Foundations of Computer Science

Version 3.2 (November 2023)

Preface

This material is neither final nor thoroughly proofread. It constitutes work in progress and might contain errors. It should be used IN CONJUNCTION with other references if consulted for factual checking.

Report discrepancies with other sources, or factual errors, or typos to the author.
Distribution of this material in any form, without the expressly written consent of the author is PROHIBITED.
(C) Copyrighted by Alexandros Gerbessiotis (2021-2023).

Contents

I Introduction 1
1 Mathematical logic and set theory 3
1.1 Statements and Propositions 3
1.2 Numbers and Collections 5
1.2.1 Integer numbers 5
1.2.2 Real numbers 5
1.3 Collections: Sets 5
1.3.1 Denoting a set 5
1.3.2 Empty set, Universal set 6
1.3.3 Set enumeration 6
1.3.4 Sets of integers and reats 6
1.3.5 Cardinality of a set 8
1.4 Set equality, subsets, union and intersection 8
1.4.1 Set equality 6 8
1.4.2 Subsets and propésiubsets 8
1.4.3 Intersegen and Uniol of sers 9
1.4.4 Properties ofUnion and Litersection 9
1.5 Powersetsaind bonplement of darst 11
1.5.1 Ponersets 11
1.3 Complentent of aset 10.0 . a 11
1.3.3 Propertes of Sets 13
1.6 Pairsand ouples 14
1.6.1 Qrdere Pairs that tupos 14
1.6.2 Coxnting 14
1.6.3 Principlg of Ind asion-E Ecclusion 14
1.7 Compound Propositions 15
1.7.1 Negation 15
1.7.2 Disjunction 15
1.7.3 Exclusive Disjunction 16
1.7.4 Negated Disjunction 16
1.7.5 Conjunction 17
1.7.6 Negated Conjunction 17
1.7.7 Implication 18
1.7.8 Bi-Implication 19
1.7.9 Converse 19
1.7.10 Inverse 20
1.7.11 Contrapositive 20
1.8 Compound Proposition evaluation 20
1.8.1 Tautology and Contradiction 20
1.9 Properties of Propositions 21
1.10 Sentences and Quantifiers 21
1.10.1 Set Proof Techniques 22
1.10.2 Examples 22
1.11 Exercises 23
2 Relations 27
2.1 Introduction 27
2.2 Properties of Relations 28
2.2.1 Equivalence relations 29
2.2.2 Partial order (relation) 30
2.2.3 Total order (relation) 30
2.2.4 Composition of relations 30
2.3 Exercises 31
3 Functions 33
3.1 Introduction 33
3.1.1 Domain, Range, Image 33
3.1.2 Evaluation, Interpolation, Solution 33
3.1.3 Injective, Surjective, Bijectiveffunctions 33
3.2 Number Set systems 35
3.3 Integers and their properties 35
3.4 Reals and their Properties 36
3.5 Exponential base two functions 37
3.6 Logarithmic base two (ante, and 10) functions 38
3.7 The factorial function 39
3.7.1 Combinatorial identities 40
3.8 Inequalities 42
3.9 Minimum and Maximum of a fugation: fin 43
3.10 Comparison of (AYscretefor continuous) functions 44
3.11 Constants and Variables 46
3.12 Pporators are symbols forfunctions 47
3.13 Notation symbeds 0^{8} a i^{e}. 48
3.14 Boolean Function(..... 49
3.15 Exercise 51
4 Proofs 53
4.1 Beano's Axioms of ATwhmetic 53
4.2 Theorems and their Proof 53
4.3 Some proof techniques 55
4.3.1 (Proof) by existence 55
4.3.2 (Disproof) by counterexample 55
4.3.3 Direct Deduction 56
4.3.4 Proof by case analysis 57
4.3.5 Contra positive 58
4.3.6 Contradiction 59
4.3.7 Converse 60
4.3.8 Inverse 60
4.3.9 Proof of an equivalence \Longleftrightarrow 60
4.4 Mathematical Induction: Preliminaries 61
4.5 Mathematical Induction: Ordinary or Weak induction 63
4.6 Mathematical Induction: Strong induction 64
4.6.1 Why does induction work 64
4.7 Applications of induction 66
4.7.1 Arithmetic sequence sum 66
4.7.2 Geometric sequence sum 68
4.7.3 Fibonacci sequence general term 69
4.7.4 Binomial terms 70
4.8 Exercises 71
5 Sums of sequences 77
5.1 Sequences 77
5.1.1 Denoting a sequence 79
5.1.2 Sequence enumeration 79
5.1.3 Sum and Product of terms of a sequence 79
5.2 Arithmetic sequence sum: arithmetic series 80
5.3 Quadratic and Cubic sequence sum 80
5.4 Harmonic sequence sum: harmonic series 81
5.5 Properties of powers 82
5.6 Geometric sequence $G(n, x)$ sum 82
5.6.1 Infinite geometric sequendé $G(x)$ sum 82
5.7 $I(n, x)$ sequence sum 83
5.7.1 Infinite $I(x)$ sequence sum 83
5.8 Taylor series logs and exponentials 84
5.9 Fibonacci identitie 84
5.10 Binomial sequence sum oinomial series 84
5.11 Exercises 87
6 Counting 89
 89
Q1. 1 Examplas $e^{2} \cdot e^{0}$ ie is 89
6.2 Factoxisal andidentites. A. 91
6.3 Permutations andeonnvinations 93
6.3.1 Examples 94
6.4 Distributions 100
6.5 Pigeonhole principle? 101
6.5.1 Examples 101
6.6 Inclusion-Exclusion principle 102
6.6.1 Examples 102
6.7 Recurrences or Recurrence Relations 103
6.8 Linear Recurrences 105
6.8.1 Solution of Linear Recurrences using the characteristic polynomial 105
6.8.2 Examples 105
6.9 Generating Functions 107
6.9.1 Examples 108
6.9.2 Solution of Linear Recurrences using o.g.f 110
6.9.3 Miscellanea 113
6.10 Exercises 116
7 Asymptotic Comparison of functions 141
7.1 Limits, Derivatives and Integrals 141
7.2 Growth of functions: asymptotic notation 142
7.3 Asymptotic Comparison: An informal approach 144
7.4 Asymptotic notation: writing the symbols 145
7.5 Asymptotic Comparison: The Formal Approach 147
7.5.1 Asymptotic comparison: In 10 lines 149
7.5.2 Bare definitions 149
7.5.3 Corollaries 149
7.6 Running time using asymptotic notation 150
7.7 Notes and remarks 151
7.8 Examples and Exercises 153
8 Recurrence relations 157
8.1 Recurrences 157
8.1.1 Introduction 157
8.1.2 Three methods 157
8.2 Master method 159
8.3 Master method Examples 159
8.4 Substitution method 161
8.4.1 Substitution method: Example 1 161
8.4.2 Substitution method: Exantle 2 162
8.4.3 Substitution methodת xample 3 164
8.4.4 Substitution methed. Example 4 164
8.5 Iteration or Recursion tree method 166
8.5.1 Iteration method: Example 1 166
8.5.2 Iteration sethod. Example 2 168
8.5.3 Iteration mietho: Exanple 3) 169
8.5.4 Iteration meethod; Exampro 169
8.5.5 Iteration Methoet. Exapple $50 . \mathrm{J}^{\circ} \ldots \mathrm{D}^{2}$. 170
8.56 Iteration method: Example σ 171
8.7. Iterationernetho Example 7 O. A 172
8.5.8 Recuision treemétheq: Eximple 8.5. 173
9 Graphs 175
9.1 Undirected-raphs 175
9.2 Directed Graphs 177
9.3 Other definitions on goaphs 178
9.4 Paths on graphs 179
9.4.1 Hamiltonian paths and cycle 180
9.4.2 Graph connectivity 181
9.4.3 Eulerian tours 182
9.5 Forests and Trees 184
9.6 Planar graphs 187
9.7 Coloring 188
9.8 Matchings in bipartite graphs 190
9.9 Representation of a graph 194
9.9.1 Adjacency matrix 194
9.9.2 Adjacency list 195
9.9.3 Incidence matrix 197
9.10 Tree Traversals 198
9.10.1 Breadth-first order traversal 198
9.10.2 DFO and BFO on graphs 199
9.11 Union-Find 200
9.11.1 Operation MakeSet 200
9.11.2 Operation Find 200
9.11.3 Operation Union 201
9.11.4 Union-Find State 201
9.11.5 A (simple) data structure for Union-Find 202
9.11.6 Connectivity of an undirected graph 204
9.12 Graph Search 207
9.12.1 Depth First Search on Undirected graphs 207
9.12.2 Undirected DFS example 207
9.12.3 Depth First Search on Directed graphs 208
9.12.4 Analysis of DFS 211
9.12.5 Applications of DFS 212
9.12.6 Breadth First Search 213
9.13 All-pair shortest path problem 214
9.13.1 Floyd-Warshall algorithm 216
9.14 Single source shortest path problem 217
9.14.1 Dijkstra algorithm 218
9.15 Spanning Trees 219
9.15.1 Kruskal's method 220
9.15.2 Prim's method 222
9.16 Ramsey numbers 225
9.17 Exercises 227
10 Probability 251
10.1 Probability Spaces 251
10.2 Conditional Probabilities 253
10.3 Random a arable 254
10.4 Miscellanea 257
10.5 Proof by Probabitstic Arguments 258
10.6 Exercises $+500^{2} 0^{2}$ 259
II Number Systems 273
11 Bits and Bytes 275
11.1 The SI system and prefixes? 275
11.1.1 Bit and bit 275
11.1.2 Byte can bite 276
11.2 Frequency and the Time domain 277
11.3 Data types 278
11.3.1 Compositions 279
11.3.2 Data Model 279
11.3.3 Abstract Data Types (ADT) 279
11.4 Data Structures 280
11.5 Algorithms 282
11.5.1 Computational Problems 282
11.5.2 Sorting 284
11.5.3 Algorithm Resources 285
11.5.4 NaiveSort Performance Measure: Permutations 286
11.5.5 NaiveSort Performance Measure: Comparisons 286
11.6 Main Memory 287
12 Number Systems 289
12.1 Radix for Base 289
12.2 Denary 291
12.3 Binary Numbers 292
12.3.1 Convert Binary into Denary 292
12.3.2 Properties of binary numbers 292
12.4 Octal Numbers 294
12.4.1 Convert Octal into Denary 294
12.5 Hexadecimal Numbers 295
12.5.1 Convert Hexadecimal into Denary 295
12.6 Conversions from one radix into another one 296
12.6.1 Convert Arbitrary Radix- b natural number into Radix-10 296
12.6.2 Convert Radix-2 (binary) into Radix-8 (octal) 296
12.6.3 Convert Radix-2 (binary) into Rddix-16 (hexadecimal) 296
12.6.4 Convert Radix-10 natural number into Radix-2 297
12.6.5 Convert Radix-10 naturalnumber into Radix-2 297
12.6.6 Convert Radix-10 intorkadix- b 297
12.7 Signed Integers 298
12.8 Unsigned Integers 299
12.9 Signed Mantissa 300
12.10One's Complement 301
12.11 Two's Complenaent 302
 304
 305
12.13 WEEES54: Single EJecision 306
12) 3.2 IEEE-754.Double Pregision 307
 309
12.14 ASCH , Uñeode, OTF-8. UTF 16 . . C. 310
III Computer Systềms 313
13 Operating Systems 315
13.1 Operating System Page Tables 315
13.1.1 From L to (P, T) using divisions 316
13.1.2 From L to (P, T) using bit manipulations 316
13.2 Hard-Disk Drives (HDD) 318
13.2.1 HDD Operation 319
13.2.2 Seek 319
13.2.3 Rotational Delay or Latency 319
13.2.4 Transfer Time 319
13.2.5 More on Sectors 320
13.2.6 An Example: HDD around 2019 320
13.2.7 Average Seek Time vs Maximum Seek Time 321
14 Architecture 323
14.1 Computer Architectures: von-Neumann and Harvard 323
14.1.1 Von-Neuman model of computation 323
14.1.2 Harvard model of computation 323
14.1.3 CPU, Microprocessor, Chip and Die 324
14.1.4 More than one execution units 324
14.2 Memory Hierarchies 325
IV Number Theory 329
15 Introductory Number Theory 331
15.1 Divisibility and Compositeness 331
15.2 Primes 333
15.3 Division 335
15.4 Greatest Common Divisor 336
15.5 Least Common Multiplier 341
15.6 Diophantine Equations 342
15.7 Prime Numbers and Factorization 346
15.8 Modular Arithmetic 348
15.9 Chinese Remainder Theorem 352
16 Intermediate Number Theory 355
16.1 Fermat's (Little) Theorem 355
16.2 Euler's Theorem and \mathbb{Z}_{n} 356
16.3 Quadratic Residues 361
16.4 Computing square ioets. $(\bmod p)$ 367
16.5 Pythagorean triprets 368
16.6 Public Key Cryptography 368
16.6.1 Diffie-Helthan key exchange e° 368

 368
V Formulae Corection ${ }^{2}$ 371
17 Useful formulae 373
17.1 Formulae çite 373

Chapter 1

Mathematical logic and set theory

1.1 Statements and Propositions

In computing we prove statements. Such statements need to be stated precisely.

Definition 1.1 (Proposition). A proposition is

The disjunction in the definition of proposition is an exclusive disjunction. The exclusive disjunction uses the word "either" and the word "or". If only the "ord "or" was used, it would be a disjunction that is an inclusive disjunction, but not an exclusive disjunction. The exclusive disjuntion in the definition of a proposition means that a statement can be true, it can be false but it cannot be both true and false at the same time.

Definition 1.2 (Axiom). An axiom is a statement accepted or assumed to be true without proof.
An axiom is thus andorition. Ancaxion forms the basis for logically deducing other statements.
A constant is an object wo se a rue can ot change. That a is always a five and can never be a six. We prefer to represent five and six with a mericdigit such as and $6{ }^{\circ}$ respectively. A variable is an object (or name) whose value can change. We can represent variables with $\hat{\text { Letter }}$ OUr combinations of letters (and sometimes digits as well). Thus x and , mightrepresen variables. 56 we define therange of values or the set of values a variable can take we talk about the data type of a variable. In nfathemrics wétefer to variables as unknowns or indeterminate. We might use a letter P in capitandase to denote ${ }^{2}$ propestion em is way we can easily refer to it. A proposition can then depend on the values of variable x and y, $s t u c h$ proposition would be denoted as $P(x, y)$. In that case we call $P(x, y)$ a predicate.

Definition 1.3 (Predicate). A predicate ts a proposition whose truth value is dependent on the value of one or more variables.

Definition 1.4 (True or False). The truth values True or False will be denoted in short by T and F respectively. (Alternatively, by 1 and 0 respectively.)

True is a truth value, and so is False. T and F, or t and f, or 1 and 0 are notations for True and False respectively. Five or 5 or 0 b101 are also notations for five. The last of the three is the binary representation of five.

Definition 1.5 (Proof). A proof is a verification of the truth value of a proposition by a sequence of logical deductions derived from a base set of axioms.

Definition 1.6 (Theorem). A theorem is a proposition along with a proof of its correctness.

Definition 1.7 (Lemma). A lemma is a preliminary or simpler theorem useful to proving a proposition that yields a theorem.

Definition 1.8 (Corollary). A corollary is a proposition that follows from a theorem in few and usually simple logical deductions or steps.

A lemma precedes, and a corollary follows a theorem.
Proposition 1.1 below is true, and Proposition 1.2 is false. (Integers shown in this section are traditional denary integers also known as decimal or base-10 or radix -10 integers.)

Example 1.1. The following proposition is true.
Proposition 1.1. $1+1=2$.
Example 1.2. The following proposition is false. (No tricks!)
Proposition 1.2. $1+1=1$.
We do not know whether the following proposition is true or false. But we do know that it is either true or false!
Proposition 1.3 (Goldbach's Conjecture). Every en integer greater than two is the sum of two prime numbers.
There are simple (primitive) propositions $2 n d$ compound propositions.
Simple propositions can be composednito more complicated propositions using connectives.
Definition 1.9 (Compound proposition). A compound proposition is formed by combining simple propositions using logical connectives.

Definition 1.10 (Logical Cosmectivess). There are three fundamental logical connectives: Negation, Disjunction, and Conjunction.

Since a predicate. is ansoposition, we could ref lace the wot \&
For a compound proposition, consisting of the coupositior of multiple predicates, we might generate a truth table that establishes the truth value of thepropesition variole values of the predicate variables involved.

Before that weaned \mathcal{O} introduce theoconcept of a collection. There are two instances of a collection: a set and a sequence. We introduceyfrst sets andean operations. Sequence will be introduced in the next chapter.

1.2 Numbers and Collections

Definition 1.11 (Collection). A collection of elements is a grouping of its elements.
The elements of a collection may also be referred to as members. Two collections are of note: sets and sequences.

1.2.1 Integer numbers

We provide some definitions that will be utilized throughout this work, and are familiar to you from other courses.
Definition 1.12 (Integer numbers: Signed Integers.). An integer number is a number that takes integer values. The value of a number includes a sign to indicate whether it is positive or negative and the magnitude of the number. A number can be positive, negative or zero. A zero is neither positive nor negative and has no sign preceding it. For a positive integer number we might or might not place a plus sign + before its magnitude. For a negative integer number we always place a negative sign - before its magnitude.

Definition 1.13 (Natural (integer) numbers: positive integers). A natural integer number, or natural number, or ordinal number is a non-negative integer number.

This latter definition varies in different textbooks. Although we defined a natural integer number as a non-negative integer number, several alternative sources descnoe natural integer number as a positive integer number thus excluding zero. In the remainder we shall drop the runber noun and call an integer number just an integer.

Definition 1.14 (Non-negative integer norbers). A non-negative integer can be positive or zero. No sign is needed.
Definition 1.15 (Natural (integer) numbers: unsigned integers). A natural integer, or natural number, or ordinal number is an integer number thatis a positive integer or (sometimes a) zero.

Example 1.3. Integer 13 is positite integer and so is +13 . They represent the same integer. Integer -13 is a negative integer. Integer 0 is neitber posive nde neganye. A zero does not have a sign. Ordinarily, there should be no sign preceding a 0.

1.2.2 Real numbers

1.3 Collections: Sets

Definition 1.17 (Set). A fet is geolleation of elements in no particular order, where every element appears once.
The elements of a set are also called members of the set or member elements of the set.

1.3.1 Denoting a set

Remark 1.1 (Curly braces for a set). The elements of a set are listed one after the other in no particular order separated by commas; curly braces $\{$ and $\}$ are used to delineate the set.

Example 1.4 (Set example). Thus set $\{1,3,2\}$ is the same as set $\{1,2,3\}$: both denote the same set containing elements 1,2, and 3. Thus $\{1,3,2\}=\{1,2,3\}$. We usually assign names to sets, for example $A=\{1,3,2\}$ and we can refer to it as set A.

Definition 1.18 (Set ordering.). In a set the order of its elements does not matter. Moreover a set does not contain duplicate elements thus $\{10,10\}$ is not a set.

Definition 1.19 (The belongs-to \in symbol.). We say an element x belongs to set A if and only if set A contains x; we write $x \in A$. If A does not contain element y we write instead $y \notin A$.

Example 1.5 (Set example). For set $A=\{1,3,2\}$, we write $1 \in A$ to indicate that 1 is a member of set A, or equivalently, that 1 belongs-to set A. We also write $4 \notin A$ to indicate that 4 is not a member of set A.

1.3.2 Empty set, Universal set

Definition 1.20 (Empty Set). A set with no elements is empty. Thus $\}$ is an empty set. We also denote an empty set as \varnothing or \emptyset. Thus $\varnothing=\emptyset=\{ \}$.

Definition 1.21 (Universal Set). Every time we define a set we are going to assume that its elements are drawn from a larger, wider set that is known as the Universal set. The Universal set will be denoted by U.

Thus if we define a set A, its universal set σ would have the following property: for every element x of A (x belongs-to A), that element x also belongs-to Moreover there would exist an element $u \in U$ such that $x \notin A$.
Example 1.6. The following set B includes'three elements, the empty set, element 1 and a single-set or singleton, a set containing one element and that is element $1 . B=\{\emptyset, 1,\{1\}\}$. For this example we write $\emptyset \in B$, also $1 \in B$ but also $\{1\} \in B$.

1.3.3 Set enumerationo. S.

Definition 1.22 (Set eniteration indidualn The elements of a set can be enumerated individually and completely as in $\{10,30,20\}$.
Definition 1.23 Set ensimeration byceset counprehestion, 'he elements of a set can be enumerated through a set comprehensin that descrikes a property R(.) thas satisfied by the elements. Then the set of elements x satisfied by property P.e. $\mathcal{P}(2)$ is degribed $\left\{x \circlearrowleft \mathcal{P}(x)\right.$ eor $\left\{x_{0} \mid S(x)\right\}$ or $\{x . P(x)\}$.

We read the coray (:) as such that" io
Remark 1.2 (Set entratigh usinctipsin). For sets with too many elements to write down we might use three periods (...). Thus $\left\{1,2,0^{\prime}, n\right\}$ wald $b \mathcal{B}$ way to write all positive integers from 1 to n inclusive.

This way we technically describe a sequence of elements but the elements of the sequence become members of a set and in a set there is no orderigg of its elements. The three period symbol ... is also known as ellipsis (or in plural form, ellipses, which is not grammatically used in the remainder).

From that point on we shall frequently use a name for a set that is a single letter in capital case. One can call that name a variable.

1.3.4 Sets of integers and reals

Most numbers listed below would be natural numbers (one way or the other). When we start talking about negative numbers this will be made very clear (and the discussion will be brief).

The set of integer numbers is denoted by \mathbb{Z}.

$$
\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}
$$

The set of natural numbers is denoted by \mathbb{N}.

$$
\mathbb{N}=\{0,1,2, \ldots\}
$$

The set of real numbers is denoted by \mathbb{R}.

Definition 1.24 (Sets of integers and reals.).
Set \mathbb{Z} : The set of integers is denoted by \mathbb{Z}.
Set \mathbb{Z}^{*} : The set of non-zero integers is denoted by \mathbb{Z}^{*}.
Set \mathbb{Z}_{+}: The set of non-negative integers is denoted by \mathbb{Z}_{+}.
Set \mathbb{Z}_{+}^{*} : The set of positive integers is denoted by \mathbb{Z}_{+}^{*}.
Set \mathbb{N} : The set of natural numbers, natural integers (unsigned integers) is denoted by \mathbb{N}.
Set \mathbb{N}^{*} : The set of natural numbers excluding zero is denoted by \mathbb{N}^{*}.
Set \mathbb{R} : The set of real numbers.
Set \mathbb{R}_{+}: The set of non-negative real numbers.
Set \mathbb{R}_{+}^{*} : The set of positive real numbers.
Set \mathbb{Q} : The set of rational numbers ie. $\mathbb{Q}=\left\{\mathcal{Q}_{q}=x / y, x, y \in \mathbb{Z}, y \neq 0\right\}$.
Note that in this notation a subscripted indicates positiveness but does not exclude a zero; and a superscripted * indicates exclusion of zero explicitly Ah properties of integers translate to the domain of Real Numbers.

Definition 1.25 (Real Numbers Floating-point Numbers). A real number that includes integer digits, possibly a decimal point, and decimal digits is called a floating-point number.

Thus 12.1 or 12.10 vT. 4 上 $N{ }^{1}$ aldepresent the samereal number.
Definition 1.26 (Exponential notation). A reathumberean bo depressed in exponential notation in the form $a \times 10^{b}$ or equivalently as aE bur nebr

Definition 1.27 (Absolute value of a number) The absolute value of a number (real or integer) is its magnitude. In other words the absolute value of a 今umberis the number WITHOUT its sign.

Example 1.7. The absolute , anne of 3 and +3 is 3. The absolute value of -3 is also 3. The absolute value of 0 is 0 .
Definition 1.28 (Magnitude of \mathfrak{G} G number real or integer). The magnitude of an integer or real number is its absolute value.

Example 1.8 (Magnitude vs value). For a negative number such as -5 its magnitude is 5 and its value is -5 . Thus the 'we always place a negative sign - before its magnitude' at the beginning of this (sub)section finally makes sense.

Example 1.9 (Set example). Now that we have defined certain sets of integers we can define the elements of a set in more complex ways. For set $A=\{1,3,2\}$, we can define set B as follows $B=\{x \in \mathbb{Z}: x \in A, x \geq 2\}$. One may write $B=\{x: x \in \mathbb{Z}, x \in A, x \geq 2\}$. Of course one might realize then that $x \in \mathbb{Z}$ is supefluous and $B=\{x: x \in A, x \geq 2\}$ describes the same set. Moreover note that the commas are to be interpreted as $B=\{x: x \in A$ and $x \geq 2\}$. And to put a closure, $B=\{2,3\}$.

1.3.5 Cardinality of a set

Definition 1.29 (Cardinality of a set). The cardinality of a set is the number of its elements. The cardinality of set A is denoted as $|A|$ or $\mathfrak{c} A$ or $\mathfrak{c}(A)$ or $n(A)$.

Definition 1.30 (Finite and Infinite sets). If the cardinality of set A is a natural (integer) number, i.e. $|A| \in \mathbb{N}$, we call A a finite set; otherwise A is an infinite set.

Remark 1.3. Sometimes we say a set is finite if we can map the elements of the set to some subset $\{1,2, \ldots, n\}$ of the natural numbers. If this is not possible we call such a set an infinite set. Thus $\mathbb{Z}, \mathbb{N}, \mathbb{R}$ are infinite sets.

Example 1.10. The empty set has cardinality zero. The cardinality of $\{10,30,20\}$ or $A=\{10,30,20\}$ is three. We write $|A|=3$ or $\mathfrak{c}(A)=3$ or $\mathfrak{c} A=3$. Moreover we can map 10 to 1,30 to 2,20 to 3 thus we can map the elements of A to the subset $\{1,2,3\}$ of natural numbers.

Example 1.11. Infinite sets can use an ellipsis (three periods) as in $\{1,2,3, \ldots\}$ or $\{\ldots, 1,2,3, \ldots\}$ or $\{\ldots,-2,-1,0,1,2, \ldots\}$ for example.

1.4 Set equality, subsets, unionănd intersection

1.4.1 Set equality

Definition 1.31 (Set equality). Two sets A and B are equal to each other and we write $A=B$ or $B=A$ if and only if they have the same elements.

In other words for every $x \in$ we have $x \in B$, and for every $x \in B$ we have $x \in A$.
Example 1.12. Thus set $\{1030,20\}$ is e^{2}.all to $B=\{10,20,30\}$: both represent the same set containing elements 10,20 , and 30 and thus $\{1030,20,41820,30$ or we an jughwrite $A=B$.

1.4.2 Subsertand groper subsets

Definition 1.33 (Propet subsets). Agset A is called a proper subset of set B and denoted by $A \subset B$ if every element of A is in B and B has at leasione ment ort in A.

In other words $A \subseteq B$ imphes that for every $a \in A$ we have $a \in B$. If we write $A \subset B$, this implies that there also exists a $b \in B$ such that $b \notin A$.

Corollary 1.1. Moreover $A \subseteq B$ and $B \subseteq A$ is equivalent to $A=B$. Not a subset is denoted by $\not \subset$ and \nsubseteq as needed.
We may use the notation $A \nsubseteq B$ and $A \not \subset B$ to denote that A is not a subset of B and A is not a proper subset of B respectively.

