte thus wasting 7 binary digits. Nowadays, 1B is equivalent to 8bit.
Sometimes a byte is also called an octet. A 32-bit architecture has word size 32 bit.

Definition 11.4 (Memory size). Memory size is usually expressed in bytes or its multiples.

We never talk of 8,000bit memory, we prefer to write 1,000B rather than 1,000byte, or 1,000Byte.

Prefix Name Multiplier
1KiB 1kibibyte 210B
1MiB 1mebibyte 220B
1GiB 1gibibyte 230B
1TiB 1tebibyte 240B
1PiB 1pebibyte 250B

Figure 11.4: IEC aggregates of a byte

Name Multiplier
1 short 2B = 16bit
1 word 4B = 32bit
1 double word 8B = 64bit

Figure 11.5: Other aggregates of a byte

Remark 11.4 (Confusing Notation: How many bytes in 1kB or 1MB or 1GB of RAM or Disk?). In SI, 1kB
implies 1,000B; likewise 1MB is 1,000,000B and 1GB is 1,000,000,000B. When we refer to memory (eg. RAM i.e.
Random Access Memory or main memory), companies such as Microsoft or Intel mean that 1kB is 1,024B, that 1MB
is 1,048,576B and 1GB is 230B. To add to this confusion, hard disk drive manufacturers in warranties, define a 1kB,
1MB, and 1GB as in SI (1000B, 106B and 109B respectively).

Exercise 11.1 (Is 500GB equal to 453GB or 453GiB?). A hard-disk drive (say, Seagate) with 500GB on its pack-
aging, will offer you a theoretical 500,000,000,000B. However this is unformatted capacity; the real capacity after
formatting would be 2-3% less, say 487,460,958,208B. Yet an operating system such as Microsoft Windows 7 will re-
port this latter number as 453GB. Microsoft would divide the 487,460,958,208 number with 1024*1024*1024 which
is 453.93GiB i.e Microsoft’s 453GB.

Conclusion: Stick to KiB, MiB, GiB and avoid kB,MB,GB or other variations.
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11.2. FREQUENCY AND THE TIME DOMAIN 277

11.2 Frequency and the Time domain

Definition 11.5 (Time). The unit of time is the second and its unit is s. Thus 1 second is written 1s in the SI system;
if you see a writing of 1sec such a writing is not SI compliant.

Submultiples are 1ms,1µs,1ns,1ps which are 10−3,10−6,10−9,10−12 respectively of a second, and are pro-
nounced millisecond, microsecond, nanosecond, and picosecond respectively. Note that a millisecond has two ells.

Definition 11.6 (Frequency). Frequency is the number of times a (periodic) event is repeated in the unit of time. The
unit of frequency is cycle per second or cycle/s or just Hz. The symbol for the unit of frequency is the Hertz, i.e.
1Hz = 1cycle/s.

Then 1kHz, 1MHz, 1GHz, and 1THz are 1000, 106,109,1012 cycle/s or Hz. Note that in all cases the H of a Hertz
is CAPITAL CASE, never lower-case. The z is lower case everywhere.

Definition 11.7 (Time vs Frequency of a (periodic) Event). The relationship between time (t) and frequency ( f ) is
inversely proportional. If an event has frequency f , the period of the event t (in s) is given by

f · t = 1s.

Thus 5Hz, means that there are 5 cycles in a second and thus the period of a cycle is one-fifth of a second. In other
words an event that has frequency f = 5Hz occurs five times in a second. The period of the event t is thus related to f
with f · t = 1s which implies t=1/5s=0.2s and thus the period of the event is 0.2s.

Computer or microprocessor speed used to be denoted in MHz and nowadays in GHz. This is because synchro-
nization of microprocessor operation is being done by an external clock that is ticking periodically (a tick is equivalent
to a change from 0 to 1 or the other way around or equivalent to a high voltage to lower voltage transition or the other
way around). The number of ticks (in a second) determines the frequency of the clock attached to a microprocessor.
Long time ago that frequency was related to the speed of the microprocessor: how many instructions could be executed
within one second. The period of the clock determined the amount of time a microprocessor instruction could take for
its complete execution. Thus a microprocessor attached to a clock with frequency f = 1MHz could execute 1,000,000
instructions per second. In other words the period of an instruction was t = 10−6s = 1µs using f t = 1s. Within that
period of one microsecond the microprocessor (CPU) could read from memory (main memory) and execute any in-
struction defined for the CPU. A CPU instruction that started its execution in a clock tick would complete its execution
by the next clock tick.

Nowadays things are more complicated. Reading from memory takes around 80ns. Yet clock frequencies are at
f = 1GHz which means the period of an instruction is t = 1ns. The only instructions that can execute within that period
are simple instructions that do not require interaction with the main memory. In fact a simple read from main memory
requires 80 instructions worth of CPU time! An Intel 80486DX microprocessor of the early 1990s rated at 25MHz,
had a clock that used to tick 25,000,000 times in a second. An elementary instruction was to be executed between two
consecutive ticks, starting with the first tick, and the result associated with the instruction was also available by the
next (second) tick. The period of the clock was defined as the interval between two consecutive ticks, a cycle. One
instruction had thus a period or execution time of roughly 1/25,000,000 = 40µs for a CPU utilizing a 25MHz clock.
A modern era CPU rated at 2GHz allows (elementary) instructions to be completed in 1/2,000,000,000 = 0.5ns. In
modern CPUs several instructions are complex; it is impossible for them to complete their execution in one cycle.
Consider a MOVE instruction that moves a block of memory from some source address to some destination address.
And the block size is not 1B but several hundreds or thousands or millions of bytes. And note that in the 1990s and
also in the 2010s retrieving one byte of main memory still takes 60-80ns. Thus for a 2GHz CPU this would require
120-160 cycles.

Definition 11.8 (A nanosecond is (roughly) one foot!). In one nanosecond, light (in vacuum) can travel a distance
that is approximately (equal to) 1 foot. Thus 1 foot is analogous to ‘‘1nanosecond’’.
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278 CHAPTER 11. BITS AND BYTES

11.3 Data types

Definition 11.9 ( Data type.). In a programming language, every variable has a data-type, which is the set of values
the variable takes.

The value of a variable can change; the value of a constant cannot change. Moreover, the data-type of a variable
defines the operations that are allowable on the variable. There are built-in (or primitive or elementary) data types
and also composite data types. The primitive data types of programming language C++ include char, int, double.
The composite data types can be built on top of the primitive ones and include aggregations such as arrays, or methods
that allow for composition such as structures and classes struct, class , int[]). The whole set of data types
and the mechanisms that allow for their aggregation define the data model of C++. C++ is a stronly-typed language.
When we write int x we define variable x to be of an integer data type. Some languages such as Python are weakly-
typed languages. The data type of a variable depends on its value. Thus x=10 in one line makes x to be of an integer
data-type but x=’ab’ in the next line makes it to be a string.

Exercise 11.2. What are the primitive data types of C, C++, or Java?
What are the composite data types of C, C++, or Java?

Definition 11.10 (Primitive data-types. Composite data-types.). Computers and computer languages have built-in
(also called primitive or elementary) data-types for integers of finite precision. These primitive integer data-types can
represent integers with 8-, 16-, 32- or (in some cases) 64-bit or more. An integer data-type of much higher precision is
only available not as a primitive data-type but as a composite data-type through aggregation and composition and
built on top of primitive data-types. Thus a composite data-type is built on top of primitive data types. Composite data
types include arrays, structures, classes such as struct, class , int[].

Definition 11.11 (Java’s integer primitive data types). Java’s (primitive) (signed) integer data types include byte,
short, int, and long.

• In java a byte is an 8-bit signed two’complement integer whose range is −27 . . .27−1.

• In java a short is a 16-bit signed two’complement integer whose range is −215 . . .215−1.

• In java an int is a 32-bit signed two’complement integer whose range is −231 . . .231−1.

• In java a long is a 64-bit signed two’complement integer whose range is −263 . . .263−1.

The default value of a variable for byte, short, int is 0, and for long it is a 0L.

Definition 11.12 (Java’s other primitive data types). Java’s other data types include float, double, boolean, and char.

• In java a float is a 32-bit IEEE 754 floating-point number.

• In java a double is a 64-bit IEEE 754 floating-point number.

• In java an boolean has only two possible values: true and false.

• In java a char is a 16-bit Unicode character.

The default value of a variable for float, double, boolean, and char is 0.0f, 0.0d, false and ’\u0000’ i.e U+0000.

Definition 11.13 (Definition of a variable ). When we define a variable we announce its name and its data type
(declatration) and we also allocate space for it.

Definition 11.14 (Declaration of a variable ). When we declare a variable we announce its name and its data type
only.
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11.3. DATA TYPES 279

A variable in a given scope can be defined only once. It can be declared multiple times. (And its definition also
serves as the first declaration.)

Definition 11.15 (Strongly-typed languages). In a stronly typed language we define variables before we use them. The
data type of a varibale cannot change after definition.

Definition 11.16 (Weakly-typed languages). In a weakly typed language we use variables with out defining them. The
value assigned to a variable determines its data type. The data type of a variable can change during the course of a
program’s execution.

C++ is a stronly-typed language. And so are other compiled languages such as C and Java. When we write int
x we define variable x to be of an integer data type (and allocate space for it).

The whole set of data types and the mechanisms that allow for their aggregation define the data model of C++.
Some languages such as Python are weakly-typed languages. The data type of a variable depends on its value.

Thus x=10 in one Python line makes x to be of an integer data-type, but an x=’ab’ in the following line makes it to
be a string value!

Weakly Typed Language such as MATLAB
x=int8(10); % x is integer (data type)
x=10.12; % x is real number (data type)
x=’abcd’; % x is a string of 4 characters (data type)

Strongly Typed Language such as C, C++, or Java
int x ; % x is a 32-bit (4B) integer
x=10;x=2; % ok
x=10.10 ; % Error or unexpected behavior: right hand-side not an integer.

11.3.1 Compositions

Exercise 11.3 (Composition : Arrays vs Vectors). One way to build a composite data-type is through an aggregation
called an array: an array is a sequence of objects of (usually) the same data-type. (If the objects can have different
data types we might use the term vector instead.) Thus we can view memory as an array of bytes. But if those bytes
are grouped under a given data-type, the sequence of elements of the same data-type represented by the sequence of
those bytes, becomes known as an array (rather than a plain vector).

11.3.2 Data Model

Definition 11.17 (Data Model). The data model is an abstraction that describes and defines how data are represented
and used.

The data model offered by a programming language such as C++ includes characters, integers of different sizes,
and floating-point numbers of different sizes BUT ALSO METHODS (eg. arrays, classes, structures) that allow
for their aggregation and composition (eg templates). Note that the int data-type of C++ differs from the integer
abstraction as we use it in mathematics; the latter is of unlimited precision.

Exercise 11.4. What is the data model of C, C++, or Java. Do they differ from each other? The whole set of data types
and the mechanisms that allow for the aggregation of them define the data model of each programming language.

11.3.3 Abstract Data Types (ADT)

Definition 11.18 (Abstract Data Type (ADT)). An abstract data type (ADT) is a mathematical model and a collection
of operations defined on that model.

Example 11.1 (Dictionary ADT). In a Dictionary ADT the data model consists of words (strings of characters) and
a collection of operations such as Insert, Search (Lookup) and Delete.
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280 CHAPTER 11. BITS AND BYTES

A Dictionary is an asbtract data type consisting of a collection of words on which a set of operations are defined
such as Insert, Delete, Search.

A Priority Queue is another ADT consisting of a collection of elements each of which has a priority and other
additional information associated with it. A set of operations defined for a priority queue are Insert and ExtractHigh.
Operation ExtractHigh finds and removes the element with the highest priority. Whether priority 1 is high or low this
is not a detail that needs to be addressed explicitly at this level. Insert inserts an element into a priority queue; this
includes not just the priority of the element but also all other relevant and auxiliary information.

More often than not we will be inserting only priority values and ignoring other auxiliary info.
ADT Data Operations

Dictionary words w Insert(D,w)
D (strings of characters) Search(D,w)

(Lookup(D,w))
Delete(D,w)

PriorityQueue e=〈 info, priority 〉 Insert(PQ,e)
PQ HighPriority is MaxValue ExtractMax (PQ)

or
PriorityQueue e=〈 info, priority 〉 Insert(PQ,e)

PQ HighPriority is MinValue ExtractMin (PQ)
In computing a FIFO (First-In Firsto-Out) queue is an ADT that supports the two of the three fundamental opera-

tions (Insert, Delete) such that the item Delete’d is the first Insert’ed.
Likewise a LIFO (Last-In First-Out) queue is an ADT that supports the two of the three fundamental operations

(Insert, Delete) such that the item Delete’d is the last Insert’ed.
There are efficient implementations of FIFO and LIFO using a Queue and a Stack. But both a FIFO and LIFO

queue can be realized abstractly in term of a PriorityQueue ADT. We call this a reduction. This requires that we
extend the data model of a FIFO or LIFO queue: an item of FIFO or LIFO becomes an element such that element =

< item, priority > An element contains the key value of a FIFO but also a priority which is a timestamp obtained
at Insert’ion time (Enqueue). For FIFO high priority means older (smaller) timestamp. For LIFO high priority means
newer (larger) timestamp HighPriority is the element inserted first i.e. the one with the oldest (smallest) timestamp.
Likewise for LIFO.

(By the way, Insert and Delete in a FIFO are known as Enqueue and Dequeue respectively. For a LIFO they are
known as Push and Stach respectively.)

ADT Data Operations
FIFO (First-In, First-Out) key k Enqueue(Q,k)

(QUEUE) Q Dequeue(Q)

LIFO (Last-In, First-Out) key k Push(S,k)
(STACK) S Pop(S)

PQ for Q e = 〈k,T IME〉 Enqueue(Q,k) = Insert(PQ, e = 〈k,T IME〉)
Dequeue(Q) = ExtractMin(PQ)

11.4 Data Structures

Definition 11.19 ( Data-structures.). A data structure is a representation of the mathematical model underlying an
ADT, and thus is a systematic way of organizing and accessing data.

If we try to represent an ADT in terms of the data-types and operations of a programming language we use
data-structures which are collections of variables of different data-types connected in various ways. In essence, a
data-structure is a systematic way of organizing and accessing data in a computer.



DRAFT. C
op

yri
gh

t (
c)

20
21

-20
24

.

Alex
. Gerb

ess
iot

is.

All r
igh

ts
res

erv
ed

Not
to

be
po

ste
d on

lin
e

or
on

the
web

or
to

be

mad
e av

ail
ab

le
ou

tsi
de

of

co
py

rig
ht

ho
lde

r’s
web

-pa
ge

11.4. DATA STRUCTURES 281

Thus the realization or representation of the data part (model) of an ADT is a data structure.
For the Dictionary ADT its data (words) can utilize a variety of data structures such as Array, Linked List, Binary

Search Tree, Hash Table.
Does it matter what data structure we use? Yes, it matters if efficiency, economy of space and easiness of

programming are important. As running/execution time is paramount in some applications, we would like to ac-
cess/retrieve/store data as fast as possible. For the Dictionary ADT previously defined, we might we might use arrays,
sorted arrays, linked lists, binary search trees, balanced binary search trees, or hash tables to represent the data model
of the ADT known as Disctionary. The semantics of the operations remain the same the realization of the operations
and their efficiency depends on the choice of the appropriate or not data structure.
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282 CHAPTER 11. BITS AND BYTES

11.5 Algorithms
We call algorithms the computational methods that we use to operate on a data structure. That is, the operations of
an ADT are realized by respective algorithms. An operation is a computational problem with input (given) and output
(expected). An algorithm is the computational method that realizes the input output relationship of the computational
problem defined by the corresponding operation of an ADT.

Remark 11.5 (Recipe vs Algorithm). How you cook or you brew coffee is a (cooking) recipe. An algorithm is
associated with a computational problem.

11.5.1 Computational Problems

Definition 11.20 ( Computational Problem.). A (computational) problem defines an input-output relationship. A
computational problem has an input (e.g. a set of values) and an output (e.g. a set of values) and describes how the
output can be derived from the input.

Definition 11.21 (Decision Problem.). A Decision Problem is a computational problem where the output is one bit
for YES or NO (less frequently, TRUE or FALSE).

Definition 11.22 (Optimization Problem.). A Optimization Problem is a computational problem where the output
generates a solution for the problem.

COMPUTATIONAL PROBLEM

Input : A collection (set, sequence) of 0, 1 or more input values.

Output: A collection (set, sequence) of output values derived from the

input values.

COMPUTATIONAL DECISION PROBLEM

Input : A collection (set, sequence) of 0, 1 or more input values.

Output: A YES or a NO (or equivalently 1 for YES, 0 for NO) depending

on a property established by the input values.

Problem 11.1 (Addition of bounded-size non-negative integers (Optimization Problem)).
Input. Two n-bit non-negative integers a,b.
Output. An (at most) (n+1)-bit integer c such that c = a+b.

Problem 11.2 (Verification of addition of integers (Decision Problem)).
Input. Three non-negative integers c,a,b, where c is up to (n+1)-bit and a,b are n-bit.
Output. A YES or a NO depending on whether c IS EQUAL to a+b.

Definition 11.23 (Informal algorithm definition). An algorithm is a “method” that transforms an input into an output,
i.e. it realizes the input-output relationship of a computational problem.

We avoided intentionally the use of the word “recipe” !!
We call algorithms the realization of the operations that we use to operate on a data structure. An ADT has data

(model) and operations. The data are realized through a data structure. The operations that operate on those data are
defined as computational problems. The realization of those operations on the choice of a data structure give rise to an
algorithm (or corresponding algorithms).

Definition 11.24 (Algorithm). An algorithm for a computational problem is its realization by a well-defined sequence
of computational steps that performs a task by generating the set of output values of a computational problem from the
set of input values of that same computational problem according to the specification of the computational problem.

There are (potentially) several algorithms for the same computational problem! Think of the computational prob-
lem of sorting: there are several algorithms that realize it with names such InsertionSort, BubbleSort, QuickSort,
MergeSort etc. The definition of Sorting as a computational problems makes it an optimization problem.
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11.5. ALGORITHMS 283

Definition 11.25 (Problem size). The problem size of a computational problem is the most important parameter
identifiable (directly or indirectly) in the problem description (in the input, output or both) of a computational problem.

We use that parameter to parameterize the computational performance of an algorithm for the computational prob-
lem.

For the addition problem as previously defined that parameter is n. If we decide to measure the performance of
the metric ”running time” or ”space requirements” and use a symbol or function T in the former case or S in the latter
case to express those requirements, n would be the indeterminate of a function T (n) or S(n).

Definition 11.26 (Input size). Technically it is the amount of space used for the input of the Computational Problem.
Technically size must be expressed in byte (unit of measure). In reality input size and problem size are being used
interchangeably. Even if this is not technically correct!

Definition 11.27 (Output size). Technically it is the amount of space used for the output of the Computational Prob-
lem.

For the Computational Problem of Addition, problem size is indisputably n.
Input size is a surprising 2n+ dlg(n+1)e. The correct answer should also include the unit of size and for that

problem we should write 2n+dlg(n+1)e bit. The first term 2n unsurprisingly accounts for the number of bit of a and
b. The second term accounts for the number of bit of integer n, the problem size! Output size is n bit.

There is also something trickier. We assume that ”integer” means an ”unsigned integer”. Otherwise we need to
start thinking about the representation of positive integers vs negative integers and whether n includes a sign bit or not.

We slightly modify the definition for integer addition as follows.

Addition of integers Modified

Input : Two integers a,b

Output: Integer c such that c=a+b

This is a very trick and incomplete definition. We are at a loss of finding problem size anymore.
The number of bit of integer a is now dlg(a+1)e.
The number of bit of integer b is now dlg(b+1)e.
The maximum of dlg(a+1)e and dlg(b+1)e plus possibly one sign bit (?) might become the problem size n.
If you did not think of those complication think twice and spend more time defining completely and correctly the

computation problem before you start thinking of algorithmic solutions to realize it!

Definition 11.28 (Model of Computation). A computational problem and thus its algorithmic solution refer or refer-
ence a model of computation.

The are three models of computation that we usually encounter. One is the Bit model where operations and problem
sizes are expressed in Bit. Addition was thus defined in the Bit model. The other is the Word Model (we avoid a Byte
Model) of computation. In such a model an integer can fit into one word and thus the addition of two integers takes
one operation!

Definition 11.29 (RAM model of computation). In a Random-Access Machine (RAM) model of computation, instruc-
tions are executed one after the other in unit time. Each memory cell is wide enough to accommodate a word (a key
for sorting, an integer for arithmetic problems, an item, a floating-point number etc) The computation model is as
simplistic and optimistic (in resource usage) as possible. The intent is to show that if an algorithm uses A computation
resources under the RAM it would also require at least A under more realistic models.

Definition 11.30 (Bit Model of Computation). A model were Bit operations are used. A bit version of the RAM model.

Definition 11.31 (Word Model of Computation). A RAM model. A model were Word operations are used. (An integer
or other data type can fit into a word.)
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Definition 11.32 (Straight Line Program Model of Computation). The SLP model is a Word Model with essentially
the absence of for-loop, while-loop conditional statements, even arbitrary function invocation.

A model were Word operations are used. (An integer or other data type can fit into a word.)
The SLP model (Straight Line Program) is an instance of the Word model if we exclude for-loop, while-loop

conditional statements, even arbitrary function invocation. We only have statements. Thus the very primitely defined
in the (unrestricted) Word Model computational problem RaiseTo4thPower(x) accepts a a for-loop solution in that
model, such a solution is unacceptable under the SLP model. The latter approach is also more computationally
efficient!

RaiseTo4thPower

Input : x

Output: x**4

Solution for Word Model Solution for SLP model

RaiseTo4thPower(x) RaiseTo4thPower(x)

result = 1; result = x;

for(i=1;i<=4;i++) result = result * result;

result = result * x result = result * result;

return(result); return(result);

11.5.2 Sorting

A sorted sequence is an increasing sequence or non-decreasing sequence or monotonically-increasing sequence such
as 〈1,2,3,3,4〉.

A reverse-sorted sequence is a decreasing / non-increasing / monotonically-decreasing sequence such as 〈4,3,3,2,1〉.
The elements of a sequence are ”comparable” i.e. a ”total oder” is defined on them in the sense that the elements

have the reflexive, antissymetric and transitive properties. Thus a≤ a, a≤ b and b≤ a imply a = b, a≤ b and b≤ c
implies a≤ c, and totality is also applicable i.e. a≤ b or b≤ a.

Definition 11.33 (Sorting Problem). Problem. Key Sorting.
Input. A sequence of n comparable keys 〈a1,a2, . . . ,an〉.
Output. A reordering i.e. a permutation of the n keys 〈a j1 ,a j2 , . . . ,a jn〉 of the input sequence so that

a j1 ≤ a j2 ≤ . . .≤ a jn .

(The output is a sorted sequence.)

If the output is explicitly defined to be a jn ≥ a jn−1 ≥ . . .≥ a j1 , we call such an output a reverse-sorted sequence.
Problem Size for Sorting. It is clearly n the number of input keys which is the length of the array (apparently

named a) that contains them. Whereas for addition n was the number of bit in the Bit Model, in this problem n is the
number of keys (words) in the implied Word Model.

Example 11.2. For an input such as 〈a1 = 10, a2 = 2, a3 = 1, a4 = 5〉 an algorithm for sorting would generate an
output that looks like 〈a3 = 1, a2 = 2, a4 = 5, a1 = 10〉. The input keys are 〈a1,a2,a3,a4〉 i.e. input indexes are
〈1,2,3,4〉. The output is 〈3,2,4,1〉 since a3 is 1 and appear first in the output, and so on and, a1 is 10 and it appears
first in the input.

Definition 11.34 (Sorting Algorithm). An algorithm is a sorting algorithm if and only if it sorts correctly all n!
permutations of n keys for all permissible (possible) values of n. A permissible value is determined by the available
computational resources (eg memory).

A first solution to the problem of sorting.
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11.5. ALGORITHMS 285

NaiveSort(A,B,n) // Also known as StupidSort or ExhaustiveSearchSort

1. for(i=1 ; i <= n! ; i++ )

2. B = < generate next permutation of the n input keys of A>

3. If B is a sorted sequence return(B);

4. }

We describe an algorithm solution that looks like a procedural (aka imperative) language such as Pascal, C, C++,
or Java but we are not concerned with its syntax, variable declarations or definitions and other minute details. We
also use free-form English to describe more complex interactions. For example we say ’generate next permutation’
instead of describing how to generate it! If we have introduced an algorithm, for example QuickSort for sorting
arrays or sequences of keys, we might invoke it in pseudocode without further details by issuing say a function call to
QuickSort(B,m) to sort an array B of m keys with the implication being that at the completion of the function call, all
elements are sorted in B, even if originally B was not sorted.

We are liberal with the boundaries of an array if it fits our purposes (i.e it makes exposition of an algorithm
simpler). Therefore we may declare an array of n elements more often as A[1...n] but occasionally as A[0..n-1]. Why
? It causes confusion to say the fifth element of an array is A[4] rather than the more natural and less confusing A[5].
We do not bother about error-checking. So if we are to design an algorithm for adding two non-negative integers, we
do not bother checking for negative-numbers or real numbers or complex numbers or strings. We assume that the input
is correctly formed.

Our intent is to introduce concepts around algorithms, and the ideas behind them. We do not want to spend too
much time on implementation issues and divert ourselves from the important design and analysis issues. Normally, it
would be easy for a competent programmer to turn the pseudocode into actual code.

We will intentionally leave a semicolon missing at the end of line 2. Furthermore, no variables would be properly
defined. And Python-like indentation will be used more often than adding well-balanced braces in statements!

11.5.3 Algorithm Resources
Computational resources expended during the execution of an algorithm are in the form of cpu-cycles used (or wasted)
and amount of memory utilized (or expended). Performance measures established to describe the performance of an
algorithm can associate with them directly. In other words TIME and SPACE are of paramount importance. In more
complex problems other performance measures such as throughput, latency, communication bandwidth, logic gates,
efficiency or speedup might also be defined and used. With TIME we mean how long an algorithm runs to completion
with SPACE how much memory/space the algorithm uses.

We then find problem size and express those performance measures as a function of problem size for the model in
question. The model of computation used for Sorting is the RAM (Word) model. Problem size is n.

How do we measure space and time? We do not measure space in bytes (or megabytes).
Rather in words or in multiples of the size of the elementary data type used (eg key, number). And for the time being

forget nanoseconds or femtoseconds. In the best of cases it would be ”operations” in general (mixing up additions,
assignments, read/write operations) or if we can be more discriminating, we would identify the most fundamental
operation (eg comparison of keys or addition of numbers) and express time in terms of those fundamental operations!
This means what we measure as time and space for example is not a precise measure. If we count number of keys
instead of bytes, we need to know how many bytes we use to store a key to be precise. Likewise if the cost of an
addition is one operation, to get nanoseconds we need to know clock-cycles and other properties of a CPU on which
execution is to take place. This is impossible to do in a generic fashion. Thus for such an analysis we do not aim for
precision. Just for good enough accuracy!

Thus multiplicative constants and low-order terms becomes less important. And when we compare algorithms
make sure that operations that are compared are the same. For example if an algorithm uses 3n−2 multiplications and
another one uses 4n additions, which of the two is faster?

In the remainder we will be examining time and space resources thus functions T (n) and S(n) will summarize
resource expenditure.

With functions T (n) and S(n) low-order term details are not important. Some of those details are hidden in the
units (eg keys vs bytes, operations vs nanoseconds). But how do we remember all the constants if we need to write a
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286 CHAPTER 11. BITS AND BYTES

S(n) = 2n+3 or S(n) = 2n?
The easiest thing to remember is to say that ”S(n) is linear to n”. We would denote this as S(n) = Θ(n). Or if

S(n) ≤ 3n to say that ”S(n) is upper bounded by a linear function to n” we would denote it by writing S(n) = O(n).
An S(n) ≥ n to say that ”S(n) is lower bounded by a linear function to n” would become S(n) = Ω(n). The symbols
are known as Theta, Big-Oh and Big-Omega respectively. A Θ(1) means a constant!

Consider two algorithms one that requires n2 operations and one that requires n lgn operations to sort n keys Here,
lgn = log2 n is the base two logarithm of n. Consider a machine that executes 10,000,000 such operations per second
with a millisecond precision clock. The two algorithms solve instances of various sizes n in the following time.

n = 2 10^3 10^6 10^9

Alg A: n^2 = <0.001sec 0.1sec 1day 300years

Alg B: n lgn = <0.001sec 0.001sec 2sec 1hour

By comparing n2 and n lgn we draw the conclusion that for small values the performance of the two algorithms is
indistinguishable. For large values it is not. In our example comparison was easy; there were no low-order terms nor
multiplicative constannt involved.

Consider for example the case where one algorithms requires n2 operations and the other 20n lgn+1000n+109.
Things become more complicated calculator-wise.

To establish asymptotic performance and comparison we only need to now what happens as n⇒ ∞. For this we
just need to limn⇒∞ n2/n lgn. It is not difficult to find that the limit is infinity and thus the n2 algorithm is too costly
operation-wise (slower) than the n lgn algorithm. And the same applies to n2 and 20n lgn+1000n+109.

11.5.4 NaiveSort Performance Measure: Permutations
The “code” NaiveSort has a semicolor missing. It is not code, it is pseudocode.

Sorting is the computation problem solved by NaiveSort. There are multiple algorithms that solve this Problem.
NaiveSort (or ExhaustiveSort that describes more faithfully its behavior) is a non efficient proposal for a sorting

algorithm. MergeSort and HeapSort are more efficient time-wise but the former is not efficient space-wise (for the
implementation that we will propose).

Other approaches include Odd-Even Transposition sort, BubbleSort, InsertionSort, SelectionSort, QuickSort.
All such algorithm perform key comparisons and swaps (exchanges). There are some other sorting algorithms that

do not compare key values but inspect key values. They are referred to as distribution-based sorting algorithms and
they include CountSort, RadixSort. The term BucketSort refers to a solution similar to CountSort: BucketSort uses
LinkedLists but CountSort uses arrays. Our textbook uses the term BucketSort differently though to define a separate
and different sorting problem.

The ’See before you leap’ is applicable: Read the Problem Definition not the name of the (sorting) algorithm.
Best Case. The answer is found after generating 1 permutation.
Worst Case. The answer is found after generating all n! permutations.
Average Case. The number of permutations generated on the average is (n!+ 1)/2. Why ? We might get the

answer after generating 1 permuation, or 2 permutations, or . . . i . . . permuations, or n! permutations. The average over
all these possibilities is

1+2+ . . .+n!
n!

=
n!(n!+1)/2

n!
=

n!+1
2

11.5.5 NaiveSort Performance Measure: Comparisons
What is the time to completion for NaiveSort? How do we measure time of pseudocode? Time analysis even of actual
code is tedious. We identify the most important operation and express time in terms of or in connection with it.
For a sorting problem such as NaiveSort the most important operation is comparison of keys.

NaiveSort(A,B,n)

1. for(i=1 ; i <= n! ; i++ )

2. B = < generate next permutation of the n input keys of A>

3. If B is a sorted sequence
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11.6. MAIN MEMORY 287

(i.e. B[1] <= B[2] <= ... <= B[n]) return(B);

4. }

In Line 3 of NaiveSort we check whether B is a sorted sequence or not by performing anywhere between 1 and n
comparisons. If number of comparisons is 1, this is because we realize B is not a sorted sequence. Likewise for other
values less than n−1. If number of comparisons is n−1 we either conclude B is sorted by verifying B[n−1]≤ B[n] in
the last n−1-st comparison, or it is the last two keys that are out of order i.e. B[n−1]> B[n] for this given permutation
available in B. Thus we have further complications in developing a running time scenario based on comparisons!
Best Case. One permutation generated and it is sorted; n−1 comparisons performed to verify B is sorted.
Worst Case. All n! permutations generated. It is quite a leap of faith to say that in each permutation we need to
perform n− 1 comparisons to realize that it is not sorted. It might or might not be the case. Try it with 4 or 5 keys!
But in the worst scenarion we have to deal with n!× (n−1) comparisons.
Conclusion. The number of comparisons determines the running time T (n), with n the problem size. We might use
C(n) for number of comparisons to write C(n)≤ n!× (n−1). Yet later on we shall write

T (n) = O(n!×n) = O(n! ·n)

The latter expression for T (n) is an asymptotic expression for the running time−1 is thrown out of n−1. Whether we
use n−1 or n does not make a (asymptotic) difference; both n and n−1 are linear functions. Low-order terms such as
−1 do not change that. Neither does a multiplicative constant if there was one such as 2n−1.

Is i≤ n a comparison? The answer is NO. Comparisons as defined are key comparisons. Variables i and n are not
keys but integers. In reality a compiler will compute in the accumulator of the CPU a i−n and will immediately know
whether the result is equal to zero or otherwise < or > and all of its variations!

11.6 Main Memory
Consider the main memory of a computer. The main memory is a sequence of BYTE. A BYTE is a sequence of eight
binary digit. A binary digit is shortened into the acronym bit (the first two letters of binary and the last letter of digit).
It is a binary digit because it holds one of two values: 0 and 1.

The main memory can be denoted by M or MM and thus abstracted by an array (say M).

Definition 11.35 (Main Memory). The main memory of a computer is a sequence of byte. Each byte is eight bit. Only
byte are accessible and individually identifiable in main memory.

Definition 11.36 (Address of a byte of main memory). Every byte of main memory has an ID associated with it. The
ID is known as the address of the byte. We say that a byte has an address i or that the contents of main memory at
address i is that byte.

Definition 11.37 (Address has an offset and index). The address of a byte in main memory is also called an offset and
for the array abstraction of main memory, it is also known as an index. (An offset is relating to a base i.e. starting
address and that is address 0 of main memory.)

The first address of main memory is address (index) 0. Thus the (i+ 1)-st byte of main memory is at address i.
M[i] refers to the byte stored at address i, or at offset i from the address 0 of the first byte. Moreover i is the index of
the array element M[i].

Example 11.3 (Main Memory as an array of byte). The main memory can be abstracted as an array of BYTE. Thus
the name M the name, referring to main memory, becomes an array of elements of the same data type. The data type
of a BYTE of main memory is byte. In java we would write

byte[]M = newbyte[2∗∗30];

to represent an array of 230B = 1GiB.
The length of the array M is 230 (implying elements). The size of the array M is in express in units of memory size and
the fundamental unit of memory size is the byte, i.e. a B. Thus memory size is 230B which is 1GiB.
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288 CHAPTER 11. BITS AND BYTES

There is a difference between length and size for an array. If the length of the array is 5 it means it has 5 elements.
The size of the array is the length multiplied by the size in B of an element of the array. The latter is dependent on the
data type of an elements (and of the array). For an array of 5 int the length is 5 and size is 5∗sizeo f (int) = 5∗4= 20B,
but for an array of 5 double the length is still 5 but size is 5∗ sizeo f (double) = 5∗8 = 40B.

Thus length is unitless but size must have a unit following the magnitude.

Example 11.4 (Index, Address, Offset of MM or M). One can use interchangeably the names address and offset and
also index. The latter however is specific to the array representation of M. The former two are agnostic to the array
representation of M.

Example 11.5. Suppose we consider the byte at offset 16. The byte at offset 16, or address 16, or of index 16 with
respect to M, is M[16]. It is NOT the sixteenth byte of memory: it is in fact the seventeenth.

Example 11.6 (Endianness). We store a 32-bit integer in memory. A 32-bit integer utilizes 4B since 4B∗8bit/B = 32.
Let those four byte be the ones at addresses 16,17,18, and 19. What byte (address of) does contain the left-most bit
and what byte does contain the right-most bit? The left-most bit of an integer is the sign bit, indicating positiveness
(bit is set to zero) or not (bit is set to one).

The answer depends on who is reading this memory. In practice it depends on the microprocessor architecture
that does the actual reading. An Intel microprocessor interprets those 4 byte differently than a Motorola or ARM
microprocessor. An Intel architecture is called a Little Endian one, as opposed to a Big Endian architecture.

Example 11.7 (Little Endian). In a Little Endian architecture (Intel CPUs) (the byte at) address 16 stores the 8
rightmost bit, address 17 stores the next 8 rightmost bit, and etc the address 19 stores the 8 leftmost bit of the 32-bit
integer.

00000000 11111110 01111111 10000000

Little Endian Big Endian

16 10000000 00000000

17 01111111 11111111

18 11111110 01111111

19 00000000 10000000



DRAFT. C
op

yri
gh

t (
c)

20
21

-20
24

.

Alex
. Gerb

ess
iot

is.

All r
igh

ts
res

erv
ed

Not
to

be
po

ste
d on

lin
e

or
on

the
web

or
to

be

mad
e av

ail
ab

le
ou

tsi
de

of

co
py

rig
ht

ho
lde

r’s
web

-pa
ge

Chapter 12

Number Systems

12.1 Radix for Base
When one writes down number 13, implicit in this writing is that the number is an integer number base-10. By tradition
integer numbers and numbers in general are in base-10 that utilizes ten digits to describe them (i.e. write them down).
These ten digits are 0,1,2,3,4,5,6,7,8,9.

Definition 12.1 (Radix is base). The base of the representation of a number (integer) is formally known as the radix.
Integer numbers or numbers in general can be written down in a variety of radixes (the plural of radix).

The representation might change but the magnitude of the number does not change. The magnitude is the number
of units in a number.

Definition 12.2 (Magnitude). The magnitude of an (integer) number x is the number of the units it contains. We denote
the magnitude of x with |x|.

Example 12.1. Thus for the radix-10 integer 9, the number of units of 9 is nine! For the radix-2 integer 1001, the
number of units of 1001 is also a nine. We say then that 1001 is the radix-2 representation of radix-10 integer 9, or
that radix-10 integer 9 has a radix-2 representation 1001. The number of units of radix-8 integer 11 is also nine!

Less formally we use the term binary instead of radix-2.
The most popular radix is radix-10 i.e. base-10. We will call it denary but not decimal in the remainder (the den

of denary is from ten.)

Note 12.1 (Caution!). Avoid the use of the term decimal to refer to a radix-10 or base-10 integer expressed in denary
notation. The term decimal implies a decimal point i.e. we imply a real number expressed in denary notation such as
13.0 or 13.31!

In computing everything is binary so the default radix is radix-2 (binary). However in radix-2 integers have lots of
digits and are quite long.

We thus prefer to group groups of binary digits. If we group three binary digits, we generate numbers in radix-23

i.e. radix-8 (octal). If we group four binary digits, we generate numbers in radix-24 i.e. radix-16 (hexedecimal).

Base or Radix # digits digits

Binary 2 2 0 , 1

Octal 8 8 0 .. 7

Denary 10 10 0 .. 9

Hexadecimal 16 16 0 .. 9 , a .. f ; alternative: 0 .. 9 , A .. F

289



DRAFT. C
op

yri
gh

t (
c)

20
21

-20
24

.

Alex
. Gerb

ess
iot

is.

All r
igh

ts
res

erv
ed

Not
to

be
po

ste
d on

lin
e

or
on

the
web

or
to

be

mad
e av

ail
ab

le
ou

tsi
de

of

co
py

rig
ht

ho
lde

r’s
web

-pa
ge

290 CHAPTER 12. NUMBER SYSTEMS

Definition 12.3 (Table of integers). A table of some integers in binary, octal, hexadecimal and denary is shown below.

Binary Denary Hexadecimal Octal Binary(4-bit) Shorthand

0 0 0 0 0000 0o before an octal

1 1 1 1 0001 0x before a hexadecimal

10 2 2 2 0010 or

11 3 3 3 0011 0X before a HEXADECIMAL

100 4 4 4 0100 0b before a binary

101 5 5 5 0101 017 indicates 0o17

110 6 6 6 0110 Rarely, a leading zero

111 7 7 7 0111 is to mean 0o

1000 8 8 10 1000

1001 9 9 11 1001 Examples

1010 10 A 12 1010 0o17

1011 11 B 13 1011 0xfa or OXFA

1100 12 C 14 1100 0b1010

1101 13 D 15 1101 017 Avoid it!

1110 14 E 16 1110

1111 15 F 17 1111

Definition 12.4 (Radix-10 or Base-10: denary notation). A number written down in radix-10, also known colloqui-
ally as base-10, is expressed in denary notation by utilizing the ten digits 0 through 9 to write it. One can explicitly
indicate the radix by writing the radix in the form of a subscript next to the number.

Example 12.2 (A denary integer). Formally we should read 13 as ”base-10 integer 13” or ”radix-10 integer 13”. To
indicate the radix explicitly we may write 1310; then we can skip the ”base-10 integer” or ”radix-10 integer” wording.
In all three cases thirteen is expressed in denary notation. The left-most non-zero digit is the most-significant digit
(msd), the right-most digit is the least-significant digit (lsd). Thus for integer 13 in radix-10, the 1 is the most-
significant digit and the 3 is the least-significant digit.

Definition 12.5 (Little endian representation). We would denote a natural number in the form a = an−1an−2 . . .a0,
where a0, the lsd, is the lowest indexed digit, and an−1, the msd is the highest indexed digit.

Definition 12.6 (Big endian representation). We would not denote a natural number in the form a = a0a1 . . .an−1,
where a0, the msd, is the lowest indexed digit, and an−1, the lsd, is the highest indexed digit.
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12.2. DENARY 291

12.2 Denary
Definition 12.7 (Denary natural numbers in fixed-width). An n-digit radix-10 natural integer number a is denoted
as a= an−1an−2 . . .a0, where ai ∈{0, . . . ,9} for all 0≤ i< n. The most-significant digit is an−1 and the least-significant
digit is a0. The magnitude of the number is

|a|=
i=n−1

∑
i=0

ai ·10i.

The value of a is its magnitude i.e. a = |a|.

The definition can easily extend to integer numbers in general.

Definition 12.8 (Denary integer numbers in fixed-width). An n-digit radix-10 natural integer number a is denoted as
a = san−1an−2 . . .a0, where ai ∈ {0, . . . ,9} for all 0 ≤ i < n, and s is + or empty to indicate a positive integer, empty
for zero, or − to indicate a negative integer. The most-significant digit is an−1 and the least-significant digit is a0, and
s is the sign. The magnitude of the number is

|a|=
i=n−1

∑
i=0

ai ·10i.

The value of a is a = (−1) · |a| if the sign of a is −, or its magnitude a = |a| if the sign of a is + or empty. Sometimes
we introduce the sgn(a) function where sgn(a)=+1 for a≥ 0 and sgn(a)=−1 for a < 0.

The remainder of this discussion is for natural numbers rather than integer numbers.

Exercise 12.1 (Units of radix-10 integer). For a= an−1an−2 . . .a0, ai ∈{0, . . . ,9} for all 0≤ i< n, the digit ai indicates
the number of times the corresponding multiplier 10i is going to be used to derive the magnitude of the radix-10 integer
i.e. its number of units.

For the example above a0 is the number of units, a1 is the number of tens of units, a2 is the number of hundreds of
units, a3 is the number of thousands of units contributing to the magnitude of a.

Method 12.1 (Finding the magnitude of a radix-10 integer). For a = 12345610 we have, 6 units, 5 tens, 4 hundreds,
3 thousands, and so on. To derive its magnitude, we write all powers of 10 right to left from most to least significant
digit over the number, multiply the corresponding digit and power and add up the results.

105 104 103 102 101 100 generate powers
· + · + · + · + · + ·
1 2 3 4 5 6 = digits
1 ·105 + 2 ·104 + 3 ·103 + 4 ·102 + 5 ·101 + 6 ·100 = pairwise product
100,000 + 20,000 + 3,000 + 400 + 50 + 6 = 123,456 add up results

Exercise 12.2 (Leading zeroes vs Trailing zeroes). Leading zeroes do not change the outcome. So 123456 and
00123456 are the same number; the two leading zeroes have no effect. Trailing zeroes are important, 123456 and
12345600 are two different numbers. The latter can be derived from the former by multiplying with 102 i.e. 10 raised
to the number of added trailing zeroes to derive the latter number from the former. This is also the case for 12300 and
1230000.

Example 12.3. 101 or 10110 indicates a denary i.e. radix-10 integer by default. We read 10110 as ’one hundred and
one (units)’ or ’one hunder one’ or ’denary one hundred (and) one (units)’ or ’one hundred (and) one (units) denary’.
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292 CHAPTER 12. NUMBER SYSTEMS

12.3 Binary Numbers
Definition 12.9 (Binary notation of a natural number). A natural number a is denoted in radix-2 as the n-digit or
n-bit sequence bin(a) = an−1an−2 . . .a0, where ai ∈ {0,1} for all 0≤ i< n. For bin(a) in binary notation its magnitude
and value a is

a = |a|=
i=n−1

∑
i=0

ai ·2i.

(Implicit in this definition is the lack of leading zeroes, that is an−1 6= 0. The definition stands however in general even
in the presence of leading zeroes.)

Definition 12.10 (bin(a,n)). We shall use the notation bin(a,n) to denote the n-bit notation of denary a in binary.
(Leading zeroes are used to pad the result to n bit.) Note that bin(a) uses the minimal number of digits and thus it is
equivalent to bin(a,0).

Example 12.4 (bin(a,n)). In all cases, unless otherwise specified, a is the number of units. Thus bin(2,8)= 00000010
and bin(0,4)=0000. But note that bin(2,1)= 10. Thus if n is smaller than the minimal number of digits to represent
(the natural number) a, then n is ignored.

Example 12.5. 1012 indicates a binary i.e. radix-2 integer by default. We might also write bin(a) = 101 or rarely
0b101. We read 1012 as ’binary one zero one’ or ’one zero one binary’ but never ’one hundred one’ and never ’one
hundred and one (units)’. And by the way a = 5, that is bin(5) = 101, that is 1012 is 1 · 22 + 0 · 21 + 1 · 20 = 5 i.e.
denary five.
(When we write a binary number, we use a minimal representation absent of leading zeroes unless we are told to write
the number in a fixed and given number of bit or digit.)

12.3.1 Convert Binary into Denary
This is straightforward. It follows from the definition.

Method 12.2 (Convert binary into denary). Find the magnitude or value x of the 5-bit binary number (n = 5) with
bin(x) = 11001. Generates all powers of 2 starting with 20 on top of the right-most bit of the binary number until we
reach the left-most bit. Multiply the power with corresponding bit and add all partial products.

24 23 22 21 20

· + · + · + · + ·
1 1 0 0 1 =

16 + 8 + 0 + 0 + 1 = 25

Thus x = |x|= 25.

A partial product is either zero or the power of two!

12.3.2 Properties of binary numbers
Fact 12.1 (Number of bits for natural x > 0). The number m of bit (no leading zeroes) of bin(x) of a natural number
x > 0 is given by m = blgxc+1 = dlg(x+1)e.

Example 12.6. Thus for 1 we need 1 bit, for 2 i.e. 102 we need two, for 4 i.e. 1002 we need three and for 7 i.e. 1112
we also need three.

Proof. We have that any natural number x can be bracketed between two consecutive integer powers of 2. That is for
x, there exists an integer m > 0 such that 2m−1 ≤ x ≤ 2m−1. All those integers such as x in that range have m bit in
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12.3. BINARY NUMBERS 293

their binary representation bin(x). Natural numbers 0≤ y < 2m−1 need m−1 or fewer bits in bin(y). They can also be
shown in m-bit by using a number of leading zeroes as shown in Example 12.7.

The range of x with leading (leftmost) bit one is 2m−1 ≤ x ≤ 2m− 1 can be rewritten as 2m−1 ≤ x < 2m. Taking
logarithms base two we have m−1≤ lgx < m.

2m−1 ≤ x ≤2m−1

2m−1 ≤ x <2m

m−1≤ lg(x) <m.

m−1≤ blg(x)c ≤ lg(x) <m.

Since blg(x)c ≤ lg(x) and by the last inequality above less than m, we have that consecutive integers m−1 and m are
the only two integers surrounding lg(x). If blg(x)c ≤ lg(x) cannot be m it should be m−1 i.e. m−1 = blgxc implying
m = blgxc+1.

Similarly,

2m−1 ≤ x ≤2m−1

2m−1 +1≤ (x+1) ≤2m

2m−1 < (x+1) ≤2m

m−1 < lg(x+1) ≤m.

m−1 < lg(x+1)≤ dlg(x+1)e ≤m.

Since dlg(x+1)e> m−1 and dlg(x+1)e ≤ m, there can be only one possibility that dlg(x+1)e= m.

Example 12.7 (Fixed-width vs Minimal-width).

0,1 represented in binary with 1 bit as 0,1
0,1,2,3 represented in binary with 2 bits as 00,01,10,11

0,1,2,3,4,5,6,7 represented in binary with 3 bits as 000,001,010,011,100,101,110,111
0−15 represented in binary with 4 bits as 0000−1111

. . .

0 . . .2m−1 represented in binary with m bits as 00 . . .0︸ ︷︷ ︸
m bits

−1 . . .1︸ ︷︷ ︸
m bits

Exercise 12.3 (m bit for a natural number). What is the range of natural numbers that can be represented with m
bit starting from zero? What is the smallest and largest natural number with m bit? How many natural numbers in
total with m bit?

Proof. The answer is 2m. The range is 0 . . .2m−1, with 0 being the smallest and 2m−1 the largest.

Exercise 12.4 (m ones). The value x of m-bit natural number bin(x) = 1 . . .1︸ ︷︷ ︸
m ones

is x = 2m−1.

Exercise 12.5 (One followed by m−1 zeroes). The value x of m-bit natural number bin(x) = 1 0 . . .0︸ ︷︷ ︸
m−1 zeroes

is x = 2m−1.
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294 CHAPTER 12. NUMBER SYSTEMS

12.4 Octal Numbers
Definition 12.11 (Octal notation of a natural number). A natural number a is denoted in radix-8 as the n-digit
sequence oct(a) = an−1an−2 . . .a0, where ai ∈ {0,1,2,3,4,5,6,7} for all 0 ≤ i < n. For oct(a) in octal notation its
magnitude and value a is

a = |a|=
i=n−1

∑
i=0

ai ·8i.

Definition 12.12 (oct(x,n)). We shall use the notation oct(x,n) to denote the n-digit notation of denary x in octal
representation. (Leading zeroes are used to pad the result to n digit octal.)

Thus oct(2,5)= 00002 and oct(8,2)=oct(8,1)=10. Thus if n is smaller than the minimal number of digits to represent
the natural number x, then n is ignored, and so was in oct(8,1).

Example 12.8. 1018 indicates an octal i.e. radix-8 integer by default. We might also write oct(a) = 101 or 0o101 and
rarely and dangerously 0101. (In fact this author never uses the latter writing.) We read 1018 as ’octal one zero one’
or ’one zero one octal’ but never ’one hundred one’ or ’one hundred and one (units)’. And by the way a = 65, that is
oct(65) = 101, since 1018 is 1 ·82 +0 ·81 +1 ·80 = 65 i.e. denary sixty-five.
(When we write an octal number, we use a minimal representation absent of leading zeroes unless we are told to write
the number in a fixed and given number of digits.)

12.4.1 Convert Octal into Denary
This is straightforward. It follows from the definition.

Method 12.3 (Convert octal into denary). Find the magnitude or value x of the 5-digit octal number (n = 5) with
oct(x) = 11001. Generates all powers of 8 starting with 80 on top of the right-most digit of the octal number until we
reach the left-most digit. Multiply the power with corresponding digit and add all partial products.

84 83 82 81 80

· + · + · + · + ·
1 1 0 0 1 =

4096 + 512 + 0 + 0 + 1 = 4609

Thus x = |x|= 4609.
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12.5. HEXADECIMAL NUMBERS 295

12.5 Hexadecimal Numbers
Definition 12.13 (Hexadecimal notation of a natural number). A natural number a is denoted in radix-16 as the
n-character sequence hex(a) = an−1an−2 . . .a0, where ai ∈ {0,1,2,3,4,5,6,7,8,9,a,b,c,d,e, f} for all 0 ≤ i < n, or
equivalently ai ∈ {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F} for all 0 ≤ i < n. (One might use hex(a) for the former and
HEX(a) for the latter usage.) For hex(a) or HEX(a) in hexadecimal notation its magnitude a is

a = |a|=
i=n−1

∑
i=0

Ai ·16i,

where Ai = ai if ai ∈ {0,1,2,3,4,5,6,7,8,9}, Ai = 10 if ai = a or ai = A, Ai = 11 if ai = b or ai = B, Ai = 12 if ai = c
or ai =C, Ai = 13 if ai = d or ai = D, Ai = 14 if ai = e or ai = E, Ai = 15 if ai = f or ai = F.

Definition 12.14 (hex(x,n) or HEX(x,n)). We shall use the notation hex(x,n) or HEX(x,n) to denote the n hexadecimal-
digit notation of denary x in hexadecimal representation. (Leading zeroes are used to pad the result to n digit hex-
adecimal.)

Thus hex(10,2)= 0a, HEX(10,2)=0A and HEX(16,1)=10. Thus if n is smaller than the minimal number of digits
to represent the natural number x, then n is ignored, and so was in HEX(16,1).

Example 12.9. 10116 indicates a hexadecimal i.e. radix-16 integer by default. We might also write hex(a) = 101
or HEX(a) = 101 or 0x101 or 0X101. We read 10116 as ’hex one zero one’ or ’one zero one hexadecimal’ or
’hexadecimal one zero one’ or ’one zero one hex’, but never ’one hundred one’ or ’one hundred and one (units)’. And
by the way a = 257, that is oct(257) = 101, since 10116 is 1 ·162 +0 ·161 +1 ·160 = 257 i.e. denary two-hundred fifty
seven. For 1F16 we prefer to use 0X1F or HEX(a) = 1F. Otherwise we could use 0x1 f or hex(a) = 1 f . In this latter
case a = 31.

12.5.1 Convert Hexadecimal into Denary
This is straightforward. It follows from the definition.

Method 12.4 (Convert hexadecimal into denary). Find the magnitude or value x of the 5-digit hexadecimal number
(n = 5) with hex(x) = 11001. Generates all powers of 16 starting with 160 on top of the right-most digit of the octal
number until we reach the left-most digit. Multiply the power with corresponding digit and add all partial products.
Before you do the multiplication, if a digit, is a letter, convert it into the corresponding ordinal value between 10 and
15.

164 163 162 161 160

· + · + · + · + ·
1 1 0 0 1 =

65536 + 4096 + 0 + 0 + 1 = 69633

Thus x = |x|= 69633.

Method 12.5 (Convert hexadecimal into denary). Find the magnitude or value x of the 3-digit hexadecimal number
(n = 3) with HEX(x) = A0B.

162 161 160

· + · + ·
A(10) 0 B(11) =

2560 + 0 + 11 = 2571

Thus x = |x|= 2571.
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296 CHAPTER 12. NUMBER SYSTEMS

12.6 Conversions from one radix into another one
Exercise 12.6. 101 is radix-10, radix-2, radix-8, radix-16 representation of 101, 5, 65, 257 respectively.

Exercise 12.7. 81 cannot be in radix-2, radix-8 because it uses an 8 (radix-10 and radix-16 are only possibilities.)

Exercise 12.8. AB cannot be in radix-10, radix-2, radix-8, because digits A,B can only exist in radix-16.

An integer of an arbitrary radix can be converted into denary either by following the definition or use a left to right
or right to left scan of the digits of the integer.

12.6.1 Convert Arbitrary Radix-b natural number into Radix-10
We can convert a radix-b natural number into radix-10 either left-to-right or right-to-left. The method below is left-to-
right.

Method 12.6 (Radix-b to Radix-10: left to right). We can convert a radix-b natural number into radix-10 either
left-to-right or right-to-left. The example below is left-to-right for b = 2.

Algorithm Radix-b-to-Radix-10 (by way of example Radix-2 -> Radix-10)

RES*b + t -> RES (> bit read) or

b=2; // b is source bse (t: bit read)

RES=0; 0 -> RES 1 0 1 0 1 1

repeat until all bit are read 0*b + 1 -> 1 >1 0 1 0 1 1

read_next_bit t; 1*b + 0 -> 2 1 >0 1 0 1 1

RES = RES * b +t; = 2*b + 1 -> 5 1 0 >1 0 1 1

5*b + 0 -> 10 1 0 1 >0 1 1

10*b + 1 -> 21 1 0 1 0 >1 1

21*2 + 1 -> 43 1 0 1 0 1 >1

return(RES);

12.6.2 Convert Radix-2 (binary) into Radix-8 (octal)
Method 12.7 (Radix-2 to Radix-8: Groups of 3 bit). For natural number a for which bin(a) is available, its octal
notation can be derived easily by grouping bits into groups of three right to left and converting the three-bit binary
of a group into the corresponding octal digit using the Table of Fact 12.3. (The leftmost group might have its binary
digits padded with leading zeroes to have three bits.)

Example 12.10.’ 11’111’111 : Group into groups of 3 bits : Step 1

’011’111’111 : Add leading zeroes left group : Step 2

3 7 7 : Convert triplets into octal : Step 3 [Use also Table of Fact 6.1]

0o377 : Output : Step 4

12.6.3 Convert Radix-2 (binary) into Radix-16 (hexadecimal)
Method 12.8 (Radix-2 to Radix-16: Groups of 4 bit). For natural number a for which bin(a) is available, its
hexadecimal notation can be derived easily by grouping bits into groups of four right to left and converting the four-
bit binary of a group into the corresponding hexadecimal digit using the Table of Fact 12.3. (The leftmost group might
have its binary digits padded with leading zeroes to have four bits.)

Example 12.11.’1111’1111 : Group into groups of 4 bits : Step 1.

’1111’1111 : Add leading zeroes left group : Step 2

F F : Convert quadruplets into hex : Step 3 [Use also Table of Fact 6.1]

0XFF : Output using A-F : Step 4

or

0xff : Output using a-f : Step 4
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12.6. CONVERSIONS FROM ONE RADIX INTO ANOTHER ONE 297

12.6.4 Convert Radix-10 natural number into Radix-2

Method 12.9 (Radix-10 to Radix-2: Right to Left).
Input : Denary (radix-10) natural number a.
Output: Binary representation bin(a) of a. (Right to left.)

Step 1. Set X = a. Bit sequence will be generated right-to-left, least-to-most significant.
Step 2. If X is even, generate a 0, set X = X/2, and Go to Step 4; otherwise (X odd) go to Step 3.
Step 3. If X is odd, generate a 1 and set X = (X−1)/2. Go to Step 4.
Step 4. If X is 0 go to Step 5, else go to Step 2 and repeat.
Step 5. Output the result (write it down properly).

12.6.5 Convert Radix-10 natural number into Radix-2

Method 12.10 (Radix-10 to Radix-2: Left to Right).

Input : Denary (radix-10) natural number a.
Output: Binary representation of bin(a) of a. (Left to right.)

Step 1. Starting with 1, compute by doubling 20,21, . . . ,2m the largest 2m ≤ a. Set X = a. P = 2m.
Step 2. If X is equal to 0 Go to Step 5 else continue to Step 3.
Step 3. If X ≤ P output ’1’ , set X = X−P, P = P/2. Go to Step 2.
Step 4. If X > P output ’0’ , set P = P/2. Go to Step 2.
Step 5. Done.