Example 1.13. Set $\{1,2\} \subseteq\{1,2\}$. Moreover, $\operatorname{set}\{1,2\} \subseteq\{1,2,3\}$, and set $\{1,2\} \subset\{1,2,3\}$.
Moreover, set $\{1,2,3\} \not \subset\{1,2,3\}$, and set $\{1,2\} \not \subset\{1,2\}$, and $\emptyset \subseteq\{1,2\}$, and $\emptyset \subset\{1,2\}$.
Example 1.14. For any set A it is $A \subseteq A$ and $\emptyset \subseteq A$.
Every set is supposed to belong to a fixed large set that is known as the universal set U. Thus we have.
Theorem 1.1. For any set A we have $\emptyset \subseteq A \subseteq U$.

1.4.3 Intersection and Union of sets

Definition 1.34 (Intersection of sets.). For two sets A and B, the intersection C of A and B is denoted by $C=A \cap B$ and defines the set C that contains the common elements of A and B. Thus

$$
C=A \cap B=\{x: x \in A, x \in B\} .
$$

Equivalently

$$
C=A \cap B=\{x: x \in A \wedge x \in B\} .
$$

The diagram is known as the Venn diagram.

Definition 1.35 (Disjoint sets.). Two sets E, F ar\& disjoint if they have no common elements thus $E \cap F=\emptyset$.
Definition 1.36 (Union of sets.). For two ser A and B, the union D of A and B is denoted by $D=A \cup B$ and defines the set D that contains all the elements of And B. (The common elements are listed once to comply with the definition of a set). Thus

$$
D=A \cup B=\{x: x \in A \text { or } x \in B\}
$$

Equivalently, at the end of this chapter, we may write,

Example 1.15. Let $A=\{1,2,3 \cup 4\}$, $B\{1,3,5\}, C=\{2,4,6\}$. Then $A \cap B=\{1,3\}, A \cup B=\{1,2,3,4,5\}, B \cap C=\emptyset$.
Corollary 1.2. For any two sets A, B, we have $A \cap B \subseteq A, A \cap B \subseteq B$. For any two sets A, B, we have $A \subseteq A \cup B$, $B \subseteq A \cup B$.

1.4.4 Properties of Union and Intersection

Proposition 1.4 (Intersection). Let A, B, C be sets. Then
(a) $A \cap A=A$,
(b) $\quad A \cap B \subseteq A, \quad A \cap B \subseteq B$,
(c) $\quad(A \cap B) \cap C)=A \cap(B \cap C) \quad$ Associative Law
(d) $\quad A \cap B=B \cap A \quad$ Commutative Law
(e) $\quad A \cap U=A$

Proposition 1.5 (Union). Let A, B, C be sets. Then
(a) $A \cup A=A$,
(b) $\quad A \subseteq A \cup B, \quad B \subseteq A \cup B$,
(c) $\quad(A \cup B) \cup C)=A \cup(B \cup C)$ Associative Law
(d) $\quad A \cup B=B \cup A \quad$ Commutative Law
(e) $\quad A \cup U=U$

Proposition 1.6 (Distributive Law). Let A, B, C be sets. Then

$$
\begin{aligned}
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
\end{aligned}
$$

Example 1.16. Show that $(X \cap Y) \cup Z=X \cap(Y \cup Z)$, or show that it is not correct.
Proof. It is not correct and a counter example suffices to prove it! Let $X=\{1,2,3\}$, Let $Y=\{4,5,6\}$, Let $Z=\{1,3,5\}$. Then $(X \cap Y) \cup Z=Z$. Moreover $X \cap(Y \cup Z)=\{1,3\} \neq Z$.

1.5 Powersets and complement of a set

1.5.1 Powersets

Definition 1.37 (PowerSet). The Powerset of A denoted by $\mathbb{P}(A)$ or $\mathscr{P}(A)$ is the set of all possible subsets of set A. Thus $|\mathbb{P}(A)|=2^{|A|}$.

Example 1.17. For set $A=\{10,20,30\}$,
$\mathbb{P}(A)=\{\emptyset,\{10\},\{20\},\{30\},\{10,20\},\{10,30\},\{20,30\},\{10,20,30\}\}$.
The cardinality of $\mathbb{P}(A)$ is two raised to the cardinality of A. Thus $|A|=3$ and therefore $|\mathbb{P}(A)|=2^{3}=8$. In other words, for every element of A we have two possibilities: 0 for the element NOT-TO be in a specific member of $\mathbb{P}(A)$, and 1 for the element $T O$ be in a specific member of $\mathbb{P}(A)$. For the three element set A we have thus the following possibilities 000, 100, 010, 001, 110, 101, 011, 111 that correspond to the 8 members of $\mathbb{P}(A)$ as listed. (The first digit is the indicator for 10, the next one for 20, and the last one for 30.)

1.5.2 Complement of a set

Definition 1.38 (Complement of a set). The complement of B sometimes denoted \bar{B} or B^{\prime} or B^{\complement} is the set of elements not in B.

$$
B^{\complement} \not \approx \cdot B^{\prime}=\{x: x \notin B\} .
$$

For the definition of the complement of a set to make sense, there should be a reference set call it F and all sets such as B are subsets of F. Then we can derne the complement of B relative to F.

Definition 1.39 (Complement of a sexrelative to a reference set F). The complement of B sometimes denoted \bar{B} or B^{\prime} or B^{\complement} is the set of elements not in B^{C}

$$
B^{\complement}=B^{\prime}=\{x: x \in F, x \notin B\} .
$$

Having provided the definitior the univel set U , set U plays the role of F and we can alternatively provide

Definition 1.41 (Difference of two sets). For two sets A, B we define the difference $A-B$ or $A \backslash B$ as follows.

$$
A-B=A \backslash B=\{x: x \in A, x \notin B\} .
$$

Definition 1.42 ((Relative) complement). For two sets A, B we define the relative complement of B relative to A i.e. $A \cap B^{\complement}$ to be the difference $A-B$.

$$
A-B=A \backslash B=A \cap B^{\complement}=\{x: x \in A, x \notin B\} .
$$

Definition 1.43 (Absolute complement). The absolute complement of B relative to a reference set that contains all elements of all sets including B is $B^{\complement}=F-B$, where F is the reference set. Given that we have defined the Universal set U, we can then say

$$
B^{\complement}=U-B .
$$

Definition 1.44 (+ on sets). We also define addition of sets as follows $A+B=(A-B) \cup(B-A)$.
Addition has a formal name: symmetric difference.

Definition 1.45 (Symmetric Difence). For two sets A, B the symmetric difference of A and B is defined as follows.

Example 1.18. Show that $X \cup(Y-X)=X \cup Y$.
Proof. First $X \cup(Y-X)=X \cup\left(Y \cap X^{\complement}\right)$. Then using the distributive lawp $X \cup(Y-X)=(X \cup Y) \cap\left(X \cup X^{\complement}\right)$. The later part $X \cup X^{\complement}=U$ and thus $X \cup(Y-X)=X \cup Y$ as needed. (We trivially used property (e) from the Intersection properties above.

Example 1.19. Let $U=\{1,2,3,4,5,6,7,8,9\}$ Let $A=\{1,2,3,4\}, B=\{1,3,5\}, C=\{2,4,6\}$. $A^{\complement}=\{5,6,7,8,9\}$. $A-B=\{2,4\}, A-C=\{1,3\}, A \oplus B=\{2,4,5\}$.

1.5.3 Properties of Sets

Definition 1.46 (Associativity Law). For any sets A, B, C we have $A \cap(B \cap C)=(A \cap B) \cap C$ and $A \cup(B \cup C)=(A \cup$ $B) \cup C$.

Definition 1.47 (Commutativity Law). For any sets A, B we have $A \cup B=B \cup A$ and $A \cap B=B \cap A$.

Definition 1.48 (Distribution Law). For any sets A, B, C we have $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ and $A \cap(B \cup C)=$ $(A \cap B) \cup(A \cap C)$.

Definition 1.49 (Identity Law). For any set A, we have $A \cup \emptyset=A, A \cap \emptyset=\emptyset$. For any set A, we have $A \cup U=A$, $A \cap U=A$.

Definition 1.50 (Idempotent Law). For any set A, we have $A \cup A=A$ and $A \cap A=A$.
Definition 1.51 (Involution Law). For any set A, we have $\left(A^{\complement}\right)^{\complement}=A$.
Definition 1.52 (De Morgan's Law for sets). Fonderery two sets that are subsets of a reference set F (or U), we have

$$
(A \cup B)^{\complement}=A^{\complement} \cap B^{\complement}
$$

and

$$
(A \cap B)^{\complement}=A^{\complement} \cup B^{\complement}
$$

Definition 1.53 (Complemert'Lainand Involutien). Moreover by De Morgan's Law we can also derive that

1.6 Pairs and tuples

1.6.1 Ordered Pairs and tuples

Definition 1.54 (Ordered Pair, Triples and n-tuple.). For a pair of elements a, b order matters. Thus (a, b) means that a is the first element of the pair and b is the second. Moreover $(a, b) \neq(b, a)$. Likewise (a, b, c) and $\left(x_{1}, \ldots, x_{n}\right)$ are triples/triplets and n-tuples respectively.

Definition 1.55 (Cartesian product). For two sets A and B the cartesian product $C=A \times B$ is defined as

$$
C=A \times B=\{(a, b): a \in A, b \in B\} .
$$

A cartesian product is generalizable to n sets, not just two.
The cartesian product is generalizable to n sets, not just two, thus for sets $A_{1}, A_{2}, \ldots, A_{n}$ we can define $C=A_{1} \times$ $A_{2} \times \ldots \times A_{n}$.

Definition 1.56 (Cartesian plane). A cartesian plane C is defined as $C=A \times B$, where $A=B=\mathbb{R}$. Thus a cartesian plance is $\mathbb{R} \times \mathbb{R}$.

1.6.2 Counting

Theorem 1.2 (Counting). Let A, B be two subsets of a finite reference set F.

- Let $A \subseteq B$. Then $|A| \leq|B|$.
- Let $A \subseteq B$. Then $|B-A|=|B \in| A \mid$.
- Let $A \subseteq B$. If $|B|=|A|$,
- If A and B are disjoxity setsisen $|A \cap B|=|A \cup B=|A|+|B|$.
- $\left|A^{\prime}\right|=|F|-\downarrow A \mid$.

1.6.3 Principle of Inelusionfexchisions

Theorem 1.3 (R anciple of Inclusion-Eseclusion for wors). Let A and B be two finite sets.
N

Example 1.20. CS435 has @rerequisites CS241 and CS288. There are 30 students who have taken CS241. There are 50 students who havotakend5289. There are 20 students who have taken both CS241 and CS288. What is the total number of students wheyave eqmpleted CS241 or CS288? Let A be the CS241 students, Let B be the CS288 students, Let $A \cup B$ be the studentonvolved, and Let $A \cap B$ be the 20 students who have taken both CS 241 and CS288. $|A|=30,|B|=50,|A \cap B|=20$. Then by the IE principle, we have that

$$
|A \cup B|=|A|+|B|-|A \cap B| .=30+50-20=60 .
$$

Theorem 1.4 (Principle of Inclusion-Exclusion for n sets). Let A_{1}, \ldots, A_{n} be n finite sets.

$$
\begin{array}{rll}
\left|A_{1} \cup \ldots \cup A_{n}\right| & = & \left|A_{1}\right|+\ldots+\left|A_{n}\right| \\
& - & \left|A_{1} \cap A_{2}\right|-\left|A_{2} \cap A_{3}\right|-\ldots-\left|A_{n-1} \cap A_{n}\right| \\
& + & \left|A_{1} \cap A_{2} \cap A_{3}\right|+\left|A_{1} \cap A_{2} \cap A_{4}\right|+\ldots+\left|A_{n-2} \cap A_{n-1} \cap A_{n}\right| \\
& \ldots & \\
& +(-1)^{n+1} & \\
& \left|A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right| .
\end{array}
$$

1.7 Compound Propositions

1.7.1 Negation

The negation of a proposition is also a proposition.
We use the symbol NOT, not, \neg, or ! as connectives for negation. They are alternative operators, in fact operator symbols, indicating the same operation: negation.

The negation of a proposition P is then denoted by $\neg P$, or NOT P, or NOT (P), $\operatorname{not} P$, or $\operatorname{not}(P)$, or $!P$.
The symbol \neg (alternatively, NOT, not) is known as the operator for negation. The operation implied by the operator is known as negation. The operator \neg is a unary operator and accepts one and only one operand on which it acts, in this case a proposition such as P. For proposition $P, \neg P$ is also a proposition and the latter is called the negation of P.

Definition 1.57 (Negation). A proposition P and its negation $\neg P$ have opposite truth values. If P is true, then $\neg P$ is false, and if P is false, then $\neg P$ is true.

The following table is known as the truth table for negation. For a given proposition P it shows for the different possibilities of the truth values of P the truth values of $\neg P$.

Example 1.21. Let proposition P be defined as follows.

Proposition Q is defined as formuss.

 of P and say $Q P \neg P$ (since P ind $Q \in \neg P$ have ore O site áth values.

1.7.2 Disjunctiono $0^{己}$

The disjunction offoro prepositiohs is ajso a proposition. We may also refer to a disjunction as an inclusive disjunction to distinguish it froman exclisive disjunction that will be defined later. We use the symbols OR, or, $\vee,+$, and \mid as connectives for a disjunction. Thes are the operators for disjunction. An operator is a symbol; the operator implies an operation.

The disjunction of two proposifiphs P and Q is thus denoted by P OR Q, or $P \vee Q$, or $P+Q$, or $P \mid Q$ and the forms $\mathbf{O R}(\mathbf{P}, \mathbf{Q})$ or $\vee(\mathbf{P}, \mathbf{Q})$ can also be wsed.

Each operator for disjunction is a binary operator and accepts two operands, and thus in $P \vee Q$ for example, proposition P is the left operand, and proposition Q is the right operand. When we use the form $P \vee Q$ the operator is between the operands. We call this form an infix notation. In the case $\vee(\mathbf{P}, \mathbf{Q})$ the operator precedes the operands and we call this form a prefix notation. (There is also a postfix notation.) For two propositions P, Q, the disjunction $P \vee Q$ is also a proposition.

Definition 1.58 (Disjunction(OR)). A disjunction $P \vee Q$ is false when both P and Q are false, and it is true otherwise.
Therefore, the disjunction is T when one or both of the propositions is T , otherwise it is F . The following table is known as the truth table for disjunction $P \vee Q$. It shows the truth value of the disjunction for the various possibilities of the truth values of propositions P, Q. Since we have two propositions, we have $2 * 2=4$ possibilities for the truth values of P and Q and thus four rows in the truth table.

Disjunction (\vee)		
\mathbf{P}	\mathbf{Q}	$\mathbf{P} \vee \mathbf{Q}$
F	F	F
F	T	T
T	F	T
T	T	T

Example 1.22.
$P: 2+2=4$.
$Q: 2+2=3$.
$R: P \vee Q$.
$S: 2+2=4$ OR $2+2=3$. Assuming that integers are denary (base 10, radix-10), proposition P is T, proposition Q is F, proposition R i.e. $P \vee Q$ is T, and S is another way to write $R=P \vee Q$ and thus S is T as well.

Sometimes a disjunction is called an inclusive disjunction because there exists an exclusive disjunction.
In an exclusive disjunction, it cannot be that P and Q are both T.
Example 1.23. Consider proposition P, where

Today cannot be Tue and Wed at the some time! Therefore we need to make a stronger statement than an inclusive disjunction $P \vee Q$. This leads to esthblinhing an exclusive disjunction $P \oplus Q$. (There is always the possibility that today is one of the remaining five danthat are neither Tue nor Wed.)

1.7.3 Exclusive Dişunction

The exlusive disjunction ofetwo propositions inarso a popositien. We use the symbols XOR, xor, \oplus, \underline{v}, and in C or C++ the symbol knedn as dfat as eornectioes forch excesive disjunction operator. The exclusive disjunction of two propositions P and Q is thus denoted $b y P$ or P POR Q or sometimes as $P \vee Q$ and in some programming languages $A^{\prime} P^{\wedge} Q$ Sometimes the form $\mathbf{Q R}(\mathbf{R})$) or (\mathbf{P}, \mathbf{Q}) can be used. For two propositions P, Q the exclusive disjunction P is also a proposition
Definition 1.59 (Exelusire Disjuction An exlusive disjunction $P \oplus Q$ is true when exactly one of P, Q is true, and it is false otherme

Therefore, the exclusive disjuction 9 false when both propositions are true or both propositions are false. Otherwise it is true. The followingtoble jnown as the truth table for the exclusive disjunction $P \oplus Q$ for given P, Q.

Exclusive Disjunction (\oplus)		
\mathbf{P}	\mathbf{Q}	$\mathbf{P} \oplus \mathbf{Q}$
F	F	F
F	T	T
T	F	T
T	T	F

1.7.4 Negated Disjunction

The negated disjunction of two propositions is also a proposition. We use the connective symbol NOR for negated disjunction. The negated disjunction of two propositions P and Q is thus denoted by P NOR Q. Sometimes the form $\operatorname{NOR}(P, Q)$ can be used.

NOR means negative OR that is negated OR or negated disjunction. For two propositions P and Q the negated disjunction P NOR Q is also a proposition.

Definition 1.60 (Negated Disjunction (NOR)). The negated disjunction P NOR Q is true when both P and Q are false, and it is false otherwise.

Thus P NOR Q is defined as $\neg(P \vee Q)$. The truth table of P NOR Q is shown next.

Negative-OR (NOR)		
\mathbf{P}	\mathbf{Q}	P NOR Q
F	F	T
F	T	F
T	F	F
T	T	F

1.7.5 Conjunction

The conjunction of two propositions is also a proposition. We use the symbols $\mathbf{A N D}$, and, $\wedge, \&$ for connectives, and rarely the symbol . for period. The conjunction f two propositions P and Q is thus denoted by $P \wedge Q, P$ AND Q, $P \& Q, P . Q$, and occasionally the forms $\mathbf{A N D}(P Q) \wedge \dot{\wedge}(P, Q)$ can be used.

For two propositions P, Q, the conjunction $P \wedge Q$ is also a proposition.
Definition 1.61 (Conjunction(AND)). ©onjunction $P \wedge Q$ is true when both P and Q are true and it is false otherwise.
Therefore, the conjunction is F when one or both of the propositions is F , and T otherwise. The truth table for conjunction $P \wedge Q$ is shown next

Example 1.24.

$P: 2+2=4$.
$Q: 2+2=3$.
$P \wedge Q$.
$R: 2+2=4$ AND $2+2=3$.
Obviously, P is T, Q is F , an $\mathcal{P} \wedge Q$ is F . Moreover R is F as well.

1.7.6 Negated Conjunction

The negated conjunction of two propositions is also a proposition. We use the connective NAND for negated conjunction. The negated conjunction of two propositions P and Q is thus denoted by P NAND Q. Sometimes the form NAND (P, Q) can be used.

NAND means negative AND that is negated AND or negated conjunction. For two propositions P and Q the negated conjunction P NAND Q is also a proposition. Moreover P NAND Q is equivalent to $\neg(P \wedge Q)$.

Definition 1.62 (Negated Conjunction(NAND)). The negated conjunction P NAND Q is false when both P and Q are true, and it is true otherwise.

	NAND	
\mathbf{P}	\mathbf{Q}	\mathbf{P} NAND Q
F	F	T
F	T	T
T	F	T
T	T	F

We have concluded the presentation of the simple connectives that can connect propositions into compound propositions. We present few more connectives.

1.7.7 Implication

Let P and Q be two propositions. Then $P \Rightarrow Q$ is called an implication or conditional. In an implication like this, P is the antecedent (hypothesis) and Q is the consequent (conclusion). We can read this implication as "If P then Q ", or " P implies Q", or "P only if Q", or "Q if P".

The implication $P \Rightarrow Q$ of two propositions P and Q used as the antecedent and consequent is also a proposition.
Definition 1.63 (Implication). The implicatio $\widehat{P} \Rightarrow \mathbf{Q}$ is false if P is true and Q is false, and it is true in all other cases.

The implication $\mathbf{P} \Rightarrow \mathbf{Q}$ is thus equivelent to $\neg P \vee Q$. The truth table of an implication is shown next.

IF It snows, THEN I will not go out

The statement "IF it snows, THEN I will not go out" is an implication implied by $P \Rightarrow Q$. The "It snows" part is the antecedent P and the "I will not go out" is the consequent Q. The implication is false if it snows and I decide to (and do) go out. The implication is true if it snows, and I do not go out. However the implication is also true if it DOES NOT snow and I don't go out, or if it DOES NOT snow, and I decide to go out.

Remark 1.4 (Sufficient). In an implication P is sufficient for Q. If P occurs i.e. is true then the (true) implication implies Q will be true. If P does not occur (it is not true), Q might be true or might be false. Other things dictate Q 's truth value then.

Remark 1.5 (Necessary). In an implication Q is necessary for P that is, Q is necessary for P to be true in the sense that the truthness of P guarantees Q to be true. (It is thus impossible to have P true without Q also being true.)

Example 1.26. It is easier to remember an implication using the form $S \Rightarrow N$. Thus S is sufficient for N and N is necessary for S. Call proposition S: "Person named Steve". and Proposition N: "Person has a Name". In other words the implication is "if a person is named Steve, then that person has a name"

Person is named Steve \Rightarrow Person has a Name

S is sufficient for N. If a person is named Steve it means person has a name. N is necessary for S. It is impossible for S to be true and N then being false.
Example 1.27.
(a) A conditional reads: "if it snows, then Alex will get sick". We are told "It did not snow". Discuss the validity of "Alex will get sick".
(b) The conditional reads: "if it snows, then Alex will get sick". We are told "Alex did not get sick". Discuss the validity of "It did not snow".
(c) The negation of $P \Rightarrow Q$ is determined as follows. First $P \Rightarrow Q$ is equivalent to $\neg P \vee Q$. Thus its negation is the negation of the disjunction i.e. $\neg(\neg P \vee Q)$ which is $P \wedge \neg Q$.
(d) "If cats are bats, then bats have four legs." Let P be "cats are bats" and let Q be "bats have four legs". The implication is then $P \Rightarrow Q$. Its negation is $P \wedge \neg Q$ i.e. "cats are bats and bats DONOT have four legs".
Proof. (a) Even if it did not snow, Alex might or might not get sick. If he gets sick it won't be because it snowed. The antecedent is F , the consequent can be F or T . The implication is T , as there is nothing that evaluates it as F .
(b) The statement (proposition) "It did not snow 1 T. Had it snowed, Alex would have gotten sick but we have been told that Alex did not get sick. Therefore propestion "It did not snow" is T.)

1.7.8 Bi-Implication

Let P and Q be two propositions. Then $P \Leftrightarrow Q$ or $P \Longleftrightarrow Q$ is called a bi-implication or bi-conditional. We can read this bi-implication as "P if aine ©nlycjif Q ", or " P necessary and sufficient for Q ", or If \mathbf{P} then \mathbf{Q} and if \mathbf{Q} then \mathbf{P}. Note that in ' \mathbf{P} if and only if $Q^{\prime} \Rightarrow \mathcal{S}^{\prime} \Rightarrow$ s the part thays \mathbf{P} only if \mathbf{Q} or equivalently \mathbf{Q} if \mathbf{P}. And the $Q \Rightarrow P$ is the part that says \mathbf{P} if \mathbf{Q}.

The bi-implication \mathbf{P} of propositions P and Q is asea proposition.
Definition 1.64 (Bi-inglicatisin). Tharbi-imptications \mathbf{P} es true if P and Q are both true or both false, and it is false in allower cases.
Definition 1.62 (Bi-implication). Wealtematuvelbedefine $P \Leftrightarrow Q$ as

The truth table of bi-impficatien ${ }^{\mathbf{P}}$. is shown next.

Bi-Implication				
\mathbf{P}	\mathbf{Q}	$\mathbf{P} \Rightarrow \mathbf{Q}$	$\mathbf{Q} \Rightarrow \mathbf{P}$	$\mathbf{P} \Leftrightarrow \mathbf{Q}$
	F	F	T	T
F	T	T	F	F
T	F	F	T	F
T	T	T	T	T

1.7.9 Converse

Let P and Q be two propositions. The converse of implication $P \Rightarrow Q$ is another implication: $Q \Rightarrow P$. An implication is a proposition. The converse of an implication is also a proposition.

Definition 1.66 (Converse of an implication). For implication $P \Rightarrow Q$ its converse is defined as

$$
\operatorname{converse}(P \Rightarrow Q):(Q \Rightarrow P)
$$

1.7.10 Inverse

Let P and Q be two propositions. The inverse of implication $P \Rightarrow Q$ is another implication: $\neg P \Rightarrow \neg Q$. The inverse of an implication is also a proposition.

Definition 1.67 (Inverse of an implication). For implication $P \Rightarrow Q$ its inverse is defined as

$$
\operatorname{inverse}(P \Rightarrow Q):(\neg P \Rightarrow \neg Q)
$$

1.7.11 Contrapositive

Let P and Q be two propositions. The contrapositive of implication $P \Rightarrow Q$ is another implication: $\neg Q \Rightarrow \neg P$. The contrapositive of an implication is also a proposition.

Definition 1.68 (Contrapositive of an implication). For implication $P \Rightarrow Q$ its contrapositive is defined as

$$
\text { contrapositive }(P \Rightarrow Q):(\neg Q \Rightarrow \neg P)
$$

1.8 Compound Proposition evaluation

A compound proposition can be evaluated intort or F by evaluating all of its primitive propositions and then apply the rules of composition implied by the connectives \neg, \wedge, \vee etc.

Sometimes we use parentheses to describe the order of composition. Sometimes we define an order of precedence for the connectives: for example \neg has $\downarrow \boldsymbol{y}$ ghest precedence, followed by \wedge, followed by \vee.

The easiest way to determine the truth value of a compound proposition is to determine the truth values of all primitive propositions and generate a truth table for all combinations of them, and determine which one is applicable for our case. This method alsoosyorks with predicates but then the number of variables determines the number of rows of the truth table. The problem is for t propesitions (or predicate variables) the truth table would have 2^{t} rows in general.

1.8.1 Tautology and Contradiction

Proposition RV $\neg R$ is a taturologo In the truth table below the last column that provides the truth values of this proposition is on T. a porgition with such a truth table is called a tautology.

Proposition $P \wedge \neg P$ is a contradiction. In the truth table below the last column that provides the truth values of this proposition is only F. A proposition with such a truth table is called a contradiction.

In a truth table where the last column is only F, we call the proposition with such a truth table a contradiction. Thus $P \wedge \neg P$ is a contradiction.

Contradiction		
\mathbf{P}	$\neg \mathbf{P}$	$\mathbf{P} \wedge \neg \mathbf{P}$
F	T	F
T	F	F

1.9 Properties of Propositions

Definition 1.69 (Identity Law). For any P, we have $P \vee F=P, P \vee T=T, P \wedge T=P$ and $P \wedge F=F$.
Definition 1.70 (Idempotent Law). For any P, we have $P \vee P=P$ and $P \wedge P=P$.
Definition 1.71 (Involution Law). For any P, we have $\neg \neg P=P$.
Definition 1.72 (Associativity Law). For any P, Q, R we have $(P \vee Q) \vee R=P \vee(Q \vee R)$, and $(P \wedge Q) \wedge R=P \wedge(Q \wedge R)$.
Definition 1.73 (Commutativity Law). For any P, Q we have $P \vee Q=Q \vee P$ and $P \wedge Q=Q \wedge P$.
Definition 1.74 (Distribution Law). For any P,Q,R we have

$$
P \vee(Q \wedge R)=(P \vee Q) \wedge(P \vee R),
$$

and

$$
P \wedge(Q \vee R)=(P \wedge Q) \vee(P \wedge R)
$$

Definition 1.75 (Complement Law). For any $P, \neg T=F, \neg F=T, P \vee \neg P=T$ and $P \wedge \neg P=F$.
Definition 1.76 (De Morgan Law). For any Q we have that $\neg(P \vee Q)=\neg P \wedge \neg Q$. For any P, Q we have that $\neg(P \wedge Q)=\neg P \vee \neg Q$.