12.6.6 Convert Radix-10 into Radix-b

Theorem 12.1 (Representation of natural numbers in radix-b). The representation of natural number a in radix-b
means base(a,b) = an−1an−2 . . .a0, where ai ∈ {0,1, . . . ,b−1}, and a = an−1 ·bn−1 + . . .+a1 ·b+a0. Integer n is the
number of digits in the representation. Radix-b is also known as the base. Moreover 0≤ ai < b for all 0≤ i < n. a0 is
the least significant digit (or rightmost digit) and an−1 is the most significant digit (or leftmost digit).

Example 12.12. In order to convert say denary integer 140 into a radix-2 (aka binary) integer we can perform
repeated division

Proof.

140 = 2 ·70+0
70 = 2 ·35+0
35 = 2 ·17+1
17 = 2 ·8+1
8 = 2 ·4+0
4 = 2 ·2+0
2 = 2 ·1+0
1 = 2 ·0+1

Reading the remainders bottom to top and writing them left to write we claim that 140 = (10001100)2. It is not
difficult to confirm this.
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298 CHAPTER 12. NUMBER SYSTEMS

12.7 Signed Integers
As we mentioned earlier in the previous section, a byte or a collection of bytes (e.g. a word) can be viewed as the
binary representation of a natural number or an ASCII symbol, or a Unicode Standard symbol, or UTF-8 or UTF-16
that encodes Unicode symbols. (And ASCII symbols are part of Unicode as well.)

Of interest in this section is the representation of not just natural numbers (positive or non-negative integer num-
bers) but of integer numbers in general: positive, negative, or zero. We call the latter signed integers to stress that they
include all three groups.
Fixed-width. We describe some fixed width methods that represent signed integers with one, two, or four bytes: they
can be extended to any fixed number of bytes, e.g. eight.

Definition 12.15 (N byte signed integers). If we were given N bytes i.e. 8N binary digits the number of positive,
negative and zero values that can be represented is an even number and equal to 28N . If the number of positive integer
values that can be represented is p, the number of negative values is n and there is a single zero, then n+ p+1 = 28N

implies that n+ p must be an odd number: we cannot represent the same number of positive and negative values,
unless we have more than one representation of zero.

Exercise 12.9 (N = 1: 8-bit representation). If we use 1B, which is 8 bit, to represent a natural number (i.e. unsigned
integer), we can represent with that byte 28 = 256 consecutive numbers from 0 to 255.
If we try to represent an integer (i.e. signed integer) we need to think about the representation of the sign (positive or
negative in one bit) and the representation itself. If we attempt to represent in binary 27 = 28/2 = 128 negative values,
the remaining values must represent the zero and no more that 127 positive values.

8-bit unsigned All integers from 0 to 255

8-bit signed (two’s complement) All integers from -128 to -1 , 0 , 1 to 127

We present three representations of signed integers: signed mantissa, one’s complement, and two’s complement.
All three of them use the leftmost bit as a sign bit indicator: one indicates a negative number and a zero a positive
number.

Caution: We shall use the term leftmost bit and most-significant bit very carefully. In signed integer representa-
tion, the leftmost bit is a sign bit. The most significant bit of the number is the one to the right of the sign bit i.e. the
second from left bit.
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12.8. UNSIGNED INTEGERS 299

12.8 Unsigned Integers
Definition 12.16 (n-bit unsigned integer). An n-bit unsigned integer N has

• (i) no sign bit

• (ii) all n bits represent the magnitude of the integer that is |N|.

2n positive values and zero can be represented. The range of integers is 0,1, . . . ,2n−1, that is 0≤ N < 2n or |N|< 2n.

Fact 12.2 (Multiplication by a power of two). If n-bit integer N is multiplied by 2k for some integer k > 1, then the
result M = N× 2k has (n+ k) bits. The binary representation of M is N shifted left k bit positions (and filling them
with zeroes). In other words, the binary representation of M is the concatenation of the binary representation of N
with a bit sequence of k zero bits.

Exercise 12.10. Let N = 5 whose binary representation in n = 3 is 101. The M = N×25 = 5×32 = 160. Its binary
representation is the concatenation of N’s 101 and the five zeroes implied by 25 i.e. 00000. The result is 10100000 as
needed. Note that 25 = 32 has binary representation 100000 i.e. a one followed by five zeroes.

Fact 12.3 (Integer division by a power of two). If n-bit integer N is divided by 2k for some integer k > 1, then the
result M = bN/2kc has (n− k) bits. The binary representation of M is the binary representation of N after shifting N
to the right k bit positions and discarding the k bits past the righmostbit position, or in other words by isolating the
n− k bits of N.

Exercise 12.11. Let N = 160 whose binary representation in n = 8 is 10100000. Then M = bN/26c= b160×64c= 2.
If N 10100000 is shifted right 6 positions 100000 gets discarded and we are left with 10. Equivalently the n− k =
8−6 = 2 leftmost bit position are extracted. In either case we are left with 10 which is 2 in radix-10, as needed.



DRAFT. C
op

yri
gh

t (
c)

20
21

-20
24

.

Alex
. Gerb

ess
iot

is.

All r
igh

ts
res

erv
ed

Not
to

be
po

ste
d on

lin
e

or
on

the
web

or
to

be

mad
e av

ail
ab

le
ou

tsi
de

of

co
py

rig
ht

ho
lde

r’s
web

-pa
ge

300 CHAPTER 12. NUMBER SYSTEMS

12.9 Signed Mantissa
Definition 12.17 (n-bit Signed Mantissa). An n-bit integer N in signed mantissa representation has

• (i) a sign bit that is its leftmost bit, and

• (ii) the remaining n−1 bits represent the magnitude of the integer that is |N|.

2n−1 positive and as many negative integer numbers can be represented including zeroes (a positive and a negative
one). The range of integers is −2n−1 +1, . . . ,−1,−0,+0,+1, . . . ,+2n−1−1, that is,
−2n−1 < N < 2n−1 or |N|< 2n−1.

Exercise 12.12 (8-bit Signed Mantissa). In 8-bit signed mantissa, the leftmost bit is the sign and the remaining 7 bits
the magnitude of the signed integer. Thus 28 = 256 integer values can be represented, 128 positive and 128 negative.
One of those positive and one of those negative values is +0 and −0 shown below.

01234567

0 0 0 0 0 0 0 0
}

Signed Mantissa of positive zero +0
01234567

1 0 0 0 0 0 0 0
}

Signed Mantissa of negative zero −0
01234567

0 0 1 0 1 0 1 1
}

Signed Mantissa of +43
01234567

1 0 1 0 1 0 1 1
}

Signed Mantissa of −43

For the +43 and −43 represenation, the leftmost of the 8 bits is the sign and varies. The remaining 7 righmost
bits is the magnitude: |−43| = |43| = 43 and both signed integers have the same magnitude. If we convert the 8-bit
sequence from radix-2 to radix-10 we get 43 for +43 obviously, but 171 for −43’s binary representation. Note that
171 = 128+43 and 128 accounts for the sign bit contribution.

Thus if N is a positive integer number that is N > 0 and such that N < 2n−1 the signed mantissa representation of
N is the same as the 8-bit unsigned integer binary representation of N: the two representation are identical for positive
numbers.

For −N, a negative number, the signed mantissa representation of −N is the same as the 8-bit unsigned integer
binary representation of 128+N = 27 +N.
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12.10. ONE’S COMPLEMENT 301

12.10 One’s Complement
Definition 12.18 (n-bit One’s complement). An n-bit integer N in one’s complement representation has

• (i) a sign bit that is its leftmost bit, and

• (ii) the remaining n−1 bits represent the magnitude of integer N >= 0 or its complement otherwise.

2n−1 positive and as many negative integer numbers can be represented including zeroes (a positive and a negative
one). The range of integers is −2n−1 +1, . . . ,−1,−0,+0,+1, . . . ,+2n−1−1, that is,
−2n−1 < N < 2n−1 or |N|< 2n−1.

Signed mantissa and one’s complement represent differently the negative integers including the negative zero.

Exercise 12.13 (8-bit One’s complement). In 8-bit one’s complement, the leftmost bit is the sign and the remaining 7
bits the magnitude of the signed integer or the complement of the magnitude. By complement we mean flipping ones
into zeroes and zeroes into ones. Thus 28 = 256 integer values can be represented, 128 positive and 128 negative.
One of those positive and one of those negative values is +0 and −0 shown below. The positive zero, as before
is represented as 00000000. The negative zero is 11111111. This is because in the bit sequence the sign bit is 1
indicating a negative number is represented. In order to retrieve the magnitude of this number, we first extract the 7
righmost bits 1111111 and then we flip them and they become 0000000. Thus the negative number represented has
magnitude 0 and this is −0.

01234567

0 0 0 0 0 0 0 0
}

One’s complement : positive zero +0
01234567

1 1 1 1 1 1 1 1
}

One’s complement : negative zero −0
01234567

0 1 1 1 1 1 1 1
}

One’s complement : +127
01234567

1 0 0 0 0 0 0 0
}

One’s complement : −127
01234567

0 0 1 0 1 0 1 1
}

One’s complement : +43
01234567

1 1 0 1 0 1 0 0
}

One’s complement : −43
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12.11 Two’s Complement
Definition 12.19 (n-bit Two’s complement). An n-bit integer N in two’s complement representation has

• (i) a sign bit that is its leftmost bit, and

• (ii) If N = 0 its representations is n zero bits.

• (iii) If 2n−1 > N > 0 the binary representation of N is the same as the unsigned (and also the one’s complement)
representation of N.

• (v) If −2n−1 ≤ N < 0 the binary represenation of N is derived by writing down the unsigned bit representation
of |N| in n bits, flipping all n bits and adding one to the result.

2n−1− 1 positive and 2n−1 negative integer numbers can be represented including one zero (a 0-bit sequence). The
range of integers is −2n−1, . . . ,−1,0,+1, . . . ,+2n−1−1, that is, −2n−1 ≤ N < 2n−1.

Exercise 12.14 (8-bit Two’s complement). In 8-bit Two’s complement, the leftmost bit is the sign and the remaining
7 bits can be used to determine the magnitude of the integer. Thus 28 = 256 integer values can be represented, 127
positive and 128 negative; a zero which is an 8-bit all zero sequence has the same sign bit as the positive numbers.
The zero is represented as 00000000.

01234567

0 0 0 0 0 0 0 0
}

Two’s complement : zero 0

01234567

0 1 1 1 1 1 1 1
}

Two’s complement MAXINT: +127

01234567

1 0 0 0 0 0 0 0
}

Two’s complement MININT: −128

01234567

1 0 0 0 0 0 0 1
}

Two’s complement : −127

01234567

0 0 0 0 0 0 0 1
}

Two’s complement : +1

01234567

1 1 1 1 1 1 1 1
}

Two’s complement : −1

01234567

0 0 1 0 1 0 1 1
}

Two’s complement : +43

01234567

1 1 0 1 0 1 0 1
}

Two’s complement : −43

From radix-10 to two’s complement. If we start with a negative integer say −128 we find its two’s complement
representation as follows. Its magnitude is |− 128| = 128. We write down the magnitude in 8-bit as 10000000. We
first flip the bits to get 01111111 and then add one to the result to get 10000000. This is the two’s complement of
−128, also shown above. For−43 we start with its magnitude |−43|= 43 in 8-bit binary i.e. 00101011. We then flip
it to get 11010100 and add one to the result to get 11010101. The latter’s is two’s complement of −43.

From two’s complement to radix-10. Given the two’s complement representation of an integer say in 8-bit we
can retrieve the value of the integer as follows. Let the 8-bit two’s complement be 11111111. The leftmost bit is the
sign bit and it is one. This means we have a negative integer. We first flip all the bits to get 00000000 and then add
one to the result. We get 00000001. This is the magnitude of the negative integer in unsigned representation, which is
one. Thus 11111111 is the binary representation of −1.
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12.11. TWO’S COMPLEMENT 303

For the two’s complement bit sequence 10000000 we note that it represents a negative number, after flipping we
get 01111111 and adding one we get 10000000. The latter in unsigned representation is a 128. This means that the
original 10000000 is −128.

For the two’s complement bit sequence 10000001 we note that it represents a negative number, after flipping we
get 01111110 and adding one we get 01111111. The latter in unsigned representation is a 127. This means that the
original 10000001 is −127.

Method. Thus the same method works both ways: for a negative number (either because it has a − in its radix-10
representation or a sign bit of 1 in its two’s complement representation) flip and add one to the result.
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304 CHAPTER 12. NUMBER SYSTEMS

12.12 Fixed-point real numbers
Fact 12.4 (n-bit fixed-point real numbers). One easy way to deal with real numbers is to assume that ni of the n bits
represent the integer part of the real number and nd of the n bits represent the decimal part of it, where ni +nd = n.

Exercise 12.15 (8-bit fixed-point real number).
The 8-bit binary sequence represents a fixed-point real number R with ni = nd = 4. The decimal point is implied after
the first four leftmost bit positions and thus the integer part of R is in binary the four leftmost bits i.e. 0001 or in
radix-10, Ri = 0×23 +0×22 +0×21 +1×20 = 1. For the decimal part we first isolate the bit sequence to the right
of decimal point 1100 and then convert it to radix-10 according to Rd = 1×2−1+1×2−2+0×2−3+0×2−4 = 0.75.
Thus R = Ri +Rd = 1.00+0.75 = 1.75.

01234567

0 0 0 1 1 1 0 0
}

n-bit fixed point with ni = 4

If we have ni = 5 and nd = 3, the same bit sequence implies a decimal point after the first five leftmost bit positions
and thus the integer part of R is in binary the five leftmost bits i.e. 00011 or in radix-10, Ri = 0×24+0×23+0×22+
1× 21 + 1× 20 = 3. For the decimal part we first isolate the bit sequence to the right of decimal point 100 and then
convert it to radix-10 according to Rd = 1×2−1 +0×2−2 +0×2−3 = 0.50. Thus R = Ri +Rd = 3.00+0.50 = 3.50.

01234567

0 0 0 1 1 1 0 0
}

n-bit fixed point with ni = 5
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12.13. FLOATING-POINT REAL NUMBERS 305

12.13 Floating-Point real numbers

Definition 12.20 (Normalized real numbers). A normalized real number has a bit that is one to the immediate left of
the decimal point or has only one bit on the left of the decimal point.

Fact 12.5 (Division by a power of two). If n-bit real number N is divided by 2k for some integer k > 1, then the
result M = N/2k has (n− k) integer bits and k additional decimal bits. The binary representation of M is the binary
representation of N after shifting N to the right k bit positions.

Exercise 12.16. Real number 100. is not normalized (first part of the definition). There is a period to the right of the
second zero bit. Because of this, on the left of the decimal point there is a zero. Moreover there are three bits to the
left of the decimal point.

Exercise 12.17. Let N = 160 whose binary representation in n = 8 is 10100000. Then M = N/26 = 160×64 = 2.50.
If N 10100000 or 1010000. is shifted right 6 positions and we are left with 10.10000 in binary. (The implied decimal
points is beteen the second and third leftmost bit, if the real number is viewed as fixed-point.) Viewing the result in
fixed point it gives 1×21 +0×20 +1×2−1 = 2.5 as needed.

Exercise 12.18 (Normalizing a real or integer number). Real number N= 100. is not normalized. However M = N/22

is normalized. In other words, N = M×22. Given that M = 1.00 or just 1., the N can be rewritten as N = 1.0×22.
We have normalized N. It consists of an integer part 1 that is on the left of the decimal point, a mantissa .0 that is on
the right of the decimal point, and an exponent 2 (not the base).

Exercise 12.19 (Normalization resolved). Real number N= 101. is not normalized according to the refined definition
requiring only one bit on the left of the decimal point. However M = N/22 is normalized, or N = M× 22. Then
N = 1.01×22. The integer part is 1, the mantissa is 01 and the exponent is 2.

Theorem 12.2 (Properties of real numbers and integers). Let a,b,c be integer or real numbers. The following proper-
ties are true.
(The last or is disjunctive, not exclusive.)

a+b = b+a (commutative addition)
(a+b)+ c = a+(b+ c) (associative addition)
a+0 = 0+a = a (identity element for addition is zero)
a+(−a) = (−a)+a = 0 (inverse of every element exists for addition)
ab = ba (commutative multiplication)
(ab)c = a(bc) (associative multiplication)
a ·1 = 1 ·a = a (identity element for multiplication is one)
a(b+ c) = ab+ac (multiplication is distributive over addition)
ab = 0 ⇐⇒ a = 0 or b = 0 (integral domain).

Definition 12.21 (IEEE 754-1985 Standard). Real numbers in floating-point are represented using the IEEE 754-1985
standard. Be reminded that in IEEE 754-1985 neither addition nor multiplication are associative operations. Thus it
is possible that (a+b)+ c 6= a+(b+ c). Thus errors can accumulate when we add.



DRAFT. C
op

yri
gh

t (
c)

20
21

-20
24

.

Alex
. Gerb

ess
iot

is.

All r
igh

ts
res

erv
ed

Not
to

be
po

ste
d on

lin
e

or
on

the
web

or
to

be

mad
e av

ail
ab

le
ou

tsi
de

of

co
py

rig
ht

ho
lde

r’s
web

-pa
ge

306 CHAPTER 12. NUMBER SYSTEMS

12.13.1 IEEE-754: Single Precision
Definition 12.22 (Normalized real numbers: Mantissa, Exponent, Significand). A (fully) normalized real number R is
(or can be converted into) the binary notation form R =±×1.xxxx×2yyyy = s×1.X×2Y , the positive or negative sign
becomes a 0 or 1 bit, the part 1.xxxx or 1.X is known as the significand (D) of which the integer part is one, and
the rest, known as the fraction or mantissa, is xxxx or X as shown. The yyyy or Y is the exponent. The significand
D is a small real number between 1 and 2 (i.e. normalized).

Definition 12.23.
S:1 E:(exponent):8 F:(Mantissa):23

}
SP: 32-bit

Fact 12.6 (IEEE-754 Single Precision(SP)). In IEEE-754, single precision floating-point numbers are derived from
a normalized input of the form R = s× 1.X × 2Y , where, s is the sign, a ±1, the significand D = 1.X is between 1.0
and 2.0, and the exponent Y is an integer. The resulting IEEE-754 notation also has three given parts, a sign bit S, an
exponent E and a mantissa F also known as fraction, and an implied part known as the bias B.

• S is the the leftmost bit with 0 indicating non-negative and 1 indicating non-positive

• E is the 8-bit exponent,

• F is the 23-bit fraction, (fraction without integer part),

• B is the bias (and set B = 127).

There are two zeroes in the representation: an all-zero E and F has sign the sign of the sign bit S. Exponents that
are all-0 and all-1 are reserved. The quadraplet (S,E,F,B) determines the quintuplet (S,E,F,B,D = 1+F). The
floating-point number represented by (S,E,F,B,D) is

R = (1−2S)× (1+F)×2E−B = (1−2S)×D×2E−B

The relative precision in SP with a 23-bit fraction is ≈ 2−23, thus offering 23log10 (2)≈ 6 decimal digits of precision.

Exercise 12.20 (Smallest SP (absolute) value). Smallest E = 1 and then E −B = 1− 127 = −126. The smallest
fraction F = all−0, and then 1.F = (1+F) = 1.0. The smallest (absolute value) numbers are then ±1.0×2−126.

Exercise 12.21 (Largest SP (absolute) value). Largest E in binary is 1111110 and thus E = 254. Then E −B =
254− 127 = 127. The largest fraction F = all−1, and then 1.F = (1+ F) ≈ 2.0. The largest (absolute value)
numbers are then ±2.0×2127.

Exercise 12.22 (Radix-10 to SP). Let R =−0.875 with the fractional part being .111. Then R = (−1)1×1.11×2−1.
We obviously have S = 1, the fraction is F= 110 . . . 0. We also have E =−1+B =−1+127 = 126. The exponent E
in 8-bit binary is E= 01111110.

S E F
10111111 01000000 00000000 00000000 = 1 | 01111110 | 1000000 00000000 00000000

012345678910111213141516171819202122232425262728293031

1 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
}

R =−0.875 in SP
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12.13. FLOATING-POINT REAL NUMBERS 307

12.13.2 IEEE-754: Double Precision
Definition 12.24.
S:1 Exponent:11 Mantissa:52

}
DP: 64-bit

Fact 12.7 (IEEE-754 Double Precision(DP)). In IEEE-754, double precision floating-point numbers are derived from
a normalized input of the form R = s×1.X×2Y , where s is the sign, a ±1, the significand D = 1.X is always between
1.0 and 2.0, and the exponent Y is an integer. The IEEE-754 DP has three given parts, a sign bit S, an exponent E and
a mantissa F also known as fraction, and an implied part known as the bias B.

• S is the leftmost bit with 0 indicating non-negative and 1 indicating non-positive,

• E is the 11-bit exponent,

• F is the 52-bit fraction, (fraction without integer part),

• B is the bias (and set B = 1023).

There are two zeroes in the representation: an all-zero E and F has sign the sign of the sign bit S. Exponents that
are all-0 and all-1 are reserved. The quadraplet (S,E,F,B) determines the quintuplet (S,E,F,B,D = 1+F). The
floating-point number represented by (S,E,F,B,D) is

R = (1−2S)× (1+F)×2E−B = (1−2S)×D×2E−B

The relative precision in DP with a 52-bit fraction is roughly 2−52, thus 52log10 (2)≈ 13 decimal digits of precision.

Exercise 12.23 (Smallest DP (absolute) value). Smallest E = 1 and then E−B = 1− 1023 = −1022. The smallest
fraction F = all−0, and then 1.F = (1+F) = 1.0. The smallest (absolute value) numbers are then ±1.0×2−1022.

Exercise 12.24 (Largest DP (absolute) value). Largest E in binary is 111111111110 and thus E = 2046. Then E−B=
2046− 1023 = 1023. The largest fraction F = all−1, and then 1.F = (1+F) ≈ 2.0. The largest numbers are then
±2.0×21023.

Exercise 12.25 (Radix-10 to DP). Let R =−0.875 with the fractional part being .111. Then R = (−1)1×1.11×2−1.
We obviously have S = 1, the fraction is F= 110 . . . 0. We also have E =−1+B =−1+1023 = 1022. The exponent
E in 11-bit binary is E= 01111111110.

0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

1011111111101100000000000000000000000000000000000000000000000000
}

R =−0.875 in DP
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308 CHAPTER 12. NUMBER SYSTEMS

Exercise 12.26. What number is the 32-bit real number in IEEE-754 110000001010....0? Since the sign bit is S= 1
we know the number is negative. The following 8 bits are the exponent E 10000001 i.e. they represent E +B = 129.
Then the exponent is E = 129− 127 = 2. The fractional part is F=010 . . .0 and thus D = 1.010 . . .0. Converting D
into denary we get d = 1+1/4 = 1.25. Thus the number represented is (1−2S)×1.25×22 =−5.0

Exercise 12.27 (Patriot missile bug). Then represent 1/10 in SP. The one-tenth representation caused problems in the
1991 Patriot missile defense system that failed to intercept a Scud missile in the first Iraq war resulting to 28 fatalities.

Fact 12.8 (Smallest real greater than one). The first single precision number greater than 1 is 1+2−23 in SP. The first
double precision number greater than 1 is 1+2−52 in DP.

Note 12.2 (Same algebraic expression, two results). The evaluation of an algebraic expression when commutative,
distributive and associative cancellation laws have been applied can yield at most two resulting values; if two values
are resulted one must be a NaN. Thus 2/(1+1/x) for x = ∞ is a 2, but 2x/(x+1) is a NaN.
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12.13. FLOATING-POINT REAL NUMBERS 309

12.13.3 IEEE-754: Double Extended Precision
Definition 12.25 (Double Extended Precision).
In Double Extended Precision the exponent E is at least 15-bit, and fraction F is at least 64-bit. At least 10B are used
for a long double.

S:1 Exponent:15 Mantissa:64
}

Double Extended Precision: 80-bit

single precision (SP) 32-bit double precision (DP) 64-bit
Bias B=127 Bias B=1023
------------------------------ ------------------------------
|S| E 8-bit | F 23-bit | |S| E 11-bit | F 52-bit |

Reserved Values
E F s E F
00000000 0..0 0 0..0 0..0 is positive zero +0.0
00000000 0..0 1 0..0 0..0 is negative zero -0.0
00000000 X..X NotNormalized (1-2S) x 0.F x 2**-126
11111111 0..0 0 1..1 0..0 is positive Infinity
11111111 0..0 1 1..1 0..0 is negative Infinity
11111111 X..X NaN Not-a-Number (0/Inf,0/0,Inf/Inf)

Smallest E: 0000 0001 = 1 - B = -126
Smallest F: 0000 ... 0000 implies Smallest D: 1.0000 ... 0000 = 1.0 [normalized]
Smallest Nmbr= 0 00000001 0....0 = (1-2S) x 1.0 x 2**-126 ~ (1-2S) 1.2e-38 [normalized]

Largest E: 1111 1110 = 254 - B = 127
Largest F: 1111 ... 1111 implies Largest D: 1.1111 ... 1111 ~ 2.0 [normalized]
Largest Nmbr= 0 11111110 1....1 = (1-2S) x 2.0 x 2**127 ~ (1-2S) 3.4e38 [normalized]

Smallest E: 0000 0000 reserved to mean 2**-126 for nonzero F
Smallest F: 0000 ... 0001 implies Smallest D: 0.0000 ... 0001 = 2**-23
[unnormalized]
Smallest Nmbr= 0 00000000 0....1 = (1-2S) x 2**-23 x 2**-126 = 2**-149
[unnormalized]

Largest E: 0000 0000 reserved to mean 2**-126 for nonzero F
Largest F: 1111 ... 1111 implies Largest D: 0.1111 ... 1111 ~ 1-2**-23
[Unnormalized]
Largest Nmbr= 0 00000000 1....1 =(1-2S)x1-2**-23x2**-126 ~ 2**-126(1-2**-23)
[Unnormalized]
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12.14 ASCII, Unicode, UTF-8, UTF-16
Sequences of bits (or bytes) can be viewed as an unsigned integer (positive or non-negative integer), or signed integer
(positive or negative or zero), or a real number (fixed-point or floating-point). They can also be viewed as the repre-
sentation of a symbol (also known as ’character’) in a string. A symbol (character) can be a letter in a language (eg.
English, Greek, Central European, Chinese, etc), a digit, a punctuation mark or any other special (auxiliary) symbol.
For example, the byte in Example 12.28 and also in Example 12.29 could represent natural number 65 in 8-bit and
16-bit binary notation. It is also the ASCII (American Standard Code for Information Interchange) representation of
the letter A in English in Example 12.28 and the Unicode representation of the same letter A.

Exercise 12.28.
01234567

0 1 0 0 0 0 0 1
}

ASCII for A

Exercise 12.29.
0123456789101112131415

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
}

Unicode for A

Exercise 12.30.
01234567

0 0 1 1 0 0 0 1
}

ASCII for 1

Exercise 12.31.
01234567

0 0 0 0 0 0 0 1
}

8-bit representation of natural number 1

Fact 12.9 (ASCII). An english letter or a digit or a punctuation mark, or any other auxiliary symbol is represented
in ASCII as a 7-bit bit-sequence and stored in a single byte. The corresponding numeric value is known as the
ordinal (value) of the character. ASCII is limited to representing 128 symbols (with ’extensions’ to represent up to 256
symbols.)

Exercise 12.32 (ASCII and the first character of the alphabet). The ASCII representation of the upper-case english
letter A is 1000001. The byte view containing it is shown in Example 12.28. The ordinal value of that byte, viewed as
an unsigned integer, is 65.

Exercise 12.33 (ASCII and the digit one). The ASCII representation of the symbol that is numeric digit one (1) is
0110001. The byte view containing it is shown in Example 12.30. The ordinal value of that byte, viewed as an
unsigned integer, is 49. Natural number one (1) represented as a numerical value has the 8-bit representations shown
in Example 12.31. Thus symbol 1 has a different ordinal value than the magnitude of the binary representation of
natural number one.

Fact 12.10 (Table of ASCII characters). The table below contains the ASCII representation of all 128 ASCII symbols
arranged in 8 rows (0-7 in octal or hexadecimal) of 16 columns (0-F in hexadecimal). The ASCII code (ordinal value)
for a character in hexadecimal notation can be retrieved by concatenating the row index (code) with the column index
code.

For example A is in row 4 and column 1 i.e. its hexadecimal code is 0x41. Converting radix-16 into radix-10 we
get 65 the ordinal value for A. Its row index 4 in 4-bit binary is 0100 and 1 in 4-bit binary is 0001. Thus the code for
A is 01000001 which is 65 in decimal or 0x41 in hexadecimal. Rows 0 and 1 contain Control Characters represented
by the corresponding mnemonic code/symbol. Code 32 or 0x20 is the space symbol (empty field).
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Fact 12.11 (Unicode Standard). The Unicode Standard uses two or more bytes to represent one symbol (character).
Ordinal values in Unicode are known as code-points. The characters from U+0000 to U+FFFF form the Unicode
Standard basic multilingual plane (BMP). Characters with code-points higher than U+FFFF are called supplementary
characters. The Unicode character for an ASCII character remains the same if one adds extra zeroes (padding). Thus
the Unicode representation for an ASCII character is a zero-bit byte followed by a byte of the ASCII representation.

Example 12.29 shows the Unicode representation of letter A. The first byte is a zero-bit byte followed essentially
by the ASCII byte for A. Likewise, symbol DEL which is 0x7F in ASCII has Unicode representation (code) 0x007F.
We also write this as U+007F.

Fact 12.12 (Java char). In Java the char data type has size 2B; java uses UTF-16 representation. It can only reprent
and represents the Unicode Standard basic multilingual plane (BMP) that is the characters from U+0000 to U+FFFF.
Its minimum code-point is ’\u0000’ (or U+0000) and its maximum code-point is ’\uFFFF’ (or U+FFFF).

There are several encoding to represent Unicode symbols. One of them is UTF-8 where symbols are encoded using 1
to 6 bytes. The UTF-8 representation of an ASCII symbol is the ASCII representation of that symbol for compatibility
reasons and also for space efficiency. Another one is UTF-16 employed by Java.

Fact 12.13 (UTF-8). UTF-8 encodes characters in 1 to 6 bytes.

• ASCII symbols with ordinal values 0-127 are also Unicode symbols U+0000 to U+007F and are represented in
UTF-8 encoded as byte 0x00 to 0x7F; the seven least-significant bits of a byte is the ASCII code for the symbol
with the most-siginificant bit being a zero.

• Unicode symbols with ordinal values larger than U+007F use two or more bytes each of which has the most
significant bit set to 1.

• The first byte of a non-ASCII character is one of 110xxxxx, 1110xxxx, 11110xxx, 111110xx, 1111110x

and it indicates how many bytes there are altogether or the number of 1s following the first 1 and before the first
0 indicates the number of bytes in the rest of the sequence. All remaining bytes other than the first start with
10yyyyyy.

Exercise 12.34 (UTF-8, ASCII, Unicode). • ASCII and UTF-8 encoding look the same.

• No ASCII code can appear as part of any other UTF-8 encoded Unicode symbol since only ASCII characters
have a 0 in the most-significant bit position of a byte.

Fact 12.14 (UTF-16). UTF-16 is a character encoding that use one or two 16-bit binary sequences to encode all
1,112,604 code points of Unicode. The characters from BMP are presented with 2B (i.e. one 16-bit binary sequence),
the surrogates with 4B.

========================
ASCII CHARACTER SET

========================
==============================================================================
\ 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 NUL SOH STX ETX EOT ENQ ACK BEL BS TAB LF VT FF CR SO SI
1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US
2 ! " # $ % & ’ ( ) * + , - . /
3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4 @ A B C D E F G H I J K L M N O
5 P Q R S T U V W X Y Z [ \ ] ^ _
6 ‘ a b c d e f g h i j k l m n o
7 p q r s t u v w x y z { | } ~ DEL

===============================================================================
NUL=null BS=Backspace DLE=Datalink escape CAN=cancel
SOH=start of heading TAB=horizontal tab DC1=Device control 1 EM=endofmedium
STX=start of text LF=linefeed/newline DC2 SUB=substitute
ETX=end of text VT=vertical TAB DC3 ESC=escape
EOT=end of transmission FF=form feed/newpage DC4 FS=fileseparator
ENQ=enquiry CR=carriage return NAK=negative ACK GS=groupseparator
ACK=acknowledge SO=shift out SYN=synchronous idle RS=recrdsepa.
BEL=bell SI=shift in ETB=endOFtransblock US=unitsepar.
===============================================================================
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312 CHAPTER 12. NUMBER SYSTEMS

UTF-8 ENCODING
===============================================================================

UTF-8 Number of bits in code point Range
0xxxxxxx 7 00000000-0000007F
110xxxxx 10xxxxxx 11 00000080-000007FF
1110xxxx 10xxxxxx 10xxxxxx 16 00000800-0000FFFF
11110xxx 10xxxxxx 10xxxxxx 10xxxxxx 21 00010000-001FFFFF
111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 26 00200000-03FFFFFF
1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 31 04000000-FFFFFFFF

===============================================================================
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Chapter 13

Operating Systems

13.1 Operating System Page Tables
In operating systems, sometimes we need to do bit manipulations or extraction of information.

Logical Address L ∈ {0, . . . ,n− 1}. A logical address L (sometimes is known as a linear address or a virtual
address) refers to memory in general and can be considered to be a natural number (unsigned integer) in the range
0 . . .n−1. The size of memory addressed is then n. In practice n is a power of two.

Number of bit of logical address: lgn). This means that all memory addresses from 0 through n− 1 can be
represented with the same fixed number of bit (binary digit) needed for the representation of the largest integer in the
range, n−1. By way of Fact 12.1 this is lgn if we substitute a = n−1 in Fact 12.1, and given that n is (assumed to be)
a power of two no ceilings or floors are needed.

Page size s. In operating systems a flat logical address space of n bytes is split into pages of equal size. The size
of a page (pagesize) is s and s is also a power of two.

Offset T ∈ {0, . . . ,s−1}. Every byte of a page is addressable by an index or address T that is known as an offset.
Offsets therefore are in the range 0 . . .s−1, and thus we need lgs bit to describe a fixed width offset.

Number of pages of logical address space: G = n/s. Thus an n byte address space can be split into G = n/s
pages, each of size s bytes.

Divisions involving powers: shift-right operations. The fact that both n and s are powers of two helps a lot.
Division (as in n/s) is exact (the quotient is integer and remainder is zero). Moreover we can avoid division since both
n and s are powers of two by subtracting the exponents of n and s if expressed as powers of two. Thus dividing 256
by 8 the regular way requires a division but dividing 28 with 23 requires a subtraction between the exponents 8 and 3
i.e. 8−3 = 5. The result is 28−3 = 25 i.e. 32 . In fact we can avoid even that subtraction if we maintain the original
numbers and the results in binary : 256 in minimal binary representation (no leading zeroes) is 100000000 and 8 is
1000. Division of 256 = 28 by 8 = 23 is equivalent to shifting the binary representation of 256 three positions to the
right (i.e. we shift the Dividend 256 three positions to the right, with three being the exponent of the divisor with the
result being the quotient i.e. a 100000 which is binary for 32.)

Divisor Dividend ; Q= Divisor / Dividend

(Both are power of two)

256 integer-division-by 8 in-denary

---------------------------------------------------------------------

2**8 2**3 in-denary; base 2 expo notation

Q= 2**8 / 2**3 = 2**(8-3)= 2**5 = 32 in denary

bin(256)=100000000 / bin(8)= 1000

Q= SHIFTRIGHT(100000000,3) Q=0b100000

Convert a logical address to a page number and an offset: L = (P,T ). A logical memory address L in the range 0
to n−1 can be expressed then as a page number P and offset T within a page: L = (P,T ). If the number of pages is G
then P varies from 0 to G−1. If page size is s bytes, T varies from 0 to s−1.

315
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316 CHAPTER 13. OPERATING SYSTEMS

Logical address L gets mapped to pair (P,T ) of a page number P, and an offset T , where 0≤ L < n, 0≤ P < n/s,
and 0≤ T < s.

There is an easy way to obtain P and T from L: P = floor(L/s), T = L mod s. Function mod is denoted in C/C++
by the % sign to denote the integer remainder when dividing the left hand side with the right hand side. The left-hand
size (L) is the dividend, and the right-hand side (s) is the divisor of the division. The quotient is P (the page number)
and the remainder of the division is T (the offset).

13.1.1 From L to (P,T ) using divisions
Definition 13.1 (Convert a logical address to a page number with offset: L=(P,T)). A memory space of n bytes,
supports a paging system of page size s bytes. A logical (virtual) address L in that memory space can be mapped into
a page number P and offset T within that page: L = (P,T ). The mapping is as follows:

(n,s) : L = (P,T ) ⇒ P = floor(L/s), T = L mod s, 0≤ L < n, 0≤ P < n/s, 0≤ T < s.

In C/C++ floor is integer division and mod is denoted %. Thus another way to write it is to say

(n,s) : L = (P,T ) ⇒ P = (L/s), T = L%s, 0≤ L < n, 0≤ P < n/s, 0≤ T < s.

Definition 13.2 (Convert a page number with offset (P,T) into a logical address L.). Moreover, given (P,T ) we can
recover L if we know the page size s. From (P,T ) to L.

(n,s) : (P,T ) = L ⇒ L = P× s+T, 0≤ L < n, 0≤ P < n/s, 0≤ T < s.

Exercise 13.1. (To make initial calculations easy, we drop the power of two requirement.) If we have a memory of size
n = 100,000B and a paged organization with page size s = 5,000B, then we can view memory as a collection of 20
pages (n/s = 100000/5000 = 20) each of size s = 5000B. Thus an L = 23456 gets mapped to P = 23456/50000 = 4,
and T = 23456%5000 = 3456. Therefore L = (P,T ) is 23456 = (4,3456). Moreover we can retrieve L from (P,T ):
L = P× s+T . Therefore 23456 = 4×5000+3456.

13.1.2 From L to (P,T ) using bit manipulations
In binary, most information about s and G = n/s can be retrieved from the bit sequence representing L.

Definition 13.3 (L and (P,T) with bit manipulation). We view a logical address L as the concatenation of a page
number P and and an offset T . Thus L = (P,T ) becomes L = 〈P,T 〉, where 〈〉 is the concatenation operator (we used
it to denote a sequence).

P: Page Number T: Offset
}

Logical Address︸ ︷︷ ︸
L: Logical Address

Exercise 13.2. Suppose that n = 256. Then lgn = 8 and we use 8-bit addresses. Suppose that s = 8. Then lgs = 3. In
this case G = n/s = 32 = 25 i.e. 0≤ P < 25 = G. Thus we need lgG = lg32 = 5 bit for the page number P. Moreover
since s = 8, we have that 0≤ T < 23 = s. Thus we need lgs = lg8 = 3 bit for the offset T .

Example 13.1. An 8-bit logical address L in paging with page size s = 8, is thus the concatenation of a 5-bit page
number P and a 3-bit offset T . Thus L = (P,T ) becomes L = 〈P,T 〉, where 〈〉 is the concatenation operator.

P:5-bit Page Number T:3-bit Offset
}

Logical Address︸ ︷︷ ︸
L: 8-bit Logical Address
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13.1. OPERATING SYSTEM PAGE TABLES 317

Exercise 13.3. An 8-bit logical address L with bin(L) = 01011001 is given in paging with page size s = 8.

01234567

0 1 0 1 1 0 0 1
}

Logical Address︸ ︷︷ ︸
Page Number

︸ ︷︷ ︸
Offset

The logical address is the binary 01011001 which is L = 89 in denary. Since s = 8, and lgs = 3, the three rightmost
bit of L is an offset and the remaining 8−3 is a page number. The page number P is the binary 01011, the left-most
five bit of L. In denary, this is 11. Thus P = 11. The offset T is the binary 001, the right-most three bit of L. In denary,
this is 1. Thus offset T = 1. We could have done divisions and then (P,T ) = (L/s,L%s) = (89/8,89%8) = (11,1).
Moreover L = P× s+T = 11×8+1 = 89.
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318 CHAPTER 13. OPERATING SYSTEMS

13.2 Hard-Disk Drives (HDD)

• Platter (or just disk) It is a circular disk. It consists of two surfaces also known as sides: up and down.
Both sides (surfaces) can be read/written into. Thus every side of every platter has an associated mechanism
known as head to facilitate the reading/writing of information on it. All platters rotate in unison. Usually, one
platter or one side of one platter is for control purposes and unused by the user. The remaining ones are utilized
for data preservation.

• Arm and Heads The Arm contains the disk controller. Attached to the arm are the heads. The number
of heads is equal to the number of platters times two. Heads move in unison assisted by the arm. Arms/Head
move parallel to surface of platters. If you view a platter as a circular surface the arm and its attached heads
moves from the outside periphery to the inside or from the inside to the ouside periphery of a (the) platter(s).
Note that only ONE head is active for read and write even though all of them might be over a platter area.

• Track It is a concentric circular band (region) on a platter’s surface or side. Tracks might be numbered
from the outside periphery to the inside or the other way around for ease of reference. The density of tracks is
expressed in KTPI (thousands of tracks per inch)

• Cylinder All tracks of the same radius from the center of a platter, over all sides of all platters form a
cylinder. The number of tracks (over a platter) is thus equal to the number of cylinders (of the HDD).

• Sector A sector is a piece of a track at a given arc range. Every track has the same fixed number of sectors as
any other track even if tracks on the outside are longer than tracks on othe inside. Thus if tracks have 60 sectors,
the first track is between degree 0 and 6, the next one between 6 and 12 and so on. A head reads or writes a
sector worth of data.

• Cluster A set of consecutive sectors of a track form a cluster.

• Spindle Speed / Rotation Platters (disks) rotate very fast. The spindle speed of a drive is the
rotational speed of its platters.
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13.2. HARD-DISK DRIVES (HDD) 319

13.2.1 HDD Operation
The hard disk controller receives a request for I/O to be performed on a particular sector number. The data received
by the disk controller are then mapped to a platter number, side of a platter (up or down), track within a platter, and
sector within a track.

13.2.2 Seek
The controller moves the arm and its heads horizontally and parallel to the surface of the platters to identify the correct
track. There is some initial delay due to controller overhead, then the arm/heads move, and then the arm/heads brake
before they settle over a given track. (Think of it as initial delay, acceleration, steady move, and braking and settling.)

Seek Time is the time for arm/heads to move to the right track from their current position. Seek time depends on
the initial position (starting track of the heads) and the final/settline position of the heads (destination/target track).
This time includes settling time (braking time) and might or might not include controller overhead.

Maximum Seek Time is defined as the time to move the arm/heads to the most inside track from the most outside
track or the other way around.

In the 1950s and 1960s maximum seek time was 600ms. In the 1970s it went down to 25ms. First PC-based HDD
in the 1980s has maximum seek time around 120ms and nowadays this is around 20-30ms for laptop or desktop drives
and 10-12ms for server drives.

The Average Seek Time is a better measure of performance. The average seek time is defined as one-third of max
seek time. A proof is to be shown later. (Think of it that you figure seek time for every possible initial position and
every possible ending position of the heads.) The average seek time for a typical HDD is 8-9ms for a read and 9-10ms
for a write operation. Server HDD might have average seek time as low as 4ms.

A Track-to-Track Seek Time refers to the time it takes for heads to move minimally by one track. Most of this
time is settling time and possibly controller overhead if it is not accounted separately. Typical Track-to-Track seek
time is 1 to 1.2ms.

Controller Overhead is less than 2ms for typical drives.
After settling the heads are over the appropriate track. At this point the controller activates one head for the relevant

platter and the relevant surface (up or down) involved in the I/O. One and only one head is active in the remainder.

13.2.3 Rotational Delay or Latency
The active head waits for the appropriate sector to appear under or over the head. (A surface/side can be under a head
if it is an up surface; it can be over the head if it is a down surface.) This is because the platters (i.e. disks) rotate
at spindle speed also known as rotational speed that varies from 3600RPM to 5400RPM (laptop drives) to 7200RPM
(some desktop and regular server drives). The unit RPM refers to Rotations/Revolutions Per Minute.

Rotational delay or Latency Time refers to the time it takes for the appropriate sector be under or over the
relevant head positioned under or over the active head. A 7200RPM drive completes one rotation in approximately
8.33ms.

Time
Rotation

=
1mn

7200R
=

60s
7200R

=
60,000ms

7200R
= 8.33ms/Rotation = 8.33ms/R R = Rotation

Because a head might just have missed a specific sector or might just catch a specific sector of a track a more
relevant measure of rotational delay is Average Latency or Average Rotational delay.

Average Latency Time or Average Rotational Delay is defined to be one-half of the rotational delay. Thus for a
7200RPM disk this is (1/2)×8.33 = 4.17ms/R.

13.2.4 Transfer Time
The active head has made contact with the appropriate sector. Data get transferred from the sector (read operation) or
transferred into the sector (write operation).
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320 CHAPTER 13. OPERATING SYSTEMS

Sector size is 512B. Modern hard disk drives support 4KiB (4096B) sectors. In the latter case the term logical
sector size is defined as 512B and the term physical sector size is defined as 4KiB (4096B).

Transfer data speed for modern HDD is expressed in bytes/s or multiples of bytes/s. Rarely in bits/s. Beware of
dubious multiples of bytes such KB and MB and their definitions. Typical data transfer speed rates are in the aread of
200,000KiB/s.

Transfer time is the time it takes for the head to transfer data to/from the disk.
This time is quite straightforward to figure out if the operation involves one sector (of one track of one cylinder of

one side of one platter). Multi-sector I/O on different tracks are more complicated to analyze. In most cases when the
transfer involves more that sector size worth of data, we ignore additional access, latency costs.

13.2.5 More on Sectors
A sector of a track stores not only data but also additional information. Some of it relates to the data directly: it is error
correcting information in the form of error correcting codes (ECC) that can be used to retrieve or recover information
from minor accidents (eg scratches). Additional information is available to prepare the head to read information or
synchronize with the sector underneath or over it.

Therefore, a 512B sector is preceded by 15B of gap, sync, and sector address data, followed by 50B of ECC (Error
Correcting Code) data (40 10-bit).Therefore a head effectively reads 15+512+50 = 577B when it reads a (logical)
sector. In other words 512/577 = 88% of the sector data read is sector data for the application.

For a 4096B sector, things change slightly after the sector: the 15B of gap, sync and sector address data still appear
before the 4096B sector data. They are followed by 100B of ECC (80 10-bit).

13.2.6 An Example: HDD around 2019
A modern 7200RPM server hard disk drive with capacity (10TB or 10TiB?) usually has 7 platters (disks) with 14
heads. One of the 14 sides is used for controlling the disk, the remaining 13 sides for data storage. Data density
nowadays is approximately 1.5TiB per platter or equivalently 0.75TiB per side. (Logical) sector size is defined as
512B, and thus a (Physical) sector size is defined as 4KiB (4096B) as already mentioned. A physical sector emulates
8 logical sector (8x512=4096) Average seek time is 8-9ms depending on whether a read or write is performed, wih
average rotational delay (average latency) being 4.16-4.17ms which is one half of the rotational speed of 8.33ms/R of
a 7200RPM HDD. Controller overhead is no more than 2ms. I/O transfer rate is approximately 200,000 KiB/s.
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13.2. HARD-DISK DRIVES (HDD) 321

Step 1. The time to read one logical sector (512B) is the sum of disk access time plus transfer time.

Step 2. Disk access time includes controller overhead, average seek time and average rotational delay /
average latency. Contoller overhead is about 2ms, average seek time is roughly 8ms, and average rotational dealy is
4.17ms. The total disk access time is 14.17ms.

Step 3. Transfer rate is 200,000KiB/s. Thus the transfer time for a 512B sector is negligible at 0.002ms.

Step 4. Thus the time to read one logical sector (512B) is 14.17ms.

Effective Transfer Rate is determined by actual byte transferred in the unit of time. If we use the time to read one
logical sector, we have 512B transferred in 14.17ms, which gives an effective transfer rate of

512B
14.17ms

=
512B

14.17×10−3s
= 36132B/s≈ 35KiB/s

13.2.7 Average Seek Time vs Maximum Seek Time

Fact 13.1. Assume a Hard-Disk Drive (HDD) contains N + 1 tracks indexed 0 through N. The maximum seek time
of an arm/heads movement, expressed in number of tracks, is N, when the heads move from track 0 to track N or the
other way around. The average seek time, expressed in number of tracks, is

N
3
+

N
3(N +1)

=
N
3
+

1
3
− 1

3(N +1)

which is approximately,

N
3
+

1
3
− 1

3(N +1)
→ N

3
+

1
3
.

Proof. If the arm/heads move from track i to track j, the distance in track covered is |i− j|. Thus the average seek
time A, in terms of number of tracks, is the average over all initial and over all final positions of the arm/heads. The
number of choices for i is N +1 (i.e. 0 through N) and likewise for j. Therefore Therefore

A =
∑

N
i=0 ∑

N
j=0 |i− j|

(N +1)2 =
1

(N +1)2 ·
N

∑
i=0

N

∑
j=0
|i− j|= 1

(N +1)2 ·S. (13.1)
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We compute next the sum S.

S =
N

∑
i=0

N

∑
j=0
|i− j| (13.2)

=
N

∑
i=0

[
i

∑
j=0
|i− j|+

N

∑
j=i+1

|i− j|

]
(13.3)

=
N

∑
i=0

[
i

∑
j=0

(i− j)+
N

∑
j=i+1

( j− i)

]
(13.4)

=
N

∑
i=0

[
i

∑
j=0

i−
i

∑
j=0

j+
N

∑
j=i+1

j−
N

∑
j=i+1

i

]
(13.5)

=
N

∑
i=0

[
i(i+1)− i(i+1)/2+

N

∑
j=0

j−
i

∑
j=0

j− i(N− i)

]
(13.6)

=
N

∑
i=0

[i(i+1)− i(i+1)/2+N(N +1)/2− i(i+1)/2− i(N− i)] (13.7)

=
N

∑
i=0

[N(N +1)/2− i(N− i)] (13.8)

=
N

∑
i=0

N(N +1)/2−N ·
N

∑
i=0

i+
N

∑
i=0

i2 (13.9)

= N(N +1)2/2−N2(N +1)/2+N(N +1)(2N +1)/6 (13.10)

After some minor calculations we obtain the following

S =
N

∑
i=0

N

∑
j=0
|i− j| (13.11)

=
3N(N2 +2N +1)−3N3−3N2 +2N3 +3N2 +N

6
(13.12)

=
3N3 +6N2 +3N−3N3−3N2 +2N3 +3N2 +N

6
(13.13)

=
2N3 +6N2 +4N

6
=

N3 +3N2 +2N
3

(13.14)

= N(N +1)(N +2)/3. (13.15)

Therefore from Equation 13.11 and its final dreivation, by replacing S into Equation 13.1 we obtain the following.

A =
1

(N +1)2 ·S =
1

(N +1)2 ·
N(N +1)(N +2)

3
=

N
3
+

N
3(N +1)

=
N
3
+

N +1−1
3(N +1)

(13.16)

=
N
3
+

1
3
− 1

3(N +1)
(13.17)
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Chapter 14

Architecture

14.1 Computer Architectures: von-Neumann and Harvard

In the early years of computing it was not clear what was the most appropriate computer organization. Thus two
arcitectural models were prevalent at that time of the late 1940s and earlye 1950s.

14.1.1 Von-Neuman model of computation
Definition 14.1 (Von-Neumann model: Program and Data in Same Memory). Under Von-Neumann architectural
model, a central processing unit, also known as the CPU, is responsible for computations. A CPU has access to a
program that is being executed and the data that it modifies. The program that is being executed and its relevant data
both reside in the same memory usually called main memory.

Thus main memory stores both program and data, at every cycle the CPU retrieves from memory either program
(in the form of an instruction) or data, performs a computation, and then writes back into memory data that were
computed at the CPU by one of its units in a current or prior cycle.

14.1.2 Harvard model of computation

The Harvard model of computation or architecture as influenced by (or implemented into) the Harvard Mark IV
computer for USAF (1952) was also prevalent in the early days of computing.

Definition 14.2 (Harvard model: Program and Data in Different Memories). In the Harvard architectural model,
programs and data are stored separately into two different memories and the CPU maintains distinct access paths to
obtain pieces of a program or its associated data.

In that model, a concurrent access of a piece of a program and its associated data is possible. This way in one cycle
an instruction and its relevant data can both and simultaneously reach the CPU as they utilize different data paths.

Definition 14.3 (Hybrid Architectures). The concepts of pipelining, instruction and data-level caches can be
considered Harvard-architecture intrusions into von-Neumann models.

Most modern microprocessor architectures are using them.
For example Intel in designin the Level-1 cache of a microprocessor is following the Harvard architectural ap-

proach. There is an Level-1 data cache, and a separate Level-1 instruction (program) cache. Yet for a Level-2 or
Level-3 and for a short period of time a Level-4 cache Intel prefers the traditional von-Neumann approach of a unified
memory cache that stores programs (instruction) and data in the same space.
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324 CHAPTER 14. ARCHITECTURE

Note that in main memory we store instructions (programs) and data in the same memory but different areas. Thus
one area is for instructions (also known as code or text area), another for initialized data, another for read-only data,
another for heap-based data, and another for stack-based data.

14.1.3 CPU, Microprocessor, Chip and Die
Definition 14.4 (CPU vs Microprocessor). CPU is an acronym for Central Processing Unit. A microprocessor is a
CPU accommodate in a single microchip.

Decades ago all the units that formed the CPU required multiple cabinets, rooms or building. When all this
functionality was accommodated by a single microchip, it became known as the microprocessor. The number of
transistors in modern processor architectures can range from about a billion to 5 billion or more (Intel Xeon E5, Intel
Xeon Phi, Oracle/Sun Sparc M7).

Definition 14.5 (Chip, Die, socket). A chip is the package containing one or more dies (actual silicon IC) that are
mounted and connected on a processor carrier that is known as a socket, and possibly covered with epoxy inside a
plastic or ceramic housing with gold plated connectors.

A die contains or might contain multiple cores, a next level of cache memory adjacent to the cores (eg. L3),
graphics, memory, and I/O controllers.

14.1.4 More than one execution units

Definition 14.6 (Multicomputer). A multicomputer is a computer system consisting of more than one computers.

In a multicomputer the computers that form it might be connected with a specialized communication network.
This system might be known as a distributed computer system or cluster computer.

Definition 14.7 (Multiprocessor). A multiprocessor is a computer consisting of more than one microprocessors
(CPUs).

We can have a multicomputer consisting of multiprocessors. An SMP (Symmetric Multi-Processor) is a computer
where each processor is identical and interchangeable in functionality with every other processor. They all share the
same memory that is also known as shared memory.

The microprocessor of the recent or not so recent past can be described as uni-processor or single core processors
or simply unicore. They have one execution unit with sometimes its own Level-1 cache and Level-2 cache.

In the past 20 years uni-processor performance has barely improved. The limitations of CPU clock speeds (around
2-3GHz), power consumption, and heating issues have significantly impacted the improvement in performance by just
increasing the CPU clock speed. An alternative that has been pursued is the increase of the number of “processors” on
a processor die (computer chip). Each such “processor” is called a core. Thus in order to increase performance, instead
or relying to increasing the clock speed of a single processor, we utilize multiple cores that work at the same clock
speed (boost speed), or in several instances at a lower (clock) speeds (regular speed) indepdently or not depending on
the application in hand.

Definition 14.8 (Multi-core processor). A multi-core processor is a processor with more than one execution units.

Thus a processor that has in it more than one “processors” (execution units) is a multi-core processor. A multicore
is another way to refer to a multi-core processor. So is a multiple-core processor.

Definition 14.9 (Many-core processor). A many-core processor is a multi-core processor where the number of execu-
tion units is much larger than regular multi-core processors and some times their functionality is simpler.

One can consider a GPU (Graphic Processing Unit) which is a form of a vector processor to be a many-core
processor.
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14.2. MEMORY HIERARCHIES 325

Definition 14.10 (Vector processor). A vector processor is a CPU that utilizes instructions that operate efficiently on
large vectors, that is large one-dimensional arrays.

We can view regular processors as scalar processor operation in SISD (Single-instruction Single-data) mode. Vec-
tor processors operate in SIMD (Single-instruction Multiple-data) mode.

Fact 14.1 (GPU). A GPU (Graphics Processing Unit) is used primarily for graphics processing.

CUDA (Compute Unified Device Architecture) is an application programming interface (API) and programming
model created by NVIDIA (TM). It allows CUDA-enabled GPU units to be used for General Purpose processing,
sequential or massively parallel. Such GPUs are also known as GPGPU (General Purpose GPU) when provided with
API (Application Programming Interface) for general purpose work.

A GPU processor (e.g. GK110) contains a small number (up to 16 or so) of Streaming Multiprocessors (SM,
SMX, or SMM). Each streaming multiprocessor has a number of 32-bit cores supporting single-precision floating-
point operations and a number of 64-bit cores supporting double-precisions operations. Other cores support other
operations (eg. transendental functions). Thus the effective ”core count” is in the thousands.

Example 14.1 (Dual-core and Quad-core). Dual-core or Quad-core refer to systems with specifically 2 or 4 cores.

The number of cores in a multi-core processor is usually (2019) less than 30 (eg Intel’s generic Xeon processors)
with Intel’s now retired Xeon Phi reaching 57-72 cores. Intel’s Phi processor is attached to the CPU and work in
’parallel’ with the CPU or independetly of it. In such a case a many-core processor system is called a coprocessor.

14.2 Memory Hierarchies
A CPU rated at 2GHz can execute 2G or 4G operations per second or roughly two-four operations per nanosecond, or
roughly one operation every 0.25-0.5ns. A CPU can fetch one word from maim memory (”RAM”) every 80-100ns.
Thus there is a differential in performance between memory and CPU. To alleviate such problems, multiple memory
hierarchies are inserted between the CPU (fast) and Main Memory (slow): the closer the memory to the CPU is the
faster it is (low access times) but also the costlier it becomes and the scarcier/less of it also is. A cache is a very fast
memory. Its physical proximity to the CPU (or core) determines its level. Thus we have L1 (closest to the CPU, in
fact ”inside” the CPU), L2, L3, and L4 caches. Whereas L2 and L3 are ”static RAM/ SRAM”, L4 can be ”dynamic
RAM / DRAM” (same composition as the main ”RAM” memory) attached to a graphics unit (GPU) on the CPU die
(Intel Iris).

Definition 14.11 ( Level-1 cache). A Level-1 cache is memory faster than main memory that is traditionally on-die
(same chip) within the CPU and exclusive to a core, and operates at the speed of the CPU.

Performance may deteriorate if it is shared by multiple cores. It operates at the speed of the CPU. Level-1 caches
for Intel architectures are traditionally Harvard-hybrid architectures. There is an instruction (i.e. program) cache, and
a separate data-cache. Its size is very limited to few tens of kilobytes per core (eg. 32KiB). In Intel architectures
there is a separate L1 Data cache (L1D) and a L1 Instruction cache (L1I) each one of them 32KiB for a total of 64KiB.
Originally each cache was 8KiB. They might be implemented using SDRAM (3GHz typical speed) and latency to L1D
is 4 cycles in the best of cases (typical 0.5-2ns range for accessing an L1 cache) and 32-64B/cycle can be transferred
(for a cumulative bandwidth over all cores as high as 2000GB/s). Note that if L1D data is to be copied to other cores
this might take 40-64 cycles.