1.10 Sentences and Quantifiers

Let A be a set. A sentence defthed on set A is a predicate $P(x)$, which has the property that $P(a)$ is T or F for each $a \in A$. The set A is the dongln of $8 P(x)$ and the toth set of $P(x), T(P)$ is the set of all elements of A for which $P(x)$ is T.

reads as in "for all a in set $A P$ (a) costrue" or simply "for all $a, P(a)$ ". The symbol \forall is the universal quantifier. The three different forms of the samestovement above are equivalent to $T(P)=A$.

We can use the simpler forms $\forall a . P(a)$ or $\forall a: P(a)$.
Definition 1.78 (Existential Quantifier). Let $P(x)$ be a sentences defined on a set A.The expression

$$
(\exists a \in A) P(a)
$$

or equivalently,

$$
\exists a \cdot P(a)
$$

or equivalently,

$$
\exists a: P(a)
$$

reads as in "there exists an a in set $A, P(a)$ is true" or simply "For an (some) $a, P(a)$ ". The symbol \exists is the existential quantifier. The three different forms of the same statement above are equivalent to $T(P) \neq \emptyset$.

Definition 1.79 (De Morgan Law for Quantifiers).
For any P, Q we have that $\neg(\forall a \in A) P(a)=(\exists a \in A) \neg P(a)$.
For any P, Q we have that $\neg(\exists a \in A) P(a)=(\forall a \in A) \neg P(a)$.

1.10.1 Set Proof Techniques

Remark 1.6. To prove properties related to sets do as follows.

- In order to show $x \in X$, we just need to show that x has the property that describes all elements of X.
- In order to show that $X \subseteq Y$, show that every $x \in X$ satisfies, $x \in Y$ as well.
- In order to show that $X \subset Y$, first show $X \subseteq Y$ and then show that there is a $y \in Y$ such that $y \notin X$.
- In order to show that $X \nsubseteq Y$ show that some $x \in X$ is such that $x \notin Y$.
- In order to show that $X=Y$ show that $X \subseteq Y$ and also $Y \subseteq X$.
- In order to show that $X \neq Y$ show that $X \nsubseteq Y$ or $Y \nsubseteq X$.
- In order to show $a \Longleftrightarrow b$ show that $a \Longrightarrow b$ and also $b \Longrightarrow a$.

1.10.2 Examples

Let for the remainder \mathbb{N} be the set of posifixe integers.

Example 1.28. Proposition $Q(\sim \mathcal{L}$ is defined as $(\forall n \in \mathbb{N})(n+11>10) . Q(n)$ is true. This is because the truth range of the proposition is $T(Q)=\left\{\mathcal{O}^{2}, 3, \ldots\right\}$ which is equal to \mathbb{N}.

Example 1.29. Propesitiongen isdefinedns $(\forall \in \in \mathbb{N})(10+11) . Q(n)$ is false. This is because the truth range of the proposition $T(Q) \ominus^{\circ}\{2,32 \cdots\}$. which is NOT equal to ge o

Example 1.30. Pf(piosifign $Q(n)$ ded as $(n \in \mathbb{N})(n+10>11)$. $Q(n)$ is true. This is because the truth range of the proposition is $T, Q^{9}=(2,3$, A whiqnis NQT equal to \emptyset.

Example 1.31. Let A
$(\forall x \in A)(x$ is named Alex $) j^{e}$ os
We do not discuss the absuldity $Q \in$ inis proposition. We find its negation $\neg Q(n)$. Then $\neg Q(n)$ is defined as follows:
$(\exists x \in A)\left(x\right.$ is NOT named Alex ${ }^{2}$
In a negation the quantifier flips and so does the statement of the main body of the proposition: is named Alex becomes is NOT named Alex.

Example 1.32. Let A be the population of all US citizens. Proposition $T(n)$, is defined as follows.
$(\exists x \in A)(x$ is named Alex $)$.
Quite clearly this proposition is true.
We explore its negation. Then $\neg T(n)$ is defined as follows.
$(\forall x \in A)(x$ is NOT named Alex).
The latter, $\neg T(n)$ might sound absurd but it is false.

1.11 Exercises

Exercise 1.1. Show that $P \vee \neg(P \wedge Q)$ is a tautology.
Proof.

$$
\begin{aligned}
P \vee \neg(P \wedge Q) & =P \vee(\neg P \vee \neg Q) \\
& =(P \vee \neg P) \vee \neg Q) \\
& =T \vee \neg Q \\
& =T
\end{aligned}
$$

Exercise 1.2. Evaluate $\neg(P \vee Q) \vee(Q \wedge \neg P)$.
Proof. One way to evaluate it is as follows

$$
\begin{aligned}
\neg(P \vee Q) \vee(Q \wedge \neg P) & =(\neg P \wedge \neg Q) \vee(\neg P \wedge Q) \\
& =((\neg P \wedge \neg Q) \vee \neg P) \wedge((\neg P \wedge \neg Q) \vee Q) \\
& =(\neg Q \vee \neg P) \wedge(\neg Q \vee \neg P)) \wedge((\neg P \vee Q) \wedge(\neg Q \vee Q)) \\
& =\sim(\neg \wedge(\neg Q \vee \neg P)) \wedge((\neg P \vee Q) \wedge T) \\
& =(\neg Q \vee \neg P) \wedge(\neg P \vee Q) \\
& =(\neg Q \vee \neg Q) \wedge \neg P \\
& =T \wedge \neg P \\
& =\neg P
\end{aligned}
$$

Exercise 1.3. Let P be "Allsudentsare in the classroom" State $\neg P$.
Proof. Let S be the set of students referred to in P. Let C be the set of students in the classroom. We can rephrase P as follows

$$
P: \forall s \in S: s \in C
$$

The negation of P is $\neg P$ as follows

$$
\neg P: \exists s \in S: s \notin C
$$

Thus: $\neg P$ is "there exists a student not in the classroom".
Exercise 1.4. Let $A=\{1,3,5,7,9\}$. Determine the truth value of each of the following propositions.

- (a) $P: \exists a \in A: a+3=10$.
- (b) $Q: \exists a \in A: 2 a+3=10$.
- (c) $S: \forall a \in A: 3 a+7 \geq 10$.

Proof. (a) T since for $a=7$ we have $7+3=10$. Thus $T(P)=\{7\} \neq \emptyset$.
(b) F since $T(P)=\{ \}$.
(c) T since $T(P)=\{1,3,5,7,9\}=A$.

Exercise 1.5. Let P be "All students are in the classroom" State $\neg P$.
Proof. Let S be the set of students referred to in P. Let C be the set of students in the classroom. We can rephrase P as follows

$$
P: \forall s \in S: s \in C
$$

The negation of P is $\neg P$ as follows

$$
\neg P: \exists s \in S: s \notin C
$$

Exercise 1.6. For set $A=\{2,4,6,8\}$ use a set comprehension to enumerate the elements of the set.
Proof. Let $A=\{x: \mathbf{x}$ is even positive integer and $x<10\}$. An alternative for : is to use \mid or $/$ or the symbol. for period.

Exercise 1.7. Is $\{\emptyset,\{ \}\}$ a set?
Proof. No. \emptyset and $\}$ are the same elements. They are two different ways to say empty set. In a set every element is listed once. In our case the same element, the emptyset is included twice. The following two sets are sets indeed. Let $A=\{\emptyset\}$. Let $B=\{\{ \}\}$. Moreoyer $A=B$ since $\emptyset=\{ \}$ i.e. the two sets contain the same element. Moreover $c(A)=c(B)=1$, the cardinality ef each is one (element).

Exercise 1.8. For any two sext A, B if $A \subseteq B$ and $B \subseteq A$ then $A=B$.

In order to show that $A \in B$ weneed toshow that for every $x \theta^{8} A$ we have $x \in B$, and also for every $x \in B$ we have $x \in A$.

We prove first the $x i n A \Rightarrow x \in B$, \Rightarrow this issa direcconsefuence of $A \subseteq B$ which says $x \in A \Rightarrow x \in B$!
We promext the xin $\Rightarrow x \in$. This is a dinect consequence of $B \subseteq A$ which says $x \in B \Rightarrow x \in A$!
Therefore A and B inate tho samefement and ints $A=B$.
Exercise 1.9. Formy t sets $A B B$, if $A=B$ thon $A \subseteq B$ and $B \subseteq A$.
Proof. This is the converse of the कrevionsproposition. It can be proved similarly.
Exercise 1.10. Let A, B, C bery thede sets. Show that if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
Proof. (i) From $A \subseteq B$ we have $S_{X} \in A$ implies $x \in B$.
(ii) From $B \subseteq C$ we have $x \in B$ implies $x \in C$.
(iii) Thus by (i) every element $x \in A$ also belongs to B and thus $x \in B$.
(iv) Furthermore by (ii) every element in B belongs to C. Thus $x \in C$ as well.

Thus by way of (iii) and (iv) we have proved $x \in A$ implies $x \in C$ which means $A \subseteq C$.
Exercise 1.11. Show that $A=\{2,3,5\}$ is not a subset of $B=\{n \mathbb{N}$: nisodd $\}$
Proof. In order to show $A \nsubseteq B$ it suffices to find ONE element of A that is not in B.
Let $x=2.2 \in A$ but $2 \notin B$. This is because B contains odd numbers such as $1,3,5,7$ etc. Thus $A \nsubseteq B$.
Exercise 1.12. Let $A=\{2,3,5\}, B=\{2,4,6\}, C=\{1,3,5,7\}$. Find $A \cap B, B \cap C$, and $A \cap C$ and $A \cup B, B \cup C$, and $A \cup C$.

Proof. $A \cap B=\{2\}, B \cap C=\{ \}, A \cap C=\{3,5\}$.
$A \cup B=\{2,3,4,5,6\}, B \cup C=\{1,2,3,4,5,6,7\}, A \cup C=\{1,2,3,5,7\}$.

Exercise 1.13. Let $U=\{1,2,3,4,5,6,7,8,9,10\}$. Let A, B, C as in the previous problem. Find $A^{\complement}, A-B, A \oplus B, B \oplus C$.
Proof. $A^{\complement}=\{1,4,6,7,8,9,10\}, A-B=\{3,5\}, A \oplus B\{3,5,4,6\}, B \oplus C\{1,2,3,4,5,6,7\}$,
Exercise 1.14. Show that it is possible $A \cap B=A \cap C$ and yet $B \neq C$.
Proof. Let $A=\{2,3\}, B=\{2,4,6\}, C=\{2,5,7\}$. It is clear that $A \cap B=A \cap C=\{2\}$, yet $B \neq C$.
Exercise 1.15. For any A, B such $A \subseteq B$ we have $A \cap B=A$.
Proof. In order to show $A \cap B=A$ (i) we first show $A \cap B \subseteq A$ and (ii)then show $A \subseteq A \cap B$.
(i) Let $x \in A \cap B$. This means $x \in A$ and $x \in B$. Because of the first part $x \in A$. Therefore we have shown that $x \in A \cap B \Rightarrow x \in A$. This means $A \cap B \subseteq A$.
(ii) Let $x \in A$. Let A, B are such that $A \subseteq B$, then $a \in A$ implies $a \in B$ for all a. Set $a=x$ and we have that $x \in A$ implies $x \in B$. Since $x \in A$ and $x \in B$ then $x \in A \cap B$. Therefore we have shown that $x \in A \Rightarrow x \in A \cap B$. This means $A \subseteq A \cap B$.

From $A \cap B \subseteq A$ and $A \subseteq A \cap B$ we have $A=A \bigotimes^{B}$.
Exercise 1.16. Prove the Theorem of Inclusion Exclusion
Proof. Let us restate it $c(A \cup B)=c(A) \cap \subset(B)-c(A \cap B)$.
When we count $c(A)$ the elements $0 t A$ and $c(B)$ the elements of B. In the $c(A)+c(B)$ we count the elements of the intersection $A \cap B$ twice, once aselements of A and once as elements of B. Thus to calculate $c(A \cup B)$ we need to subtract from the sum $c(A)+c$ (\boldsymbol{R}^{*} the $c(A \cap B)$.

Exercise 1.17. What is the Rowe $\mathbb{P}(A)$ of set $A=\{a, 1,2\}$? Sometimes we write 2^{A} for $\mathbb{P}(A)$.
Proof. $\mathbb{P}(A)=\{\{ \},\{1\},\{2\}$ Git $,\{1,2\},\{1 \sim\},\{2 a\},\{182, a\}\}, \mathbb{O}$

Proof.
Exercise 1.18. Se rs.

Chapter 2

Relations

2.1 Introduction

For two sets A and B, we may define the cartesian product of those two sets $A \times B$.
Definition 2.1 (Cartesian product). For two setrand B the cartesian product $C=A \times B$ is defined as

$$
G=A^{\prime} \times B=\{(a, b): a \in A, b \in B\} .
$$

A cartesian product is generalizable to n sets, not just two.
If $A=B$ we can write $A \times A$. Moreover $\mathbb{R} \times \mathbb{R}$ or \mathbb{R}^{2} is the cartesian plane.
A relation is sometimes refered to as a binary relation.
Definition 2.2 (Relation fom Ato B. For sta A, B a relation R from A to B is a subset of $A \times B$. Therefore $R \subseteq A \times B$.

Definition 2.3 for a dention fromset Aset Bor $a \in A$ and $b \in B$ there are two possibilities for a and b :

- $(a, b) \in R$: 以e thensay ank-rebod todor aRb.
- $(a, b) \notin R$: we then say is OOT Related to b or $a R b$.

Another definition if it inoorves ongly one set is as follows.
Definition 2.4 (Relation from $A \subset A$). For a sets A a relation S from A to A is a subset of $A \times A$. Therefore $S \subseteq A \times A$.
The elements of A that are first elements of R are known as the domain of relation R. The elements of B that are second elements of R are know as the range of relation R. Thus we define $D o(R)$ or $D(R)$ and $R a(R)$ or $R(R)$ as follows.

Definition 2.5 (Domain of T). The domain D of a relation T is denoted by $D(T)$ and defined as follows.

$$
D o(T)=D(T)=\{a: a T b, a \in A\}
$$

Definition 2.6 (Range of T). The range R of a relation T is denoted by $D(T)$ and defined as follows.

$$
R a(T)=R(T)=\{b: a T b, b \in B\}
$$

(We used T instead of R for the name of the relation to avoid overloading symbol R : it would have indicated both the range of a relation, and the name of the relation itself.)

Definition 2.7 (Inverse relation). The inverse R^{-1} of a relation R from A to B, is the relation from B to A defined as follows:

$$
\begin{gathered}
R^{-1}=\{(b, a):(a, b) \in R\}=\{(b, a): a R b\} \\
(a, b) \in R \Longleftrightarrow(b, a) \in R^{-1} \\
a R b \Longleftrightarrow b R^{-1} a
\end{gathered}
$$

or
Example 2.1. Let $A=\{1,2,3,4\}$ and $B=\{0,4,5\}$. Let $R=\{(1,0),(2,0),(3,0),(4,0),(4,4)\}$. The domain of R is $\{1,2,3,4\}$ and the range of R is $\{0,4\}$.

Example 2.2. Let X be a set of objects each object having a weight. We define the relation H (think of \geq). For two elements of X say $a, b \in X$, we write $(a, b) \in H$ if and only if a is of weight at least the weight of b. We can write also $a H b$ instead of $(a, b) \in H$. A more preferred symbol for H is \geq. Then $a \geq b$ is easier to deal with than $(a, b) \in H$ or aHb!

$$
(a, b) \in H \bowtie \cdot \Longleftrightarrow a H b \quad \Longleftrightarrow \quad a \geq b
$$

Example 2.3. It is not that difficult to estallish that relation R of the first example relates to relation H of the second example.

Example 2.4 (Circle). Let S be a relation on set \mathbb{R} whose elements satisfy the following equation $C(x, y)=x^{2}+y^{2}-9=$ 0 . Thus $S=\{(x, y): x \in \mathbb{R}, y \in \mathbb{R},(x, y)=0\}$ The elements of the relation S define a circle (circumference) with center $(0,0)$ and radius 3 .
Theorem 2.1. For a relatio 의 ? fixan A to B, $D\left(R^{2}\right)=R\left(R^{-1}\right)$ and $R(R)=D\left(R^{-1}\right)$.

(b)

From $D(R) \subseteq R\left(R_{1}^{-1}\right)$ an $\Phi\left(R^{-\infty} \subseteq R^{(R)}\right.$ we conclude $D(R)=R\left(R^{-1}\right)$. The other part is proved analogously.

2.2 Properties of Relations

Definition 2.8 (Reflexive Relation). A relation R on set A is reflexive if ($a, a) \in R$ for every (all) $a \in A$, that is aRa for every $a \in A$.
(A relation is not reflexive if there is an $a \in A$ such that $(a, a) \notin R$.) The relation \leq is reflexive on \mathbb{Z} but $<$ is not reflexive.

Definition 2.9 (Antireflexive Relation). A relation R on set A is antireflexive if (a, a) $\notin R$ for every (all) $a \in A$.
Definition 2.10 (Symmetric Relation). A relation R on set A is symmetric if whenever $(a, b) \in R$, then $(b, a) \in R$.

A relation R is not symmetric if there exists $(a, b) \in R$ for which $(b, a) \notin R$.

Definition 2.11 (Antisymmetric Relation). A relation R on set A is antisymmetric if whenever $(a, b) \in R$, and $(b, a) \in$ R then $a=b$.

Thus if $a \neq b$, and $(a, b) \in R$ then $(b, a) \notin R$ for an antisymmetric relation.
Definition 2.12 (Transitive Relation). A relation R on set A is transitive if whenever $(a, b) \in R$, and $(b, c) \in R$, then $(a, c) \in R$.

Thus R is not transitive if there exists a triplet a, b, c that breaks transitivity!
Example $2.5(\geq \mathrm{vs}>$). The relation H (of a prior example) is reflexive. This is because for every $x \in X$, we have $(x, x) \in H$ or $x H x$ or $x \geq x$. However if we had defined a relation $>$ (x weighs more that y is denoted $x>y$ or $(x, y) \in>)$, then $>$ would not be reflexive. Both \geq and $>$ are transitive though.

Example 2.6 (Equality). Let A be any set. Then $R=\{(a, a): A \in A\}$ defines the equality relation. We prefer to use $=$ for R then.

Example 2.7 (Universal and Empty Relations). Let A be any set. Then $A \times A \subseteq A \times A$ and is known as the Universal relation (for A). Likewise set $\subseteq A \times A$, and it is known as the Empty Relation (for A).

2.2.1 Equivalence relations

Definition 2.13 (Equivalence Relation). A reldion R on set A is an equivalence relation if it is Reflexive, Symmetric, Transitive.

Theorem 2.2. If R is an equivalence reation on set A, then R^{-1} is also so.
Definition 2.14 (Equivalence Classt. Let R be an equivalence relation on set A. Let $a \in A$. We define $[a]$ the set of elements of A to which a is relater under R that is

$$
[a]_{\overline{\bar{e}}}\{b: b \in A,(a, b) \in R\}
$$

Then $[a]$ is the equivateqce clioss of $\mathcal{E E} A$. Any $b \in A$ and $b \in[a]$ is the representative of the equivalence class. The collection of all enivalenectasser of elements A under R indenoted by A / R

Example 2.8. қ transitive i.e. dñequivalence relation. Moreovek $\}=\{1,2\},[2]=\{1,2\}$, and $[3]=\{3\}$. Moreover $A / R=\{[1],[3]\}$ although $A / R=\{2],[3]$ could 24 hase beebused since $[1]=[2]=\{1,2\}$.
Example 2.9. Consider set and retation (congruence modulo 7) i.e. $x R_{7} y$ if and only if

$$
x \equiv y \quad(\bmod 7)
$$

in other words x are y are related their difference is a multiple of 7 or in other words 7 divides the difference $x-y$ (or $y-x$). R_{7} is an equivalence relation and the equivalence classes are

$$
\begin{aligned}
E_{0} & =\{\ldots,-21,-14,-7,0,7,14,21, \ldots\} \\
E_{1} & =\{\ldots,-20,-13,-6,1,8,15,22, \ldots\} \\
E_{2} & =\{\ldots,-19,-12,-5,2,9,16,23, \ldots\} \\
E_{3} & =\{\ldots,-18,-11,-4,3,10,17,24, \ldots\} \\
E_{4} & =\{\ldots,-17,-10,-3,4,11,18,25, \ldots\} \\
E_{5} & =\{\ldots,-16,-9,-2,5,12,19,26, \ldots\} \\
E_{6} & =\{\ldots,-15,-8,-1,6,13,20,27, \ldots\}
\end{aligned}
$$

Example 2.10. Show that the relation $x \equiv y(\bmod 3)$ defined on \mathbb{Z} is an equivalence relation.
Proof. Given relation $R: x \equiv y(\bmod 3)$ defined on \mathbb{Z}, we will show it is Reflexive, Symmetric and Transitive. $x \equiv y$ $(\bmod 3)$ mean $x-y$ is a multiple of 3 or equivalently 3 divides $x-y$ (and also $y-x)$. That is there exists an integer k such that $x-y=3 k$.
Reflexive. Obviously $x-x=3 \cdot 0$. Thus 3 divides $x-x$ and thus $x \equiv x(\bmod 3)$. Therefore $x R x$.
Symmetric. If $x \equiv y(\bmod 3)$ there exists k such that $x-y=3 k$. Then $y-x=3(-k)$ and thus $y \equiv x(\bmod 3)$ as well. Therefore $x R y$ implies $y R x$.
Transitivity. Let $x R y$ and $y R z$ for some $x, y, z \in \mathbb{Z}$. Then $x \equiv y(\bmod 3)$ and $y \equiv z(\bmod 3)$. These imply $x-y=3 k$ and $y-z=3 m$ for some integer k, m. Then $(x-y)-(y-z)=3(k-m)$ for some integer $k-m$. But the left hand side is $x-z$ and thus $x-z=3(k-m)$. We conclude $x R z$.

2.2.2 Partial order (relation)

Definition 2.15 (Partial Order). A relation R on set A is a partial order if it is Reflexive, Antisymmetric, Transitive. Then (A, R) is called a partially ordered set or poset.
Example 2.11. The relation \leq on R is a partialorater.
Theorem 2.3. If R is a partial order on setA, then R^{-1} is also so.

2.2.3 Total order (relation)

Definition 2.16 (Total Order) 6 relation R on set A is a total order if it a partial order in which any two elements are comparable i.e. it is a partialiader for which any two elements of A either $a<b$ or $a=b$ or $a>b$. Then (A, R)

2.2.4 Composition of reations

Definition 2. 17 (6 mpostion 1 felatio@s). $L E A, B_{C} \mathcal{C}$ be sets and we define relation R from A to B, and relation S from B to C. Then a relation N OS cawbe defined frim A to C

In other words for every a of Φ and c of C we can find at least one b of B such that $a R b$ and $b R c$.
Definition 2.18 (Composition of relations). Sometimes $R \circ S$ as defined previously is actually defined as $S \circ R$. Pay attention to the definition of the textbook used!!!!!

Note that for a relation R on a set $A R \circ R$ is denoted by R^{2}, and $R^{3}=R^{2} \circ R$ and so on.
Definition 2.19 (Transitive closure). Let R be a relation on a set A. We have prior to this discussion defined $R^{2}=R \circ R$ and by extension $R^{n}=R^{n-1} \circ R$. We define the transitive closure R^{*} of R as follows:

$$
R^{*}=\cup_{i=1}^{\infty} R^{i}
$$

Let $R=\{(1,2),(2,1)\}$. Then $R^{*}=\{(1,2),(2,1),(1,1),(2,2)\}$.

2.3 Exercises

Exercise 2.1. Let $A=\{10011,1001,1110,11011\}$ Let $B=\{2,3,4,5,6\}$.
(a) What is the cardinality of $A \times B$?
(b) Is $T=\{(1001,2)(1111,3),(11011,5)\}$ a relation from A to B ?
(c) How many relations can we have from A to B.
(d) Is $R=\{(1001,2)(1110,3),(10011,3),(11011,4)\}$ a relation from A to B ?
(e) For R find $D o(R)$ and $R a(R)$.
(f) For R find R^{-1}.
(g) (e) For R find $\operatorname{Do}\left(R^{-1}\right)$ and $\operatorname{Ra}\left(R^{-1}\right)$.

Proof. (a) $c(A \times B)=c(A) \cdot c(B)=5 \cdot 4=20$.
(b) No it is not. Element 1111 of $(1111,3)$ is not a member of A and thus $(1111,3) \nsubseteq A \times B$. For T to be a relation $T \subseteq A \times B$.
(c) There are $c(A) \cdot c(B)=4 \cdot 5=20$ pairs in $A \times B$. Any subset of $A \times B$ is a relation. There are $2^{20}=1,048,576$ candidates for a relation.
(d) Yes it is. Observe by the way for $(a, b) \in A \times B, b$ is the number of ones of the binary number indicated by a (or just the number of ones of a if you know nothing about binary numbers).
(e) $D o(R)=A, R a(R)=B-\{5,6\}=\{2,3,4\}$
(f) $R^{-1}=\{(2,1001)(3,1110),(3,10011),(4 \cap 1011)\}$.
(g) $R a\left(R^{-1}\right)=D o(R)=A$ and $\operatorname{Do}\left(R^{-1}\right) \pi R o(R)=\{2,3,4\}$.

Exercise 2.2. Consider set $A=\{a, b, c\}$ and relation on $A \times A$, such that $R=\{(a, a),(b, b),(a, c),(a, b)\}$.
Is R (a) reflexive, (b) symmetric, (©) \&ntisymmetric, and (d) transitive?
Proof. (a) NO. For $c \in A,(c, c) \notin \mathcal{R}$
(b) NO. $(a, c) \in R$ but $(c, a) \in R$.
(c) YES. $(a, a) \in R$ and $a s a$ Likewise for (b, b). Even if there are $(a, c),(a, b)$ there are no (c, a) nor (b, a).
(d) YES. $(a, a),(a, c)$ omply (a, c). (a, a), (ob) imply $(a, b) .(a, b),(b, b)$ imply (a, b).

Exercise 2.3. Consider sais and are exrivalentioductif
e. $x-y$ is a mutiple ato or gquivalemtly, 又divides $5-y$.

Show that the xelatiovis refexive, 88 metricand transitive.
Proof. (a) Reflexivity. For eveny $a \in$, we nave $a-a=0 \cdot 7$, thus 7 divides $(a-a)$. Thus $a \equiv a(\bmod 7)$.
(b) Symmetricity. ${ }^{\text {Say } a=k \text { mod }}$. Then 7 divides $a-b$ or equivalently $a-b=7 k$ for some integer k (i.e. $a-b$ is a multiple of 7. The $b a=7 a(2)$. If k is integer so is $-k$. Thus $b \equiv a(\bmod 7)$.
(c) Reflexivity. If $a \equiv b(\bmod \boldsymbol{\chi}), b \equiv c(\bmod 7)$, then from the former we have $a-b=7 k$ and similarly from the latter $b-c=7 m$ for some integer k, m. The $a-c=(a-b)+(b-c)=7(k+m)$ with $k+m$ integer Thus $a \equiv c$ $(\bmod 7)$.

Chapter 3

Functions

3.1 Introduction

Definition 3.1 (Function). A function $f: A \longrightarrow B$ is a mapping from elements of set A to elements of set B i.e. f is a relation from A to B such that for every element a there is a UNIQUE element $b \in B$ such that $(a, b) \in f$.

3.1.1 Domain, Range, Image

Definition 3.2 (Domain of f). For a function $f: A \longrightarrow B$, A is called the domain of f.
Definition 3.3 (Range of f). Fer a function $f: A \longrightarrow B, B$ is called the range of f. (Sometimes B is called the codomain of f.)

Definition 3.4 (Image of $A \cdot$. The of $f: A$ is defined as the set

The image

3.1.2 Evathationintecpolation, golution

Definition 3.5 (Exaluation). Lextus rendind oroselves that f is a function, a is the argument of the function, and b is the value of f with arsuments Theroperation $f(a)$ is also known as the evaluation of f at a and sometimes we write $b=\left.f(x)\right|_{x=a}$.
Definition 3.6 (Inversion or Solution). The operation that given b and f we find a is known as inversion or solution (eg solve $f(x)=b$ means find anc=a such that $f(a)=b$).

Definition 3.7 (Interpolation). The operation that given a collection of a and a collection of b, such that a maps to b, asks for the computation of f that satisfies this mapping is known as the interpolation operation.

Example 3.1. A function can be defined by way of a mathematical expression (formula). Thus $f(x)=x^{2}$ or $x \rightarrow x^{2}$, or $y=x^{2}$ map through $f($.$) or x^{2}$ element x of \mathbb{R} to element $f(x)$ or x^{2} or y. The x of $f(x)$ or x^{2} or $y=x^{2}$ is known as a variable or indeterminate. Implicit in this definition is that $A=B=\mathbb{R}$. However $I(f)=\mathbb{R}_{+}$.

3.1.3 Injective, Surjective, Bijective functions

Definition 3.8 ((Injective Function)). A function $f: A \longrightarrow B$ is an injective function (one-to-one) if for every $b \in B$, there exists at most one $a \in A$ such that $b=f(a)$.

Example 3.2. For $f: R \longrightarrow R$ the function $f(x)=x^{2}$ is not injective. This is because for x and $-x$ we have $f(x)=$ $f(-x)=x^{2}$. Thus for a given $x^{2} \in R$ there exist two elements of R, x and $-x$ mapping to x^{2}. On the other hand For $f: R_{+} \longrightarrow R_{+}$the function $f(x)=x^{2}$ is injective.

Definition 3.9 ((Surjective Function)). A function $f: A \longrightarrow B$ is a surjective function (onto) if the image of f is B i.e. $B=I(f)$, or equivalently for every $b \in B$ there exists an $a \in A$ such that $f(a)=b$.

Definition 3.10 ((Bijective Function)). A function $f: A \longrightarrow B$ is a bijective function (bijection or one-to-one and onto) if it is injective and surjective.
Definition 3.11 ((Inverse Relation)). For a function $f: A \longrightarrow B$ the inverse relation f^{-1} on B, A is defined as $(b, a) \in$ f^{-1} if and only if $(a, b) \in f$ i.e. $b=f(a)$.

Note 3.1. If f is bijective then f^{-1} is a function. If f is injective, then f^{-1} is a function for a domain that is $I(f)$ rather than B. For a bijective function $f^{-1}(f(x))=x$.

For a surjective function $|A| \geq|B|$. For a injective function $|A| \leq|B|$. For a bijective function $|A|=|B|$.
Definition 3.12 (Composition of functions). Consider two functions f, g such that $f: A \longrightarrow B$ and $g: B \longrightarrow C$, where the range of f is the domain of g. Then we may define a function $g \circ f$ called the composition of f and g as a new function from A to C defined as follows.

$$
{ }^{\circ} f(a)=g(f(a))
$$

We first find the image of a under f which is $f(a)$. Then we find the image of $f(a)$ under g which is $g(f(a))$.
Definition 3.13 (Binary relation R). Andinary relation R from A to B is

- a function, if ≤ 1 outgoing '\&ge' for every $a \in A$ to $b \in B$.
- surjective, if ≥ 1 incoinilig .edge' for every $b \in B$,
- total, if ≥ 1 outgañ ' edge for every A,

- bijective, if = outgoing 'edge for every ak ind =incoming 'edge' for every b.

Example 3.3. S $4 f(x)$,
Proof. Relation sis function For ency real $\neq 0, x^{2}$ is also a real and so is $1 / x^{2}$. We cant have two different y_{1}, y_{2} such that $y_{1}=1 \times x^{2}$ and $\alpha_{2}=1 x^{2}$ as would imply $y_{1}=y_{2}$.
Function f is not one-to-ore (infective ${ }^{\text {th }}$ his is because for $x \neq 0$, both x and $(-x)$ map to the same $1 / x^{2}$.
Function f is onto (surjectivel This \mathbf{x} because for every y that is positive we can find $y=f(x)=1 / x^{2}$ ie. $x=$ $\pm 1 / \sqrt{y}$. Pick one of the possible x (values, say $x=1 / \sqrt{y}$. We find $f(1 / \sqrt{y})=y$ and thus every y has an (at least one) x mapping to it.

3.2 Number Set systems

We review the familiar number sets.

$$
\begin{aligned}
& \mathbb{N}=\{0,1,2, \ldots\} \\
& \mathbb{Z}=\{\ldots-2,-1,0,1,2, \ldots\}=\{a-b: a \in \mathbb{N}, b \in \mathbb{N}\} \\
& \mathbb{Q}=\{a / b: a \in \mathbb{Z}, b \in \mathbb{Z}, b \neq 0\} \\
& \mathbb{R}
\end{aligned}
$$

the set of natural numbers
the set of integers
the set of rational numbers
the set of real numbers

Moreover we have

$$
\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}
$$

3.3 Integers and their properties

For the set of integers \mathbb{Z} the following properties are available.
(a) For $a, b \in \mathbb{Z}$ then $a+b \in \mathbb{Z}$, and also $a \cdot b \in \mathbb{Z}$.
(b) Associative law for addition and also multiplication. For every a, b, c we have that

$$
(a+b)+c=a+(b+c) \quad, \quad(a b) c=a(b c)
$$

(c) Commutative law for addition and also multiplication. For every a, b, c we have that
(d) Distributive law:

$$
a(b+c)=a b+a c
$$

(e) Addition has 0 as the iderxity element; multiplication has 1 as the identity element.
(f) Additive inverse- a forany infeger 5 The multiplitative jayerse of a is denoted by $1 / a$ or a^{-1}.

(g) The nelatignt is apartial order is refexive, antisymmetric and transitive.

Theorem 3.1 (Set \leq is, atotal order). Aef $a, b \in \mathbb{Z}$. The following properties are true.
$a \leq a \quad$ arfeflexve property)
$a \leq b \wedge b \leq a \Longrightarrow a \nRightarrow$ (antisymmetric property)
$a \leq b \wedge b \leq c \Rightarrow a<\delta^{\ell}$ (transitive property)
$a, b \in \mathbb{Z} \Rightarrow a \leq b \vee b \leq a^{\gamma} \quad$ (total order)
A partial order is a totalordet in addition to the reflexive, antisymmetric, and transitive properties, all of the elements of \mathbb{Z} are relatable with \mathbb{Q}.

Theorem $3.2((\mathbb{Z},+)$ is an Abelian group). For addition over \mathbb{Z} the following are true.

$$
\begin{array}{cr}
a \in \mathbb{Z}, b \in \mathbb{Z} \Rightarrow a+b \in \mathbb{Z} & \text { (addition is closed over } \mathbb{Z} \text {) } \\
(a+b)+c=a+(b+c) & \text { (associative addition) } \\
a+b=b+a & \text { (commutative addition) } \\
a+0=0+a=a & \text { (identity element for addition is zero) } \\
a+(-a)=(-a)+a=0 & \text { (inverse of every element exists for addition) } \\
\text { If commutativity was not applicable, then } \mathbb{Z} \text { would have been a group only. }
\end{array}
$$

Theorem $3.3((\mathbb{Z}, *)$ is a semigroup). For multiplication over \mathbb{Z} the following are true.
$a \in \mathbb{Z}, b \in \mathbb{Z} \Rightarrow a * b \in \mathbb{Z} \quad$ (multiplication is closed over \mathbb{Z})
$(a * b) * c=a *(b * c)$
(associative multiplication)

Theorem $3.4((\mathbb{Z},+, *)$ is a commutative ring with identity). For \mathbb{Z} equipped with multiplication and addition is a commutative ring with identity one over multiplication. The following are then true.
($(\mathbb{Z},+)$ is an abelian group)
$((\mathbb{Z}, *)$ is a semigroup)

$$
\begin{array}{lr}
a *(b+c)=a * b+a * c & \text { (multiplication is distributive over addition) } \\
a * 1=1 * a=a & \text { (identity element for multiplication is one) }
\end{array}
$$

Moreover one can show that \mathbb{Q} and \mathbb{R} are also commutative rings with identity one.

3.4 Reals and their Properties

All properties of integers translate to the domain of Real Numbers.
Theorem 3.5 (Set $\mathbb{R}: \leq$ is a total order). Let $a, b, c \in \mathbb{R}$. The following properties are true.
$a \leq a \quad$ (reflexive property)
$a \leq b \wedge b \leq a \Longleftrightarrow a=b \quad$ (antisymmetric property)
$a \leq b \wedge b \leq c \Rightarrow a \leq c \quad$ (transitive property)
$a, b \in \mathbb{R} \Rightarrow a \leq b \vee b \leq a \quad$ (total order)
A partial order is a total order if in addition the reflexive, antisymmetric, and transitive properties, all of the elements of \mathbb{R} are relatable with \leq.

Theorem $3.6((\mathbb{R},+)$ is an Abelian gro(x). ' For addition over \mathbb{R} the following are true.
$a \in \mathbb{R}, b \in \mathbb{R} \Rightarrow a+b \in \mathbb{R}$
(addition is closed over \mathbb{R})
$(a+b)+c=a+(b+c)$
$a+b=b+a$
$a+0=0+a=a \quad$ (identity element for addition is zero)
$a+(-a)=(-a)+\boldsymbol{f}^{0} 0$ (inverse of efery element exists for addition)
If commutativity wanot apysticabte then would have been \& group only.

tativity was not applible, then \mathbb{R} wedld have been a group only.
Theorem $3.8((\mathbb{R},+, *)$ fied $)$. Fequipped with multiplication and addition, we have that \mathbb{R} is an Abelian group for addition, and $\mathbb{R}-(0)$ is $\widehat{6})$ distributive over addition we hawethat $(\mathbb{R},+, *)$ is a field. A field is also an integral domain. Therefore the following are true.

$$
\begin{array}{lr}
0 \neq 1 & \begin{array}{r}
(\mathbb{R},+) \text { is an abelian group) } \\
a *(b+c)=a * b+a * c \\
a * b=0 \Longleftrightarrow a=0 \text { or } b=0
\end{array} \\
((\mathbb{R}-\{0\}, *) \text { is an abelian group) }
\end{array} \text { (multiplication is distributive over addition) } \begin{aligned}
& \text { (integral domain) }
\end{aligned}
$$

The last or is disjunctive, not exclusive. Note that the last property above is not needed for the definition of a field and can be omitted. This is because every field is an integral domain, and thus this property can be derived from the remaining properties of the field. An implication of Theorem 3.8 is also that for $a, b, c \in \mathbb{R}$, if $a b=a c$ and $a \neq 0$, then $a(b-c)=0$ and since $a \neq 0$ then $b-c=0$ that is $b=c$.

3.5 Exponential base two functions

Definition 3.14 (Powers of 2). The expression 2^{n} means the multiplication of n twos.
Therefore, $2^{2}=2 \cdot 2$ is a $4,2^{8}=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$ is 256 , and $2^{10}=1024$. Moreover, $2^{1}=2$ and $2^{0}=1$. One might write $2 * * n$ or $2^{\wedge} n$ for 2^{n} (${ }^{\wedge}$ is the hat/caret symbol usually co-located with the numeric- 6 keyboard key).

Power	Value
2^{0}	1
2^{1}	2
2^{4}	16
2^{8}	256
2^{10}	1024
2^{16}	65536
2^{20}	1048576
2^{30}	109951162777824
2^{40}	1125899906842624

Figure 3.1: Powers of two

Definition 3.15 (Properties of powers)

- (Multiplication.) $2^{m} \cdot 2^{n}=2^{m} 2^{n} \leq 2^{m+n}$. (Dot \cdot optional.)
- (Division.) $2^{m} / 2^{n}=2^{m-n}$ (Yhe symbol / is the slash symbol)
- (Exponentiation.) ($\left.2^{m}\right)^{m \cdot n}$.

Example 3.4 (Approximations for 0^{40} and 2^{20} and 23). Sinee $2^{10}=1024 \approx 1000=10^{3}$, we have that $2^{20}=$ $\left(2^{10}\right)^{2} \approx 1000^{2} \approx 10^{6}$, andikewise, $2^{30}=\left(2^{10} 0^{3} \approx 1200^{3}=180^{\circ}\right.$.
The last numbar, a one follefved byoune Efroes, isa bildion in American English; in (British) English a billion is a million milions (afa trillion). If one wites $10^{9} 0 \mathrm{r} 10^{12}$ no confusion is possible.

3.6 Logarithmic base two (and e, and 10) functions

Definition 3.16 (Logarithm base two of n is $\lg (n)$). The logarithm base two of n is formally denoted by $y=\lg (n)$ or if we drop the parentheses, $y=\lg n$, and is defined as the power y that we need to raise integer 2 to get n.

$$
\text { That is, } y=\lg (n) \quad \Longleftrightarrow \quad 2^{y}=2^{\lg (n)}=n
$$

From now on we will be using the informal form $y=\lg n$ without parentheses instead of $y=\lg (n)$. Another way to write both is $y=\log _{2} n$ or $y=\log _{2}(n)$. The two writings: $\lg ^{k} n=(\lg n)^{k}$ are equivalent. We sometimes write $\lg \lg n$ to denote $\lg (\lg (n))$ and the nesting can go on. Note that $\lg ^{(k)} n$ with a parenthesized exponent means something else (it is the iterated logarithm function).

Definition 3.17 (Other Logarithms). The other logarithms: $\log _{10}(x)$ or $\log _{10} x$ and $\ln (x)$ or $\ln x$ or $\log _{e} n$, are to the base 10 or to the base $e=2.7172 \ldots$ of the Neperian logarithms respectively. If one writes $\log n$, then the writing may be ambiguous. Note that if we tilt towards calculus we use x as in $\lg (x)$ but if we tilt towards computing or discrete mathematics we use n as in $\lg (n)$ for the indeterminate's i.e. variable's name.

Expression	Value	Explanation $\lg (n)$
$\lg (1)$	y.	since $2^{y}=2^{\lg n}=n($ by definition $)$
$\lg (2)$	1	since $2^{0}=1$
$\lg (256)$	8	since $2^{1}=2$
$\lg (1024)$	10	since $2^{10}=1024$
$\lg (1048576)$	20	since $2^{20}=1048576$
$\lg (1073841824)$	30	and so on

Figure 3.2: Logarithms: Base two
Example 3.5. $\lg 2$ is. one sire $2^{1} 0^{2}$. $\lg (856)$ in $\operatorname{sinc} a^{8}=256 . \lg (1)$ is 0 since $2^{0}=1$.

i. (Multiplication.) d
ii. (Diviston.
iii. (Exponentiation $\lg \left(n^{2}\right)^{\prime}=$ porg n
iv. (Change of base.) en

Example 3.6. Since $2^{20}=2^{10}$. d 10 we have that $\lg \left(2^{20}\right)=\lg \left(2^{10} \cdot 2^{10}\right)=\lg \left(2^{10}\right)+\lg \left(2^{10}\right)=10+10=20$. Likewise $\lg \left(2^{30}\right)=30$. Drawing from the exercise of the previous page, $\lg (1,000) \approx 10, \lg (1,000,000) \approx 20$ and $\lg (1,000,000,000) \approx 30$.

Example 3.7. How much is $n^{1 / \lg n}$? Let $z=n^{1 / \lg n}$. Then by taking logs of both sides (and using the exponentiation rule for logarithms) $\lg z=(1 / \lg n) \lg n=1$, we have $\lg z=1$ which implies $z=2$.

Theorem 3.10. Exponential function: A Lower bound. For all real $x, e^{x} \geq 1+x$, where $e=2.7172 \ldots$.
Theorem 3.11. Exponential function: An upper bound (and the lower bound above combined). For all x such that $|x|<1$, we have that $1+x \leq e^{x} \leq 1+x+x^{2}$.

3.7 The factorial function

Definition 3.18 (Factorial function). The factorial function is defined as follows: $f(n)=n!$ and the definition " n !" reads " n factorial" and not n exclamation mark. It is the product of the first n positive integers $1,2, \ldots, n$. Note that $f(0)=0!=1$ and $f(1)=1!=1$. Moreover,

$$
f(n)=n \cdot f(n-1)=n \cdot(n-1)!=n!.
$$

We prefer the less formal but more informative,

$$
f(n)=1 \cdot 2 \cdot \ldots \cdot(n-1) \cdot n
$$

Theorem 3.12 (Upper bound for factorial). For every $n \geq 1$, we have that $n!\leq n^{n}$.
Proof. The first result is a straighforward upper bound of each term of the factorial with n .

$$
n!=\overbrace{1 \cdot 2 \cdot \ldots \cdot(n-1) \cdot n}^{n \text { terms }}
$$

Corollary 3.1 (Logarithmic Upper boánd). If $n!\leq n^{n}$ by taking logarithms $\lg (n!) \leq n \lg n$.

Theorem 3.13 (Lower bound for factorial). For every $n \geq 1$, we have that $n!>(n / 2)^{(n / 2)}$.
Proof. The smallest hatfof the erms of the factorial are at least one (lower bound). The largest half of the terms of

Corollary 3.2 (Logarithmic Lower bound). If $n!\geq(n / 2)^{(n / 2)}$ by taking logarithms $\lg (n!) \geq(n / 2) \lg (n / 2)$.
Corollary 3.3. We have $\lg (n!) \geq(n / 2) \lg (n / 2)$ and $\lg (n!) \leq n \lg n$ i.e. $\lg (n!) \approx n \lg n$.
Example 3.8. For the floor or ceiling manipulations consider $n=6$ with $n / 2=3$ and $\lceil n / 3\rceil=\lfloor n / 3\rfloor=2$.

$$
6!=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \geq 1 \cdot 1 \cdot 1 \cdot 3 \cdot 3 \cdot 3=3^{3}=(6 / 2)^{(6 / 2)}
$$

Likewise, for $n=5$ with $n / 2=2.5$ and $\lfloor 5 / 2\rfloor=2,\lceil 5 / 2\rceil=3$.

$$
5!=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \geq 1 \cdot 1 \cdot 3 \cdot 3 \cdot 3=3^{3} \geq(5 / 2)^{(5 / 2)}
$$

Theorem 3.14 (Stirling's approximation formula for $\mathbf{n}!$.$) . For all n>10$, we have that $n!\approx \sqrt{2 \pi n}(n / e)^{n}$ which is more formally defined as in

$$
(n / e)^{n} \sqrt{2 \pi n} e^{1 /(12 n+1)} \leq n!\leq(n / e)^{n} \sqrt{2 \pi n} e^{1 /(12 n)}
$$

Corollary 3.4 (Simplified Stirling's formula). For $n>10$ we have that $n!\approx\left(\frac{n}{e}\right)^{n}$.
Corollary 3.5. A corollary is that $\lg (n!)=\Theta(n \lg n)$ after the Θ is formally introduced.
Proof. From either Stirling's theorem or its Corollary, we have that

$$
\lg (n!) \approx n \lg n-n \lg e=\Theta(n \lg n)
$$

3.7.1 Combinatorial identities

Fact 3.1.

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

The following is immediately derived if we rearrange (swap) in the denominator above k ! and ($n-k$)!.

Fact 3.2.

Fact 3.3.

$$
\binom{-n}{k}=(-1)^{k}\binom{n+k-1}{k}
$$

$$
\binom{n}{k}=\binom{n}{n-k}
$$

For $a=-1$ and $b=-x$ and $n=\rho^{n}$ we have
Fact 3.7.

$$
(-1-x)^{-n}=\sum_{k=0}^{n}\binom{-n}{k}(-1)^{k}(-x)^{-n-k}
$$

Proof.

$$
\begin{aligned}
(-1-x)^{-n} & =\sum_{k=0}^{-n}\binom{-n}{k}(-1)^{-n-k}(-x)^{k} \\
& =\sum_{k=0}^{n}\binom{-n}{k}(-1)^{k}(-x)^{-n-k}
\end{aligned}
$$

By simple math manipulations the following can then be proven. This is the basis used in the Pascal Triangle to determine the coefficient of $a^{k} b^{n-k}$ i.e. $C(n, k)$ from the coefficients of $C(n-1, k)$ and $C(n-1, k-1)$. Note $C(n, k)=\binom{n}{k}$.

Fact 3.8.

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

3.8 Inequalities

For a discrete function the indeterminate (variable, uknown) will more often than not be denoted by n. For continuous functions by x. Thus $A(n)$ is a discrete function and $B(x)$ is a continuous variable function (unless otherwise noted). There are several ways one can use to comparae two functions $f(n)$ and $g(n)$. First we note the properties of integers as defined in Section 3.3. Those Theorems can be generalized in the domain of real numbers as well with some of them repeated in the previous page. With this in mind we enumerate some important ones here.

Fact 3.9 (Inequalities). For all $a, b, c, q, p, n \in \mathbb{R}$ and $p>0$ and $n<0$, we have the following.
Transitivity :

$$
a<b, \wedge b<c \quad \Rightarrow \quad a<c
$$

R1. :
R2. :

$$
a<b, \quad \forall q \quad \Rightarrow
$$

$$
a+q<b+q
$$

R3. :
$a<b, \quad c<d \quad \Rightarrow$
$a+c<b+d$

R4. :
$a<b, \quad p>0 \quad \Rightarrow$
$a \cdot p<b \cdot p$

R5. :
$a<b, \quad n<0 \Rightarrow$
$a \cdot n>b \cdot n$
$0<a<b \quad \Rightarrow$
$1 / a>1 / b$
R6. :

$$
\text { Flip }<\text { into }>\text { and }>\text { into }<
$$

Example 3.9. Show that for $0<a<b$ we have That $a^{2}<b^{2}$.
Proof.

$$
\begin{array}{rrr}
\text { Use R3 with }=a \wedge a>0: & a<b \Rightarrow & a^{2}<a b \\
\text { Use R3 with } c=b \wedge b>0: & a<b \Rightarrow & a b<b^{2} \\
\text { vity and (1) and (2) above : } & a^{2}<a b \wedge a b<b^{2} \Rightarrow & a^{2}<b^{2} \tag{3.2}
\end{array}
$$

Use Transitivity af (1) and (2) above :

Example 3.10
Example 3.11. Show that $\sum_{i=1}^{n-1}$
Proof.

Since i runs from 1 town we have, using thexamples before,

Add both sides of inequalities

$$
\begin{gathered}
1^{3} \leq n^{3} \\
\ldots \\
i^{3} \leq n^{3} \\
\ldots \\
n^{3} \leq n^{3} \\
1^{3}+2^{3}+\ldots+i^{3}+\ldots+n^{3} \leq n^{3}+n^{3}+\ldots+n^{3}+\ldots+n^{3} \\
\sum_{i=1}^{n} i^{3} \leq n \cdot n^{3}=n^{4}
\end{gathered}
$$

3.9 Minimum and Maximum of a function: $\mathbf{f}(\mathbf{n})$

Fact 3.10 (Extremes). Finding minima or maxima of a function involves taking the first derivative, equating it to zero and solving for the indeterminate to determine the critical point(s) of the function. Then finding the sign of the second derivative at the critical points.

Example 3.12 (Maximum). What is the maximum of $f(t)=t^{2}+(n-1-t)^{2}$ in the interval $[0, n-1]$?
Proof. Find the first derivative $f^{\prime}(t)$, equate it to zero and solve for the indeterminate t to determine the critical point. $f^{\prime}(t)=2 t+2(n-1-t)(-1) \Rightarrow f^{\prime}(t)=0 \Rightarrow t=(n-1) / 2$.

The second derivative $f^{\prime \prime}(t)=2+2(-1)(-1)=4>0$. The function has a minimum at $t=(n-1) / 2$. We are not interested in its minimum but rather in its maximum. It is a parabola and thus it is symmetric in the range $[0, n-1]$. The maximum would be at the extreme $t=0$ or $t=n-1$ or there might be two maxima at $t=0, t=n-1$. Indeed

$$
f(0)=f(n-1)=0^{2}+(n-1-0)^{2}=(n-1)^{2}+(n-1-(n-1))^{2}=(n-1)^{2} .
$$

Example 3.13 (Minimum). What is the minimum of $f(t)=t \lg (t)+(n-1-t) \lg (n-1-t)$ in the interval $[0, n-1]$?
Proof. Find the first derivative $f^{\prime}(t)$.

$$
\begin{gathered}
f^{\prime}(t)=1 \cdot \lg t+t \cdot(1 / t)+(C) \lg (n-1-t)+(n-1-t)(-1 /(n-1-t))=\lg (t)-\lg (n-1-t) \Rightarrow \\
f^{\prime}(t)=\lg (t /(n-1-t)) .
\end{gathered}
$$

Solving for t in $f^{\prime}(t)=0$ relates $\lg (t)-\lg (x-t)=0$ i.e. $t=n-1-t \Rightarrow t=(n-1) / 2$. Finding the second derivative of $f(t)$ i.e. the derizative $\operatorname{glg}(t) r \operatorname{rg}\left(n_{2}-1-\delta\right.$ gives e


```
As a conchasion
```


3.10 Comparison of (discrete or continuous) functions

For a discrete function the indeterminate (variable, uknown) will more often than not be denoted by n. For continuous functions by x. Thus $A(n)$ is a discrete function and $B(x)$ is a continuous variable function (unless otherwise noted). There are several ways one can use to comparae two functions $f(n)$ and $g(n)$.

Method 3.1 (Using direct or indirect methods and transitivity: from $F(n)$ to $G(n)$). One can compare two functions $F(n)$ and $G(n)$, by using inequalities and starting with one (say, $F(n)$) the other (i.e. $G(n)$) is derived (see previous page). Or indirectly as follows.
(1) Show first that $F(n)<F_{1}(n)$ where $F_{1}(n)$ is an 'easier to deal' function.
(2) Then show that $G_{1}(n)<G(n)$ likewise.
(3) Then show also directly or using latter methods or indirectly (recursively) that $F_{1}(n)<G_{1}(n)$.
(4) Two applications of transitivity show that $F(n)<F_{1}(n)$ and $F_{1}(n)<G_{1}(n)$ imply $F(n)<G_{1}(n)$. This and $G_{1}(n)<G(n)$ imply $F(n)<G(n)$.

Method 3.2 (Difference $F(n)-G(n)$). One can compare two functions $F(n)$ and $G(n)$, by taking their difference $F(n)-G(n)($ or $G(n)-F(n))$ and determining the sign of the difference.

Method 3.3 (Ratio $F(n) / G(n)$). One can compare two functions $F(n)$ and $G(n)$, by taking their difference $F(n) / G(n)$ (or $G(n) / F(n)$) and determining whether it is greater, equal or less than one.