Definition 14.12 (Level-2 cache). A Level-2 cache is memory faster than main memory that is traditionally outside of
the CPU chip and exclusive to a core or shared by two cores.

Since roughly the early 90s several microprocessors have become available utilizing secondary level-2 caches.
In the early years those level-2 caches were available on the motherboard or on a chip next to the CPU core (the
microprocessor core along with the level-2 cache memory were sometimes referred to as the microprocessor slot or
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326 CHAPTER 14. ARCHITECTURE

socket). Several more recent microprocessors have level-2 caches on-die as well. In early designs with no L3 cache,
L2 was large in size (several Megabytes) and shared by several cores. L2 caches are usually coherent; changes in one
are reflected in the other ones.

An L2 cache is usually larger than L1 and in Intel architectures 256KiB or larger and exclusive to a core. They are
referred to as ”static RAM”. Its size is small because a larger L3 cache is shared among the cores of a processor. An
L2 cache can be inclusive (older Intel architectures such as Intel’s Nehalem) or exclusive (AMD Barcelona) or neither
inclusive nor exclusive (Intel Haswell). Inclusive means that the same data will be in L1, L2, and L3. Exclusive means
that if data is in L2, it can’t be in L1 and L3. Then if it is needed in L1, a cache ”line” of L1 will be swapped with
the cache line of L2 containing it, so that exclusivity can be maintained: this is a disadvantage of exclusive caches.
Inclusive caches contain fewer data because of replication. In order to remove a cache line in inclusive caches we need
only check the highest level cache (say L3). For exclusive caches all (possibly three) levels need to be checked in turn.
Eviction from one requires eviction from the other caches in inclusive caches. In some architectures (Intel Phi), in the
absence of an L3 cache, the L2 caches are connected in a ring configuration thus serving the purpose of an L3. The
latency of an L2 cache is approximately 12-16 cycles (3-7ns), and up to 64B/cycle can be transferred (for a cumulative
bandwidth over all cores as high as 1000-1500GB/s). Note that if L2 data is to be copied to other cores this might take
40-64 cycles.

Level-3 caches are not unheard of nowadays in multiple-core systems/architectures. They contain data and program
and typical sizes are in the 16-32MiB range. They are available on the motherboard or microprocessor socket. They
are shared by all cores. In Intel’s Haswell architecture, there is 2.5MiB of L3 cache per core (and it is write-back
for all three levels and also inclusive). In Intel’s Nehalem architecture L3 contained all the data of L1 and L2 (i.e.
(64+256)∗4KiB in L3 are redundantly available in L1 and L2). Thus a cache miss on L3 implies a cache miss on L1
and L2 over all cores! It is also called LLC (Last Level Cache) in the absence of an L4 of course. It is also exclusive
or somewhat exclusive cache (AMD Barcelona/Shanghai, Intel Haswell). An L3 is a victim cache. Data evicted from
the L1 cache can be spilled over to the L2 cache (victim’s cache). Likewise data evicted from L2 can be spilled over
to the L3 cache. Thus either L2 or L3 can satisfy an L1 hit (or an access to the main memory is required otherwise).
In AMD Barcelona and Shanghai architectures L3 is a victim’s cache; if data is evicted from L1 and L2 then and only
then will it go to L3. Then L3 behaves as in inclusive cache: if L3 has a copy of the data it means 2 or more cores
need it. Otherwise only one core needs the data and L3 might send it to the L1 of the single core that might ask for it
and thus L3 has more room for L2 evictions. The latency of an L3 cache varies from 25 to 64 cycles and as much as
128-256cycles depending on whether a datum is shared or not by cores or modified and 16-32B/cycle. The bandwidth
of L3 can be as high 250-500GB/s (indicative values).

Definition 14.13 (Level-3 cache). A Level-3 cache is memory faster than main memory that is traditionally outside of
the CPU chip and is a pool of fast memory shared by all the cores of multi-core processor system.

Definition 14.14 (Level-4 cache). A Level-4 cache is memory embedded in to the Graphics Processing Unit of an Intel
CPU and served as a next-level cache for the Level-3 cache.

It is (was) available in some architecture (Intel Haswell) as auxiliary graphics memory on a discrete die. It runs to
128MiB in size, with peak throughput of 108GiB/sec (half of it for read, half for write). It is a victim cache for L3 and
not inclusive of the core caches (L1, L2). It has three times the bandwidth of main memory and roughly one tenth its
memory consumption. A memory request to L3 is realized in parallel with a request to L4.

Definition 14.15 (Main memory). The primary memory of a computer is main memory.

It still remains relatively slow of 60-110ns speed. Latency is 32-128cycles (60-110ns) and bandwidth 20-128GB/s
(DDR3 is 32GiB/sec). It is available on the motherboard and in relatively close proximity to the CPU. Typical ma-
chines have 4-512GiB of memory nowadays. It is sometimes referred to as ”RAM”. As noted earlier, random access
memory refers to the fact that there is no difference in speed when accessing the first or the billionth byte of this
memory. The cost is uniformly the same.
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14.2. MEMORY HIERARCHIES 327

Definition 14.16 (Linearity of computer memory). Memory is a linear vector. A memory is an array of bytes, i.e.
a sequence of bytes. In memory M, the first byte is the one stored at M[0], the second one at M[1] and so on. A byte is
also a sequence of 8 binary digits (bit).

Definition 14.17 (Endianess). Endianness is the order the CPU writes the bytes of a word in main memory or reads
them from main memory.

A CPU can be Big Endian or Little Endian. Intel CPUs are little endian and PowerPC CPUs are big endian. If
we plan to store the 16-bit (i.e. 2B) integer 0101010111110000 in memory locations 10 and 11, how do we do it?
Left-part first or right-part first (in memory location 10)? This is what we call byte-order and we have big-endian
and little-endian. The latter is being used by Intel and the former in powerPC architectures.

BigEndian LittleEndian(Intel architecture)
10: 01010101 11110000
11: 11110000 01010101

Definition 14.18 (Multi-cores and Memory.). A multi-core system usually employs more than a two level cache
memory.

To support a multi-core or many-core architecture, traditional L1 and L2 memory hierarchies (aka cache memory)
are not enough. They are usually local to a processor or a single core. A higher memory hierarchy is needed to allow
cores to share memory ”locally”. An L3 cache has been available to support multi-core and more recently (around
2015) L4 caches have started appearing in roles similar to L3 but for specific (graphics-related) purposes. When the
number of cores increases beyond 20, we talk about many-core architectures (such as Intel’s Phi). Such architectures
sacrifice the L3 for more control logic (processors). To allow inter-core communication the L2 caches are linked
together to form a sort of shared cache.
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Number Theory
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Chapter 15

Introductory Number Theory

15.1 Divisibility and Compositeness
Definition 15.1 (Divisibility). For a,b ∈ Z, we say that a divides b, or b is divided by a, and we write a|b, if and only
if there exists an integer q ∈ Z such that b = aq.

For a,b as in the definition, integer b is a multiple of a and consequently a is a divisor or factor of b. We say a does
not divide b if there is no such q ∈ Z such that b = aq. We then write a - b.

Definition 15.2 (Odd, Even). An integer n is even if it is a multiple of two. Otherwise it is an odd integer.

Example 15.1. Every integer a is a divisor of 0. 0 is a divisor of itself and only itself.

Proof. Since 0 = a ·0 the first claim follows: a is a divisor of 0. Since 0 = 0 ·q, integer 0 is a divisor of 0. There is no
way for any d 6= 0 to have d = 0 ·q. Thus 0 cannot be the divisor of any d 6= 0. Thus 0 only divides 0; moreover, 0 is a
multiple of every integer!

Example 15.2. Both 5 and −5 are divisors of 5. Both 1 and −1 are divisors of 5.

Proof. It is 5 = 5 ·1 and 5 = (−5)(−1). Replacing 5 by a, for every integer a, both ±a and ±1 are divisors of a. Thus
integer 5 has four divisors +1,−1,+5,−5. And so so does−5. And in fact any b 6= 0,1,−1 has four divisors. 0 has an
infinite number of divisors (in facts its set of divisors is Z). Only +1,−1 have two divisors each (including the other
one of the pair). +1 is the positive unit and −1 the negative unit and collectively are known as the units.

Example 15.3. If a|b then −a|b, a|−b, a|−b.

Proof. If b = aq then b = (−a)(−q) and −b = a(−q) and −b = a(−q).

Theorem 15.1 (Properties of divisibility). If a,b,c,d,k,m ∈ Z, then

(a) 1|n. a|0 and 0|0. Moreover, 0|a⇒ a = 0.

(b1) a|a and of course ±a|±a.

(b2) a|b and b|c⇒ a|c.

(c1) If a|b then for every k ∈ Z, a|kb.

(c2) If a|b then for every k ∈ Z, ka|kb.

(d1) if a|b and a|c then a|b+ c.
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(d2) if a|b and a|c then a|b− c.

(d3) if a|b and a|c then a|kb±mc.

(f1) if a|b and b 6= 0 then |a| ≤ |b|.

(f2) if a|b and a,b > 0 then a≤ b.

(f3) if a|b and b|a then |a|= |b| or equivalently

(g) if ka|kb and k 6= 0 then a|b.

Proof.
(a) n = 1 ·n implies 1|n. 0 = a ·0 implies a|0. 0 = 0 ·0 implies 0|0, and a = 0 ·q implies a = 0 concludes the case.
(b1) a = a ·1 implies a|a. Moreover −a = a · (−1) concludes the case.
(b2) If a|b, then b = aq, for some q ∈ Z. If b|c, then c = br, for some r ∈ Z. This implies c = b · r = (a ·q) · r = a · (qr)
i.e. a|c.
(c1) If a|b, then b = aq, for some q ∈ Z. Then kb = kaq = a(kq) i.e. a|kb.
(c2) If a|b, then b = aq, for some q ∈ Z. Then kb = kaq = (ka)q i.e. ka|kb.
(d1) If a|b, then b = aq, for some q ∈ Z. If a|c, then c = ar, for some r ∈ Z. Then b+ c = a(q+ r) implies a|b+ c.
(d2) Moreover for the a,b,c of (d1) we have b− c = a(q− r) implies a|b− c.
(d3) Furthermore for the a,b,c of (d1) we have kb±mc = a(kq±mr) implies a|kb±mc.
(f1) If a|b then b = aq. Then |b| = |aq| = |a| · |q|. If b 6= 0 then |b| > 0. (Absolute values are positive or zero.) This
implies that |a| > 0 and |q| > 0. The latter is equivalent to |q| ≥ 1. Then |b| = |a| · |q| ≥ |a| · 1 ≥ |a|. Equivalently
|a| ≤ |b|.
(f2) If all of a,b are positive we can drop the absolute values from (f1) concluding a≤ b.
(f3) From (f1) we have |a| ≤ |b|. If b|a we can likewise conclude that |b| ≤ |a| thus deriving |a|= |b|.
(g) if ka|kb and k 6= 0 then kb = (ka)q. For non-zero k dividing both sides we have b = a ·q and thus a|b.

Theorem 15.2 (Uniqueness). For every a ∈ Z∗,b ∈ Z, if a|b, there is a unique integer q ∈ Z such that b = aq.

Proof. Suppose that a|b i.e. b = aq with q ∈ Z and a ∈ Z∗ i.e. a 6= 0. If q is not unique, then there might exist a q1
such that b = aq1 and q 6= q1. Then b = aq = aq1 implies a(q− q1) = 0. Since a 6= 0, it must be q− q1 = 0. Then
q = q1 but this contradicts to the existence of q1 6= q.
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15.2. PRIMES 333

15.2 Primes

In the following definition 1 and −1 are considered prime numbers.

Definition 15.3 (Prime (units are primes)). An integer p ∈ Z∗ is a prime (number) if and only if its only divisors are
the units and p, and −p.

Based on the definition 1 and −1 have two divisors each. Any other prime p, where p 6= 1 has four divisors each.
This is summarized below. Under this definition the units (1 and −1) are not considered prime (numbers).

Definition 15.4 (Prime (units are not primes)). An integer p ∈ Z∗ is a prime (number) if and only if p 6= ±1 and its
only divisors are the units and p, and −p (i.e. four integers for an integer p 6= 0,−1,+1)).

If negative numbers cause problems let us simplify the definition of a prime number.

Definition 15.5 (Prime). An integer p ∈ Z∗+ is a prime (number) if and only if p 6= 1 and its only positive divisors are
1 and p.

Definition 15.6 (Composite). An integer n ∈ Z∗ that is not a unit, it is either a prime or a composite (integer) number.
For a composite n, n is a multiple of an integer that is neither a unit nor n:

∃b 6= 1,−1,n,−n,q ∈ Z : n = bq.

Lemma 15.1 (Composite). An integer n ∈ Z+
∗ is composite if and only if it has a factor a such that 1 < a < n. (Then

there is another factor b such that 1 < b < n, and b = n/a.)

Proof. If n is composite, then n is a multiple of integer a that is neither 1 nor n. Then there exist q such that n = aq
for some integer q. If a is neither 1 nor n then 1 < a < n. (We also used (f2) from Theorem 15.1.) Since n = aq, q is
also positive. Since a > 1 n = aq > q implies q < n. And since a is not n then q cannot be 1.

Lemma 15.2 (Composite with a prime factor). An integer n ∈ Z∗ with n > 1 has a prime factor p i.e. p|n.

Proof. If n is even a prime factor is 2. For the remainder we assume that n is an odd number.
Let A be the set of integers that have no prime factor (divisor). Assume A is not empty. By the Well Ordered Set

Principle (W.O.S.P) set A has a minimum and let it be m.
As m ∈ A, then m is not prime (i.e. it is a composite integer number). Then m = bq with 1 < b < m and 1 < q < m.

Since b is a factor of m and b is smaller than m, b cannot be a member of A and thus it must be prime or have a prime
divisor. The p|b and since b|m we have p|m that violates the definition of A.

Thus A must be empty and the theorem is proven.

Lemma 15.3 (A factor less than
√

n for n). For a composite integer n > 1 one of its prime divisors is less than or
equal to

√
n.

Proof. By Theorem 15.2 n = pq where p is a prime factor. If p≤
√

n we are done. Otherwise p >
√

n. Then q must be
q≤
√

n, since otherwise p >
√

n and q >>
√

n would lead to pq > n i.e. n > n an impossibily. Now if q≤
√

n indeed
and q is prime we are done. Otherwise q is composite and by Theorem 15.2 it has a prime composite r r < q <

√
n. If

r divides q and since q divides n we also have that r|n. We have just found a prime divisor of n, less than or equal to√
n and this is r!

Definition 15.7 (1 is a unit). 1 is neither a prime number nor a composite number. It is a unit.

Lemma 15.4 (A theorem by Euclid). There are infinitely many prime numbers.
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334 CHAPTER 15. INTRODUCTORY NUMBER THEORY

Proof. If there are only finite prime numbers and let them ALL be p1, . . . , pm, where p1 = 2. Then form integer
n = p1 · p2 · . . . · pm +1. There are two possibilities for n: (a) it is a prime number, (b) it is not a prime number.
Case 1. If n is a prime number Then n = 2 · . . . · pi · . . . · pm + 1 >> 2pi + 1 > pi given that all pi > 1. We have just
found one more prime number beyond the m ones that were declared ALL that there are: a contradiction.
Case 2. If n is a composite number, let p be a prime factor of n, i.e. p|n with p > 1. Such a p exists by the previous
Lemma (composite with a prime factor). This p cannot be one of the m p1, . . . , pm. Why ? if p was say p = pi then
p|pi implies by Theorem 15.1 (c1,d3) that p|p1 · p2 · . . . · pm. Since p|n and n = p1 · p2 · . . . · pm +1 the p divides their
difference i.e. p|1 by Theorem 15.1 (d2). This means p is one by Theorem 15.1 (f2). But one is a unit not a prime
number (and also p > 1).
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15.3. DIVISION 335

15.3 Division
Theorem 15.3 (Division). For a ∈ Z and b ∈ Z∗ there exist unique integers q ∈ Z and r ∈ Z such that

a = bq+ r and 0≤ r < |b|.

Proof.
Case 1 (a≥ 0,b > 0). Let A be the set of all non-negative integers a−bi, where i is such that a−bi≥ 0. For i = 0, a
belongs to A, and thus A is not empty. By the Well-ordered set principle A has a minimum and let it be r. Since r is in
A, we have r ≥ 0 and r = a−bi for some integer i. All it remains to show is that r < |b| = b. Say that r ≥ b instead.
Then r−b≥ 0. Moreover

r−b = (a−bi)−b = a−b(i+1).

Thus r−b≥ 0 and is of the form a−bi′, with i′ = i+1. Thus it belongs to A. Moreover r−b is less than r, r−b < r
since b is positive. We have found an element smaller than the minimum element of A. This contradicts to the choice
of r as being the minimum; we reached contradiction because we assume r ≥ b. Thus r < b. This thus establishes that
0≤ r < b.

We have yet to prove the pair (q,r) is unique. Let is not be and let another pair be (q′,r′). Then a= bq+r = bq′+r′

where 0≤ r,r′ < b.
This gives b(q−q′) = r′− r, and |b(q−q′)|= |r′− r|. Adding 0≤ r and r′ < b we get r′ < r+b or equivalently

r′− r < b. Thus |b(q− q′)| < b. As b > 0 we have |q− q′| < 1. This can only be possible, since q,q′ are integer if
q = q′. This means that r = r′. This show the uniqueness of the pair (q,r).
Case 2 (a < 0,b > 0). Similarly as before A is not empty because a−bi≥ 0 contains at least one element a−ba≥ 0,
and the rest of the discussion is similar to case 1.
Case 3 (a ∈ Z,b < 0). Then |b| > 0, and of course |b| = −b. By way of cases 1 and 2 for a and |b| we have
that a = |b|q+ r, where 0 ≤ r < |b|. This is equivalent to a = (−b)q+ r, where 0 ≤ r < |b|. This is equivalent to
a = b(−q)+ r, where 0≤ r < |b|. The claim is satisfied for case 3 as well.

For a pair (a,b 6= 0) there is a unique pair (q,r) with a = bq+ r and 0≤ r < |b|.

Theorem 15.4 (Division Results). For a,b as in division (b 6= 0), we have

(i) if d|a and d|b then d|r.

(ii) if d|r and d|b then d|a.

Proof. (i) If d|a,d|b then d|bq and thus d|a−bq thus leading (given that a = bq+ r) to d|r.
(ii) If d|r,d|b the d|bq and thus d|bq+ r which leads to d|a.

Theorem 15.5 (Remainder of division by b). For a,A ∈ Z, with b|a and b|A. The remainders of those two divisions
are the same if and only if a−A is a multiple of b.

Proof. ⇒. If a = bq+ r and A = bQ+R, and we are given r = R, the a−A = bq+ r− qQ− r = b(q−Q). Since
q−Q ∈ Z, we conclude that b|a−A.
⇐. Say that b|a−A. Then let a = bq+ r and A = bQ+R, where 0≤ r,R < |b|. We have a−A = b(q−Q)+(r−R).
Since obviously b|b(q−Q) and also by assumption b|a−A we conclude that b|(a−A)− b(q−Q) i.e. b|r−R and
also |b||r−R. This would imply that |b| ≤ |r−R| or |r−R| = 0. But r,R < |b| which means that r−R or |r−R| are
such that |r−R|< |b|. Thus the former |b| ≤ |r−R| is false because otherwise |b| ≤ |r−R| and |r−R|< |b| lead by
transitivity to the nonsense |b|< |b|. We must have |r−R|= 0 which implies r = R since R,r ≥ 0.

Another way to prove⇐ it is directly as follows. Say that b|a−A, i.e. a−A = bm for some m ∈ Z. Then let a =
bq+ r and A = bQ+R, where 0≤ r,R < |b|. From the former a−A = bm and A = bQ+R we have a− (bQ+R) = bm
implying a = b(m+Q)+R. This latter equality implies q = m+Q and r = R as R is such that 0≤ R < |b|). Result is
proven.
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15.4 Greatest Common Divisor
Lemma 15.5. Integer d is such that d|n if and only if the remainder of the division of n by d is 0.

Proof.
Only-if. If d is such that d|n this means n = qd i.e. n = qd +0. Given the uniqueness of q,r from Theorem 15.3 we
conclude q = q and r = 0.

If. If d is such that n = d ·q+ r with r = 0, then n = d ·q which implies d|n.

Definition 15.8 (Greatest Common Divisor). For integers a,b ∈ Z, gcd(a,b) is the greatest common divisor of a and
b if and only if gcd(a,b)|a and gcd(a,b)|b and every other divisor c of a,b is such that c≤ gcd(a,b). Thus

(i) gcd(a,b)|a and gcd(a,b)|b,

(ii) c|a and c|b⇒ c≤ gcd(a,b).

Moreover, gcd(a,b)≤ |a| and gcd(a,b)≤ |b|.

Example 15.4. (a) The greatest common divisor of 1 and n is 1.
(b) If a|b then GCD(a,b)=b.
(c) GCD(5,15) = 5. GCD(30,105) = 15.
(d) The common divisors of 30 and 105 are {1,3,5,15,}. If we include negative numbers then it is {±1,±3,±5,±15,},
twice as many.

Note that if c|a then by Theorem 15.1(v) we have |c| ≤ |a|. Likewise if c|b we have |c| ≤ |b|. Combining the two
we have |c| ≤ max(|a|, |b|). Thus the set of common divisors of a,b is finite. A finite set of integers always has a
maximum, and thus there is a uniquest largest integer d > 0 such that d|a and d|b. We call d the greatest common
divisor of a,b and denote it by gcd(a,b) thus d = gcd(a,b).

Note 15.1. The gcd(0,0) is not defined as the set of common divisors is an infinite set and it does not have a maximum.
In the remainder when gcd(a,b) is considered, we would assume that a 6= 0 or b 6= 0 (or both). Thus it cannot be that
both a and b are zero.

Definition 15.9. Let S(a) be the set of divisors of A.

Fact 15.1 (Simple GCD facts). Let a,b ∈ Z not both zero. Then

(i) gcd(a,b)> 0 and also gcd(a,b)≥ 1.

(ii) gcd(a,b) = gcd(|a|, |b|).

(iii) gcd(a,b) = gcd(b,a).

(iv) gcd(a,1) = 1.

(v) gcd(a,0) = |a| for all a 6= 0.

(vi) gcd(a,b) = |a| if and only if a|b.

Proof.

(i) Obviously. gcd(a,b) is the maximum of the common divisors of a and b i.e. the maximum elements of S(a)∩S(b).
One positive element of this set of common divisors is 1 and thus gcd(a,b)≥ 1 in addition to gcd(a,b)> 0.
(ii) Since S(a) = S(|a|) and S(b) = S(|b|) we have that S(a)∩ S(b) = S(|a|)∩ S(|b|). Thus gcd(a,b) is equal to
gcd(|a|, |b|) since the set of common divisors are equal to each other.
(iii) It is a consequence of the fact that S(a)∩S(b) = S(b)∩S(a).
(iv) Since 1|a trivially, and the largest divisor of 1 is 1 itself the result follows. (Note that S(1) = {−1,+1}.)
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15.4. GREATEST COMMON DIVISOR 337

(v) S(a)∩S(0) = S(a)∩Z= S(a). The result follows as the largest element of S(a) is |a|.
(vi)⇒. If gcd(a,b) = |a| then |a||a and |a||b. For the latter there exist q such that b = q|a|. If a is non-negative, the
b = qa as well. If a is negative b = q(−a) = (−q)a. The former concludes a|b and so does the latter.
⇐. If a|b then −a|b and thus |a||b. Since trivially a|a we conclude that −a|a and thus |a||a. Then |a||gcd(a,b).

This by Theorem 15.1(v) implies |a| ≤ gcd(a,b) (the gcd is always positive thus no absolute value sign around it is
needed). By definition gcd(a,b)|a and thus gcd(a,b)| − a. Thus |gcd(a,b)| ≤ |a|. Combining |gcd(a,b)| ≤ |a| and
|a| ≤ gcd(a,b) the result follows.

Theorem 15.6. If x,y ∈ Z, then

gcd(x,y) = gcd(x,xq+ y), gcd(x,xq+ y) = gcd(x,y),

for all integers q ∈ Z.

Proof. Let d = gcd(x,y). Let d1 = gcd(x,xq+ y). If d|x and d|y by the gcd definition, we have d|xq and d|y. Thus
d|xq+ y in addition to d|x. Thus d is a common divisor fo xq+ y and x. Thus d ≤ d1 = gcd(x,xq+ y). For d1 =
gcd(x,xq+ y) we have d1|x and d1|xq+ y. From the former, we conclude that d1|xq; combining it with the latter we
have d1|xq+y−xq i.e. d1|y. Thus d1|x and d1|y and therefore d1 is a common divisor of x,y. Thus d1 ≤ d = gcd(x,y).

By way of d1 ≤ d and d ≤ d1 we conclude d = d1.

From Theorem 15.3 in order to compute the gcd(a,b) we formulate the divsion operation.

a = bq+ r

where 0≤ r < |a|. Then by way of Theorem 15.6

gcd(a,b) = gcd(b,a) = gcd(b,bq+ r) T h. 15.6
= gcd(b,r).

Note 15.2. If a = b then gcd(a,b) = a = b. Thus in general we need to compute gcd(a,b) for a > b or b > a.

Note 15.3. If we assume, without loss of generality, that a > b, if b = 0 gcd(a,b) = a. Thus in general we need to
compute gcd(a,b) for a > b and b 6= 0.

At a minimum |a|+ |b| 6= 0 i.e. we can’t determine the gcd of two numbers that are both 0. The set of common
divisors is then Z and has no maximum. GCD is also known as Euclid’s algorithm.

Theorem 15.7 (GCD: Euclid’s algorithm). Applying Theorem 15.3 for a > b, b 6= 0 by prior discussion if a = bq+ r
we have gcd(a,b) = gcd(b,r). Moreover since r is the remainder of the division of a by b we have 0≤ r < |b|. If the
remainder is not 0, we continue the division until a remainder is drawn that is 0. The last non-zero remainder is the
gcd i.e. gcd(a,b) = rk.

a = bq+ r 0≤ r < |b| gcd(a,b) = gcd(b,r)
b = rq1 + r1 0≤ r1 < r gcd(b,r) = gcd(r,r1)

r = r1q2 + r2 0≤ r2 < r1 gcd(r,r1) = gcd(r1,r2)

. . .

rk−2 = rk−1qk + rk 0≤ rk < rk−1 gcd(rk−2,rk−1) = gcd(rk−1,rk)

rk−1 = rkqk+1 +0 gcd(rk−1,rk) = gcd(rk,0) = rk

Note that a > b and |b|> r > r1 > r2 > .. . > rk−1 > rk.

Proof. It is obvious from the statement that

gcd(a,b) = gcd(b,r) = gcd(r,r1) = gcd(r1,r2) = . . .= gcd(ri−1,ri) = . . .= gcd(rk−1,rk) = gcd(rk,0) = rk

That is, the last, non-zero remainder, is the gcd. Moreover the sequence of remainders purely decreases i.e. |b|> r >
r1 > r2 > .. . > rk−1 > rk. Thus after a finite number of no more than b steps rk will be determined.
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Another way to prove this Theorem 15.7 is the following direct method.

Proof. Starting from the bottom rk|rk−1. Then from the penultimate equation we have rk dividing both itself and rk−1
and thus rk|rk−1qk + rk. Thus rk|rk−2. Working likewise we show that rk divides r and b of the first equation and thus
also divides a. Thus rk divides both a,b. Pick an arbitrary integer d dividing a and b. Working downwards we show
that d divides rk as well. Thus d ≤ rk. That is rk is the gcd of a,b as any common divisor of a,b is at most rk.

The worst-case (i.e. longest) division is for two consecutive Fibonacci numbers Fn = Fn−1 +Fn−2, n > 1, with
F0 = 0 and F1 = 1 generate a quotient of 1 every iteration! For Fn the number of divisions is n−2 as the last division
is F2 = F1 +F0 = F1 +0. The n-th Fibonacci number exceeds φ n−2.

Corollary 15.1. For a,b < N the number of divisions in Euclid’s Algorithm will be less than lgN/ lgφ ≈ 1.48lgN.

Proof. We can do a bit better by bounding the number of divisions in terms of b only. In the worst case, for an n step
division a ≥ Fn+2 and b ≥ Fn+1. But Fn+1 ≥ φ n−1. Thus n− 1 ≤ lgb/ lgφ . lgφ ≈ 0.687 and thus n− 1 ≤ 1.471lgb
i.e. n≤ 1.471lgN +1.

Theorem 15.8 (GCD-Divided). If d = gcd(a,b) then gcd( a
d ,

b
d ) = 1.

Proof. If d = gcd(a,b) then by Theorem 15.7 we have that d = rk. By the last equation of gcd’s we have gcd(rk−1,rk)=
rk = d. Given that d divides itself (rk = d) we also have that d|rk−1. From the prior expression, now that we have
d|rk and d|rk−1 using gcd(rk−2,rk−1) = gcd(rk−1,rk) = rk = d we have that d|rk−2 as well. Continuing likewise
we have d|r2 and d|r1. Likewise from the third equation of Theorem 15.7 we have d|r and from the second d|b.
Concluding from the first (division) equation we have d|a. We can thus divide by d all equations. This shows that
gcd( a

d ,
b
d ) =

d
d = 1 as all remainders will be divided by d = rk as well.

Theorem 15.9 (Extended-GCD). Let a,b ∈ Z, where |a|+ |b| 6= 0. Let d = gcd(a,b) then there exist integers x,y such
that

d = ax+by

Moreover, d is the smallest positive integer that can be written as a linear combination of a,b.

Proof. Consider
A = {au+bv|u,v ∈ Z and au+bv > 0}.