Method 3.4 (Raise using common baseand then compare i.e. $2^{F(n)}: 2^{G(n)}$). One can compare two functions $F(n)$ and $G(n)$, by comparing $2^{F(n)}$ and $2^{G(n}$
Method 3.5 (Take logarithmsto same base and then compare i.e. $\lg F(n): \lg G(n)$). One can compare two functions $F(n)$ and $G(n)$, by comparitis $\lg F(\$ D)^{\prime}$ to $\lg G(n)$
 from $f(n)$

Example 3.15 (Difference) The twa functions $f(n)=25 n^{2}$ and $g(n)=25 n^{2}+10$ can be compared by taking the difference $g(n)-f(n)=\$ 5 n^{2}+10-287^{2}=10>0$ and observing that $g(n)-f(n)$ is positive i.e. $g(n)>f(n)$. Equivalently $f(n)-g(n)<0$ and als 0$)^{\prime}(n)<g(n)$.
Example 3.16 (Ratio). The tw\&unctions $f(n)=25 n^{2}$ and $g(n)=25 n^{2}+10$ can be compared by taking the ratio $g(n) / f(n)=\left(25 n^{2}+10\right) / 25 n^{2} \geq 1$ and observing that $g(n) / f(n)>1$ i.e. $g(n)>f(n)$. Equivalently $f(n) / g(n)<1$ and also $f(n)<g(n)$.

Example 3.17 (Exponentiation). Let $a(n)=\ln \left(25 n^{2}\right)$ and $b(n)=\ln \left(25 n^{2}+10\right)$. Then $f(n)=e^{a(n)}=25 n^{2}$ and $g(n)=e^{b(n)}=25 n^{2}+10$ The resulting functions $f(n)$ and $g(n)$ have already been compared and found to be such that $f(n)<g(n)$. Thus $a(n)<b(n)$ as well by monotonicity!

Example 3.18 (Logarithms). The two functions $f(n)=25 n^{2}$ and $g(n)=25 n^{2}+10$ can be compared by taking their logarithms $a(n)=\ln \left(25 n^{2}\right)$ and $b(n)=\ln \left(25 n^{2}+10\right)$. We just proved above that $a(n)<b(n)$ and thus $f(n)<g(n)$ by monotonicity. (Admittedly, not a very interesting example!)

Example 3.19. Compare $n^{1 / \lg n}$ and 2 .

Proof. See also Example 3.7 for solution or

$$
\begin{array}{rll}
n^{1 / \lg n} & : & 2 \\
\lg \left(n^{1 / \lg n}\right) & : & \lg 2 \\
(1 / \lg n) \cdot \lg n & : & 1 \\
1 & : & 1 .
\end{array}
$$

Obviously $1=1$ and this $n^{1 / \lg n}$ is equal to 2 .

3.11 Constants and Variables

Definition 3.19 (Constant). If the value of an object can never get modified, then it's called a constant.
Example 3.20. 5 is a constant, its value never changes (ie. a 5 will never have a value of 6).
Definition 3.20 (Integer vs Real constants). An integer constant is a constant whose value is an integer valued number that can be positive, negative or zero. A real constant is a constant whose value is a real valued number that can be positive, negative or zero.

Example 3.21 (Some constants). The base e of the Neperian logarithms (also known as natural logarithms), π, Euler's gamma constant, and the Golden ratio phi ϕ and its Fibonacci-related counter-part are all shown below.

$$
e \approx 2.718281, \quad \pi \approx 3.14159, \quad \gamma \approx 0.57721, \quad \phi=\frac{1+\sqrt{5}}{2} \approx 1.61803, \quad \hat{\phi}=\frac{1-\sqrt{5}}{2} \approx-.61803
$$

In computer programs we also use objects (names, aliases) whose values can change. Such objects are known as variables.

Definition 3.21 (Variable). In a variable the value of a variable can change.
When we write down, in fact define, a function in Mathematics such as $f(x)=x * x$, we define the function by describing it using a name x. That name in mattematics is known as the indeterminate, the unknown and sometimes as the parameter of the function. In that function definition we did not specify the domain and the range of function f or whether the function is from a set A toraset B. When we leave out such details, it means that A and B is \mathbb{R} or \mathbb{Z} or a subset of them.
Definition 3.22 (Parameter). A pacrameter is a name used to define a function. In Mathematics a parameter is also known as the indeterminate or uiknown.

The value that substitutes, Eor, aparameter is known as the argument. Thus in $f(5)$ the 5 is the argument. We substitute 5 for x in $f(x) x$. * and then perform the operation (i.e. multiplication) implied by the operator (i.e. asterisk) in the functions defintion ofe asument's value will substitute for the parameter x when we evaluate f. This is very clearl shown i4 the form $f\left(x \varphi_{x=2}\right.$ mostheopleco not use.
Note 3.3 (Argunent She atsumentis the fatue substutes for a parameter when we seek to evaluate a function.
 denoted forma ${ }^{\prime}$ as $f(a) \circ r|(x)|_{x=1}$

In the example above the rest of the unction is $\left.f(x)\right|_{x=5}=f(5)=5 * 5=25$.
The function is defifed through operation indicated by an operator. The operator is the star, the symbol for the operation known as multipdicatione.

In a function evaluation operationswe given a, we are given f and its definition $f(x)$ and we are asked to find $f(a)$. In solving a polynomia equation, we are given $f(x)$, we are given $f(a)$ and we are asked to find a
Definition 3.24 (Solution). Fora faunction $f(x)$ and its valuation $f(a)$, solution means find the a such that $f(x)=$ $f(a)$. (It is possible that more than one a exists.)

Usually $f(a)=0$ and thus we want to find the a such that $f(x)=0$.
Definition 3.25 (Interpolation). For an input $a_{0}, a_{1}, \ldots, a_{n}$ and values $f\left(a_{0}\right), f\left(a_{1}\right), \ldots, f\left(a_{n}\right)$ the computation of the polynomial f of degree n that satisfies $\left.f(x)\right|_{x=a_{i}}=f\left(a_{i}\right)$ is known as interpolation.

Thus evaluation, solution and interpolcation are three interconnected problems where two of $a, f(a)$, and f are known and we are interested in finding the missing one.

Remark 3.1 (Integer vs Real indeterminate names). In functions defined hereafter we will shall more often use n instead of x. Indeterminate n implies a non-negative or positive integer. Indeterminate x implies a real number. We describe primarily a discrete math universe of non-negative integer numbers.

3.12 Operators are symbols for functions

Definition 3.26 (Operator and Operation. Operands). An operator in mathematics and also in computing is a symbol denoting a mathematical operation. An operator can be binary or unary (or ternary or something else) depending on its number of arguments to which it applies.. When the arguments surround the operator they are also known as operands. The operation is the action implied by the operator.

Definition 3.27 (Binary and Unary operators). Operators (and thus operations) can be binary or unary. A unary operator is a symbol that indicates a unary operation, that is the application of a mathematical or computing function on one (single) value that is known as the operand. In a binary operator we expect two operands (a left operand and a right operand.

Note 3.4. In some programming languages one can write $x+y$ and the operator + for addition is surrounded by its operands, but one can also write the same expression in function form eg add (x, y) and the arguments follow the name of the operation.

Thus,$+ *$ are binary operators. We write $x+y$ or $3 * 4$. Argument or parameter x or 3 is the left operand. Argument or parameter y or 4 is the right operand. But +5 or $* x$ might indicate a positive integer in the former case or a pointer variable in the latter case and are both unary operators in that context. Another unary operator is the absolute value function $\|$. Thus $|5|$ is a 5 . Thus the resolution of a symbol to a specific operation might be context sensitive. The operator in $\sin (x)$ is \sin and it is a unary operator, (By the way the x is in radians; there are 2π radians on a circle of 360 degrees.) For a ternary operator the operands are numbered, first operand, second operand etc.

Definition 3.28 (Operator overload). §yhe operators (i.e. symbols) can be binary or unary depending on the context. (The or in the sentence above is a disjunctive or. This means the same symbol can be used both as a unary and binary operator.)

Operator - might imply ot operation known as subtraction when it acts as a binary operator. Thus in 3-5, the context indicates that - is such abunary operatowis is surrounded by a left and right operand. However in -7 there is only one operand, and the sympel i.e Operaf - implies or indicates operation negation. Note that ++ as in $x++$ or $++x$ is a unary operatoffor post-increnent ad pre-ineremeht and not a typo of a binary operator with missing arguments or parameterse alsohighlights that the elerand an ary operator can precede it or follow it. In this example ++ infircates unary operaty overload! s $e^{\prime \prime}$
Definition 8.22 (Brefix, ©sostfie and int notation). AA binary operator requires two operands. The operator can precede, followor be en-betyeen the permers. Thôs +53 or $53+$ or $5+3$ indicates the same addition operation in prefix, postfix andingix nptation all ades 5 the left operand and 3 is the right operand.

We are used to using inf \otimes hotation in escribing operations since elementary school.

3.13 Notation symbols

Remark 3.2 (The floor function: $\lfloor x\rfloor$). The floor function is defined as follows: $\lfloor x\rfloor$ is the largest integer less than or equal to x.

Remark 3.3 (The ceiling function: $\lceil x\rceil$). The ceiling function is defined as follows: $\lceil x\rceil$ is the smallest integer greater than or equal to x.

Example 3.22 (The floor of $\lfloor 10.1\rfloor$ and $\lfloor-10.1\rfloor$). We have that $\lfloor 10\rfloor$ is 10 itself. Moreover $\lfloor 10.1\rfloor$ is 10 as well. Note that $\lfloor-10.1\rfloor$ is -11 .

Example 3.23 (The ceiling of $\lceil 10.1\rceil$ and $\lceil-10.1\rceil$). We have that $\lceil 10\rceil$ is 10 itself. Moreover $\lceil 10.1\rceil$ is 11 as well. Note that $\lceil-10.1\rceil$ is -10 .

3.14 Boolean Functions

This discussion extends the definitions of Chapter 1. A proposition was defined as a statement that can be either T or F. A predicate is a proposition whose truth value depends on the value of one or more variables.

Definition 3.30 (Predicates $P(n), P(n, m), P\left(n_{1}, n_{2}, \ldots\right)$. A predicate $P(n)$ can be considered a function where $n \in A$. $P: A \rightarrow\{T, F\}$. Predicates can utilize more than one variables.

Definition 3.31 (Boolean variables). Boolean variables take two values true or false, 1 or 0, T or F or t or f.
Moreover in programming languages any non-zero value evaluates to true and a zero value evaluates to false. (Thus a non-zero value is true or 1 whether it is 1 or some other non-zero value.)
Definition 3.32 (Lattice). A lattice is a set A with two operations defined on it \wedge and \vee satisfying the following properties for all $x, y, z \in A$.

Definition 3.33 (Distributive Lattice) (Let A be a lattice with \wedge, \vee. A is a distributive lattice if the following two properties also hold for all $x, y, z \in$ A.

$$
\begin{aligned}
\text { DistributiveLaw) } & x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z) \\
\text { DistributiveLaw) } & x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)
\end{aligned}
$$

Definition 3.34 (Compteqentequatice). Lie \wedge d be a lattice with \wedge, \vee. It is a complemented attic if there are to

Definition 3.35 (Bo den Algebras. A bataan A Debra is a complemented and distributed lattice.
Definition 3.36 (DNE. An expression which is the disjunction of terms that are conjunctions is called a disjunctive normal form.
Definition 3.37 (CNF). An expression' which is the conjunction of terms that are disjunctions is called a conjunctive normal form.

More formally
Definition 3.38 (Literal). Let P be a proposion letter. Then P is a positive literal, and $\neg P$ is negative literal. A literal is either a positive or a negative (literal).
Definition 3.39 (Conjunctions and DNF and t-DNF). Let $l_{1}, l_{2}, \ldots, l_{k}$ be a set of k literals, $k \mathbb{N}$. A term t is a conjunction of k literals if and only if is of the form

$$
l_{1} \wedge l_{2} \wedge \ldots \wedge l_{k}
$$

A formula f is in Disjunctive Normal Form if it is a disjunction $f=t_{1} \vee t_{2} \vee \ldots \vee t_{m}$ of m terms for some $m \in \mathbb{N}$, ie.

$$
f=t_{1} \vee t_{2} \vee \ldots \vee t_{m}
$$

We say that f is in $t-D N F$ if every term has exactly t literals.

Example 3.24. (a) The formula $x \vee y$ is in DNF.
(b) The formula $(x \wedge y) \vee(y \wedge z \wedge q)$ is in DNF.

Definition 3.40 (Disjunctions and CNF and $t-\mathrm{CNF}$). Let $l_{1}, l_{2}, \ldots, l_{k}$ be a set of k literals, $k \mathbb{N}$. A clause c is a disjunction of k literals if and only if is of the form

$$
l_{1} \vee l_{2} \vee \ldots \vee l_{k}
$$

A formula f is in Conjunctive Normal Form if it is a conjunction $f=c_{1} \wedge c_{2} \wedge \ldots \wedge c_{m}$ of m clauses for some $m \in \mathbb{N}$, i.e.

$$
f=c_{1} \wedge c_{2} \wedge \ldots \wedge c_{m}
$$

We say that f is in $t-C N F$ if every clause has exactly t literals.

3.15 Exercises

Exercise 3.1. Let $A=\{10011,1001,1110,11011\}$ Let $B=\{2,3,4,5,6\}$.
(a) Is $R=\{(1001,2),(1110,3),(10011,3),(11011,4)\}$ a relation from A to B ?
(b) Is $R: A \rightarrow B$ as defined in (a) a function from A to B ?
(c) Is T a function from A to B where $T=\{(1001,2),(10011,3),(11011,4)\}$

Proof. (a) YES it is, from the discussion of the previous Chapter and a relevant exercise.
(b) YET it is. For all $a \in A$ there is a $b \in B$ such that $a R b$. This is function R definition. Thus the relation R is a function.
(c) NO it is not. There is an $a \in A$ for which there is no $b \in B$ such that $a R b$. This a is $a=1110$.

Exercise 3.2. For $f: R \Rightarrow R$ and $g: R \Rightarrow R$ we define $f(x)=3 x+1$ and $g(x)=x^{2}-4$. Find $g \circ f$.
Proof. Note that $(g \circ f)(x)=g(f(x))=g(3 x+1)=(3 x+1)^{2}-4=9 x^{2}+6 x+1-4=9 x^{2}+6 x-3$.
Moreover $f(x)=3 x+1$ shows $y=3 x+1$. And $f(x)=x^{2}-4$ implies $z=f(y)=y^{2}-4$. Eliminating y we have $z=y^{2}-4=(3 x+1)^{2}-4=9 x^{2}+6 x-3$.

Exercise 3.3. Let $A, B \neq 0$ be two integers. We define Q, R the quotient and the remainder of the integer division of A by B. This makes A the dividend and B the divisor.
A=B

For the division to be uniquely definesd 1 qimpose a condition that $0 \leq R<|B|$.
(a) Let $A=23, B=5$. Find Q, R.
(b) Let $A=-23$, and $B=5$. Find Q, R.
(b) For $A>=0, B>0$ show R are unique.

Proof. (a) $(Q, R)=(4,3)$ singec $2355 \cdot 4+3$.
(b) $-23=5 \cdot(4)-43$ put also $23=5 \cdot(-4)-3$ but also $-23=5 \cdot(-5)+2$. In this latter case $(Q, R)=(-5,2)$. All other possibilities are discardeg.
(c) Let there exist twopairs Q_{0}, R_{1} anQ Q_{2}, R2 suctethat $A O B Q_{1}+R_{1}$ and $A=B Q_{2}+R_{2}$. Moreover $0 \leq R<B$ i.e. $0 \leq R_{1}<B$ and $0<Q_{2}<R^{\circ}$ Then $R_{1} \neq R_{2}$ andive may assume $R_{1}>R_{2}$ without loss of generality. Why?

If $R_{1}=R$ then $A-R_{1} \subseteq A-R O$ and then $B Q L B 2$. Since $B>0$ we divide by B and then $Q_{1}=Q_{2}$ in addition to $R_{1}=R_{2}$.

We proceed with the existence of two temainfers and $R_{1}>R_{2}$. Take $A=B Q_{1}+R_{1}=B Q_{2}+R_{2}$ We have that $B\left(Q_{2}-Q_{1}\right)=R_{1}>R_{2}$. Beeaus $Q \leq R_{1} R_{2}^{2}<\mathcal{B}$ and B divides $B\left(Q_{2}-Q_{1}\right)$ then B divides the equal $R_{1}-R_{2}$. But the
 as derived earlier for the other case,

Equivalently from $B\left(Q_{2}-Q\right)=\dot{R} O R_{2}$ we could argue that $Q_{2}-Q_{1}=\left(R_{1}-R_{2}\right) / B$ is an integer. (The diffence of two integer Q_{1}, Q_{2} is an integer. $)$ Since $0 \leq R_{1}, R_{2}<B$ then $0 \leq\left(R_{1}-R_{2}\right) / B<1$. The only integer that can satisfy this is $R_{1}-R_{2}=0$.

Chapter 4

Proofs

4.1 Peano's Axioms of Arithmetic

This is the official definition of natural numbers denoted already by set \mathbb{N}.
Definition 4.1 (Axioms of Arithmetic: Peano'(xioms). Peano's axioms define natural numbers. The set of natural numbers is denoted by N or \mathbb{N}.

Axiom 4.1 (First Peano Axiom), θ is a natural number.

Axiom 4.2 (Second Peang xiogat. If n is a nefural number, then its successor $s(n)$ is also a natural number.

Theorems in mathematies are oue begase they arecased sad derived from simple axioms that are usually true.
Theorem 4 , (Velfordefed Set Prinerple) $e^{\text {Etery }}$ a An-empty subset of \mathbb{N} has a minimal element.
Proposition 4.1. There aremo polive integers (trictly) between 0 and 1 .
Proof. The propositienis trues Say diere is at feast one integer a strictly between 0 and 1 i.e. $0<a<1$. Collect a and all those like a (integers strictly bletweeeh θ and 1) into set A. We have $|A| \geq 1$ since $a \in A$. By the Well Ordered Set Principle A has a minimal element. Call m. Square m to obtain m^{2}. Since $0<m<1$ we have that $0<m^{2}<1$. Thus m^{2} is also a member of A. Moreoye $\theta<m^{2}<m<1$. That is m^{2} is an element of A smaller than its smallest element A which is m ! This contradicts the minimality of m. Thus a cannot exist which means A is empty!

4.2 Theorems and their Proofs

Example-Proposition 4.1 (Goldbach's Conjecture). Every even integer greater than two is the sum of two prime numbers.

We can Goldbach's conjecture in a more formal form as follows. It is not that readable though.
Example-Proposition 4.2 (Goldbach's Conjecture).

$$
\forall n \in \mathbb{N} . \exists p \in \mathbb{N} . \exists q \in \min \{N\}: 2 / n \wedge \operatorname{Prime}(p) \wedge \operatorname{Prime}(q) \wedge n=p+q
$$

According to Wikipedia, Proposition 4.2 is true for all integers up to about $4 \cdot 10^{18}$; no one knows whether Proposition 4.2 is indeed true as stated. Every proposition is true or false with reference to a space we first define axiomatically and then build on by establishing more theorems. Proposition 4.3 below is defined in the form of predicate $P(n)$.

Example-Proposition 4.3. $P(n)$: For natural number n, integer $n^{2}+n+5$ is prime.
Another way to say this is as follows.
Remark 4.1. $P(n): \forall n \in \mathbb{N}, n^{2}+n+5$ is prime.

Remark 4.2. Reminder: A prime number is a natural number greater than 0 whose is divisible by one and itself. (Prime numbers that are integers have divisors the two units +1 and -1 , and the products of the units and the number itself.)

Remark 4.3. $P(n)$ is a predicate that depends on n. It is not a function. $P(n)$ is either true or false depending on n. Moreoever $P(5)$ reads
For natural number 5 , integer $5^{2}+5+5$ is prime.
Obviously $P(5)$ is false.
Moreoever $P(3)$ reads
For natural number 3 , integer $3^{2}+3+5$ is prime $\downarrow \cdot$
Obviously $P(3)$ is true.
A number of proof techniques are introduced starting with the next page.

4.3 Some proof techniques

4.3.1 (Proof) by existence

Method 4.1 ((Proof) by existence). For a proposition $P(x)$ show that $\exists x$ such that $P(x)$ is T.
Example 4.4. For two real numbers a, b such that $a<b$, there exists a real number c such that $a<c<b$.
Proof. We find an x that satisfies $a<x<b$. Let $x=(a+b) / 2 . x-a=(a+b) / 2-a=(b-a) / 2>0$ and thus $x>a$.
Likewise $x-b=(a+b) / 2-b=(a-b) / 2<0$ and thus $x<b$.
We have found c. It is $c=x=(a+b) / 2$.

4.3.2 (Disproof) by counterexample

Method 4.2 ((Disprove) by counterexample). A theorem has a hypothesis and a conclusion. Find an instance x for which the hypothesis holds, and then show that for that instance x the conclusion DOES not hold. Or to prove that a proposition is false it suffices to provide a counterexample that show the proposition to be false.

Proposition 4.3 can be easily shown to be falser providing a counterexample.
Proof. (That Proposition 4.3 is false.) For $n=4$, we have that $n^{2}+n+5=4^{2}+4+5=25$ and one divisor of 25 other than 1 and 25 , is 5 . Therefore 25 is 10 a prime number, it is in fact a composite number and therefore this simple counterexample shows that Proposition 4.3 is false because it is not true for $n=4$.

We now generate the follows proposition that uses the existential quantifier ('there exists').
Example-Proposition 4.5 $\mathcal{C}(n) \in N$ such $n a t n^{2}+7$ is prime.
In order to prove that Preposition 4.5 is sue, we only ned pro fe it for a single value of n. The existential quantifier reads 'there existralleasterne natural number m, Thu\& ne natural number n is $n=3$ that make predicate $\mathrm{Q}(\mathrm{n})$ true. For $n=2$, we daneasity estabreh that $2^{2}+7=11$ is priménumber. Proposition 4.5 is not, however, very interesting. Let us mod if It a pit.

Proof. We can disprove the rem for $n=3 n^{2}+7=3^{2}+7=16$, and 16 is not prime. Its divisors other than 1,16 include 2, 4, 8 .

On the next page we discuss direct deduction.

4.3.3 Direct Deduction

Method 4.3 (By Direct Deduction). In order to prove $P \Longrightarrow Q$, we 'Assume P (is true)', and using logical arguments 'derive Q (is true)'.

Example 4.6.

Proposition 4.2. If integer n is such that $n>0$ and n is even, then n^{2} is even.
Proof. We identify P as 'integer $n, n>0$, and n is even'.
We identity Q as ' n^{2} is even'.
STEP 1. Asume P : We assume n is integer, $n>0$, and n is even.
STEP 2. For an even inger n, if we divide n by 2 the remainder of the division is a zero. Thus $n=2 k$ where k is the integer quotient of this division that leaves 0 as a remainder (i.e. $n=2 * k+0$).
Important conclusion-1: $n=2 k$.
Important conclusion-2: k is integer.
STEP 3. From step (2) above $n=2 k$. Subsequently, n^{2} is equal to $n^{2}=(2 k)^{2}=4 k^{2}$. This implies $n^{2}=2\left(2 k^{2}\right)=2 m$, where $m=2 k^{2}$. In other words n^{2} is a multiple of 2 and the other integer m. (m is integer since from (3) k is an integer and m which is $m=2 * k^{2}=2 * k * k$ as the product of three integers is also an integer.
Important conclusion- $3 n^{2}=2 m$.
Important conclusion- $4 m$ is integer.
STEP 4. Conclusion $n^{2}=2 m$, with m integer implies n^{2} is even. The latter part is Q.
Theorem 4.3. Show that for $n \in \mathbb{Z}, n \not \mathbb{1}$ we have $n^{2}+5 n+12 \leq 18 n^{2}$.
Proof. We can prove this result directly. We use throughout this proof $n \in \mathbb{Z}$.

On the next page we discussefforf by case analysis.

4.3.4 Proof by case analysis

Method 4.4 (By case analysis). Prove a theorem by case analysis. A theorem has a hypothesis and a conclusion.

- List all possible cases for which the hypothesis holds, and
- for each such possible case, do indeed prove that the conclusion holds.

Theorem 4.4. The product of two positive consecutive natural number $a, b \in \mathbb{N}$ is an even number.
Proof. Let the first number be a. The next one (consecutive) would be $a+1$. Both are positive and thus $a>0$. Case analysis.
Case 1. a is odd. If a is odd then $a+1$ must be even. The product of an odd and even integer is even.
Case 2. a is even. If a is even then $a+1$ must be odd. The product of an odd and even integer is even.
Conclusion: Both in case 1 and case 2 the product is an even number
The polarity of (positive) integer number x is 0 if it is even and 1 if it is odd.
Theorem 4.5. The square of a (positive) integer number retains the polarity of the integer number.
Proof. Let x be a positive integer number. We are going to show that x and x^{2} have the same polarity.
Case analysis.
Case 1. x is odd. If x is odd, the remainter of the division of x by two is 1 . Thus $x=2 k+1$ where k is the quotient of the division. Then $x^{2}=(2 k+1)^{2}, 4 k^{2}+4 k+1=4 k(k+1)+1=2 \cdot(2 k(k+1))+1=2 m+1$, where $m=2 k(k+1) .2 m+1$ is an odd number Thus if x is odd, then x^{2} is also odd.

Case 2. x is even. If x is even, the $y m a i n d e r$ of the division of x by two is 0 . Thus $x=2 k$ for some $k>0$. Then $x^{2}=4 k^{2}=2\left(2 k^{2}\right)=2 m$ for some $n \mathbb{C}>1$. Thus if x is even, then x^{2} is also even.

Conclusion: Both in case 1 and case 2 the polarity of x is that of x^{2}.
Theorem 4.6. For all A, B show the $A=(A \cap B) \cup(A-B)$.
Proof.
Direction 1: Show A
Let $a \in A$. Themeither $\in B \in B \notin \mathcal{B}$ If the formes holdsowe are done, since then $a \in A \cap B$ and then $a \in(A \cap B) \cup$ $(A-B)$, simecit belongstovire firsecomporent gothe union. Otherwise consider the latter i.e. $a \notin B$. Then $a \notin A \cap B$. But then $a \in A \in B^{\prime}$ sincea $\notin B Z$ This onpliesa $\left(A A_{B} B\right) \cup(A-B)$ as well. Thus we have proved that an arbitraray $a \in A$ is also $a \in(A \cap B) \cup(A-B)$ and thushow $A \subseteq(A \cap B) \cup(A-B)$.

Direction 2: Sho $(A \cap B) \cup(A \subset B)$

Let $x \in(A \cap B) \cup(A \neg B)$. Then either $x \wedge A \cap B$ or $x \in A-B$. This is because the intersection of the two sets $A \cap B$ and $A-B=A \cap B^{\prime}$ is the since $\cap B \cap B^{\prime}=A \cap\left(B \cap B^{\prime}\right)=A \cap \emptyset=\emptyset$.

Case 1: $x \in A \cap B$. This, inplies that $x \in A$ (and also $x \in B$). However $x \in A$ leads to $x(A \cap B) \cup(A-B)$ leads to $x \in A$ and thus $(A \cap B) \cup(A-B) \subset \mathcal{O}$ and we are done.

Case 2: $x \in(A-B)$. This implies again that $x \in A$, and we reach the same conclusion as in Case 1 . Thus in both cases we have $(A \cap B) \cup(A-B) \subseteq A$.

Combining Direction 1 and Direction 2 we obtain the result.

On the next page we discuss proof by contra positive.

4.3.5 Contra positive

Let P and Q be two propositions. The contrapositive of implication $P \Rightarrow Q$ is (implication) $\neg Q \Rightarrow \neg P$.
Method 4.5 (By contrapositive). In order to prove $P \Longrightarrow Q$, we prove instead the contrapositive $\neg Q \Longrightarrow \neg P$, through the direct method.

Example 4.7.

Proposition 4.3. If positive integer $n>0$ is odd, then n^{2} is odd.
Proof. We identify P as 'positive integer $n>0$ is odd'.
We identity Q as ' n^{2} is odd'.
Then $\neg P$ becomes 'positive integer $n>0$ is even'.
Then $\neg Q$ becomes ' n^{2} is even'.
Thus $P \Rightarrow Q$ becomes $\neg Q \Rightarrow \neg P$. The latter is proven by the direct method. Let n^{2} be even. If n^{2} is even then n must be even. (The latter is true since if n was odd $n=2 k+1$ and then $n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1=$ $2 m+1$, would be odd too, that is impossible since n^{2} is even.)
Proposition 4.4. If $n>0$ is odd, then n^{2} is oddd
Proof. It suffices to prove that n^{2} is NOT odd ímplies n is NOT odd.
Let n^{2} be NOT odd. Then it must begven. If n^{2} is even then n must be even i.e. n is NOT odd. Result proven.

On the next page we discussiroof by contradiction.

4.3.6 Contradiction

Method 4.6 (By contradiction). In order to prove P is true, assume P is false. Subsequently show that proposition R is false, when we know that R is in fact true. Or with P false we show that R is true and R is false at the same time!

Definition 4.2 (Theorem Proof Technique: by Contradiction). A theorem has a hypothesis and a conclusion. Let the conclusion be b.

- Assume conclusion b to be false (does not hold). Then prove some other assertion c to be false, where it is known that c is true.
- Assume conclusion b to be false (does not hold). Then prove some other assertion c to be false and c to be true at the same time.

Theorem 4.7. $\sqrt{2}$ is irrational. (Be reminded that x is rational if and only if there are integer $m, n \neq 0$ such that $x=m / n$.)

Proof. Proof is by contradiction.

Let us assume that $\sqrt{2}$ is rational that is $\sqrt{2} \in \mathbb{Q}$. We are going to show that this leads to a contradiction.
If $\sqrt{2}$ is rational then there exist $m, n \in \mathbb{Z}, m, n \neq 0$ such that $\sqrt{2}=m / n$. Integer m and n have no common divisor; otherwise we can divide it out from m, n and reach m^{\prime} and n^{\prime} such that $\sqrt{2}=m^{\prime} / n^{\prime}$ and m^{\prime} and n^{\prime} share no common divisor.

Then squaring both sides we have

$$
(\sqrt{2})^{2} \vartheta(m / n)^{2} \Longleftrightarrow 2=m^{2} / n^{2} \Longleftrightarrow m^{2}=2 n^{2}
$$

We thus have that m^{2} is an even nuquer since it is of the form $2 k$, with $k=n^{2}$. Then, by the previous theorem, m must also be even.

If m is even then $m=2 p 0$ some integer p.

Thus n^{2} is an even nunter an@ by a previoat theoém, n must also be even.
Since n and m are even, thenchey hate a dammon divisor which is two. This contradicts the choice of m, n that were picked so that the sharenO CQMMONDIVISOR.

On the next page we discuss prof by converse, inverse and equivalence.

4.3.7 Converse

Let P and Q be two propositions. The converse of implication $P \Rightarrow Q$ is (implication) $Q \Rightarrow P$.

4.3.8 Inverse

Let P and Q be two propositions. The inverse of implication $P \Rightarrow Q$ is (implication) $\neg P \Rightarrow \neg Q$.

4.3.9 Proof of an equivalence \Longleftrightarrow

In order to prove $P \Longleftrightarrow Q$ we first observe that it is equivalent to $P \Longrightarrow Q$ and $Q \Longrightarrow P$ and thus we prove \Longleftrightarrow by provings two implications.

In the next few pages we discuss proof by mathematical induction.

4.4 Mathematical Induction: Preliminaries

Method 4.7 (Using W.O.S.P. to prove a $P(n)$). The Well Ordered Set Principle can be used to prove that ' $P(n)$ is true $\forall n \in \mathbb{N}$ '

This can be done as follows.
1 Formulate a set C of counterexamples to $P(n)$ being true, thus defining

$$
C=\{n \in N: \neg P(n)\}
$$

(This reads 'C contains all integers n such that $\neg P(n)$ is true'. This latter ' $\neg P(n)$ is true' implies ' $P(n)$ is false'.)
2 Assume (for the sake of contradiction) that C is nonempty.
3 By the Well Ordered Set Principle C has a minimal element m.
4 Obtain a contradiction by finding a $c \in C$ smaller than m.
5 Then conclude that C must be empty i.e. $P(n)$ is true for all n.
We then use it to prove the following result. \downarrow

Example 4.8.

Theorem 4.8. $1+2+\ldots+n=n(n+102$ for all $n \in \mathbb{N}$.
Proof. By way of contradiction, assume that the theorem is false. Then there exist some integers that serve as counterexamples and thus populate $C \times$

1. Form C

2. If C is empty wear done It q nonempty then it has minimal element by the W.O.S.P. and let that be m.
3. Thustor m hater (m) in not toe ie. Bet m is false and thus

Consider $k=1$ And ad so $k=0$.

$$
\begin{aligned}
& 1=1(1+1) / 2 \\
& 0=0(0+1) / 2
\end{aligned}
$$

Thus $0 \notin C$. Also $1 \notin C$. Therefore $m>1$. Consider $m-1<m$. Then $P(m-1)$ is true since m is smallest value for which $P(m)$ is false. Then $P(m-1)$ true implies.

$$
1+2+\ldots+(m-1)=(m-1) m / 2
$$

If we add m to both sides, we obtain.

$$
1+2+\ldots+(m-1)+m=(m-1) m / 2+m=m(m+1) / 2
$$

This contradicts

$$
1+2+\ldots+m \neq m(m+1) / 2
$$

4. Consequently C cannot be non-empty.
5. Therefore, C must be empty, that is $P(n)$ is true for all $n \in \mathbb{N}$.

We can prove also that
Theorem 4.9 (Well Ordered Set Principle for Reals). Every nonempty finite subset of real numbers has a minimal element.

Sometimes it is referred to as Ordinary induction or Weak induction. The former implies something else (that will be called Strong induction). The latter implies a Strong induction.

4.5 Mathematical Induction: Ordinary or Weak induction

Theorem 4.10 (Ordinary Induction). Let $A \subseteq N$. Let (i) $0 \in A$, and (ii) whenever $k \in A$ then $k+1 \in A$. The two conditions (i) and (ii) imply $A=N$.

Proof. Let A^{\complement} be the complement of A over \mathbb{N}.

$$
A^{\complement}=N-A=\{k \in N \mid k \notin A\} .
$$

Suppose $A \neq N$. Then A^{\complement} is a non-empty set and by the Well ordered set principle it has a minimal element and call that element a. Since $0 \in A$ it is obviously $a \neq 0$. This mean $a>0$ and thus $a-1$ is non-negative (positive or zero). Because a is the mimimal element of $A^{\complement}, a-1$ belongs to A. Thus $a-1 \in A$. From the statement of the mathematical induction principle set $k=a-1 . k \in A$ implies $k+1=a \in A$. This contradicts the membership of a in the complement of A ! Thus A^{\complement} cannot have a minimal element i.e. it must be empty. This implies that $A=N$.

The argument works also if the definition of \mathbb{N} is the positive integers thus exluding zero.
Theorem 4.11 (Alternative Ordinary Induction). Let $A \subseteq \mathbb{N}^{*}$. Let (i) $1 \in A$, and (ii) whenever $k \in A$ then $k+1 \in A$. The two conditions (i) and (ii) imply $A=\mathbb{N}^{*}$.
Remark 4.4. In inductive proofs we try to prowthat the set of integers A that satisfy a given property or proposition or predicate is all of \mathbb{N} i.e. $A=\mathbb{N}$.
Theorem 4.12. If $a, b \in \mathbb{N}^{*}$ then $a b \geq$ quality is applicable if and only if $b=1$.
Proof. Use (alternative ordinary) induction on b. Let $a \in \mathbb{N}^{*}$.
STEP1: Base case. It is $b=1$ clearly $a \cdot 1 \geq a$ since $a \cdot 1=a$.
Auxiliary step. For the inductive ${ }^{\circ}$ leads to $2 a>a$.
STEP 1': Inductive. hypothesis. Suppose that $2 \rightarrow a+8$ some $b \in \mathbb{N}$. We then will show that $a(b+1)>a$ in the inductive step. The indurative sep is formulatesbelon

$$
)^{2} \text { ab> a for some } b \in \mathbb{N} \Longrightarrow a(b+1)>a \text {. }
$$

By the inductive hep

ie. $a(b+1)>2 a$. Moreover dy the auxiliary step $2 a>a$. By way of transitivity $a(b+1)>2 a>a$ and the inductive step has been shown.

STEP 3: Conclusion. It follows that $a b>a$ for all $b \geq 2$. For the base case $b=1$ we have $a b \geq a$ in fact $a b=a$.

Note 4.1 (Variable names). In induction we customarily utilize an n and $n+1$. In theorem 4.10 we encountered a k and $k+1$. In our inductive proof we used $a b$ and $b+1$ instead of an n or k or $n+1$ or $k+1$. They are just 'variables'. Names are not important!

4.6 Mathematical Induction: Strong induction

Theorem 4.13 (Strong Induction). Let $A \subseteq N$. Let (i) $0 \in A$, and (ii) whenever $\{0,1, \ldots, k\} \subseteq A$ then $k+1 \in A$. The two conditions (i) and (ii) imply $A=N$.

Theorem 4.14 (Alternative Strong Induction). Let $A \subseteq \mathbb{N}^{*}$. Let (i) $1 \in A$, and (ii) whenever $\{1,2, \ldots, k\} \subseteq A$ then $k+1 \in A$. The two conditions (i) and (ii) imply $A=\mathbb{N}^{*}$.

Strong vs Weak form of induction. Given that Theorem 4.13 or Theorem 4.14 establishes strong induction, we sometimes refer to Theorem 4.10 as Weak Induction. Thus Induction or Mathematical Induction or Weak Induction or also Ordinary Induction are all synonymous and refer to Theorem 4.10 or its Theorem 4.11 formulation. There is one and only one name for Strong Induction of Theorem 4.13 or Theorem 4.14.

Induction as a proof method. In inductive proofs we try to prove that the set of integers A that satisfy a given property or proposition is all of \mathbb{N} (or \mathbb{N}^{*}) i.e. $A=\mathbb{N}$. (We drop the alternative from now on.) In the remainder we ignore properties and focus on propositions. Of particular interest are propositions that depend on an integer variable n and thus we would establish that the range A of n is indeed \mathbb{N} i.e. $A=\mathbb{N}$.

Note that we will use the term "integer variable" as a misnomer for natural number. Thus "integer variable" would be an alias for "non-negative integer", "naturalnymber", or "natural number excluding 0 ", as needed.

To wrap up all these assumptions, let $P(n)$ be a generic proposition that depends on integer variable n. Whether we call the indeterminate b, k or n does nOt matter. What it matters is its range of values which is usually all of N (i.e. \mathbb{N} or $\left.\mathbb{N}^{*}\right)$.

4.6.1 Why does induction work

Let $P(n)$ be a propositionthat denends on a natural number n, as explained in the previous page. Weak induction is

implythat $)^{0} b^{8}$ a ${ }^{e}$ as
(Conclusion) IP(n is truefor all A aturaformbers) including 0 (base case value).
Why does induction worg? The case establishes $P(0)$ is true. The Inductive step establishes the trueness of implication chains,

$$
P(0) \Rightarrow P(1), P(1) \Rightarrow P(2), \quad P(2) \Rightarrow P(3), \quad \cdots \quad, P(n) \Rightarrow P(n+1)
$$

We connective of the two is $P(0)$. To fire-up the chain reaction of implications, we start with the left-hand side of the first implication that contains $P(0)$. By the base case $P(0)$ is true. The trueness of the first chain $P(0) \Rightarrow P(1)$ establishes the trueness of $P(1)$. Then the trueness of $P(1)$ just established along with the trueness of $P(1) \Rightarrow P(2)$ establishes the trueness of $P(2)$ and this goes on and on and on! Collectively we can say $P(n)$ is true for all $n \geq 0$. This is equivalent to saying $0 \in A, 1 \in A$, using the terminology of Theorem 4.10.

Strong Induction.

(Base case): $P(0)$ is true, and
(Inductive Step): $P(0), P(1), \ldots, P(n) \Longrightarrow P(n+1)$ for all natural numbers $n \geq 0$, imply that
(Conclusion): $P(n)$ is true for all natural numbers n, including 0 (base case value).

Strong Induction with base case a.
(Base case): $P(a)$ is true, and
(Inductive Step): $P(a), P(a+1), \ldots, P(n) \Longrightarrow P(n+1)$ for all natural numbers $n \geq a$,
imply that
(Conclusion): $P(n)$ is true for all natural numbers $n \geq a$.
Method 4.8 (Template method for inductive proofs). 1. State that you plan to use Weak or Strong induction, as needed.
2. Determine and state predicate $P(n)$ also know as the inductive or induction hypothesis.
3. Base case (or Basis of induction) Show that $P(0)$ is true. Alternately determine the base case value and prove $P($. is true, as needed.
4. Inductive step. Show that $P(n) \Longrightarrow P(n+1)$ for every $n \in \mathbb{N}$. Note that for convenience $P(n-1) \Longrightarrow P(n)$ or other alternatives might be used cautiously (eg $n \geq 0$ or $n>1$)? For strong induction $P(0) \wedge \ldots P(n) \Longrightarrow P(n+1)$. Note that for a different base case the $P(0)$ is replaced accordingly.
5. If all steps completed claim $P(n)$ for all $n \mathbb{N}$ or $n \geq q$, where q is another base case value (step 3 alternative).

4.7 Applications of induction

4.7.1 Arithmetic sequence sum

Definition 4.3 (Sum $S_{k}(n)$). Let for any natural number $k>0$ be

$$
S_{k}(n)=1^{k}+2^{k}+\ldots+n^{k}
$$

We also write $S_{k}(n)=\sum_{i=1}^{n} i^{k}$.
Theorem 4.15. $A(n)=S_{1}(n)=1+\ldots+n$ is equal to $n(n+1) / 2$.

We sometimes denote $S_{1}(n)$ as $A(n)$ for the sum of the terms of the arithmetic sequence $\langle i\rangle, i=1, \ldots, n$.

Example 4.9. (Arithmetic sequence sum $A(n)=S_{1}(n)$.)
Proposition 4.5. $P(n): \forall n \geq 1, A(n)=n(n+1) d \not 2 \cdot$
Proof.
STEP 0: Identify the predicate $P(n)$ thatdepends on an integer/natural variable, and also that variable.
The first step in induction is to 选解tify in a proposition a predicate that depends on a natural-valued variable and also that same natural-valued variable. Obviously the predicate $P(n)$ is $A(n)=n(n+1) / 2$, where $A(n)$ is another name for the generic $S_{1}(n)$. We are going to show that $P(n)$ is true for all (integer $n \geq 1$). That is we shall show that $A(n)=n(n+1) / 2$. The prod is be miduction.

STEP 1: Base case: (Show that) $P A R$ is tor
The left hand side of the equgtity in $P(n)$ is $A(n)$ ie. $S_{1}(n)$ and the right-hand side is $n(n+1) / 2$. We shall show that the two sider arecerual for $H=1)^{2}{ }^{\circ}$. we shall shat $P(t)$.
 term (and that teran is plewhicheis 1 . a

Right hand side of $P(n)$ tior $n \geq 1$: $n\left(n_{1}\right) / \& 0_{i=1}^{\infty}=1(1+1) / 2=1$. Obviously this is $1(1+1) / 2=1$.
Therefore $P(1)$ is trat since leftand see $A(1)$ is equal to the right hand side $1(1+1) / 2$.
STEP 2: Inductive Step $P(n) P\left(n-\frac{1}{6}\right)$.
2. a Induction hypothesis: $P(n \times A P(n)$ true is equivalent to

$$
A(n)=1+2+\ldots+n=\sum_{i=1}^{n} i=n(n+1) / 2 .
$$

2.b How do we establish $P(n+1)$ then? A $P(n+1)$ (to be proven true) is equivalent to

$$
A(n+1)=1+2+\ldots+(n+1)=\sum_{i=1}^{n+1} i=(n+1)(n+2) / 2
$$

2.c Use 2.a to get to 2.b.

Starting with $2 . \mathrm{b}$ we write down the left hand side of $A(n+1)$, and then we separate the last term from the previous n terms of the sum

$$
\begin{aligned}
A(n+1) & =\sum_{A(n)}^{n+1} i \\
& =1+2+\ldots+(n+1)=(1+2+\ldots+n)+(n+1) \\
& =\underbrace{\left(\sum_{i=1}^{n} i\right)}_{\text {Use } P(n)}+(n+1) \\
& =\sum_{n(n+1) / 2+(n+1)=n(n+1) / 2+2(n+1) / 2=(n+1)(n+2) / 2}^{\left(\sum_{i=1}^{n} i\right)}+(n+1)
\end{aligned}
$$

This completes the induction. We proved two things

- We first proved that $P(1)$ is true.
- and then showed $P(n) \Rightarrow P(n+1)$ for all $n \geq 1$.

4.7.2 Geometric sequence sum

Definition 4.4 (Geometric sum $G(n, x)$). Let for any natural number $n \geq 0$ and $x \in R$ we define

$$
G(n, x)=\sum_{i=0}^{n} x^{i}=x^{0}+x^{1}+\ldots+x^{i}+\ldots+x^{n}
$$

The sum is known as the geometric series or sum of the terms of the geometric sequence. The i-th term of the sum is x^{i}.

Example 4.10. (Geometric sequence sum.)
Theorem 4.16. $P(n): \forall n \geq 0, x \neq 1$,

$$
G(n, x)\left(=\sum_{i=0}^{n} x^{i}\right)=\frac{x^{n+1}-1}{x-1}
$$

Proof. We prove the theorem by induction.
STEP 0. Identify predicate $P(n)$.
The predicate $P(n)$ in the theorem that depends on n is

$$
P(\cap): \dot{G}(n, x)=\frac{x^{n+1}-1}{x-1}
$$

where $G(n, x)=\sum_{i=0}^{n} x^{i}$.
STEP 1. Base case: (Show that) $P(0)$ is true. We can show either $P(0)$ or $P(1)$: then base case would be $n=0$ or $n=1$. We show $P(0)$ is true i.e. wecuse $n=0$.

The left-hand side of (the equality in) $P(n) G(0, x)=\sum_{i=0}^{0} x^{i}=x^{0}=1$.

Right hand-side is equator to lefthand side. Therefore $P(1)$ is true.
STEP 2. Inductive Step:
2. a Induction hypothesis $\mathcal{P}(\mathrm{n})$

4.7.3 Fibonacci sequence general term

A recursive function is a function that invokes itself. In direct recursion a recursive function f invokes directly itself, whereas in indirect recursion function f invokes function g that invokes f. A quite well-known recursive function from discrete mathematics is the Fibonacci function F_{n} or more widely known as the Fibonacci Sequence F_{n}.

The name sequence implies that it includes all the terms $F_{0}, F_{1}, \ldots, F_{n-1}, F_{n}, \ldots$. The n-th indexed term is given by the following recursive formulation.

$$
F_{n}=F_{n-1}+F_{n-2} \text { if } n>1
$$

where

$$
F_{0}=0 \text { and } F_{1}=1
$$

Example 4.11 ((Fibonacci Sequence).).
Proposition 4.6 (Strong Induction Example). $P(n): \forall n \geq 0, F_{n} \leq 2^{n}$.

Proof. We prove the theorem by strong induction.

STEP 0. Identify predicate $P(n)$.

The predicate $P(n)$ is the theorem that depends on n is

STEP 1. Base case: (Show that) $P(0)$ is §tyue.

$\mathrm{P}(0)$ is true is equivalent to showning $F_{0} \leq 2^{0}$.
The left-hand side of the insequility F_{0} is equal to 0 by the definition of the Fibonacci recurrence.
The right hand side $2^{0}=1$ directly. It is clear that $F_{0} \leq 2^{0}$ since $1 \leq 1$. Base case completed.
STEP 2. Inductive Step. $P(0) \wedge P(n) \wedge \ldots \wedge P(n-1) \Rightarrow P(n)$.
2. a Induction hypothesis $P(\dot{y}) \times P(1) \wedge$. $\dot{x}^{\prime}(n-1)$.
$P(0)$ true is $F_{0} \leq 0^{2}$. Lidewise $P(1)$ जre is $E^{2} \leq 2^{1}$. Osingotariable i for $i=0, \ldots, n-1$ we can summarize all $P(0), P(1), \ldots R(n-1)$ dising
$P\left(\delta^{*}\right)$ truedsequiblent to $F_{i} \leq 2^{i}$.
2.b What is $P(n) 1$ a

$$
F_{n+1} \leq 2^{n+1}
$$

2.c Use 2.a to get to 2.b. $0^{\text {º }}$

$$
\begin{aligned}
F_{n+1} & =F_{n}+F_{n-1} \\
& =\underbrace{F_{n}}_{P(n)}+\underbrace{F_{n-1}}_{P(n-1)} \\
& \leq 2^{n}+2^{n-1} \\
& \leq 2^{n}+2^{n} \\
& \leq 2 \cdot 2^{n} \\
& \leq 2^{n+1} .
\end{aligned}
$$

$\mathrm{P}(\mathrm{n}+1)$ has been proven given the induction hypothesis and we used both $P(n-1)$ and $P(n)$. (Strong induction.)

4.7.4 Binomial terms

Theorem 4.17. For all $n \in \mathbb{N}$ and a, b we have

$$
\left(a^{n}-b^{n}\right)=(a-b)\left(a^{n-1}+a^{n-2} b+a^{n-3} b^{2}+\ldots+a b^{n-2}+b\right)
$$

It can be proved by induction. Special case for $n=2$ and $n=3$ are $a^{2}-b^{2}=(a-b)(a+b)$ and $a^{3}-b^{3}=$ $(a-b)\left(a^{2}+a b+b^{2}\right)$. In the latter expression set $b=-b$ to get an expansion for $a^{3}+b^{3}$.

Theorem 4.18 (Geometric Sequence - Geometric Sum). For all $n \in \mathbb{N}$ and a we have

$$
\left(a^{n}-1\right)=(a-1)\left(a^{n-1}+a^{n-2}+a^{n-3}+\ldots+a+1\right) .
$$

This is the previous theorem for $b=1$ and can be rewritten as

$$
1+a+a^{2}+\ldots+a^{n-1}=\frac{a^{n}-1}{a-1}
$$

provided that $a \neq 1$.

Theorem 4.19 (Geometric Series). For the prefious theorem to the limit $n \rightarrow \infty$, and $-1<a<1$, we have $a^{n} \rightarrow 0$ and thus
C)

Theorem 4.20 (Binomial Dheorein. $5 .{ }^{\circ}$ For all $n \in \mathbb{N}$ and a, b we have

4．8 Exercises

Exercise 4．1．An integer $n>1$ is prime if its only divisors are 1 and the integer n itself．Otherwise integer n is composite．Examine the truth value of the proposition P defined as follows：

$P: 15$ is prime

Proof．Proposition P is F．We can prove $\neg P$ is T and thus P is F．$\neg P$ is 15 is NOT prime or equivalently 15 is composite． We know that $15=3 \cdot 5$ thus 3 divides 15 and 5 divides 15.15 is indeed composite．Neither 3 nor 5 is 1 or 15 itself．

Exercise 4．2．Show that $7^{n}-1$ is a multiple of 6.
Proof．Use the identity $a^{n}-b^{n}=(a-1)\left(a^{n-1}+a^{n-2}+\ldots+a+1\right)$ Then $7^{n}-1^{n}=6\left(7^{n-1}+\ldots+7+1\right)=6 k$ ．Thus $7^{n}-1$ is a multiple of 6.

Exercise 4．3．If n, m are odd integers，then $n+m$ is an even integer．
Proof．Direct proof．Let n be odd．This means there exists integer k such that $n=2 k+1$ ，i．e．the remainder of the division of n by 2 is 1 ．Likewise m is odd and thus there exists integer l such tham $m=2 l+1$ for the same reason． Then $n+m=2 k+1+2 l+1=2(k+l+1)$ ．Thas $\lambda^{\circ}+m$ is a multiple of 2 i．e．an even number．

Exercise 4．4．If n is an odd integer and m ín even integer，then $n+m$ is an odd．integer．
Exercise 4．5．If n is odd，so is n^{2} ．
Proof．Direct proof．Let n be odd．This means there exists integer k such that $n=2 k+1$ ，i．e．the remainder of the division of n by 2 is 1 ．Then $h^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=4 k(k+1)+1=2(2 k(k+1))+1=2 l+1$ ，where $l=2 k(k+1)$ is an integer the the duct of three integers： $2, \mathrm{k}$ and $k+1$ ．Because $n^{2}=2 l+1$ ，we conclude n^{2} is an odd number．

Exercise 4．6．
Proof．Proeftoy contradiction．
Let n be oda Ghis niean drere exjets integer k suoh that $n=2 k+1$ ，i．e．the remainder of the division of n by 2 is 1．Then $n^{2}=\left(2 k+N^{2}=4 k^{2}+4 k+1=2 k+10\right)+1=2(2 k(k+1))+1=2 l+1$ ，where $l=2 k(k+1)$ is an integer as the product of three integers： k and $\mathrm{k}^{\prime}+10$

We would like to prove that n^{2} igalso add．Let，for the sake of a contradiction，that n^{2} is even．
Based on the prior anablysis，enconded that n^{2} is of the form $n^{2}=2 l+1$ ，i．e．n^{2} is an odd number that contradicts the assumption that n^{2} is even Thus $\hat{⿲ 丶 丶 ㇒ 木 子}^{2}$ cannot be even．Conclusion：n^{2} is odd．

Exercise 4．7．The product of two consecutive integers is even．
Proof．Let n and $n+1$ be two consecutive integers．We do a case analysis．
Case 1：n is odd．Then，as previously noted，there exists integer k such that $n=2 k+1$ ．Then $n+1=2 k+2$ and thus $n(n+1)=(2 k+1)(2 k+2)=2(k+1)(2 k+1)=2 l$ with l an integer such that $l=(k+1)(2 k+1)$ ．Thus $n(n+1)=2 l$ is a multiple of two i．e．even．

Case 2：n is even．Then，as previously noted，there exists integer k such that $n=2 k$ ．Then $n+1=2 k+1$ ．Similarly as before $n(n+1)=2(k(2 k+1))$ we conclude $n(n+1)$ is even as well．

Whethere n is odd or even，$n(n+1)$ is even．
Exercise 4．8．The square of an integer n is either a multiple of 4 or leaves a remainder of 1 if divided by 8．For example $2^{2}, 6^{2}, 8^{2}, 10^{2}$ are all multiples of $4.3^{2}, 5^{2}, 7^{2}, 9^{2}$ are $8+1$ or $3 \cdot 8+1$ ，or $6 \cdot 8+1$ ，or $10 \cdot 8+1$ respectively．

Proof. We do a case analysis.
Case 1: n is even. Then (skipping some details obtainable from previous exercises), $n=2 k$ and thus $n^{2}=2 k \cdot 2 k=$ $4 k^{2}$ i.e. n^{2} is a multiple of 4

Case 2: n is odd. Then $n=2 k+1$ and thus $n^{2}=(2 k+1)^{2}=4 k(k+1)+1$. But we know the product of two consecutive integers is even thus $k(k+1)=2 l$. Then $n^{2}=4 k(k+1)+1=4(2 l)+1=8 l+1$. Thus the remainder of the division of n^{2} by 8 is 1 as shown (and the uniqueness of integer division).