Note that for u = a, v = b, a ·a+b ·b > 0 since |a|+ |b| 6= 0. Set A has thus at least one element and it is not empty.
Thus from the well-ordered set principle there must exist a minimum element for A and let it be d′. Since d′ ∈ A there
exist x,y such that

ax+by = d′.

Show d′ is a divisor of a. We first show that d′|a. Let us form the division operation for the two integers i.e.

a = d′q′+ r′

where 0≤ r′ < d′. Then we have that

r′ = a−d′q′ = a− (ax+by)q′ = a · (1− xq′)+b · (−yq′).

Note that because of the division of a by d′ we know that 0≤ rprime.
Case 0 < r′. If r′ > 0 then it is a member of A since r′ = a · (1− xq′)+ b · (−yq′). But this cannot happen since
r′ < d′ and d′ is the minimum element of A. It would imply the existence of an element of A (i.e. r′) smaller than the
minimum element of A (i.e. d′)!
Case 0 = r′. The only other possibility is that r′ = 0. But then, a = d′q′+ r′ implies a = d′q′ i.e. d′ is a divisort of a.
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15.4. GREATEST COMMON DIVISOR 339

Show d′ is a divisor of b. Similar to the case of a.
Thus d′ divides a and b and is a common divisor of a,b. It should be that d′ ≤ d since d is the gcd of a and b and

is the greatest common divisor of a,b. If g is another common divisor of a and b we conclude from ax+by = d′ that
g|ax+by i.e. g|d′. Thus g≤ d′. Thus any common divisor of a,b such as g is no more than d′. Such a common divisor
also includes the gcd of a and b and thus d ≤ d′. This along with the d′ ≤ d shows that d = d′. (We also proved that
every common divisor of a,b also divided the gcd of a,b.)

In conclusion
d = gcd(a,b) = d′ = ax+by.

Corollary 15.2. If d = gcd(a,b) then S(a)∩S(b) = S(d). (In other words, m|a and m|b ⇐⇒ m|d.)

Proof. Every common divisor of a and b is a divisor of d = gcd(a,b) since d = d′ = ax+ by derived and used in
Theorem 15.9. That is S(a)∩S(b)⊆ S(d).

Moreover for t ∈ S(d) then t|d and since d|a and d|b by transitivity we have t|a and t|b. The former show that
t ∈ S(a) and the latter that t ∈ S(b). Both of them show that t ∈ S(a)∩S(b). Thus S(d)⊆ S(a)∩S(b).

Corollary 15.3. Let a,b ∈ Z, |a|+ |b| 6= 0. Let m ∈ Z∗+. Then

gcd(ma,mb) = mgcd(a,b).

Proof. Let d = gcd(a,b). Since d|a we have a = dq and thus ma = (md)q. Thus md|ma. Likewise md|mb. Thus
md ≤ gcd(mb,ma).

Since m|ma and m|mb we have m|gcd(ma,mb). Thus gcd(ma,mb) = mq for some q. Moreover gcdma,mb|ma
implies mq|ma i.e q|a. Likewise q|b. Thus q|d i.e. q ≤ d. We conclude that gcd(ma,mb) = mq ≤ md. From
md ≤ gcd(mb,ma) previously and gcd(ma,mb) = mq≤ md the corollary follows.

Theorem 15.10. For three a,b,c ∈ Z, we have gcd(a,b,c) = gcd((a,b),c) = gcd(d,c), where d = gcd(a,b).

Proof. gcd(a,b,c) belongs to S(a)∩S(b)∩S(c) = (S(a)∩S(b))∩S(c). The result follows.

Theorem 15.11. For p a prime, and a ∈ Z∗, p DOES NOT DIVIDE a if and only if gcd(a, p) = 1.

Proof. If p is a prime S(p) = {−1,+1,−p,+p}, then p does not divide a means that neither p nor −p are divisors of
a. The only possible divisors are +1 and -1. Thus S(a)∩S(p) = {+1,−1}. Thus the gcd is 1, and thus gcd(a, p) = 1
as needed.

If gcd(a, p) = 1, then p cannot divide a. This is because if p|a since obviously p|p we would have from a prior
property that p|gcd(a, p) and (in fact gcd(a, p) = |p|). For this to happen p should be −1 or +1. But p is prime and
this can’t happen.

Theorem 15.12. For a,b,m ∈ Z∗ and gcd(a,b) = 1 and a|bm then a|m.

Proof. Since gcd(a,b) = 1 we have 1 = ax+by for some x,y. Multiplying by m we get m = axm+bmy. Obviously
a|axm. Since a|m we have a|bmy as well. Thus a|axm+bmy i.e. a|m.

Theorem 15.13. For a,b ∈ Z∗ and prime p is such that p|ab, then p divides either a or b.

Proof. Say p does not divide a. By a prior theorem since p is prime this means gcd(p,a) = gcd(a, p) = 1. Since p|ab
by the previous theorem we have p|b.
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340 CHAPTER 15. INTRODUCTORY NUMBER THEORY

Theorem 15.14. If gcd(a,b) = 1 and a|c and b|c then ab|c.

Proof. If gcd(a,b) = 1 we have 1 = ax+by. Then c = acx+bcy. We have a|c i.e. c = aq. Then cb = abq and thus
bcy = ab(qy). The latter implies ab|bcy.

We also have b|c i.e. c = br. Then ac = abr. Thus acx = ab(rx). The latter implies ab|acx.
Thus ab|bcy and ab|acx imply ab|acx+bcy. Therefore ab|c.

Method 15.1 (GCD algorithm). (a) If a > 0, we have gcd(a,0) = 0.
(b) If a > 0, we have gcd(a,a) = a.
(c) If 0 < a < b swap the rolses of a,b.
(d) If a > b > 0 then a = bq+ r and by Theorem 15.7 we have gcd(a,b) = gcd(b,r). Since r is the remainder r < |b|
and we can continue likewise with the roles of (a,b) played by (b,r). Let r > r1 > .. . > rk > 0 be the sequence of
remainders generated until remainder rk+1 = 0. We also have a > b > r > r1 > .. . > rk > 0. We know we are to reach
a remainder 0 since the sequence above is decreasing and a and also b finite.

Example 15.5 (GCD Example). Calculate gcd(280,105).

Proof.
gcd(105,280) = gcd(280,105)
gcd(280,105) = gcd(105,70) 280 = 105 ·3+70
gcd(105,70) = gcd(70,35) 105 = 70 ·1+35
gcd(70,35) = gcd(35,0) 70 = 35 ·2+0
gcd(35,0) = 0

Therefore gcd(105,280) = 35.

Example 15.6 (GCD Example). Express gcd(105,280) as a linear combination of 105, 280.

Proof.
gcd(105,280) = gcd(280,105)
35 = 105(3)+280(−1)
35 = 105(1)+(280+105(−2))(−1) 280 = 105 ·3+70
35 = 105(1)+70(−1) 105 = 70 ·1+35
35 = 35 70 = 35 ·2+0

Then 35 = 105×3+280× (−1).

Definition 15.10. For two integers a,b ∈ Z if gcd(a,b) = 1 the two integers a and b are called relatively prime.
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15.5. LEAST COMMON MULTIPLIER 341

15.5 Least Common Multiplier
For a,b∈N we denote by lcm(a,b) the least common multiplier of a and b. For a,b∈Z only the positive multipliers
are considered.

Moreover lcm(ma,mb) = m lcm(a,b).

Theorem 15.15. Let a,b ∈ N. If gcd(a,b) = 1 then lcm(a,b) = ab.

Proof. Let m = lcm(a,b). Since gcd(a,b) = 1 we have 1 = ax+by. Then m = axm+bym. Since a|m and b|m. Then
m= ap and m= bq. Moreover substituting to the previous equation we have m= ax(bq)+by(ap)= ab(xq)+ab(yp)=
ab(xq+ yp). Thus ab|m. This implie ab≤ m. Moreover m is the least common multiple of a,b. One such multiple is
ab. Thus ab≥ m. The ab≤ m and the just shown ab≥ m implies m = ab.

Theorem 15.16. Let a,b ∈ N. Then gcd(a,b) · lcm(a,b) = ab.

Proof. Let d = gcd(a,b). Let a1 = a/d and b1 = b/d. Then gcd(a/d,b/d) = gcd(a1,b1) = 1. From the previous
theorem we have lcm(a1,b1) = lcm(a/d,b/d) = ab/d2.

If T (a) is the set of (positive) multiples of a, then T (a)= T (−a)= T (|a|). Moreover T (a)∩T (b)= T (|a|)∩T (|b|).
Therefore lcm(a,b) = lcm(|a|, |b|).

Corollary 15.4. For a,b ∈ Z∗ if a|b, then lcm(a,b) = b.

Proof. If a|b, then any element t ∈ T (b) is t ≥ b. Moreover b or |b| is in T (a). The result follows.
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342 CHAPTER 15. INTRODUCTORY NUMBER THEORY

15.6 Diophantine Equations

Theorem 15.17. Let a,b ∈ Z∗. The linear Diophnatine equation

ax+by = c

has integer solution x,y if and only if d|c, where d = gcd(a,b). If a particular solution (x0,y0) exists, then there are
infinitely many solution of the form

x = x0 +
mb
d

, y = y0−
ma
d

,

where m ∈ mbZ.

Proof. By way of Theorem 15.9 there exist x,y such that

ax+by = d (15.1)

where d = gcd(a,b). Since d|c there exists a q such that c = dq. Multiplying by q Equation 15.1 we get

a(xq)+b(yq) = dq = c (15.2)

Thus a solution has been found through Theorem 15.9 as x0 = xq and y0 = yq. Let (x0,y0) be a solution pair. Suppose
there is another solution pair (x,y). Then

ax0 +by0 = c , ax+by = c (15.3)

Subtracting one from the other we get

a(x0− x)+b(y0− y) = 0⇒ a(x0− x) = b(y− y0). (15.4)

For d = gcd(a,b), a1 = a/d and b1 = b/d are both integer. Moreover gcd(a1,b1) = 1 from a prior result. Dividing by
d equation 15.4 we have.

a
d
(x0− x) =

b
d
(y− y0)⇒ a1(x0− x) = b1(y− y0) (15.5)

Since gcd(a1,b1) = 1, since a1|a1(x0− x) it means a1|b1(y− y0). Being relatively prime a1,b1 this is equivalent to
a1|y− y0. Likewise b1|x− x0. From the latter we obtain that there exists, m such that

b1|x− x0⇒ x− x0 = mb1⇒ x = x0 +m
b
d

From the first implication above we also obtain that

x− x0 = mb1 , a1(x0− x) = b1(y− y0)⇒−ma1b1 = b1(y− y0)⇒ y = y0−m
a
d
.

The result thus follows.

Corollary 15.5. If gcd(a,b,c) = 1 and gcd(a,b) = d > 1 then Equation 15.17 has no solution.

Proof. Say that Equation 15.17 has an integer solution (x,y) i.e. ax+by = c. Since d = gcd(a,b) it means d|a and d|b.
Then d|ax+by i.e. d|c. If d is a common divisor of a,b,c it means d|1. Then it can only be d = 1. This contradicts
the fact d > 1. Thus Equation 15.17 cannot have any solution.

Corollary 15.6. If gcd(a,b) = 1 then Equation 15.17 has one solution.
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15.6. DIOPHANTINE EQUATIONS 343

Example 15.7. Show gcd(1024,640) = 128 we have

Proof.

1024 = 640 ·1+384
640 = 384 ·1+256
384 = 256 ·1+128
256 = 128 ·2+0

Obviously gcd(1024,640) = 128, the last non zero remainder. Reversing the order of the equation we have.

128 = 384+256 · (−1)
= 384+(640+384 · (−1)) · (−1)
= 640 · (−1)+384 · (2)
= 640 · (−1)+(1024+640 · (−1)) ·2
= 640 · (−3)+1024 ·2

Therefore gcd(1024,640) = 128 = 1024 ·2+640 · (−3).

Example 15.8. Find the solutions, if any, of 1024x+640y = 256.

Proof. By the previous example gcd(1024,640) = d = 128. It is 128|256. Thus one solution of the Diophantine is
x0 = 2 · (256/128) = 4 and y0 = (−3) · (256/128) =−6.

Other solutions are
x = 4+m(640/128) = 4+5m , y =−6−8m

A simple calculation confirms the latter solutions

1024(4+5m)+640(−6−8m) = 256.

The previous method outlined in Corollary 15.6 is tedious. A better approach for solving ax+ by = d, where
d = gcd(a,b) starts with. [

a 1 0
b 0 1

]
The first column are the the Dividend (a) and Divisor (b) of the division operation. Eventually through repeated

division with remainder (the previous vertical operations become horizontal) will generate a matrix such as the one
below. Its first row entries contains the gcd(a,b) and x,y.[

gcd(a,b) x y
0 ? ?

]
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344 CHAPTER 15. INTRODUCTORY NUMBER THEORY

Example 15.9. Show this for a = 1024,b = 640 and division

1024 = 640 ·1+384
640 = 384 ·1+256
384 = 256 ·1+128
256 = 128 ·2+0

Proof. [
1024 1 0

640 0 1

]
→

[
384 1 −1
640 0 1

]
→

[
384 1 −1
256 −1 2

]
→

[
128 2 −3
256 −1 2

]
→

[
128 2 −3

0 −5 −8

]

In the first transition, we subtract the second row from the first per the first division. In the second transition, we
subtract the first row from the second per the second division. In the third transition, we subtract the second row from
the first per the third division. In the fourth transition, we subtract twice the first row from the second per the fourth
division. (It is twice because the quotient in this case is a 2.)

There is yet another matrix form representation of the Extended-Euclid’s algorithms (i.e. Extended GCD). For this
in Theorem 15.7 we rewrite the first line as in a = bq+ r = bq0 + r0, and the second line b = rq1 + r1 = r0q1 + r1.
The remaining lines remain the same. The product of k+ 2 matrices can be computed as a 2× 2 matrix with entries
x1, . . .x4. [

a
b

]
=

[
q0 1
1 0

]
×
[

b
r0

]
=

[
q0 1
1 0

]
×
[

q1 1
1 0

]
×
[

r0
r1

]
= . . .

=

[
q0 1
1 0

]
×
[

q1 1
1 0

]
× . . .×

[
qk+1 1

1 0

]
×
[

rk
0

]
=

i=k+1

∏
i=0

[
qi 1
1 0

]
×
[

rk
0

]
=

[
x1 x2
x3 x4

]
×
[

rk
0

]
⇒[

rk
0

]
=

[
x1 x2
x3 x4

]−1

×
[

a
b

]
⇒[

gcd(a,b)
0

]
=

[
x y
∗ ∗

]
×
[

a
b

]
⇒ gcd(a,b) = ax+by.
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15.6. DIOPHANTINE EQUATIONS 345

Example 15.10. Show this for a = 1024,b = 640 and division

1024 = 640 ·1+384
640 = 384 ·1+256
384 = 256 ·1+128
256 = 128 ·2+0

Proof.[
rk
0

]
=

[
x1 x2
x3 x4

]−1

×
[

a
b

]
,

[
x1 x2
x3 x4

]
=

[
1 1
1 0

]
×
[

1 1
1 0

]
×
[

1 1
1 0

]
×
[

2 1
1 0

]
=

[
8 3
5 2

]
Then, [

rk
0

]
=

[
8 3
5 2

]−1

×
[

1024
640

]
=

[
2 −3
−5 8

]
×
[

1024
640

]
We just need to find the top element of the vector i.e. its rk values. Obviously rk = 128 = 1024 ·2+640 · (−3). At

the same time (x,y) = (2,−3) as well.

Theorem 15.18. For a, p ∈ Z∗ such that gcd(a, p) = 1, there is a unique x such that aa′ ≡ 1 (mod p).

Proof. Since gcd(a, p) = 1 we have by Theorem 15.7 that there exists x,y such that ax+ py = 1 = gcd(a, p). Further-
more −py = ax−1. Since p|py we have p|ax−1. Thus ax ≡ 1 (mod p). Consider a′ = x (mod p). It is still aa′ ≡
(mod p). Furthermore any divisor of a′ and m must also divide 1, i.e. gcd(a′, p) = 1.
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15.7 Prime Numbers and Factorization

The definition of a prime number and a composite number was given through Definition 15.5 and Definition 15.6. In
short a positive (or negative) number other than the unit(s) that has two positive factors, itself and +1, is called a prime.
If it is not a prime, it is called a composite.

The next two theorems are repetitions.

Theorem 15.19. Every integer n > 1 is divisible by at least one prime factor.

Proof. Let Q be the set of natural integer numbers greater than one, that have no prime factors. We shall show that
Q = /0.

Say Q is not empty. Then there is a minimum element say m ∈ Q. Since m|m, and m has no prime factors, m
cannot be a prime number. Thus m is composite and let m = qr, where 1 < q,r < m. Since either q or r is < m, and m
is the smallest element of Q it means q 6∈ Q. By definition q has a prime factor p i.e. p|q and q|m. By transitivity p|m.
The latter contradicts the fact that m being in Q it should not have prime factors (such as p). Thus S has no minimum
element m and thus it is empty!

Theorem 15.20. Every integer n > 1 is either a prime or there exists a prime number p≤
√

n such that p|n.

Proof. If n is prime, we are done.
If n is not a prime there exist a,b such that n = ab. Let 1 < a ≤ b < n. If a >

√
n then b ≥ a >

√
n and therefore

n = ab >
√

n ·
√

n = n, which is impossible. It follows that 1 < a≤
√

n. Thus a has a prime factor p by Theorem 15.19
and p≤ a. Since p|a and a|n we conclude that p|n, with p≤ a≤

√
n.

Lemma 15.6. For a prime number p if p|p1 p2 then p|p1 or p|p2. This can be generalized for p|p1 p2 p3 . . ..

Proof. If p|p1 p2 given that p is prime its only positive divisors are 1, p. If p - p1, then gcd(p, p1) = 1. Thus from a
prior result p|p2. By induction we can prove its generalization.

Theorem 15.21 (Fundamental Theorem of Arithmetic). If n > 1 there there exists unique prime numbers
p1 < .. . < pk and natural integers a1, . . . ,ak > 0 such that

n = pa1
1 pa2

2 . . . pak
k .

Proof. If n is prime this is true easily. Let n be a composite natural number. Then by Theorem 15.19 it has a prime
factor and let its smallest one be q1 i.e.

n = q1 ·a1 , with a1 < n.

If a1 is prime we have decomposed n into two prime numbers. If a1 is composite and by Theorem 15.19 it has a prime
factor and let its smallest one be q2 i.e.

a1 = q2 ·a2 , with a2 < a1.

n = q1a1 = q1(q2a2) = q1q2a2.

If a2 is composite we repeat this until he hit a ak−1 = qk. That way

n = q1q2 . . .qk−1qk.
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15.7. PRIME NUMBERS AND FACTORIZATION 347

Let us assume that there is another factorization of n

n = r1r2 . . .rt−1rt .

The we have
q1q2 . . .qk−1qk = r1r2 . . .rt−1rt .

r1 divides the right hand side. It also divides the left-hand side. By Lemma 15.6 one of qi divided by r1, i.e. r1|qi.
Because all of r1,qi are prime numbers this can only mean r1 = qi for some i. The smallest ri is r1. The smallest qi is
q1. Thus r1 = q1. Because primes are 6= 0, we can factor out r1.

q2 . . .qk−1qk = r2 . . .rt−1rt .

Continuing likewise if without loss of generality k < t we will eventually have

1 = rk+1 . . .rt−1rt .

Prime numbers are > 1. Their product cannot be equal to 1. Thus this can only mean that k = t as well.

Theorem 15.22 (GCD-UF). If

a = pa1
1 pa2

2 . . . pak
k , b = pb1

1 pb2
2 . . . pbk

k , ak,bk ≥ 0.

in order to find d = gcd(a,b) we have

d = gcd(a,b) = pc1
1 pc2

2 . . . pck
k = pmin(a1,b1)

1 pmin(a2,b2)
2 . . . pmin(ak,bk)

k ,

where ci = min(ai,bi)≥ 0.

Proof. We shall show that D = pc1
1 pc2

2 . . . pck
k satisfy the GCD properties. Because ci ≤ ai for all i, we conclude D|a.

Because ci ≤ bi for all i, we conclude D|b. Let g by any common divisor of a and b. If g divides a,then Then
g = pg1

1 pg2
2 . . . pgk

k with gi ≤ ai. If g divides b,then also gi ≤ bi, i.e. gi ≤ min(ai,bi). This means that g|D. This is
equivalent to also having g≤ D. Thus any common divisor g of a,b is g≤ D. This means D is d = gcd(a,b).

Theorem 15.23 (Infinitely Many Primes). There are infinitely many prime numbers distinct from each other.

Proof. Suppose that there are finitely many prime numbers i.e.

p1 < p2 < .. . < pn

that is n distinct prime numbers exist. Then form the product N = p1 p2 . . . pn + 1. Since N > 1 by Theorem 15.19
there is at least one prime p dividing N. This p cannot be any of the p1 . . . pn. Why ? Say p = pi for some i. Then p|N
and p|p1 . . . pn which would imply p|N− p1 . . . pn. The latter implies p|1 i.e. p≤ 1 but given p is a prime number we
must have p > 1. A contradiction. Thus p is a prime number other than the ones of the finite group p1, . . . , pn.

Definition 15.11. Let π(n) be the number of prime numbers less than or equal to n. Then π(n)→ ∞ as n→ ∞.

Theorem 15.24 (Prime Number Theorem). Let π(n) be the number of prime numbers less than or equal to n. It is
π(n)≈ n/ lnn.
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348 CHAPTER 15. INTRODUCTORY NUMBER THEORY

15.8 Modular Arithmetic
Definition 15.12. Let n ∈ Z∗+. For a,b ∈ Z we say a≡ b (mod n) if n/(a−b).

We can read this expression by saying that ”a is congruent to b modulo n”. Then the ”difference of a and b is a
multiple of n” or ”n divides the difference of a and b”.

Note that several times the ≡ is replaced by = and the parentheses around the mod are dropped.

Theorem 15.25 (Properties of (mod )). The (mod n) operation has the following properties. We assume n is an
integer n > 1.

1. Reflexive a≡ a (mod n).

2. Symmetric a≡ b (mod n) ⇐⇒ b≡ a (mod n).

3. Transitive If a≡ b (mod n) and b≡ c (mod n), then a≡ c (mod n).

4. Translation If a≡ b (mod n) then for any integer c, then a+ c≡ b+ c (mod n).

5. Scaling If a≡ b (mod n) then for any integer c, then a · c≡ b · c (mod n).

6. Additivity If a1 ≡ b1 (mod n) and a2 ≡ b2 (mod n), then a1 +a2 ≡ b1 +b2 (mod n).

7. Subtractivity If a1 ≡ b1 (mod n) and a2 ≡ b2 (mod n), then a1−a2 ≡ b1−b2 (mod n).

8. Multiplicativity If a1 ≡ b1 (mod n) and a2 ≡ b2 (mod n), then a1 ·a2 ≡ b1 ·b2 (mod n).

9. Exponentiativity If a≡ b (mod n) then for any integer c > 0, then ac ≡ bc (mod n).

Proof. For n|a− a i.e. n|0 obviously. If n|a− b then n|b− a obviously. If n|a− b and n|b− c we have respectively
a−b = kn and b− c = mn. Adding the two together we get a− c = (k+m)n i.e. n|a− c i.e. a≡ c (mod n).

The (a+ c)− (b+ c) = a−b proves property 4. ca− cb = c(a−b) proves property 5. The proof of 6 is similar to
that of 3. The proof of 7 is similar to that of 3 or 6 except that we subtract.

If a1−b1 = kn and a2−b2 = mn, then a1a2 = (kn+b1)(mn+b2) = b1b2+(kmn+kb2+b1m)n, and thus n|a1a2−
b1b2.

For the last one n|a− b implies a− b = kn or a = b+ kn. The binomial theorem i.e. Theorem 4.20 implies that
ac = (b+ kn)c = bc +qn for some integer n. The result then follows.

Theorem 15.26 (Mod-division). Let n ∈ Z∗+ and n > 1 and let a ∈ Z. Then there exists a unique integer 0 ≤ r < n
such that

a≡ r (mod n).

Proof. If n 6= 0 and a ∈ Z division (Theorem 15.3) implies that there are unique q,r such that a = nq + r, with
0≤ r < |n|. If in addition n is positive (e.g. n > 1), then 0≤ r < n.

Example 15.11. Find 349 (mod 19).

Proof. Repeated squares can help avoiding doing 49 multiplications. The binary representation of 49 is
49 = (110001)2. Or in other words 49 = 25 +24 +20. Then 349 = 332×316×31 = 325 ×324 ×320

.
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15.8. MODULAR ARITHMETIC 349

31 ≡ 3 (mod 19)
32 ≡ 9 (mod 19)
34 ≡ 81≡ 5 (mod 19)
38 ≡ 25≡ 6 (mod 19)

316 ≡ 36≡ 17 (mod 19)
332 ≡ 289≡ 4 (mod 19)

Note that 316 ≡ 36≡ 17≡−2 (mod 19). Then 332 ≡ 4 (mod 19) does not need to deal with a 172 = 289!
We then combine the powers of 2 in the exponent of three as dictacted by the binary representation of 49. That is

349 ≡ 31 (mod 19) ·316 (mod 19) ·332 (mod 19)≡ 3 ·17 ·4≡ 13 ·4≡ 14 (mod 19)
However, a nice trick might have worked better if a 1 or -1 was encountered earlier.

31 ≡ 3 (mod 19)
32 ≡ 9 (mod 19)
33 ≡ 27≡ 8 (mod 19)
34 ≡ 24≡ 5 (mod 19)
35 ≡ 15 (mod 19)
36 ≡ 45≡ 7 (mod 19)
37 ≡ 21≡ 2 (mod 19)
38 ≡ 6≡ 6 (mod 19)
39 ≡ 18≡−1 (mod 19)

The 349 = 345 ·34 = (39)5 ·34 ≡ (−1)(−1)(−1)(−1)(−1)5≡−5≡ 14 (mod 19)

Definition 15.13. Let n > 1 be an integer. We define (k)n classes, for all k = 0,1, . . . ,n−1, k ∈ Z.

(k)n = {a ∈ Z|a≡ k (mod n)}

(0)n,(1)n, . . . ,(n−1)n are the n equivalence class modulo n. Every integer a belongs to one of those classes depending
on its remainder after a division with n.

Example 15.12. The set of all multiples of 3 fall into three equivalence classes.

(0)3 = {. . . ,−3,0,+3,+6, . . .},

then
(1)3 = {. . . ,−2,1,+4,+7, . . .},

and finally,
(2)3 = {. . . ,−1,2,+5,+8, . . .}.

Integers 5 and 8 belong to (2)3 because the remainder of the integer division of 5 by 3 is a 2. And so is the remainder
of the division of 8 by 3.
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350 CHAPTER 15. INTRODUCTORY NUMBER THEORY

Definition 15.14. Let Zn be the set of equivalence classes of integers modulo n. That is,

Zn = {(0)n,(1)n, . . . ,(n−1)n}.

If a∈ (k)n then a= nq+k i.e. a≡ k (mod n). If b∈ (m)n then b= nr+m i.e. b≡m (mod n). Then (a+b)∈ (k+m)n.
Naturally (k+m)n is ((k+m) (mod n))n. Moreover (ab) ∈ (km)n. We can then define operations on the elements of
Zn as follows.

1. Addition. (k)n +(m)n = (k+m)n.

2. Multiplication. (k)n(m)n = (km)n.

Arithmetic on equivalence classes is known as modular arithmetic.

Definition 15.15. In the remainder of this chapter, arithmetic involving (k)n will not utilize this notation but simply
state k (mod n) and not (k)n any more. The to be used notation would allow for a k out of the 0 . . .n−1 bounds.
Thus we won’t use the correct (5)7 +(3)7 = (1)7 Instead we will write 5+3≡ 1 (mod 7).

Division. Operation (mod n) was used in the context of modular addition, subtraction and multiplication. We
were silent about division. This is because of the following example.

4 6≡ 2 (mod 6)
yet

3 ·4 ≡ 3 ·2 (mod 6)
since

0 ≡ 0 (mod 6)
Also

2 ·3 ≡ 0 (mod 6)
yet

2 6≡ 0 (mod 6) and 3 6≡ 0 (mod 6).

Theorem 15.27 (Cancellation Law). If ac≡ bc (mod n), and gcd(n,c) = 1 then a≡ b (mod n).

Proof. It is ac+qn = bc+ rn i.e. ac−bc = sn for s = r−q for some integer r,q. Thus n|ac−bc or n|(a−b)c. Since
gcd(n,c) = 1, we have that n|a−b. This implies a≡ b (mod n).

Theorem 15.28 (Modular Linear Equation). The modular equation

ax≡ b (mod n)

has a solution if and only if gcd(a,n)|b.

Proof. From ax ≡ b (mod n) we have that ax− b = kn i.e. ax+ kn = b. The solution of this Diophantine equation
exists for gcd(a,n)|b.
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15.8. MODULAR ARITHMETIC 351

Theorem 15.29. The modular equation
ax≡ 1 (mod n)

has a solution if and only if gcd(a,n) = 1.

Proof. The gcd(a,n)|b of the previous theorem for b = 1 becomes gcd(a,n)|1. Thus gcd(a,n)≤ 1. The gcd is always
a positive integer i.e. gcd(a,n)≥ 1. Thus gcd(a,n) = 1 as needed.

Theorem 15.30. The modular equation, for prime p,

ax≡ 1 (mod p)

has a solution for x if p - a.

Proof. By the previous theorem for a solution to exists gcd(a, p) = 1. Since p is a prime its only positive divisors are
1 and p. Given that p cannot divide a, we have that the gcd(a, p) = 1. The result follows.

Equivalently, it can be stated as follows.