With Case 1 (square multiple of 4) and Case 2 (square leaves remainder 1 after division with 8) we complete the proof.

Exercise 4.9. A three digit denary (base-10) integer is divisible by (multiple of) 3 if the sum of its digits is divisible by 3. Thus 123 is a multiple of 3 since $1+2+3=6=3 \cdot 2$. And 972 is a multiple of 3 since $9+7+2=3 \cdot 6$. Thus 123 is a multiple of 3 since $1+2+3=6=3 \cdot 2$. And 972 is a multiple of 3 since $9+7+2=3 \cdot 6$. (By the way $123=3 \cdot 41$ and $972=3 \cdot 324$.)

Proof. Let $n=a b c$ be a three digit denary integer. Then a is the number of hunders, b the number of tens and c the units of n. Thus $n=a \times 100+b \times 10+c$. We know $100=3 \cdot 33+1=3 k+1$ with $k=33$. We know $10=3 \cdot 3+1=3 l+1$ with $l=3$. Tehn $n=a(3 k+1)+b(3 l+1)+c=3(a k+b l)+(a+b+c)$. If $a+b+c$ is divisible by 3 , then $a+b+c=3 q$ for some integer q. Then $n=3(a k+b l)+(a+b+c)=3(a k+b l+q)$ and thus n is a multiple of 3 .

Exercise 4.10. Any three digit integer that end 5 with 5 has a square that is a multiple of 25 . Thus ab5 is such that $(\text { ab5 })^{2}$ is a multiple of 25 .

Proof. Let $a b 5=a \times 100+b \times 10+5-10(10 a+b)+5$. The $(a b 5)^{2}=100(10 a+b)^{2}+25+100(10 a+b)=25 k$ where $k=4(10 a+b)^{2}+1+4(10 a+b)$. This concludes the proof.

Exercise 4.11. Show that for $\bar{g}>0$ we have $(a+b) / 2 \geq \sqrt{a b} \geq 2 /(1 / a+1 / b)$.
Proof. First part first (lefthost inequality).
In order to show $(a \varphi b) / 2)^{2} \sqrt{a b w e ~ s h a t e ~ b o t h ~ s i d e s . ~ S i n c e ~ a l l ~ q u a n t i t i e s ~ a r e ~ n o n-n e g a t i v e, ~ i t ~ s u f f i c e s ~ t o ~ s h o w ~}$ $(a+b)^{2} / 4 \geq a b$ is. $(a+b)^{2} \geq 4 a b$ i.e $(\alpha+b)^{2} a^{2} 4 a b<0$ that $(a-b)^{2} \geq 0$. Since a, b are non-negative, the latter is true.

Second part next (Hight-most inequality
In ordac to shev $\sqrt{a \delta} \leq 2 /(1 \times a+d B)$, weheed to show the following sequence of equivalent inequalities. The last one is obvyusly triue. Fotethat the thindinequality had both its sides multiplied with $a b>0$, and the first squaring has both sides greather thatzereas well.?

The last inequality above is true (square of a real number cannot be negative).
First and second inequalities proven. The generalization of this for n terms instead of two is known as the Arithmetic-Geometric-Harmonic Mean inequality.

Exercise 4.12. Show $\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) \geq(a c+b d)^{2}$.

Proof. This is the Cauchy-Schwartz inequality.

$$
\begin{aligned}
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) & \geq(a c+b d)^{2} \Leftrightarrow \\
a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2} & \geq\left(a^{2} c^{2}+b^{2} d^{2}+2 a b c d \Leftrightarrow\right. \\
a^{2} d^{2}+b^{2} c^{2}+ & \geq\left(a^{2} c^{2}+b^{2} d^{2}+2 a b c d \Leftrightarrow\right. \\
a^{2} d^{2}+b^{2} c^{2}-2 a b c d & \geq 0 \Leftrightarrow \\
(a d-b c)^{2} & \geq 0 \Leftrightarrow \\
& T
\end{aligned}
$$

The last inequality is true.
Exercise 4.13. Prove by contradiction that for all $x, y \in \mathbb{R}$ with $x+y \geq 100$, then $x \geq 50$ or $y \geq 50$.
Proof. We want to prove the implication.

$$
\forall x \forall y: x+y \geq 100 \Rightarrow x \geq 50 \vee y \geq 50
$$

Let P be the proposition of the antecedent.

$$
P: \forall x \forall y: x+y \geq 100
$$

Let Q be the proposition of the consequent

Thus the implication states

The negation $\neg Q$ of Q is

$$
\xrightarrow[Q]{x} \geq 50 \vee y \geq 50
$$

$$
P \Rightarrow Q
$$

Contradiction: Assume P istrue but Q is F.

Thus for the sake of conimefiction we are going to assume $\neg Q$ is T or equivalently Q is F . This means that both x, y are less than 50. That is $x 50$ and $y<50$. The $x+y<50+50=100$ i.e. $x+y<100$.

This however contradicts the anteedent the implication which is proposition P that states that for all x, y that $x+y \leq 100$.

We have thusproventhat P istalses This, entradide the (assumption) that P is true.
In other yords if 2 is F ye proyed becgese of y, 100 a contradiction to the antecedent's $x+y \geq 100$.
Thus Qannot be false. Thus Q mustobe true

Proof. We want to prove the impication.

Let P be the proposition of the intecedent.

$$
P: \forall x: x^{2} \text { is irrational }
$$

Let Q be the proposition of the consequent

$$
Q: x \text { is irrational }
$$

Thus the implication states

$$
P \Rightarrow Q
$$

Proof by contrapositive means

$$
\neg Q \Rightarrow \neg P
$$

That is we show that if x is rational then x^{2} is also rational. If x is rational there exist integer n, m such that $x=n / m$. Then $x^{2}=n^{2} / m^{2}$. If n, m are integer so are n^{2}, m^{2} as the products of two integers. Then x^{2} is rational as the fraction of two integers.

Proof is complete because we proved $\neg Q \Rightarrow \neg P$. By contrapositive, $P \Rightarrow Q$ has been proven.

Exercise 4.15. Show that $\min (x, y)+\max (x, y)=x+y$.
Proof. Proof by case analysis.
Case 1. Let $x<y$.
Then $\min (x, y)=x$. Also $\max (x, y)=y$. Therefore $\min (x, y)+\max (x, y)=x+y$.
Case 2. Let $x>y$.
Then $\min (x, y)=y$. Also $\max (x, y)=x$. Therefore $\min (x, y)+\max (x, y)=x+y$.
Case 3. Let $x=y$.
Then $\min (x, y)=y=x$. Also $\max (x, y)=x=y$. Therefore $\min (x, y)+\max (x, y)=x+y$.

Exercise 4.16. (Practice Makes Perfect). Do for practice the following examples. Show that for any $n \geq 0$

$$
\sum_{i=0}^{i=n} i^{2}=n(n+1)(2 n+1) / 6
$$

Exercise 4.17. (Practice Makes Perfect). Show that for any $n>1, n^{2}-1>0$.
Exercise 4.18. (Practice Makes Perfect). She What for any $n \geq 2, \sum_{i=1}^{n} i \leq 3 n^{2} / 4$.
Exercise 4.19. (Practice Makes Perfea Show that for any $x \geq 3, \sum_{i=0}^{n-1} x^{i} \leq x^{n} / 2$.
Exercise 4.20. (Practice Makes Rerfect). Show that for any $n \geq 1, \sum_{i=0}^{n} i^{2} \leq\left(n^{3}+2 n^{2}\right) / 3$.
Exercise 4.21. (Practice Agkes perfeat). Whats wrong with the proof of the theorem below? Explain.
Theorem 4.21. All horses of she wo fld areot the same coror.

Proof. The proof is (supposed to befoy indiction then homber of horses n.
$P(n)$: In any seraf n. obhorses, all the horses of the set are of the same color.

1. Base Case: Show $P(1)$ true $\mathcal{S} P(1)$ isalwastrue as in a set consisting of a single horse, all the horses (there is only one) of the set havethe sare coloO
2. Inductive step : $\forall n \in N$ i.e. $\left.n \otimes 1, P()^{\chi}\right) \Rightarrow P(n+1)$.

Let us assume (induction hepothestat for any $n \geq 1, P(n)$ is true. Since we assume $P(n)$ to be true, every set of n horses have the same color. Then wwe will prove that $P(n+1)$ is also true (inductive step), i.e. we will show that in every set of $n+1$ horses, all of them are of the same color. To show the inductive step, i.e. that $P(n+1)$ is true let us consider ANY set of $n+1$ horses $H_{1}, H_{2}, \ldots H_{n}, H_{n+1}$. The set of horses $H_{1}, H_{2}, \ldots, H_{n}$, consists of n horses, and by the induction hypothesis any set of n horses are of the same color. Therefore color $\left(H_{1}\right)=\operatorname{color}\left(H_{2}\right)=\ldots=\operatorname{color}\left(H_{n}\right)$. The set of horses $H_{2}, H_{3}, \ldots, H_{n+1}$, consists of n horses, and by the induction hypothesis any set of n horses are of the same color. Therefore color $\left(H_{2}\right)=\operatorname{color}\left(H_{3}\right)=\ldots=\operatorname{color}\left(H_{n+1}\right)$. Since from the first set of horses color $\left(H_{2}\right)=\operatorname{color}\left(H_{n}\right)$, and from the second set color $\left(H_{2}\right)=\operatorname{color}\left(H_{n+1}\right)$, we conclude that the color of horse H_{n+1} is that of horse H_{2}, and since all horses $H_{1}, H_{2}, \ldots, H_{n}$ are of the same color, then all horses $H_{1}, H_{2}, \ldots, H_{n}, H_{n+1}$ have the same color. This proves the inductive step. The induction is complete and we have thus proved that for any n, in any set of n horses all horses (in that set) are of the same color.
(Hint: The key to this proof is the existence of horse H_{2}. More details on a later page.)

Exercise 4.22. Show that for any $n \geq 0$

$$
F_{n} \leq 2^{n-1}
$$

Exercise 4.23. Show that for any $n \geq 1$

$$
F_{n} \geq 2^{(n-1) / 2}
$$

Exercise 4.24. (On horses, cows, and tricky inductive arguments). Horses revisited ie. why the Theorem of Example 4.21 is false. On the previous page we proved that all horses have the same color, an otherwise nonsense statement (or false proposition). What's wrong with the inductive proof?

Many may argue that the error is in the logic of the inductive step.
The logic is fine, the quantification "for all n" is not, since the assumption of always having horse H_{2} might not be true. The crux of the inductive step is the existence of three 'different' horses H_{1}, H_{2}, H_{n+1}. We first form a set of n horses $H_{1}, H_{2}, \ldots, H_{n}$ and apply the induction hypothesis and then form another set of n horses, $H_{2}, \ldots H_{n}, H_{n+1}$, and apply the induction hypothesis again. Crucial to the proof is that $c\left(H_{1}\right)=c\left(H_{2}\right)$ from the first application of the induction hypothesis, and $c\left(H_{2}\right)=c\left(H_{n+1}\right)$ from the second thus concluding that $c\left(H_{1}\right)=c\left(H_{2}\right)=\ldots=c\left(H_{n}\right)$.

Let's see what happens for $n=1$, i.e. let's try to show that $P(1) \Rightarrow P(2)$, i.e. show the inductive step for a certain value of n equal to 1 . If we try to form $H_{1}, \ldots H_{n}$ this set contains only one 'horse' element for $n=1$: H_{1} ! If we try to form H_{2}, \ldots, H_{n+1} this set contains only one 'horse' element H_{2}. There is no common third 'horse' H_{k} in the set containing H_{1} nor in the set containing H_{2}. This is because the argument in the previous paragraph works only for $n \geq 2$. In that case one set is formed from H_{1} and the other set from H_{2}, H_{3}. However even if we can prove the inductive step nicely in that case there is no wat prove the base case set for $n=2$ ie. $P(2)$!

Therefore the inductive step that "weतrर'ved" before $P(n) \Rightarrow P(n+1)$ is not true for all $n \geq 1$ but only for $n \geq 2$. This however can not establish the trueness of $P(n)$ for all $n \geq 1$ because $P(2)$ may or may not be true.

What is $P(2)$?
$P(2)$ is "in any set of two horses, both horses are of the same color".
In conclusion, the who de" "h ox argument", Breaks down because

 need $P(2)$ to be trued) WHILP IS NOT! A O
Exercise 4.25. Show by indtion that fonatinteger $n \geq 1$, we have that $1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-1) \leq n^{n}$.
Proof.

Base case $n=1$. It is clear that 1 di.
Induction step. Let the inequality be true for $n=k$ that is

$$
1 \cdot 3 \cdot \ldots \cdot(2 k-1) \leq k^{k}
$$

We will show that it is true for $n=k+1$ that is

$$
1 \cdot 3 \cdot \ldots \cdot(2 k-1)(2 k+1) \leq(k+1)^{k+1}
$$

$$
\begin{aligned}
1 \cdot 3 \cdot \ldots \cdot(2 k-1)(2 k+1) & \leq(1 \cdot 3 \cdot \ldots \cdot(2 k-1)) \cdot(2 k+1) \\
& \leq k^{k} \cdot(2 k+1) \\
& \leq(k+1)^{k+1}
\end{aligned}
$$

In order to show that $k^{k} \cdot(2 k+1) \leq(k+1)^{k+1}$ we start with

$$
\begin{aligned}
\frac{(k+1)^{k+1}}{k^{k}} & \geq(k+1) \cdot(1+1 / k)^{k} \\
& \geq(k+1) \cdot 2 \\
& \geq 2 k+1
\end{aligned}
$$

Exercise 4.26. Show that if $\left(x_{i}\right)_{i=1}^{n}$ and $\left(y_{i}\right)_{i=1}^{n}$ are two monotonic sequences similarly ordered then

$$
n \sum_{i=1}^{n} x_{i} y_{i} \geq \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}
$$

Proof.

$$
\begin{aligned}
n \sum_{i=1}^{n} x_{i} y_{i}-\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i} & =\sum_{j=1}^{n} \sum_{i=1}^{n} x_{i} y_{i}-\sum_{i=1}^{n} x_{i} \sum_{j=1}^{n} y_{j} \\
\sum_{j=1}^{n} \sum_{i=1}^{n} x_{j} y_{j} \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} y_{j} & =\sum_{j=1}^{n} \sum_{i=1}^{n} x_{j} y_{j}-\sum_{i=1}^{n} \sum_{j=1}^{n} x_{j} y_{i} \\
\frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{n}\left(x_{i} y_{i}+\chi_{i j} y_{j}-x_{j} y_{i}-x_{i} y_{j}\right) & =\frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{n}\left(x_{i}-x_{j}\right)\left(y_{i}-y_{j}\right) \\
& \geq 0
\end{aligned}
$$

If this manipulation of indicesdofks confusing, consider the following n inequalities that have the same left-hand side, but only n of the n^{2} terms ofthe suin in the right-hand side.

If we add those n inequalities we get,

$$
n \sum_{i=1}^{n} x_{i} y_{i} \geq \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}
$$

Chapter 5

Sums of sequences

5.1 Sequences

We can generalize the definition of a pair, triple or triplet, and n-tuple by defining a sequence in which elements can be repeated. In a sequence, as opposed to a set, onder matters, i.e. the elements of a sequence have some order.

Definition 5.1 (Sequence). A sequence iol collection of elements ordered in a specific way.
Definition 5.2 (Series). A series is tha sum of the terms of a sequence.
Less often a series is the pgoduct of the terms of a sequences.
The term sequence howger wilhit be used when we refer to a sequence of integers.
Definition 5.3 (Sequences). Anequeré a isifunction whose domain is a subset of the integers. We use the notation a_{n} to represent ancelemento a squence (instead of a $n \mathrm{D}$ Theform n is the index of the sequence. If the domain is finite, the sequefte is a finte sexuenceselse is (12) aninuite,
Example 5. $\overbrace{}^{2}(a)$ The segtence $\{0,2,3,5,9,11$ des a fintite sequence.

Definition 5.4 (Increafsimg segmence) A segrence a_{n} of domain D is increasing if for all integer $i \in D, j \in D$ such that $i<j$ we have $a_{i}<a_{j}$.

Definition 5.5 (Monotonicaly Increasing or non-decreasing sequence). A sequence a_{n} of domain D is increasing if for all integer $i \in D, j \in D$ such thor $i<j$ we have $a_{i} \leq a_{j}$.
Example 5.2. (a) The sequence $\{1,2,3,5,7,11\}$ is increasing.
(b) The sequence $a_{n}=2^{n}, n \geq 0$ is increasing.

Definition 5.6 (Monotonically Decreasing or non-increasing sequence). A sequence a_{n} of domain D is increasing if for all integer $i \in D, j \in D$ such that $i<j$ we have $a_{i} \geq a_{j}$.
Example 5.3. (a) The sequence $a_{n}=1 / 2^{n}, n \geq 0$ is deccreasing.

Definition 5.7 (Subsequences). Let a be a sequence. A subsequence b of a is sequence formed from a by picking certain terms of a as they appear in a.

Definition 5.8 (Sum and Product of terms of a sequence). Let a_{n} be a sequence from $n=A$ to $n=B$. We can also write it $\left\{a_{n}\right\}_{n=A}^{n=B}$. or $\left\{a_{n}\right\}_{n=A}^{B}$. We define

$$
\begin{gathered}
\sum_{i=A}^{B} a_{n}=a_{A}+a_{A+1}+\ldots+a_{B} \\
\prod_{i=A}^{B} a_{n}=a_{A} \cdot a_{A+1} \cdot \ldots \cdot a_{B}
\end{gathered}
$$

5.1.1 Denoting a sequence

Remark 5.1 (Angular brackets for a sequence). For a sequence we use angular brackets \langle and \rangle to denote it. In a sequence the order of its elements matters: the elements of a sequence are listed according to their order. We separate two consecutive elements with a comma.

Example 5.4 (Sequence example). Thus sequence $\langle 1,3,2\rangle$ represents a sequence where the first element is a 1 , the second a 3 and the third a 2. This sequence is different from sequence $\langle 1,2,3\rangle$. The two are different because for example the second element of the former is a 3, and the second element of the latter is a 2. Thus those two sequences differ in their second element position. (They also differ in their third element position anyway.) Thus $\langle 1,3,2\rangle \neq\langle 1,2,3\rangle$.

Remark 5.2 (Set vs Sequence). Sets include unique elements; sequences not necessarily. The $\{10,10,20\}$ is incorrect as in a set each element appears only once. The correct way to write this set is $\{10,20\}$. For a sequence repetition is allowed thus $\langle 10,10,10\rangle$ is $O K$.

5.1.2 Sequence enumeration

Remark 5.3 (Sequences with too many elementelidipsis to the rescue.). Sequences with too many elements to write down: three periods (...). Thus $\{1,2, \ldots, n\}$, puld be a way to write all positive integers from 1 to n inclusive. The three period symbol ... is also known as êlipsis (or in plural form, ellipses).
Definition 5.9 (Sequence enumeration). An infinite or finite sequence can also be described by a sequence comprehension or enumeration. For example $\left\langle a_{i}\right\rangle$, for $i=1, \ldots, n$, describes a sequence. So does $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$. We may also drop the angular brackets and write a_{i}, for $i=1, \ldots, n$.
Example 5.5. We can definisequence $a_{i}=i$. This is sequence $1,2, \ldots, n$ more correctly writtens as $\langle 1,2, \ldots, n\rangle$.

5.1.3 Sum and Produce of terms, or a sequenge

Example 5 . 4 tsum of terms af a seguence). For avequenge $\left\langle a_{i}\right\rangle$, for $i=1, \ldots, n$, the sum of its terms is $a_{1}+a_{2}+\ldots+a_{n}$ and can bereprerented in compac formas
in
or inline $\sum_{i=1}^{n} a_{i}=\sum_{1 \leq i \leq \pi} \alpha_{i}$.
Example 5.7 (Product of texhs of sequence). For a sequence $\left\langle a_{i}\right\rangle$, for $i=1, \ldots, n$, the product of its terms is $a_{1} \cdot s_{2} \cdot \ldots \cdot a_{n}$ and can be represuted in compact form as

$$
\prod_{1 \leq i \leq n} a_{i}=\prod_{i=1}^{i=n} a_{i}=\prod_{i=1}^{n} a_{i}=a_{1} \cdot s_{2} \cdot \ldots \cdot a_{n}
$$

or inline $\prod_{i=1}^{n} a_{i}=\prod_{1 \leq i \leq n} a_{i}$.
Variable i assumes integer values starting with the smallest value as indicated under the sum's Sigma symbol or the product's PI symbol, and ending with the value indicated over the corresponding symbol. For the sequence defined in the two previous examples, the smallest value for i is $i=1$ and the largest value is $i=n$.

The variable's name is introduced under the sumbol with the starting value assigned to it. It is sometimes omitted at the top of the symbol (but implied). The general member of the sum or the product bear the running value of the variable.

A sum of no terms is equal to 0 . A product of no terms is equal to 1 .

5.2 Arithmetic sequence sum: arithmetic series

A series is the sum of the terms of a sequence.
Definition 5.10 (Arithmetic sequence). The arithmetic sequence $\left\langle a_{i}\right\rangle$, for $i=1, \ldots, n$, is defined as follows:

$$
a_{i}=i
$$

Definition 5.11 (Arithmetic series $A(n)$). The arithmetic series of the first n terms of the arithmetic sequence is denoted by $A(n)$ and defined as follows.

$$
A(n)=a_{1}+a_{2}+\ldots+a_{n}=\sum_{i=1}^{n} a_{i}
$$

One can represent the series as A_{n} as well.
By representing the series $A(n)$ as A_{n} we can define a new sequence $\left\langle A_{i}\right\rangle$, where $A_{i}=\sum_{j=1}^{n} a_{j}$. We can calculate $A(n)$ from its open-form $\sum i=1^{n} a_{i}$ to derived a closed form expression for it that describes in in the most compact form with the fewest number of terms.

Fact 5.1 (Arithmetic series). A closed-form exprqsion for $A(n)$ is shown below for completeness.

$$
A(n)=A_{n}=\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

Proof. (Fact 5.1) Since $A(n) A_{n}=1+2+\ldots+(n-1)+n$. Writing A_{n} forwards and backwards we add up the corresponding terms.

We have

5.3 Quadratic and Cubic sequence sum

Fact 5.2 (Quadratic and Cubic series). $Q(n)$, the quadratic series, and $C(n)$, the cubic series are defined analogously as follows. A closed-form expression is shown for both of $Q(n)$ and $C(n)$.

$$
Q(n)=Q_{n}=\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}, \quad C(n)=C_{n}=\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

Proof. (Fact 5.2) We can use the following method to find sums of the following form

$$
S_{k}=\sum_{i=1}^{n} i^{k}
$$

First consider $(i+1)^{k+1}$ and expand it. Substitute in the expansion $i=1, i=2, \ldots, i=n$, a total of n times and write the resulting n equalities one after the other. Then, sum these n equalities by summing up the left hand sides and the right hand sides. Solve for S_{k} and S_{k} can then be found as a function of n.

For the sum in question $k=1$. Therefore we consider

$$
(i+1)^{2}=i^{2}+2 i+1
$$

We substitute for $i=1,2, \ldots, n$ writing one equality after the other

$$
\begin{aligned}
(1+1)^{2} & =1^{2}+2 \cdot 1+1 \\
(2+1)^{2} & =2^{2}+2 \cdot 2+1 \\
(3+1)^{2} & =3^{2}+2 \cdot 3+1 \\
(4+1)^{2} & =4^{2}+2 \cdot 4+1 \\
2 \cdot \ldots & =\cdots \\
(n+1)^{2} & =n^{2}+2 \cdot n+1
\end{aligned}
$$

When we sum up the n equalities we realize that say, $(3+1)^{2}$ of the third line is equal to 4^{2} of the fourth line and therefore.

$$
(1+1)^{2}+(2+1)^{2}+(n+1)^{2}=\left(1^{2}+2^{2}+3^{2}+\ldots+n^{2}\right)+2 \cdot(1+2+\ldots+n)+(1+\ldots+1)
$$

We note that $2 \cdot\left(1+2+0 \cdot+\dot{b}{ }^{2}, \ldots+1\right)=n$ (number of ones is number of equations). Then, is $A(n)=A_{n}$.

5.4 Harmonic sequence sum: harmonic series

Fact 5.3 (Harmonic series).

$$
H(n)=H_{n}=\sum_{i=1}^{n} \frac{1}{i} \approx \int(1 / x) d x \approx \ln (n)+\gamma .
$$

Fact 5.4 (Derivative formulae from harmonic series). Let $H_{n}=\sum_{i=1}^{n} 1 / i$. Then we have the following equations.

$$
\sum_{i=1}^{n} H_{i}=(n+1) H_{n}-n, \quad \sum_{i=1}^{n} i H_{i}=\frac{n(n+1)}{2} H_{n}-\frac{n(n-1)}{4} .
$$

Example 5.8.

Proof. Consider H_{8}.

$$
\begin{aligned}
H_{8} & =1+1 / 2+1 / 3+1 / 4+1 / 5+1 / 6+1 / 7+1 / 8 \\
& \leq 1+1 / 2+1 / 2+1 / 4+1 / 4+1 / 4+1 / 4+1 / 8 \\
& \leq 1+1+1+1 / 8=3+1 / 8
\end{aligned}
$$

Thus $H_{8} \leq 3+1 / 8$. Likewise we can show then $H_{16} \leq 4+1 / 16$ and by induction $H_{2^{k}} \leq k+1 / 2^{k}$. Going the other way around.

$$
\begin{aligned}
H_{8} & =1+1 / 2+1 / 3+1 / 4+1 / 5+1 / 6+1 / 7+1 / 8 \\
& \geq 1+1 / 2+1 / 4+1 / 4+1 / 8+1 / 8+1 / 8+1 / 8 \\
& \leq 1+1 / 2+1 / 2+1 / 2
\end{aligned}
$$

By induction we can prove that $H_{2^{k}} \geq 1+k / 2$. Moreover $\int_{1}^{n+1} 1 / x d x<H_{n} \leq \int_{1}^{\infty}(1 / x) d x$.

5.5 Properties of powers

The following identities can be derived from the following theorem that is proved by induction, as special cases for $n=2$ and $n=3$, and with the third identity deriying from the second by substituting $-b$ for b.
Fact 5.5. For all a, b

$$
a^{2}-b^{2}=(a-b)(a+b), \quad a^{3}=(a-b)\left(a^{2}+a b+b^{2}\right), \quad a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
$$

Theorem 5.1. For all $n \in \mathbb{N}$ and a, , we have

$$
\left(a^{n} b^{n}\right)=(a-b)\left(a^{n-1}+a^{n-2} b+a^{n-3} b^{2}+\ldots+a b^{n-2}+b\right)
$$

This is the previous theorenifor $b=P$ and an bevewritt in the form of the geometric series provided that $a \neq 1$.