Theorem 15.31. If p is a prime number, the modular equation, for prime p and p - a, then there exists an x such that
1≤ x≤ p−1 such that the modular equation,

ax≡ 1 (mod p)

has a solution for x. The x is sometimes denoted as the inverse of a modulo p i.e. a−1. The a is called a unit modulo
p, as it has an inverse. An a that is not a unit is called a zero divisor modulo p.

Definition 15.16. The a such that a ·a−1 ≡ 1 (mod p) is called a unit modulo n, as it has an inverse.

Definition 15.17. The a such that there does not exist an a−1 such that a ·a−1 ≡ 1 (mod p) is called a zero divisor
modulo p.

Theorem 15.32. Let n > 1 be an integer and n - a. The following are

(a) a is a zero divisor (mod n),

(b) a has no inverse (mod n),

(c) there exists a s ∈ Z such that n - s and as≡ 0 (mod n).

Proof. Statements (a) and (b) are true and equivalent by the prior definition and introduction of unit and zero divisor.
Suppose that (b) is true and a has no inverse. By Theorem 15.29 gcd(a,n)> 1. Let gcd(a,n) = d > 1. The a = dr

and n = ds for some integer r,s. For 1 << z < n we have z 6≡ (mod n). Furthermore, as = (dr)s = (ds)r = nr ≡ 0
(mod n). Statement (c) follows from Statement (b).

Suppose that statement (c) is true. There there exists an s ∈ Z such that n - a and as≡ 0 (mod n). We are going to
prove a has no inverse. Let us assume that a has an inverse, then aa−1 ≡ 1 (mod n), and then

0≡ as≡ asa−1 ≡ (aa−1)s≡ s (mod n).

The latter implies that n|s that contradicts the assumption that n - s! Thus a has no inverse and statement (b) is true
coming from (c). Thus statements (b) and (c) are equivalent.

Theorem 15.33. For prime p, ab≡ 0 (mod p) implies either a≡ 0 (mod p) or b≡ 0 (mod p). Thus for a prime p
there no zero divisors other than 0 (mod p).
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352 CHAPTER 15. INTRODUCTORY NUMBER THEORY

15.9 Chinese Remainder Theorem
Example 15.13. A farmer has some pounds sugar. If the farmer puts them into bags of 11 pounds the farmer can fit
enough full bags but then is left with 2 spare pounds. If the farmer uses 20 pound bags then is also left with 1 spare
pound. How many pounds of sugar does the farmer have?

Say the farmer has 321 pounds of sugar. This amount needs 29 11-pound bags and there 2 spare pounds. If the
farmer uses 20-pound bags the farmer can fill 16 bags and is left with 1 pound. Is it a solution.

Example 15.14. What if the farmer has 101 pounds of sugar ? 101 = 11 ·9+2 = 5 ·20+1.

The only solution in 0 . . .219 seems to be 101. But beyond that range, another solution is 101+220, 100+2 ·220,
and so on.

Theorem 15.34 (Chinese Remainder Theorem). Let n1, . . . ,nk are pairwise prime numbers i.e. gcd(ni,n j) = 1 for
i 6= j. Let a1, . . . ,ak ∈ Z. There is a unique A (mod n1 . . .nk) such that it satisfies all of the modular equation below.

A ≡ a1 (mod n1)

A ≡ a2 (mod n2)

. . .

A ≡ ak (mod nk)

Proof. Let N j, for j = 1, . . . ,k contain all ni except n j. That is

N j = n1 . . .n j−1n j+1 . . .nk.

We have ni|N j for all i 6= j. We have that gcd(N j,n j) = 1. This is because gcd(n j,ni) = 1 for all i 6= j as they are
pairwise prime . Since gcd(N j,n j) = 1 we have that there exists an integer x j such that

N jx j ≡ 1 (mod n j),

for all j = 1, . . . ,k. We then form
A = a1N1x1 + . . .+aiNixi + . . .+akNkxk.

Consider n j and N j. It is ni|N j for all i 6= j. Thus all the term a jN jx j are multiples of ni for j 6= i. For the term aiNixi
this is note the case as gcd(ni,Ni) = 1. But we have that Nixi ≡ 1 (mod ni). Thus aiNixi ≡ ai (mod ni). The second
equivalence below follows

A≡ a1 ·0+a2 ·0+ . . .+ai ·Ni · xi + . . .+ak ·0 (mod ni)≡ ai (mod ni)

This is true for all i and this
∀1≤ i≤ k : A≡ ai (mod ni).

Say that there is another solution a i.e. a ≡ A ≡ ai (mod ni) or all i. This would mean that ni|A− a. Since ni are
pairwise prime by Theorem 15.14 we have

n1n2 . . .nk|A−a.

This means A−a≡ (mod n1n2 . . .nk).
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15.9. CHINESE REMAINDER THEOREM 353

Example 15.15. Find all integers A such that

A ≡ 1 (mod 2)
A ≡ 2 (mod 3)
A ≡ 3 (mod 5)

Proof. Let n1 = 2,n2 = 3,n3 = 5.
Then N1 = 3 ·5 = 15, N2 = 2 ·5 = 10, N3 = 2 ·3 = 6.

N1x1 ≡ 1 (mod n)1⇒ 15x1 ≡ 1 (mod 2)⇒ x1 = 1
N2x3 ≡ 1 (mod n)2⇒ 10x2 ≡ 1 (mod 3)⇒ x2 = 1
N3x4 ≡ 1 (mod n)3⇒ 6x3 ≡ 1 (mod 5)⇒ x3 = 1

Then n1n2n3 = 2 ·3 ·5 = 30,

A = a1N1x1 +a2N2x2 +a3N3x3 = 1 ·15 ·1+2 ·10 ·1+3 ·6 ·1 = 15+20+18 (mod 3)0 = 23

Thus one solution is 23. Another 23+30, another 23+60, and so on.

Corollary 15.7. Let n1,n2 > 1 be integers and let a1,a2 ∈ Z. Let d = gcd(n1,n2). If d|a1−a2 then the equations

A ≡ a1 (mod n)1

A ≡ a2 (mod n)2

have a unique solution A (mod lcm)(n1,n2). If d - a1−a2 then the equations have no solution.

Example 15.16. When a bit sequence is transmitted a = (a1a2 . . .an), a parity bit is computed and transmitted as well
where p≡ a1+ . . .+an (mod 2). The even parity bit e(a) os obtained by adding the bits of a and returning the value
of the sum modulo two. This sum is the number of ones in a; if it is an even number e(a) is 0 else it is 1.

Example 15.17. A 10-digit ISBN (International Standard Book Number) code a = (a1 . . .a10 where a10 is a check
digit. The check digits is (mod 1)1; an X represents a 10. The check digit computation involved is

10a1 +9a2 +8a3 +7a4 +6a5 +5a6 +4a7 +3a8 +2a9 +a10 (mod 1)1.

If the checkdigit a10 is valid this sum is equal to 0 (mod 1)0. The weights can be an increasing left-to-right sequence
as well.

a1 +2a2 +3a3 +4a4 +5a5 +6a6 +7a7 +8a8 +9a9 +10a10 (mod 1)1.

For a 13-digit ISBN (a1 . . .a12a13) a check digits is computed for a1 . . .a12 where the weights are alternating 1 and
3s.

a1 +3a2 +a3 +3a4 +a5 +3a6 +a7 +3a8 +a9 +3a10 +a11 +3a12

The sum (mod 1)0 determines the check-digit after subtracting it from 10.
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Chapter 16

Intermediate Number Theory

16.1 Fermat’s (Little) Theorem
As of now we have established that for a prime number p, all integers a with 1≤ a≤ p−1 are units that is, the modular
equations ax≡ 1 (mod p) has a solution for x.

Theorem 16.1 (Fermat (Little) Theorem). If p is a prime, a ∈ Z and p - a, then ap−1 ≡ 1 (mod p).

Proof. Consider a,2a,3a, . . .(p− 1)a (mod p). Since p - a, all these values are non-zero and distinct mod p. This
is because if ia ≡ ja (mod p), because p - a it should be p|i− j. This means p ≤ |i− j|. But both i, j are such that
0≤ |i− j| ≤ p−1 and thus p≤ p−1 which is impossible! The p−1 values a,2a, . . .(p−1)a (mod p) can only be
the only p− 1 available (mod p) i.e. 1,2,3, . . . , p− 1 (possibly) rearranged. Then taking their product one way or
the other,

a ·2a · . . . · (p−1)a≡ ap−1(p−1)!≡ 1 ·2 · . . . · (p−1)≡ (p−1)! (mod p)

ap−1(p−1)!≡ (p−1)! (mod p)

Since p is relatively prime to 1,2,3, . . . ,(p−1) it is also to (p−1)!. Thus (ap−1−1)(p−1)! ≡ 0 (mod p). Thus it
must be ap−1−1≡ 0 (mod p) or equivalently ap−1 ≡ 1 (mod p) as needed.

A direct consequence is the following Corollary.

Corollary 16.1. For a ∈ Z, we have ap ≡ a (mod p).

Given from Fermat’s Last Theorem that ap−1 ≡ ap−2a we conclude the following.

Corollary 16.2. For a ∈ Z such that p - a, we have a−1 ≡ ap−2 (mod p).

Example 16.1. Consider the integers (mod 8). We have 32 ≡ 1 (mod 8). We also have 52 ≡ 1 (mod 8). There are
two square roots of 1 (mod 8). Can you find others (e.g. 1, 7)? Moreover 4≡−4 (mod 8).

We can generalize the last observation as follows.

Example 16.2. a ≡ −a (mod n) is equivalent to 2a ≡ 0 (mod n). If n = 2a this is trivially true. If n is odd, then
gcd(2,n) = 1 and thus n|a. In the latter case a≡ 0 (mod n).

355
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356 CHAPTER 16. INTERMEDIATE NUMBER THEORY

Theorem 16.2. If p is an odd prime (p 6= 2) and p - a then the equation

x2 ≡ a (mod p)

has either exactly two distinct roots or no roots at all.

Proof. If there are roots to the modular equation the proof is complete. Otherwise let z be a solution i.e. z2 ≡ a
(mod p). Since −z is such that (−z)2 ≡ z2 ≡ a (mod p), then −z is also a solution. Is it z≡−z (mod p)? This is so
if p is an even number as it was shown prior to the statement of Theorem 16.2. It is also possible that p is odd but then
it must divide a. However the preconditions of the theorem disallow the former (even number cannot be the case as p
is an odd prime) and the latter (even number and p|a is not possible, since p is odd and p - a).

Therefore there two distinct solutions z,−z (mod p) if one of them (say z) exists. Does there exist a third (or fourth
etc) solution? Let us call it w. Then w2 ≡ z2 ≡ a (mod p). This implies w2−z2 ≡ 0 (mod p). Then (w−z)(w+z)≡ 0
(mod p). Then p|w− z or p|w+ z. In other words w ≡ z or w ≡ −z. There are two and only two solutions then. No
third or more!

Theorem 16.3. If p is prime, show that (p−1)!≡−1 (mod p).

Proof. The list of Theorem 16.1 is {1,2, . . . p−1}. No number is divisible by p and thus it has an inverse (mod p).
It is not possible that x is its own inverse x−1 (mod p) unless x = 1 or x≡ p−1≡−1 (mod p) from Theorem 16.2.
Thus for the remaining values x ∈ {2, . . . , p−1}, we must have x 6≡ x−1 (mod p). Every pair cancels each other i.e.
x · x−1 ≡ 1 (mod p). Thus

2 ·3 ·4 . . .(p−2)≡ 1 (mod p)

Restoring the missing 1 and p−1 we have

1 ·2 ·3 ·4 . . .(p−2) · (p−1)≡ p−1≡−1 (mod p)

16.2 Euler’s Theorem and Zn

The units (mod p) are all those integers a that they have an inverse a−1 (mod p). An integer 1 ≤ a < p is a unit if
gcd(a, p) = 1.

Definition 16.1 (Set of unit Zn). Zn, for n > 1 is the set of units (mod n), that is the integers between 1 and n− 1
that are relatively prime to n.

Example 16.3 (Z3,4 , . . .). Therefore Z3 = {1,2,3}; Z4 = {1,3}, and Z5 = {1,2,3,4,} and finally Z6 = {1,5}.

Theorem 16.4. For a,b ∈ Zn we have that ab ∈ Zn and also a−1 ∈ Zn.

Proof. Starting with the last result if a∈Zn it means that aa−1 ≡ 1 (mod n). Moreover a−1a−1−1 ≡ 1 (mod n). Thus
a−1 ∈ Zn. For a,b let their inverse be a−1,b−1 respectively. Consider (ab). Since

(ab)(b−1a−1)≡ a ·1 ·a−1 ≡ 1 (mod n)

it shows that ab ∈ Zn.

Euler’s totient function φ(n) denotes the cardinality of Zn that is φ(n) = |Zn|, that is the number of units (mod n).
Euler’s theorem is an extension of Fermat’s Little Theorem where the restriction of n being a prime number has been
relaxed.
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16.2. EULER’S THEOREM AND ZN 357

Theorem 16.5 (Euler’s Theorem). For a ∈ Z, a > 1, if gcd(a,n) = 1 then aφ(n) ≡ 1 (mod n).

Proof. Let
a1, . . .aφ(n) (mod n)

be the list of units. Multiply each one of the elements with a, where gcd(a,n) = 1. Since it is so ax ≡ 1 (mod n).
More over ai are units thus aixi ≡ 1 (mod n) as well. The aai are such that (aai)(xxi)≡ (ax)(aixi)≡ 1 (mod n). That
is all aai are units.

aa1,aa2, . . . ,aaφ(n) (mod n).

Moreover aai 6≡ aa j (mod n). This is because if aai ≡ aa j (mod n) would implicate xaai ≡ xaa j (mod n) i.e. ai ≡ a j
(mod n). If all of them are in the integer interval [1,n− 1], then this implie ai = a j, i.e. i = j. That is the two lists
above are the same up to a reordering of the same elements. Thus

aa1aa2, . . . ,aaφ(n) ≡ a1 . . .aφ(n) (mod n)

This means
aφ(n)a1a2 . . .aφ(n) ≡ a1a2 . . .aφ(n) (mod n)

Using cancellation (or multiplication with a−1
1 a−1

2 . . .) we once more conclude that aφ(n) ≡ 1 (mod n).

Corollary 16.3. If p is prime φ(p) = p−1 and Zp = {1, . . . , p−1} and Euler’s Theorem becomes Fermat’s theorem.

Corollary 16.4. For pk, k > 1, the number of units is pk minus the multiples of p which is pk−1. Thus |Zpk | =
pk− pk−1 = pk−1(p−1). Therefore φ(pk) = pk− pk−1.

Example-Proposition 16.4. Let m,n > 1 be integer. The following two statements are equivalent.

• a is a unit (mod mn).

• a is a unit (mod m) and a is a unit (mod n).

Proof. (i)⇒ (ii). If a is a unit (mod mn) then it means gcd(a,mn) = 1. We claim that this implies that gcd(a,m) =
gcd(a,n) = 1. If this was not so, and say gcd(a,m) = d > 1, then d becomes a common divisor of a and m (and
consequently of of mn as well). This would imply gcd(a,mn)> 1, a contradiction to gcd(a,mn) = 1.

(ii)⇒ (i). If gcd(a,m) = gcd(a,n) = 1 then gcd(a,mn) = 1 as well. If the latter was not so gcd(a,mn) = d > 1.
There is a prime factor p of d i.e. p|d. Then p|a and thus p|mn. The latter implies p|m or p|n. One or the other
combined with p|a implies that p|gcd(a,m) or p|gcd(a,n) contradicting that gcd(a,m) = gcd(a,n) = 1.

The result then follows.

Theorem 16.6. If gcd(m,n) = 1 then φ(mn) = φ(m)φ(n).

Proof. If a is a unit (mod mn) it means gcd(a,mn) = 1. Using a Chinese remainder theorem-based method consider
function g defined on Zmn→ Zm×Zn.

g(A) = (A (mod m),A (mod n)).

we will show that g is a one-to-one and onto bijection. Note that if A is a unit (mod mn) then by Proposition 16.4 it
is a unit (mod m) and a unit (mod n). Consider G(A1) = G(A2). Then A1 ≡ A2 (mod m) and A1 ≡ A2 (mod n).
Thus m|A1−A2 and n|A1−A2. If gcd(m,n) = 1 as it is, then mn|A1−A2 as well implying A1 ≡ A2 (mod mn). Say
A1 is a unit (mod m) and A2 a unit (mod n). Then from gcd(m,n) = 1 and say Corollary 15.7 there is a unique A
(mod mn) such that A≡ A1 (mod m) and A≡ A2 (mod n). Thys g(A) = (A1,A2) = (A (mod m),A (mod n)). Thus
the two sets Zmn and Zm×Zn have the same number of elements thus φ(mn) = φ(m)φ(n).

Corollary 16.5. If n = pa1
1 pa2

2 . . . pak
k , then φ(n) = n(1−1/p1) . . .(n−1/pk).

Proof. By way of Theorem 16.6, φ(n) = φ(pa1
1 ) . . .φ(pak

k ). Furthermore, from Corollary 16.4 we have

φ(n) = φ(pa1
1 ) . . .φ(pak

k ) = pa1
1 − pa1−1

1 . . . pak
k − pak−1

k = n(1−1/p1) . . .(1−1/pk).
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358 CHAPTER 16. INTERMEDIATE NUMBER THEORY

Corollary 16.6. For n ∈ Z∗+ we have ∑d|n φ(d) = n.

From Euler’s formula we have a ∈ Zn we have aφ(n) ≡ 1 (mod n). Is it possible that ak ≡ 1 (mod n) for smaller
k < φ(n)? We have already mentioned that (−1)2 ≡ (n−1)2 ≡ 1 (mod n).

Definition 16.2 (Order (mod n)). For a ∈ Zn we define the order ordn(a) to be the smallest positive integer k such
that ak ≡ 1 (mod n).

Theorem 16.7. Let k = ordn(a). For all m we have am ≡ 1 (mod n) if and only if k|m.

Proof. If k|m we have m = ks for some integer s. Then

am ≡ (ak)s ≡ 1 (mod n)

For the other way if am ≡ 1 (mod n), Let m = kq+ r, where 0 ≤ r < k. Since ak ≡ 1 (mod n) and thus (ak)q ≡ 1
(mod n) and also am ≡ 1 (mod n), we have

1≡ am ≡ akq+r ≡ (ak)q ·ar ≡ ar (mod n).

For ar to be ≡ 1 (mod n) given that 0 < r < k is impossible since k is the smallest index for which this is true. The
only possibility is that r = 0 and the result follows.

Corollary 16.7. Let k = ordn(a) be as defined above. Then aφ(n) ≡ 1 (mod n) implies that k|φ(n).

Corollary 16.8. Let k = ordp(a), where p is a prime. Then aφ(p) ≡ 1 (mod p) implies that k|p−1.

Definition 16.3. A unit g (mod n) is a primitive root if its order is φ(n). Thus a unit g (mod n) is a primitive root if
it generates all Zn. That is Zn = {1,g,g2, . . . ,gφ(n)−1}. This implies that ordn(g) = φ(n). Moreover Zn is cyclic and g
is its generator.

Example 16.5. (Note that 32 implies a 32 (mod 7).) For n = 7 we have

Z7 = {1,31,32,33,34,35}= {1,3,2,6,4,5}.

Thus g = 3 is a primitive root.

Example-Proposition 16.6. If ordn(a) = k then am has order k if and only if gcd(m,k) = 1.

Proof. Let d = gcd(m,k) and let q = ordn(am). We need to show that q = k if and only if d = 1.
Let q = k. We will show that d = 1. Let d > 1. Then k = dx and m = dy, for some integer x,y. Note that x < k and

y < m. Then we have
(am)x ≡ amx ≡ adyx ≡ (ak)y ≡ 1 (mod p)

Thus order q of am is x. Since x < k = q the element am has ”order” k less than its order k. Impossible. Thus it should
be x = k which implies d = 1. Result shown.

If d = 1 we show that q = k. Since q = ordn(am) we have

amq ≡ (am)q ≡ 1 (mod p)

This means that k|mq from Theorem 16.6. Since d = gcd(k,m) = 1, we have k|q. Thus k ≤ q. We also have

(am)k ≡ (ak)m ≡ 1 (mod p)

Thus q|k i.e. q≤ k. Combining the latter with a previous k ≤ q the result follows.

Corollary 16.9. If Zn has a primitive root g, then all the primitive roots of Zn are those gq such that gcd(q,φ(n)) = 1.
In particular, there are φ(φ(n)) primitive roots (mod n).
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16.2. EULER’S THEOREM AND ZN 359

Proof. If g is a primitive root the ordn(g) = φ(n). By Proposition 16.6
ordn(gk) = φ(n) if and only if gcd(k,φ(n)) = 1. The number of values k such that this is true is φ(φ(n)). All element
of Zn are of the form gi and will thus be found this way.

Corollary 16.10. Let ordn(a) = k and ordn(b) = l. If gcd(k, l) = 1 then ordn(ab) = kl.

Proof. Let ordn(ab) = m. Then
(ab)kl ≡ (ak)l(bl)k ≡ 1 (mod n)

Therefore m|kl. Moreover
1≡ ((ab)m)k = (ak)m(bkm)≡ bkm (mod n)

This means l|km. Since gcd(k, l) = 1 we have l|m. Likewise, k|m. Since gcd(k, l) = 1 we have kl|m. This implies
kl ≤ m. But since m is the order of ab we must also have, by the first derivation above, kl ≥ m. Thus kl = m.

Example-Proposition 16.7. If xp−1− 1 = f (x)g(x) and deg( f ) = k and deg(g) = l then f (x) has k distinct root
(mod p) and g(x) has l.

Proof. Note that p− 1 = k+ l. If t is a root of xp−1− 1 then f (t)g(t) ≡ 0 (mod p). Thus either f (t) or g(t) is ≡ 0
(mod p). If one has fewer than the alotted roots then the other has more than the alotted thus if f has < k then g has
> l.

From Fermat’s Little Theorem we know that xp−1−1≡ 0 (mod p) has at least p−1 distinct solutions (mod p).
This p−1 solutions are 1,2, . . . p−1 as p - i where 1≤ i < p.

Theorem 16.8. If p is prime, then Zp has a primitive root.

Proof. If p = 2, then 1 is primitive. Suppose p > 2 is an odd prime. Let p−1 has a prime factorization

p−1 = pa1
1 . . . pak

k

where p1 < .. . < pk.
Let us form

xp−1−1 = (xp1
a1 −1) f (x)

The first factor has exactly pa1
1 roots following the discussion prior to the statement of this Theorem. If q is a root of

(xp1
a1 −1) then qp1

a1 ≡ 1 (mod p). Thus ordp(q)|a1. Thusordp(q) = pb1
1 , where b1 ≤ a1. Every root of (xp1

a1 −1)
cannot have order less that pa1

1 because then all those roots would also be roots of (xp1
a1−1 −1). The a polynomial of

degree 1/p1 of the original is going to have the same number of roots with it, impossible. Thus at least one of the
roots is of order pa1

1 . Let it be d1. Repeating this argument for every i and pi there exists a di of order pai
i . Then

by Corollary 16.10 for d1 . . .dk we have that this element has order pa1
1 . . . pak

k , and thus d1 . . .dk is a primitive root
(mod p).

Theorem 16.9. Suppose that φ(p) = p− 1 = pa1
1 . . . pak

k are prime factors p1 < .. . < pk with ai > 0. Then g is a

primititve root (mod p) if and only if g
p−1
pi 6≡ 1 (mod p) for every pi.

Example 16.8. If p = 7, then p−1 = 6 = 2 ·3.

Proof. To check that 2 is a primitive root (mod 7) we check whether 2(6/2) ≡ 1 (mod 7). Given that 23 ≡ 1 (mod 7),
this is confirmed.
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360 CHAPTER 16. INTERMEDIATE NUMBER THEORY

Theorem 16.10. If p is a prime number > 2 (i.e. odd) then Zp2 has a primitive root.

Proof. Let g be a primitive root (mod p). Since g is primitive we have gp−1 ≡ 1 (mod p). Let k = ordp2(g). Since
gk ≡ 1 (mod p2) we also have gk ≡ 1 (mod p). Since g is primitive (mod p), and φ(p) = p− 1 we also have that
p−1|k. Thus k = (p−1)r.

Moreover k|φ(p2) (since k = ordp2(g)) i.e. k|p(p−1). That is p(p−1) = (p−1)rs. This means r|p. Since p is
prime this means r = 1 or r = p.

If r = p, k = (p− 1)r = p(p− 1), then ordp2(g) = k = p(p− 1) = φ(p2). This means g is a primitive root
(mod p)2.

If r = 1, k = (p−1)r = (p−1), then ordp2(g) = k = p−1 and this means gp−1 ≡ 1 (mod p2).
Consider g1 = g+ p. g1 is also a primitive root (mod p). This is because

gp−1
1 ≡ (g+ p)p−1 ≡ gp−1 +λ p≡ 1+0≡ 1 (mod p)

implies gp−1
1 ≡ 1 (mod p). Similarly as before ordp2 g1 = r1(p−1) where r1 is either 1 or p. Consider that gp−1 ≡ 1

(mod p2) implies that

gp−1
1 ≡ (g+ p)p−1 ≡ gp−1 + p(p−1)gp−2 + t p2gp−3 ≡ gp−1− pgp−2 +(t +gp−2)p2 ≡ 1− pgp−2 (mod p2)

If r1 = 1 then ordp2(g1) = (p−1)r1 = 1, and thus

1≡ gp−1
1 ≡ 1− pgp−2 (mod p)2

which implies pgp−2 ≡ 0 (mod p)2 i.e. p|g i.e. p ≤ g. This contradicts the fact that g chosen as primitive root
(mod p) implies g < p. That is it can’t be that r1 = 1.

Thus r1 = p and ordp2(g1) = (p−1)r1 = p(p−1) = φ(p2), and thus g1 is primitive root (mod p2).
To conclude if r = p then g is a primitive root (mod p2). If r = 1 then g1 = g+ p implies that g1 is a primitive

root (mod p2). One way or the other there is a primitive root in Z2
p.

Theorem 16.11. Zn has a primitive root if and only if n = 2,4, pe,2pe where p is an odd prime and e is positive
(integer).

Proof. For n = 2,4 it is easy to verify that 1 and 2 are primitive root respectively. For n = 2pe a case analysis of the
proof for n = pe would complete this proof.

Thus we prove that for n = pe and e odd, there exists g a primitive root (mod pe)
We start that there exists a g that is a primitive root (mod p2) from Theorem 16.10. Also, from the proof of that

theorem g is a primitive root (mod p).
We shall prove by induction if g is primitive root mod p, p2, . . . , pe for some e ≥ 2, then g is a primitive root

(mod pe+1).
The line of arguments is that of the proof of Theorem 16.10.
Let k = ordpe+1(g) i.e. gk ≡ 1 (mod pe+1) which implies k|φ(pe+1) i.e. k|pe(p−1) i.e. Then gk ≡ 1 (mod pe),

i.e. φ(pe)|k i.e. pe−1(p−1)|k.
Then pe−1(p−1)|k and k|pe(p−1) implye pe(p−1) = ks = pe−1(p−1)rs i.e. p = rs. Thus r|p But then r = 1

or r = p since p is prime.
If r = 1 then k = pe−1(p−1)r = pe−1(p−1 and

gpe−1(p−1) ≡ gpe
g−pe−1 ≡ 1 (mod pe+1)

By Euler’s Theorem (and the inductive hypothesis) gpe−2(p−1) ≡ 1 (mod pe−1). This implies that gpe−2(p−1) = 1+
t pe−1. From a prior derivation we have

1≡ gpe−1(p−1) ≡ (gpe−2(p−1))p ≡ (1+ t pe−1)p ≡ 1+ t pe (mod pe+1).
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16.3. QUADRATIC RESIDUES 361

This implies that t pe ≡ 0 (mod pe+1) or equivalently p|t. This implies that there exists a q such that t = pq.
From t = pq and gpe−2(p−1) = 1+ t pe−1 we have

gpe−2(p−1) ≡ (1+ t pe−1)≡ (1+qpe)≡ 1 (mod pe)

But if this is the case and given pe−2(p−1)< φ(pe) = pe−1(p−1) then g cannot be a primitive root (mod pe).
Thus r 6= 1. Then r = p. But then k = pe−1(p−1)r = pe(p−1) implies that g is a primitive root (mod pe+1) as

needed.

16.3 Quadratic Residues
If you recall from a prior section, a unit of Zn is an element that has an inverse. A unit a ∈ Zn is a quadratic residue
(or just q.r.) if and only if there exists an x such that x2 ≡ a (mod n). If it is not a quadratic reside it is called
quadratic non-residue (or just q.nr).

Example 16.9. For Z7 we have that the inverses of 1,2,3,4,5,6 are respectively 1,4,5,2,3,6. Thus all those elements
are units. Moreover 12,22,32,42,52,62 (mod 7) are respectively 1,4,2,2,4,1 (mod 7). Thus 1,2,4 are quadratic
residues, 3,5,6 are quadratic non-residues and 0 is not a unit (as it does not have an inverse).

Theorem 16.12. If p is an odd prime then (p− 1)/2 of the units (mod p) are quadratic residues, (p− 1)/2 are
quadratic non-residues and there is nothing left unaccounted for.

Proof. Consider ±1,±2, . . . ,±(p− 1)/2 and take the square of those elements. These elements account for all the
units (mod p). If b2 ≡ a (mod p), then (−b)2 ≡ a (mod p) as well. The (p−1)/2 distinct values (of the squares)
are the quadratic residues. Everything else is a quadratic non-residue or 0.

Theorem 16.13. If g is a primitive root (mod p) the gk is a quadratic residue if k is even.

Proof. The g2,g4,g6, . . . ,gp−1 are the (p−1)/2 quadratic residues of Theorem 16.12.

Definition 16.4 (Legendre symbol). The Legendre symbol
(

a
p

)
is defined to be 1 if a is a quadratic residue (mod p)

and -1 if it is a quadratic non-residue. It is 0 if p|a. [There is no fraction; it is part of the definition, the horizontal
line.]

Theorem 16.14 (Wilson’s Theorem). An integer p is prime if and only if (p−1)!≡−1 (mod p).

Proof. If p is not prime then p = rs and r,s < p. The term (p− 1)! includes all integers < p and thus r and s. This
implies that (p−1)!≡ 0 (mod p). There is one exception that p = q2. For to have q appearing in the product twice it
would mean that q and 2q are part of the product, ie 2q≤ p−1. For this to be the case we need p≥ 4. Thus we verify
by hand exhaustively that for p = 2,3 the Thoerem is true.

If p is a prime number, then 1,2, . . . , p−1 has a inverse, and 1 and p−1 are their own inverses. Thus all the other
integers inverse in pairs. Thus (p−1)!≡ (p−1) · (p−2) · . . . ·2 ·1≡ (p−1) ·1≡−1 (mod p).

Theorem 16.15 (Euler’s identity). Let p be an odd prime. For every a ∈ Z(
a
p

)
≡ a

p−1
2 (mod p).

If
(

a
p

)
= 1, then a is a quadratic residue (mod p), and if

(
a
p

)
=−1, then a is a quadratic non-residue (mod p).
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362 CHAPTER 16. INTERMEDIATE NUMBER THEORY

Proof. Let a be a quadratic residue i.e. b2 ≡ a (mod p) for some integer b. Then b,a < p and thus p - a. By
Theorem 16.1 we have that

a(p−1)/2 ≡ (b2)(p−1)/2 ≡ bp−1 ≡ 1 (mod p)

Let a be a quadratic non-residue. For every b = 1,2, . . . , p− 1 the congruence bx ≡ a (mod p) is such that
gcd(b, p) = 1 and thus the congruence has a unique solution in 1,2, . . . , p− 1. Since a is quadratic non-residue we
can’t have x = b since then b ·b≡ a (mod p). Thus the integers 1,2, . . . , p−1 can be broken into pairs whose products
are all equal to a. There are (p− 1)/2 such pairs. Then (p− 1)! ≡ a(p−1)/2 (mod p). The latter is −1 by Wilson’t
theorem.

Corollary 16.11. If p is prime then −1 is a quadratic residue (mod p) if and only if p≡ 1 (mod 4).

Proof. If p = 4k+1 then by Euler’s identity, (−1)(p−1)/2 ≡ a2k ≡ 1 (mod p). Thus −1 is a q.r. For a p = 4k+3 we
conclude −1 is a q.nr. Alternatively (p−1)/2 must be even.

Theorem 16.16 (Legendre symbol properties). Let p be an odd prime. For all a,b ∈ Zp we have

(a) If a≡ b (mod p) then
(

a
p

)
=
(

b
p

)
.

(b)
(

a2

p

)
= 1.

(c)
(

ab
p

)
=
(

a
p

)(
b
p

)
.

(d)
(
−1
p

)
= 1 for p≡ 1 (mod 4) and

(
−1
p

)
=−1 for p≡ 3 (mod 4).

Proof. (d) Was proven in the previous Corollary.
(c)
(

ab
p

)
≡ (ab)(p−1)/2 ≡

(
a
p

)(
b
p

)
.

(b) a2 is such that
(

a2

p

)
= 1 obviously. Moreover (a2)(p−1)/2 ≡ 1 (mod p) by Fermat’s Little Theorem.

(a) It is immediate.

Theorem 16.17 (Gauss’s Lemma). Let p be an odd prime. For a∈Zp consider M(a) = {a,2a, . . . ,((p−1)/2)a}. Let
q be the number of values of M(a) that are greater than p/2. Then(

a
p

)
= (−1)q

The original set of values of M(a) can be reduced to belong to an interval (−p/2, p/2). Then the number q of val-
ues greater than p/2 becomes equal to the number of negative values. For Z7, all the multiples of 2 are {2,4,6,1,3,5}
and M(2) = {2,4,6}. If we multiply the first three multiples of the former or all the elements of the latter, we get 23 ·3!.
Using the equivalent form of utilizing negatives, we get {2,−3,−1,1,3,−2} or M(2) = {2,−3,−1}. Notice that each
one of 1, . . . ,(p−1)/2 appears once in its positive or negative form among the first (p−1)/2 numbers and once in the
next batch of numbers. If we multiply the first three multiples, we get (−1)2 ·3!. Thus 23 ≡ (−1)2 (mod 7). The 23

(Euler’s identity) is an indicate of the quadratic residuosity of 2. If can find this by counting the negatives in the first 3
multiples of 2.

Proof. If two multiples of a say ia and ja are congruent (mod p) i.e. ia≡ ja (mod p) then i≡ j (mod p). Likewise
if ia ≡ − ja (mod p) then i ≡ − j (mod p). Thus the absolute values of the multiples should be distinct. That is
|a|, |2a|, . . . , |(p−1)/2a| are distinct. Multiplying the multiples the first way we get a(p−1)/2((p−1)/2)!. Multiplying
them together the other way we get (−1)q((p− 1)/2)!. Equating the two we get a(p−1)/2 ≡ (−1)q (mod p), i.e.(

a
p

)
= (−1)q.
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16.3. QUADRATIC RESIDUES 363

Theorem 16.18. If p is an odd prime then(
2
p

)
= 1 if p≡±1 (mod 8),

(
2
p

)
=−1 if p≡±3 (mod 8)

Proof. Let a = 2 and consider M(2). There are (p− 1)/2 multiples and b(p− 1)/4c are less than p/2 and thus
(p−1)/2−b(p−1)/4c are greater than p/2 or negative.

If p ≡ 1 (mod 8) i.e. p = 8k+ 1 the (p− 1)/2 = 4k. Then 0 < 2i ≤ (p− 1)/2 if and only if 0 < 2i ≤ 4k i.e.
0 < i≤ 2k. Then q = 2k. So

(
2
p

)
= (−1)2k = 1.

Other cases are proven similarly.

Example 16.10. Consider a = 2 and p = 11. The term b ia
p c is the quotient of the division of multiples of 2 with p. For

p = 11, (p−1)/2 = 5 and thus the multiples of 2 1 ·2,2 ·2,3 ·2,4 ·2,5 ·2 have. The remainders that are larger than
p/2 are written in a special way.

1 ·2 = 0 ·11+2
2 ·2 = 0 ·11+4
3 ·2 = 0 ·11+(11−5)
4 ·2 = 0 ·11+(11−3)
5 ·2 = 0 ·11+(11−1)

If we add up these equations we have

(1+2+3+4+5) ·2 = (0+0+0+0+0) ·11+(2+4−5−3−1)+3 ·11

If we take (mod 2) both sides we have noting 11≡ 1 (mod 2) and 2≡ 0 (mod 2),

(1+3+5−2−4) = 3 (mod 2)

and the right hand size if the number of multiples that are negative or equivalently greater than p/2 (so that Gauss’s
Lemma becomes applicable).

Theorem 16.19 (Eisenstein Theorem). If p is an odd prime and a is odd, then(
a
p

)
=

(p−1)/2

∑
i=1
b ia

p
c

Proof. For each i = 1,2, . . . ,(p−1)/2 we have ia = qi p+ ri, where qi = biacp and 0≤ ri < p. If ri > p/w we write
or define si = ri− p, else si = ri. By Gauss’s Lema the number of remainders greater that p/2 is q =

(
a
p

)
. So we can

write r1 + . . .+ ri = s1 + . . .+ si + p
(

a
p

)
for every i. Adding up all contributions we have

a(1+2+ . . .+(p−1)/2) = p
(
b1a

p
c+ . . .+ b (p−1)a/2

p
c
)
+
(
s1 + . . .+ s(p−1)/2

)
+ p

(
a
p

)
The s1, . . . ,s(p−1)/2 are the 1, . . . ,(p− 1)/2. Thus s1 + . . .+ s(p−1)/2 + p

(
a
p

)
≡ 1+ 2+ . . .+ (p− 1)/2 (mod 2).

Taking (mod 2) the previous equality and using he result above and also noting that both a, p are odd (and thus a≡ 1
(mod 2), and p

(
a
p

)
≡
(

a
p

)
(mod 2)) we have (

a
p

)
=

(p−1)/2

∑
i=1
b ia

p
c.
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364 CHAPTER 16. INTERMEDIATE NUMBER THEORY

The following conjectured by Euler was proven by Gauss.

Theorem 16.20 (Law of Quadratic Reciprocity). Let p,q be odd primes. Let p 6= q > 0. Then

(a) If p≡ q≡ 3 (mod 4) then
(

p
q

)
=−

(
q
p

)
.

(b) For all other cases
(

p
q

)
=
(

q
p

)
.

Equivalently, if either p or q is of the form 4k+1 then
(

p
q

)
=
(

q
p

)
, otherwise

(
p
q

)
=−

(
q
p

)
. Moreover,

(
p
q

)(
q
p

)
= (−1)

p−1
2

q−1
2

The sum of the Eisenstein Theorem has a nice geometric interpretation. It is the number of lattice points under the
line y = a

p x that over the x axis (i.e. positive coordinates) between x = 0 and x = p/2.

Proof. Let p,q be odd primes. Let r = ∑
(p−1)/2
i=1 b iq

p c be the number of lattice points below y = q
p x and over the x axis

and between x = 0 and x = p/2. Similarly Let s = ∑
(q−1)/2
i=1 b ip

q c be the number of lattice points below x = p
q y and over

the y axis and between y = 0 and y = q/2. The line y = q
p x and x = p

q x are the same. None of the two set of points are
double counted as they lie on different areas of the dividing line. No point lines on the line as then xq = py and thus x
is a multiple of p and y a multiple of q.

The number of points are all inside the rectangle defined by x = p/2 and y = q/2 and the two axes. The total
number of points is (p−1)/2 · (q−1)/2. Thus r+ s = (p−1)/2 · (q−1)/2. By Eisenstein’s Theorem

(
p
q

)
= (−1)r

and
(

q
q

)
= (−1)s. Thus (

p
q

)(
q
q

)
= (−1)r(−1)s = (−1)r+s = (−1)

p−1
2

q−1
2

Note that in
(

a
p

)
the denominator is prime. The numerator does not need to be. In that case we can factor it to its

prime factors. Since 43 ≡ 4 (mod 13), we have that
( 43

13

)
=
( 4

13

)
=
( 2

13

)
·
( 2

13

)
. By Theorem 16.18 since 13 ≡ −3

(mod 8) we have
(

2
p

)
= −1 but this is irrelevant since we have a product of two identical terms. This

( 43
13

)
= 1.

Moreover
( 13

43

)
=−

( 43
13

)
=−1!.

One can show that
(

3
p

)
= 1 if and only if p = 12k±1.

(
3
p

)
=
( p

3

)
if p = 4k+1 and

(
3
p

)
=−

( p
3

)
if p = 4k+3.

(Note that 3 = 4k+3 as well!) The only quadratic residue of 3 is 1 so
( p

3

)
= 1 if p = 3k+1. Thus

(
3
p

)
= 1 if p≡ 1

(mod 4) and p≡ 1 (mod 3) i.e. p≡ 1 (mod 12). Also if p≡ 1 (mod 4) and p≡ 2 (mod 3) i.e. p≡−1 (mod 12).
Let the n-th Fermat number Fn = 22n

+1. The Fn is prime if and only if 3(Fn−1)/2 ≡−1 (mod Fn).
If Fn is prime, then the formula above tell us whether 3 is a q.r (mod Fn). We know from above that Fn needs to be

12k±1. But all fermat number other that F0 are 12k+5. This is so because 221
+1 = 4+1 = 5 and 22n ≡

(
22n−1

)2
≡

42 ≡ 4 (mod 12). So we must have 3(Fn−1)/2 ≡−1 (mod Fn).
On the other hand if 3(Fn−1)/2≡−1 (mod Fn) it means 3(Fn−1)≡ 1 (mod Fn) so ordFn(3) must divide Fn−1= 22n

.
The latter expression’s divisors are powers of 2. Since 3(Fn−1)/2 ≡ −1 (mod Fn) we have 3k 6≡ 1 (mod Fn) for any
divisor k of Fn−1. Thus the order of 3 is Fn−1. Since this order is a divisort of φ(Fn) we have φ(Fn) = Fn−1 i.e. Fn
must be a prime
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16.3. QUADRATIC RESIDUES 365

Definition 16.5 (Jacobi symbol). If the denominator of the Legendre symbol’s definition is not a prime, we can define
for arbitrary positive integer n with factorization pa1

1 . . . pak
k that the Jacobi symbol is defined as follows.(a

n

)
=

((
a
p1

))a1

. . .

((
a
pk

))ak

Theorem 16.21. Suppose that p,q are such that gcd(p,q) = 1. a is a q.r (mod pq) if and only if a is a q.r. (mod p)
and a is a q.r. (mod q).

Proof. If a is a quadratic residue (mod pq) then there exists a b ∈ Z such that b2 ≡ a (mod pq). That is pq|b2−a.
Then p|b2−a and q|b2−a given that gcd(p,q) = 1. The result confirms a is a q.r. (mod p) and a is a q.r. (mod q).

For the other direction. Let a is a q.r. (mod p) and a is a q.r. (mod q). Then c2 ≡ a (mod p) i.e. a ≡ c2

(mod p) and d2 ≡ a (mod q) i.e. a ≡ d2 (mod q) respectively. Since gcd(p,q) = 1, there is an A (mod pq) by
Theorem 15.34 such that A ≡ c (mod p) and A ≡ d (mod q). From the latter we have A2 ≡ c2 ≡ a (mod p) and
A2 ≡ d2 ≡ a (mod q). The p|A2−a and q|A2−a. Since gcd(p,q) = 1, pq|A2−a i.e. A2 ≡ a (mod pq). This implies
that a is a q.r (mod pq).

Theorem 16.22. a is a q.r (mod p)k for k ≥ 2 if and only if a is a q.r. (mod p), where p is an odd prime and a < p
(or in general p - a).

Proof. If a is a q.r. (mod p)k, then b2 ≡ a (mod pk). That is pk|b2−a. Then p|b2−a and the result follows for the
forward directition (i.e. a is a q.r (mod p) as well).

For the converse, let b2 ≡ a (mod p). The proof resembles prior proof of Theorem 16.12 and is by induction on k.
Let a be a q.r (mod pk) for k ≥ 1. We shall show that a is a q.r. (mod pk+1). For the induction assumption he have
b2 ≡ a (mod pk) i.e. b2−a = pkr, for some integer r. Let c = b+d pk, where c,d are yet to be determined in full.

c2−a ≡ (b+d pk)2−a≡ b2 +2bd pk +d2 p2k−a (mod pk+1)

≡ rpk +2bd pk ≡ pk(r+2bd) (mod pk+1)

For c2−a≡ 0 (mod pk+1) we need p|r+2bd in other words (2b)d ≡−r (mod p). Since p is an odd prime b < p and
gcd(2b, p) = 1, there is a solution for d of the modular equation (2b)d ≡−r (mod p). Thus c2−a≡ 0 (mod pk+1)
as needed and this completes the inductive step.

In conclusion if p is a prime and a is a q.r (mod p). Let b2 ≡ a (mod pk) or r = (b2−a)/pk. The c = b+d pk

is such that c2 ≡ a (mod pk+1) if and only if c is defined as follows. Let t ≡ (2b)−1 (mod p) and thus d ≡ −rt
(mod p). We have from above c = b+d pk = b− b2−a

pk pkt, and thus c2 ≡
(
b− t(b2−a)

)2 ≡ a (mod pk+1).

Example 16.11. For p = 5 find the square root of 11 (mod 53).

Proof. Let p = 5. Then 11≡ 1 (mod 5) is obviously a q.r. (mod 5). Then 11 is also a q.r mod , 52 , 53 and so on.
In order to determine c2 ≡ 11 (mod 52), we start with the (1)2 ≡ 11≡ 1 (mod 5). Thus b = 1 Then we compute

t ≡ (2b)−1 ≡ 2−1 (mod 5). Thus t = 3. It then follows c = b− t(b2− a) = 1− 3(12− 11) ≡ 6 (mod 52). Thus
62 ≡ 11 (mod 52) which is obviously true.

In order to determine c2 ≡ 11 (mod 53), we start with the (6)2 ≡ 11 (mod 52). Thus b = 6 Then we compute
t ≡ (2b)−1 ≡ (12)−1 (mod 5). Thus t remains a t = 3. It then follows c = b− t(b2−a) = 6−3(62−11)≡−69≡ 56
(mod 53). Thus (56)2 ≡ 11 (mod 53) which is obviously true.
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366 CHAPTER 16. INTERMEDIATE NUMBER THEORY

Theorem 16.23. For q.r. (mod 2)k, k ≥ 3, a is a q.r (mod 2)k if a is odd and a≡ 1 (mod 8).

Proof. Say a is a q.r (mod 2k), k ≥ 3. Then 8|2k, then b2 ≡ a (mod 2k) implies b2 ≡ a (mod 8). For a to be a
q.r. it should be a ≡ 1 (mod 8). For the converse let a be a q.r mod 2k for some k ≥ 3. Then b2 ≡ a (mod 2k). If
a≡ b2 (mod 2k+1) then a is also a q.r (mod 2k+1). If a 6≡ b2 (mod 2k+1) then b2−a = 2kr for some integer r. Let
c = b+ r2k−1. We have note that k ≥ 3 implies 2k−2≥ k+1. Also b is odd i.e. 1+b is even.

c2−a ≡ (b2−a)+br2k + r222k−2 (mod 2)k+1

≡ 2kr+br2k +0 (mod 2)k+1

≡ 2kr(1+b)≡ 0 (mod 2)k+1

Thus c2 ≡ a (mod 2k+1). By induction the results follows given the base case k = 3.

Proof.

Example-Proposition 16.12. Let a,bZ and let m,n > 1 be odd integers. Then

(a) if gcd(a,n)> 1 if and only if
( a

n

)
= 0.

(b)
( a

mn

)
=
( a

m

)( a
n

)
.

(c)
( ab

n

)
=
( a

n

)( b
n

)
.

(d) if a≡ b (mod n) then
( a

n

)
=
( b

n

)
.

(e) if gcd(a,n) = 1 then
(

a
n2

)
=
( a

n

)
= 1.

Example-Proposition 16.13. Let n > 1 be odd integer. Then(
−1
n

)
= 1 if n≡ 1 (mod 4)(

−1
n

)
= −1 if n≡ 3 (mod 4)(

2
n

)
= (−1)

n2−1
8

The last one is equivalent to (
2
n

)
= 1 if n≡±1 (mod 8)(

2
n

)
= −1 if n≡±3 (mod 8)

Proof. (pq)2−1 = p2q2− p2 +q2−1 = p2(q2−1)+ p2−1. Also (−1)p2
=−1 for odd p. Thus

(−1)((pq)2−1)/8 = (−1)(p2(q2−1)+p2−1)/8 =
(
(−1)p2

)(q2−1)/8
((−1))(p2−1)/8

If
( 2

s

)
6= (−1)(s

2−1)/8 for some odd s > 1. Pick the smallest such s. The proposition holds for primes thus s can be a
composite only. Let s = pq for p,q > 1 and smaller than s. By the minimality of s, the proposition must be true for
p,q (

2
s

)
=

(
2
pq

)
=

(
2
p

)(
2
q

)
= (−1)(p2−1)/8(−1)(q

2−1)/8 = (−1)((pq)2−1)/8 = (−1)((s)
2−1)/8
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16.4. COMPUTING SQUARE ROOTS (MOD P) 367

The Law of Quadratic Residuosity generalizes to Jacobi symbols as well.

Theorem 16.24. Let p,q > 1 be odd integers. Then(
p
q

)
=

(
q
p

)
if n≡ 1 (mod 4)(

p
q

)
=

(
q
p

)
if m≡ 1 (mod 4)(

p
q

)
= −

(
q
p

)
if n≡ m≡ 3 (mod 4)

Proof. If gcd(p,q)> 1 then both sides of the equality are 0.

HOW TO TEST QUADRATIC RESIDUOCITY for a (mod n)?
Step 1. Modulus is an (odd) prime number. Either compute a(p−1)/2 (mod p) or determine the answer through

the Legendre symbol
(

a
p

)
. The latter is computationally faster than the former. The former is by Theorem 16.15, the

latter follows from applications of Theorem 16.16 through Theorem 16.20.
Step 2. Modulus is a prime power. a is q.r. (mod p)k if and only if it is q.r. (mod p). This is Theorem 16.22.
Step 3. Modulus is a composite number. Theorem 16.21 might help. If the factorization of n is known use the

Jacobi symbol Definition 16.5 through Step 1-2 to resolve prime factor moduli.

16.4 Computing square roots (mod p)

If p is an odd prime and a is a q.r (mod p) we are interested in finding a b such that b2 ≡ a (mod p).

Case 1. p≡ 3 (mod 4). We can find a b such that b2 ≡ a (mod p) very easily if p≡ 3 (mod 4). From Euler’s identity
we have a(p−1)/2 ≡ 1 (mod p). Then a(p+1)/2 ≡ a (mod p). Since p ≡ 3 (mod 4), (p+ 1)/4 = (4k+ 3+ 1)/4 =
k+.Thus (p+1)/4 is an integer and thus we set b≡ a(p+1)/4 . Then b2 ≡ a (mod p).

Case 2. p≡ 1 (mod 4). For this case p≡ 1 (mod 8) or p≡ 5 (mod 8).
Case 2a. p ≡ 5 (mod 8). Then p+ 3 ≡ 0 (mod 8). Let c be a q.nr such that c(p−1)/2 ≡ −1 (mod p). If a is a q.r,
from Euler’s identity we have a(p−1)/2 ≡ 1 (mod p). Thus a(p−1)/4 ≡±1 (mod p). Then set b = a(p+3)/8. We have

(b)2 ≡ a(p+3)/4 ≡ a(p−1)/4 ·a≡±a (mod p)

If b2 ≡ a (mod p) we are done. If however b2 ≡−a (mod p), then

(bc(p−1)/4)2 ≡−ac(p−1)/2 ≡ a (mod p).

Case 2b. p≡ 1 (mod 8). The p≡ 1 (mod 16) or p≡ 9 (mod 16).
The second of the case above is resolved similarly to Case 2a. The Firt of the case above is being resolve by

subcasing involving (mod 32). A cascade results. Find an m such that m2−a is a q.nr. That is m is such that(
m2−a

p

)
=−1

One can find m by trial and error. Then let A 6∈ Zp is such that A2 ≡ m2−a (mod p). Since m2−a is not a quadratic
residue A cannot belong to Zp. Then Zp[A] = {p+qA|p,q ∈ Zp}.
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368 CHAPTER 16. INTERMEDIATE NUMBER THEORY

16.5 Pythagorean triplets
Let a2 +b2 = c2 be the pythagorean identity with a≤ b≤ c. A triplet (a,b,c) is a solution to the identity. It is called
primitive if gcd(a,b) = 1. If (a,b,c) is a triplet so is (ma,mb,mc) for every integer m.

One way to generate triplets is to use the identity (x+ y)2 = x2 + 2xy+ y2 and (x− y)2 = x2− 2xy+ y2 which
implye (x+ y)2− (x− y)2 = 4xy. Set x = X2 and y = Y 2 we have

Thus

Theorem 16.25. Thus a = 2XY , b = X2−Y 2 and c = X2 +Y 2 or equivalently (a,b,c) = (2XY,X2−Y 2,X2 +Y 2) is
a pythagorean triplet, since

(X2 +Y 2)2 = (2XY )2 +(X2−Y 2)2

Moreover Z(a,b,c) are other triplets, for X ,Y,Z ∈ Z.

Theorem 16.26. If p is a prime factor of n with p ≡ 3 (mod 4) and p divides n an odd number of times. Then n
cannot be expressed as a sum of squares.

Proof. Let us assume the theorem is false. Let n be the smallest n that is a counterexample and thus n = a2 + b2.
Since p|n we have a2 + b2 ≡ 0 (mod p) i.e. b2 ≡ −a2 (mod p). If p - a then p - b and thus a−1 and b−1 exist.Thus
(ba−1)2 ≡−1 (mod p). This means −1 is a q.r (mod p). Which contradicts the non-being so since p≡ 3 (mod 4).

Thus p|a and p|b and thus p2|n. The a = pa1,b = pb1 n = p2n1. We get that n2
1 = a2

1 +b2
1.

A linear congruential generator (LCG) is one such that xi+1 ≡ axi + b (mod n), where gcd(a,n) = 1. If gcd(a−
1,n) = 1 the x0 should be chosen so that gcd(x0−b(1−a)−1,n) = 1

The period of LCG is its modulus n if and only if gcd(b,n) = 1, a ≡ 1 (mod p) for every prime p such that p|n,
and a≡ 1 (mod 4) if 4|n.

A Blum-Blum-Shub (BBS) sequence is one where n = pq and p,q are primes such that p ≡ q ≡ 3 (mod p). A
seed x0 is chosen so that gcd(x0,n) = 1. Then x2

i+1 ≡ x2
i (mod n). The output is xi (mod 2). For a long period

gcd(φ(p−1),φ(q−1)) is small compared to n.

16.6 Public Key Cryptography

16.6.1 Diffie-Hellman key exchange
It uses Zp exponentiation. Choose a large prime p and an element g ∈ Zp where g is preferably a primitive root. This
is public The following two are secret for each party involved. Alice chooses a secret exponent 1 ≤ a ≤ p− 1. Bod
chooses a secret exponent 1≤ b≤ p−1. Alice publishes ga and Bob gb (mod p). The other party picks the other’s
published info and compute gagb (mod p). Only they are privy to both multiplicands and thus their product. The only
way to retrieve from ga,gb,g, p the a or b is by a slow discrete logarithm process.

16.6.2 RSA
Let p,q are two large primes p 6= q. Let n = pq and choose an e such that

gcd(e,φ(n)) = gcd(e,(p−1)(q−1)) = 1

Public key. It is the pair (e,n).
The modular equation

ed ≡ 1 (mod (p−1)(q−1))

is then solved. Because gcd(e,(p−1)(q−1)) = 1, there exists one and only one solution (mod φ)(n).
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16.6. PUBLIC KEY CRYPTOGRAPHY 369

Private key. It is the pair (p,q) or for convenience the triplet (d, p,q) (d is not needed as it can be recomputed
from the public key and private p,q).

Public Information: Alice’s (eA,nA) and Bob’s (eB,nB).

Private Information: Alice’s (dA, pA,qA) and Bob’s (dB, pBqB).

Alice sends encrypted message M to Bob. Alice gets Bob’s public keys. For message M alice computes C ≡ MeB

(mod n)B. It transmits C to Bob.

Alice (eA,nA) and Bob (eB,nB).

Bob receives and decrypts message C from Alice. He performs the following computation (note nB = pBqB).

CdB ≡ (MeB)dB ≡MeBdB ≡M (mod n)B

RSA’s difficulty relies on the perceived difficulty of factoring n into p,q and thus computing d. Equivalently on
computing d from e,n alone without factoring n.

For RSA message M must be close to the size of φ(n). Thus padding may need to be performed if M is small (or
an attacker may rely on brute force techniques). Because of these, RSA is primarily being used to transmit secret keys,
and use another method for transmitting messages.
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Part V

Formulae Collection

371
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Chapter 17

Useful formulae

17.1 Formulae collection
The mathematics (not discrete mathematics) that you need can be summarized in the following one-page summary.

n

∑
i=1

i =
n(n+1)

2
,

n

∑
i=1

i2 =
n(n+1)(2n+1)

6
,

n

∑
i=1

i3 =
n2(n+1)2

4
.

For a 6= 1, and | b |< 1 we have that
n

∑
i=0

ai =
an+1−1

a−1
,

n−1

∑
i=0

iai =
(n−1)an+1−nan +a

(1−a)2 ,

∞

∑
i=0

bi =
1

1−b
,

∞

∑
i=1

bi =
b

1−b
,

∞

∑
i=0

ibi =
b

(1−b)2 .

Hn =
n

∑
i=1

1
i
,

n

∑
i=1

iHi =
n(n+1)

2
Hn−

n(n−1)
4

.

n! =
√

2πn
(n

e

)n
(

1+Θ

(
1
n

))
, n!≈

(n
e

)n
, alogb n = nlogb a,

e≈ 2.718281, π ≈ 3.14159, γ ≈ 0.57721, φ =
1+
√

5
2

≈ 1.61803, φ̂ =
1−
√

5
2

≈−.61803.(
n
k

)
=

n!
k!(n− k)!

,
n

∑
k=0

(
n
k

)
= 2n,

(
n
k

)
=

(
n

n− k

)
,

(
n
k

)
=

(
n−1

k

)
+

(
n−1
k−1

)
.

L1.
lg(ab) = lga+ lgb, lg(a/b) = lga− lgb, lg(ab) = b lga, 2lg(a) = a,

L2.
ax ay = ax+y, ax/ay = ax−y, (ax)y = axy.

D1.

( f (x)g(x))′ = f ′(x)g(x)+ f (x)g′(x),
(

f (x)
g(x)

)′
=

f ′(x)g(x)− f (x)g′(x)
g2(x)

, (cx)′ = ln(c) cx.

S1.
1

1− x
= 1+ x+ x2 + . . .+ xi + . . .=

∞

∑
i=0

xi,

S2.
x

(1− x)2 = x+2x2 + . . .+ ixi + . . .=
∞

∑
i=0

ixi,

S3.

ex = 1+ x+
x2

2!
+ . . .+

xi

i!
+ . . .=

∞

∑
i=0

xi

i!
.
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