Fact 5.6 (Geometric seqwence $8(h, x)$ sin). Let $G(n, x)=\sum_{i=0}^{n} x^{i}$. Then we have the following equations, for $x \neq 1$.

$$
G(n, x)=G_{n}^{x}=\sum_{i=0}^{n} x^{i}=1+x+x^{2}+\ldots+x^{n}=\frac{x^{n+1}-1}{x-1}
$$

5.6.1 Infinite geometric sequence $G(x)$ sum

Theorem 5.2 (Infinite geometric series). If $|x|<1$ to the limit $n \rightarrow \infty$ we have the following

$$
G(x)=\lim _{n \rightarrow \infty} G(n, x)=\lim _{n \rightarrow \infty} 1+x+x^{2}+\ldots+x^{n}=\lim _{n \rightarrow \infty} \frac{x^{n+1}-1}{x-1}=\frac{1}{1-x}
$$

Therefore

$$
G(x)=\sum_{i=0}^{\infty} x^{i}=\frac{1}{1-x}
$$

5.7 $I(n, x)$ sequence sum

Fact $5.7(I(n, x)$ series). For $x \neq 1$ we have the following finite sum.

$$
I(n, x)=\sum_{i=0}^{n-1} i x^{i}=\frac{(n-1) x^{n+1}-n x^{n}+x}{(1-x)^{2}}
$$

5.7.1 Infinite $I(x)$ sequence sum

Correspondingly, the infinite sum is derived as follows.
Fact 5.8. For $|x|<1$ we have the following sum.

$$
I(a)=\sum_{i=1}^{\infty} i x^{i}=\frac{x}{(1-x)^{2}}
$$

Corollary $5.2(I(n, 1 / 2))$. Moreover, we have that for $I(n, 1 / 2)$,

We start with the geometricseries and in particular the infinite geometric series. Getting its first derivative with respect to x and then multiplying both sides with x yields, almost, the result. In the last step we substitute $1 / 2$ for x. In all cases $|x|<1$.

$$
\begin{aligned}
G(n, x)=\sum_{i=0}^{n-1} x^{i} & =1+x+\ldots+x^{i}+\ldots+x^{n-1}=\frac{x^{n}-1}{x-1} \\
G(x)=\sum_{i=0}^{\infty} x^{i} & =1+x+\ldots+x^{i}+\ldots=\frac{1}{1-x} \\
I(x)=\sum_{i=0}^{\infty} i \cdot x^{i} & =1 \cdot x^{1}+2 \cdot x^{2}+\ldots+i \cdot x^{i}+\ldots=?
\end{aligned}
$$

For any $|x|<1$, we have.

$$
\begin{aligned}
\sum_{i=0}^{\infty} x^{i} & =\frac{1}{1-x} \\
1+x+\ldots+x^{i}+\ldots & =\frac{1}{1-x} \\
\left(1+x+\ldots+x^{i}+\ldots\right)^{\prime} & =\left(\frac{1}{1-x}\right)^{\prime} \\
0+1 \cdot x^{0}+\ldots+i \cdot x^{i-1}+\ldots & =\frac{1}{(1-x)^{2}} \\
0 \cdot x+1 \cdot x^{1}+\ldots+i \cdot x^{i}+\ldots & =\frac{x}{(1-x)^{2}} \\
I(x)=\sum_{i=0}^{\infty} i \cdot x^{i} & =\frac{x}{(1-x)^{2}}
\end{aligned}
$$

From the last one for $a=1 / 2$ we get $I(1 / 2)=2$.

5.8 Taylor series logs and expónentials

Fact 5.9. For $|x|<1$.

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\ldots+\frac{x^{i}}{i!}+\ldots=\sum_{i=0}^{\infty} \frac{x^{i}}{i!}
$$

5.9 Fibonasei identities.

Fact 5.10. For $|x|<1$, and F_{i} foe Figinnacci sequence,

$$
\frac{1}{(1-x)^{n+1}}=\sum_{i=0}^{\infty}\binom{i+n}{i} x^{e}, \quad \frac{1}{\sqrt{1-4 x}}=\sum_{i=0}^{\infty}\binom{2 i}{i} x^{i}, \quad \frac{x}{1-x-x^{2}}=x+x^{2}+2 x^{3}+3 x^{4}+\ldots=\sum_{i=0}^{\infty} F_{i} x^{i}
$$

5.10 Binomial sequence sum: binomial series

Theorem 5.3 (Binomial Theorem). For all $n \in \mathbb{N}$ and a, b we have

$$
(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{k} a^{k} b^{n-k}=a^{n}+n a^{n-1} b+\frac{n(n-1)}{2} a^{n-2} b^{2}+\ldots+\binom{n}{k} a^{k} b^{n-k}+\ldots+n a b^{n-1}+b^{n}
$$

Definition 5.12 (Power series). A power series $P(x)$ with center 0 is a series of the following form.

$$
P(x)=\sum_{i=0}^{\infty} a_{i} x^{i}=a_{0}+a_{1} x+\ldots+a_{i} x^{i}+\ldots
$$

Definition 5.13 (Power series). A power series $P(x)$ with center c is a series of the following form.

$$
P(x-c)=\sum_{i=0}^{\infty} a_{i}(x-c)^{i}
$$

For a power series we first consider the ratio of two consecutive terms r such that

$$
r=\lim _{i \rightarrow \infty}\left|\frac{a_{i+1}(x-c)^{i+1}}{a_{i}(x-c)^{i}}\right|
$$

That limit is equal to

$$
r=|x-c|\left|\lim \frac{a_{i+1}}{a_{i}}\right|
$$

Let R be the reciprocal of $\left|\lim \frac{a_{i+1}}{a_{i}}\right|$. Then $r=|x-c| / R$. If $r<1$ the series absolutely converges. If $r>1$ it diverges. Equivalently $|x-c|<R$ and $|x-c|>R$ respecfively. In other words the center of the interval of convergence, if it converges, is c and the radius is R.

Theorem 5.4 (Radius of concergence) $\operatorname{let} P(x-c)=\sum_{i=0}^{\infty} a_{i}(x-c)^{i}$ be a power series. There is an R such that $0 \leq R \leq \infty$ such that the series convexges absolutely for $0 \leq|x-c|<R$ and diverges for $0 \leq|x-c|>R$. Furthermore, if $0 \leq r<R$, then the power seriecconverges uniformly on the interval $|x-c|<r$ and the sum of the series is then continuous in $|x-c|<R$.

Proof. Let w.l.o.g. $c=0$. otherwise replace x whth $x-c$. Say that $\sum_{i=0}^{\infty} a_{i} y^{i}$ converges for some $y \in R$ with $y \neq 0$. Its terms would then convere to zoro andthey ould be bounded and there would exist a $B \geq 0$ such that $\left|a_{n} y^{n}\right| \leq B$ for $n=0,1, \ldots$ If $|x| \in|y|$ thene

where $r=\frac{y}{y}$ < Comparing $B(x)$ with $\sum B e^{n}$ we conclude that $P(x)$ is convergent; if the power series converges for some $y \in R$ thentit converges absolutely fonc very $<\in R$ with $|x|<|y|$.

Let $R=\sum\left\{|x| 0: \delta a_{i} x^{i}\right\}$ RQvergas. If $R+0$ then the series converges for $x=0$. If $R>0$ then series converges absolutely for each R wit $|x|<R$ becaषse it converges for some $y \in R$ with $|x|<|y|$. By definition the series diverges for each $x \in R$ with $|x| \mathcal{X} R$. If $\mathcal{R}=\infty$ then the series converges for all $x \in R$. Let $0<b<R$ and let $|x| \leq b$. Choose a $c>0$ such that $b<\sigma^{2} R$. Rhen $\sum\left|a_{i} c^{i}\right|$ converges, so $\left|a_{i} c^{i}\right| \leq B$ and then

$$
\left|a_{i} x^{i}\right|=\left|a_{i} c^{i}\right|\left|\frac{x}{c}\right|^{i} \leq\left|a_{i} c^{i} \| \frac{b}{c}\right|^{i} \leq B r^{i}
$$

whewre $r=b / c<1$. Since $\sum B r^{i}<\infty$ the series converge uniformly for $|x| \leq b$ and the sum is continuous on $|x| \leq b$. Given that this holds for each $0 \leq b<R$, the sum is continuous in $|x|<R$.

Theorem 5.5 (Power series convergence). A power series $P(x-c)$ with center c

$$
P(x-c)=\sum_{i=0}^{\infty} a_{i}(x-c)^{i}
$$

if it converges for $|x-c|<R$ and diverges for $|x-c|>R$ then $0 \leq R \leq \infty$ is called the radious of convergence of the power series.

Theorem 5.6. Suppose that $a_{i} \neq 0$ for all sufficiently large i and the limit

$$
R=\lim _{i \rightarrow \infty}\left|\frac{a_{i}}{a_{i+1}}\right|
$$

exists or diverges to infinity. The $P(x-c)$ has radius of convergence R.
Proof. Let

$$
r=\lim _{i \rightarrow \infty} \frac{a_{i+1}(x-c)^{i+1}}{a_{i}(x-c)^{i}}|=|x-c| \lim | a_{i+1} / a_{i}
$$

The power series converges if $0 \leq r<1$ or $|x-c|<R$ and diverges if $1<r \leq \infty$ or $|x-c|>R$.

Theorem 5.7. The radius of convergence R of $P(x-c)$ is

$$
R=\frac{1}{\limsup }\left|a_{i \rightarrow \infty}\right|_{i}^{1 / i}
$$

where $R=0$ if the limsup diverges to ∞ and $R=9$ if. $\lim \sum$ is 0 .
Proof. Let

$$
r=\operatorname{din} \sup \left|a_{i}(x-c)^{i}\right|^{1 / i}=|x-c| \lim \sum a_{i}^{1 / i}
$$

The series converges for $0 \leq r<1$ (r) $|x-c|<R$ and diverges for $1<r \leq \infty$ or $|x-c|>R$.

Example 5.9. The series

has radius of convergence $\left.R=Q^{2}=\operatorname{lin}\right) / q / 1 /(i+1)=1$. At $x=1$ it is the harmonic series which diverges, at $x=-1$ it is the alternating harmoning seri@ that converges but not absolutely.
Example 5.11. The series

$$
K(x)=\sum_{i=0}^{\infty}(1 / i!) x^{i}
$$

has radius of convergence $R=1=\lim 1 / i!/ 1 /(i+1)!=\infty$. It converges for all $x \in R$. It is $\exp (x)$.
Example 5.12. The series

$$
K(x)=\sum_{i=0}^{\infty}(1 / i!) x^{i}
$$

has radius of convergence $R=1=\lim 1 / i!/ 1 /(i+1)!=\infty$. It converges for all $x \in R$. It is $\exp (x)$.

5.11 Exercises

Exercise 5.1. The following series is given. Examine the radius and interval of convergence.

$$
L(x)=\sum_{i=0}^{\infty}(x+4)^{i}
$$

Proof. Apply the ratio test considering x a fixed value.

$$
\lim _{i \rightarrow \infty}\left|\frac{(x+4)^{i+1}}{(x+4)^{i}}\right|=|x+4|<1
$$

The radius of convergence is 1 . The interval of convergence $|x+4|<1$ implies $-1<x+4<1$ implies $-5<x<-3$. Thus in this interval it converges absolutely. We test the two endpoints -5 and -3 . For $x=-5$ we have $L(-5)=$ $\sum(-1)^{i}$ and the series diverges. For $L(-3)=\sum 1$ and it also diverges. Thus there is no conditional convergence.

Chapter 6

Counting

6.1 Rules of sum and product

Definition 6.1 (Rule of Sum principle). If event A can occur in a different ways, and another event B can occur in b different ways, and suppose those two events canker occur simultaneously, then one or the other can occur in $a+b$ ways. That is event A or B can occur in $a+b$ (खy)s.
Definition 6.2 (Rule of Product principle). If event A can occur in a ways, and event B can occur in b ways, and suppose those two events are independer each other, the combination of those event can occur in $a \times b$ ways. That is event A and B can occur in $a \times b$ ways.

The two principles are generxizable to more than two events.
Reminding ourselves that and $c(A)$ is the cardinality of set A, and we will be using the latter in the remainder we have the following.
Proposition 6.1 (Rul6ot Sumprincipfe). Lent and B be fao disjoint sets. Then

Proposition 6.2 (Ryle of Roductprinciole). LeA and be two sets and let $A \times B$ be its cartesian product. Then

6.1.1 Examples

Example 6.1. A student heedsolo chose a Science elective. The Physics Department has 3 appropriate ones, the Biology Department has 4. The stumer t have 7 choices.
Example 6.2. A digit is one of 0-9. A lower-case char is one of a-z. An upper-case char is one of A-Z. A char is upper-case or lower-case. By the rule of sum we have $26+26=52$ possible outcomes for a char. An alphanumeric digit is a char or a digit. By the rule of sum we have $26+26+10=62$ possible outcomes. A two digit number by the rule of product has 100 outcomes.

Example 6.3 (Rule of Sum for 3). Suppose that YWCC has 10 CS courses, 5 IS course, and 3 IT courses. The number of ways a student can choose just one of the courses (CS or IS or IT) is $10+5+3=18$.

Example 6.4 (Rule of Product for 3). Suppose that YWCC has 10 CS courses, 5 IS course, and 3 IT courses. The number of ways a student can choose one course from each program (for a total of three courses) is $10 \cdot 5 \cdot 3=150$.

Example 6.5. Given 3 English books, 5 CS book, and 7 Math books, in how many ways can we choose 2 books in different topics? $3 \cdot 5+5 \cdot 7+3 \cdot 7$.

Example 6.6. We throw two dice. What are the chances of getting an even number? Out of the 36 draws (6 per dice) half are odd-odd or even-even leading to an even sum. That is 18 out of 36 i.e. 50%.

Example 6.7. How many different bytes do we have? A byte is 8 bit. A bit is 0 or 1 . Thus by the rule of sum (principle) we have 2 possibilities for a bit. By the rule of product (principle) we have $2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2=256$ possibilies. Thus a byte has 256 possible values.

Example 6.8 (Rule of Sum and Rule of Product for many). A student needs to choose a Science elective as before and a course from the Math Department. The Physics Department has 3 appropriate ones, the Biology Department has 4, and the Chemistry Department 2. The student have 9 choices. There are five choices for a Math course, and also two choices for a Statistics course from the Math Department. Now the combination of 1 Science Dept and 1 Math Dept course can occur in $(3+4+2) \times(5+2)=63$ ways.

Example 6.9. We have n objects say $\{1,2, \ldots, n\}$. What is the number of subsets of this set of n objects?
Proof. Let s_{i} map to choosing or not choosing i. We have 2 choices for s_{i}. For all s_{i} i.e. for the number of subsets by the rule of product we have $2 \cdot 2 \cdot \ldots \cdot 2=2^{n}$.

Example 6.10 (Counting the Complement). How many 3-char strings have a letter repeated if the allowable characters are $\{a, b, c, d\}$.

Proof. We want to find the cardinality of A. Sprietimes A is difficult to compute. A better approach is find U and A^{\complement} and use $c(A)=c(U)-c\left(A^{\complement}\right)$. For a --- thete are four character candidates for the first - , and so on for the second, third -. This defines U and $c(U)$. There are 4^{3} strings of three characters from the set. This means $c(U)=4^{3}$. Now let us find out the number of strings that DO NOT contain a duplicate character (i.e. $a a b$ is not allowed.) This way we will establish A^{\complement} and $c\left(A^{\complement}\right)$ We have 4 choices for the first - , but then 3 choices (remaining ones) for the second - and just two choice (the unused ones) for the third - , for a total of $4 \cdot 3 \cdot 2=24$. Thus $c\left(A^{\complement}\right)=24$. A simple subtraction shows $c(A)=c\left(L O \sigma^{-} c\left(A_{0}^{\complement}\right)=4^{3}-24=40\right.$.

6.2 Factorial and identities

Definition 6.3 (Factorial reminder). The factorial function is defined as follows: $f(n)=n$! and reads " n factorial". Note that $f(0)=0!=1$ and $f(1)=1!=1$. Moreover $f(n)=n \cdot f(n-1)=n \cdot(n-1)!$.

Fact 6.1 (Stirling's approximation). For $n>10$, we have $n!\approx \sqrt{2 \pi n}(n / e)^{n}$ A better approximation is

$$
(n / e)^{n} \sqrt{2 \pi n} e^{1 /(12 n+1)} \leq n!\leq(n / e)^{n} \sqrt{2 \pi n} e^{1 /(12 n)}
$$

Fact 6.2.

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!},
$$

The following is immediately derived if we rearrange (swap) in the denominator above k ! and ($n-k$)!.
Fact 6.3.

$$
\binom{n}{k}=\binom{n}{n-k}
$$

Proof. One can prove such a fact directly or by combinatorial intepretation. Suppose we have n distinct objects. Suppose we label the objects $1, \ldots, n$. We can ask in how many ways can we pick k distinct object out of n and the answer is $\binom{n}{k}$. We have n ways to pick the first object, $n-1$ ways to pick the second object (having made the selection of the first), and so on, $(n-k+1)$ to pick the object. However with this method we count the same collection $k!$ times. Whether we pick say three objects in this sequence $2,1,3$ or that sequence $3,2,1$ or etc is immaterial as the outcome in all 6 available possibilities draws to picking objects 1,2 , and 3 . Thus we need to divide the product $n \cdot(n-1) \cdot \ldots \cdot(n-k+1)$ with $k!$. Theresult follows if we multiply numerator and denominator with $(n-k)!$.

To prove the left hand side is eqaal to the right hand side then becomes trivial. Picking k of n objects is equivalent to assigning a label 'Picked' to $火$, out of n objects. This can be done in $\binom{n}{k}$ by the previous argument. However an alternative is to assign to n. ${ }^{\prime}$ out of the n objects the lable 'Unpicked'. This can be done in $\binom{n}{n-k}$. But then the objects without an 'Unpicked' lake Pare assignedthe 'Picked' label. Thus the number of way to pick k objects out of n is equal to the numbeco waig to ughick $n j$ objects out of n (and then the not-unpicked objects are subsequently picked).

Fact 6.4.

Using mathematical ipduction the downing can be proven. It is the general form of the Binomial Theorem.
Fact 6.6.

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

The latter is derived for $a=b=1$.
Fact 6.7.

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

For $a=-1$ and $b=-x$ and $n=-n$ we have

Fact 6.8.

$$
(-1-x)^{-n}=\sum_{k=0}^{n}\binom{-n}{k}(-1)^{k}(-x)^{-n-k} .
$$

By simple math manipulations the following can then be proven. This is the basis used in the Pascal Triangle to determine the coefficient of $a^{k} b^{n-k}$ i.e. $C(n, k)$ from the coefficients of $C(n-1, k)$ and $C(n-1, k-1)$. Note $C(n, k)=\binom{n}{k}$.

Fact 6.9.

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1} .
$$

Proof. Let us call the objects $1, \ldots, k$. Let us consider object 1 . When we choose k out of n objects 1 can be picked or not.

Case 1 (object 1 is not picked). Then the number of ways of picking k objects out of n is to not-pick 1 and pick k objects out of the remaining $n-1$ ones (objects $2, \ldots, n$. The latter can be done in $\binom{n-1}{k}$ ways.

Case 2 (object 1 is picked). Then the number of ways of picking k objects out of n is to pick 1 and then pick $k-1$ objects out of the remaining $n-1$ ones (objects $2, \ldots, n$. The latter can be done in $\binom{n-1}{k-1}$ ways.

By the rule of sum the results follows.

6.3 Permutations and Combinations

A set of n objects means those objects are by default distinct by way of the definition of a set.
Theorem 6.1 (Permutation). Any arrangement of a set of n objects in a given order is defined as a permutation of those objects. There are $P(n)=n$! permutations of n objects.

Proof. Let the objects be $1,2, \ldots, n$ and we want to fill $x_{1} x_{2} \ldots x_{n}$. There are n choices (possibilities) for x_{1}. Having committed on one, there are only $n-1$ possibilities for x_{2} and so on. For x_{1} there is only one possibility. The number of permutations possible is $n \cdot(n-1) \cdot \ldots \cdot 2 \cdot 1=n!$.

Let $P(n, k)=n(n-1)(n-2) \ldots(n-k+1)$.
Theorem 6.2 (k-Permutation). Any arrangement of any k of a set of n objects, $k \leq n$ in a given order is defined as a k-permutation of those objects. There are $P(n, k)=n!/(n-k)!k$-permutations of n objects.

Proof. Think of filling k Rooms $R_{1}, R_{2}, \ldots, R_{k}$ with one person each; each person is labeled $1, \ldots, n$. For the first room R_{1} we have n choices; when we move to R_{2} we are left with $(n-1)$ choices since one of n has already booked into R_{1}. For R_{3} we have only $n-2$ choices, and so on. Thus for room R_{i} we have $(n-i+1)$ choices. By the multiplication principle for the k rooms $R_{1}, R_{2}, \ldots, R_{k}$ i.e. $\prod_{i=1}^{i=k}(n-i+1)=n(n-1) \ldots(n-k+1)$.
Definition 6.4 (Permutations with Repetitions) number of permutations of n objects that are not distinct and there are n_{1} instances of one type, n_{2} of anothetype, \ldots, n_{k} of another type is $P\left(n ; n_{1}, \ldots n_{k}\right)$

$$
P\left(n ; n_{1}, \ldots n_{k}\right)=\frac{n!}{n_{1}!n_{2}!\ldots n_{k}!}
$$

Proof. Treat the objects distinctirst. There are n ! permutations p. But there n_{1} objects of the first type and are thus not distinct. Any of the n_{1} ! ofeering of those objects in p is the same as any other one. Thus we adjust by dividing n ! by n_{1} ! and we have reduce the nuinber of permutations down to $n!/ n_{1}$!. We continue similarly.
Example 6.11. If we bave $1, \frac{8}{3}$ its permations are $(\mathbb{1}, 2,3)_{\infty}(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)$. But if we
 three permutations:

 k-combinations $C\left(n^{*}, k\right)$ is kms
为

Proof. The number of permutations out of n is $P(n, k)$. For a given subset of k objects the k ! permutations of them should be counted once in a combingtion not $k!$. Thus $C(n, k)=P(n, k) / k!$.

$$
\begin{gathered}
C(n, k)=C(n, n-k) \\
C(n, k)=C(n-1, k)+C(n-1, k-1)
\end{gathered}
$$

Function $C(n, k)$ has some important properties. $C(n, k)=C(n, n-k)$. Picking k out of n we are left with $n-k$ in the original pile of n objects. Thus picking k out of n also defines a combination of $n-k$ objects out of n.

For the next identity we can prove it by interpretation and by using induction (on $n-1$ objects twice for two different 'k's!). Pick one object say 5. Each combination among the $C(n, k)$ either contains 5 or does not contain 5. The number of combinations that do not contain 5 is $C(n-1, k)$: number of combinations to pick k objects out of the remaining $n-1$ after 5 is excluded. The number of combination that contain 5 is $C(n-1, k-1)$: one of the objects in the k combination is 5 and thus we need to fill the remaining $k-1$ positions from the remaining $n-1$ objects and we have $C(n-1, k-1)$ ways to do so. Some people refer to the identity as Pascal's identity (lemma).

Definition 6.6 (Catalan number). The n-th order Catalan number, $n \geq 1$, is defined as follows. ($C_{0}=1$.)

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}=\binom{2 n}{n}-\binom{2 n}{n-1}
$$

Definition 6.7 (Sampling with replacement of k objects). A set contains n objects. We choose k objects from the set with replacement (the object removed is replaced). The product rule confirm that the number of samples is

$$
n \cdot n \cdot \ldots \cdot n=n^{k}
$$

Definition 6.8 (Sampling with out replacement of k objects). A set contains n objects. We choose k objects from the set without replacement. The product rule confirm that the number of samples is

$$
P(n, k)=n \cdot(n-1) \cdot \ldots \cdot(n-k+1)=n!/(n-k)!
$$

Definition 6.9 (Circular Permutations). In such a set up we arrange the n elements of a set along / around a circle. There is no notion of first or last anymore. The number of ways is $(n-1)$!. (We put object 1 in an arbitrary position. The remaining $n-1$ objects generate ($n-1$)! permutations.)

Definition 6.10 (Lexicographic order). Let $a=a_{1} a_{2} \ldots a_{m}$ and $b=b_{1} b_{2} \ldots b_{n}$ be two stings over $\{1,2, \ldots, n\}$. We say a is lexicographically less than b and write $a<b\rangle$.

- either $m<n$ and $a_{i}=b_{i}$ for $i=1$
- or for some $i, a_{i} \neq b_{i}$ and for the mallest such $i, a_{i}<b_{i}$.

6.3.1 Examples

Example 6.12 (Permutations 86 three). Let A, B, C be three objects. We have 3! permuations of them namely, $A B C$, $A C B, B A C, B C A, C A B, C B A$. Fo vare objects permutations are of the pattern xyz. There are three choices for x (A, B, or C). Having picked a choice fex, there 3-1 choices for y (the remaining two not used for x). Having picked
 works better. xP(- 1). AOr theforst leter witon chodes. Theremaining $n-1$ positions $P(n-1)$ will be filled by the
 objects is $00^{2}=10^{\circ}$
Example 6.13)(2-permutations of three). Rot A, Bé be three objects. We have the following 2-permutations of those three objects: $A B, \triangle B A, A C, C A, B C, C B, S u p p$, we have n objects and we want to find the k permutations of them. Each k permutation iof thg patteg $p_{1} p_{2} . p_{k}$. For p_{1} there are n choices of the n objects. Having picked p_{1}, we are left with $n-1$ choices for p_{2}, \boldsymbol{q}_{3} having picked a choice for p_{2} we are left with $n-2$ choice for p_{3} and working this out similarly we goe left, inth $(n-k+1)$ choices for p_{k}. Thus the number of k-permutations of n objects is $P(n, k)=n \cdot(n-1) \cdot(n-1$ + 1) $\boldsymbol{\nabla}!$!/($n-k)$!. Moreover $P(n, n)=n!$ so it works also for permutations (which are n-permutations)!

Example 6.14 (Permutations with repetitions). Consider you are given YWCC. What are all possible four-letter words than can be formed?

$$
P(4 ; 1,1,2)=\frac{4!}{1!1!2!}=3 \cdot 4=12
$$

YWCC, YCWC, YCCW, WYCC, WCYC, WCCY, CYWC, CWYC, CWCY CYCW, CCYW, CCWY
Example 6.15. (a) For the three letter A, B, C set. We fix A in position 1 . Then we have two choices for B, C either $B C$ or CB. Thus ABC and ACB are the circular permutations.
(b) For the three letter A, B, C set let us consider the 3! permutation answer. Three of those permutations: $A B C, C A B$ and $B C A$ are the same circular permutation. So are the other three $A C B, B A C$, and $C B A$. Thus There are only two circular permutations represented by $A B C$ and its 'reverse' (back to forth) CBA.
(c) Finally a circular permutation distinguishes between 'back' and 'forth' or clockwise and counter clockwise. If there is not difference $A B C$ and $A C B$ are also the same Thus for the general case we have $(n-1)!/ 2$ circular fullduplex permutations. (d) How many 5 digit number can be formed using the digits $1,1,2,3,3$? $5!/(2!2!)$ is an obvious answer.
(e) How many 5 digit number can be formed using the digits $1,1,0,3,3$? 5!/($2!2!)$ is an obvious answer but for a 0 at the front it becomes a 4-digit number. We need to subtract these from the total: they are $4!/ 2!2!$. Thus $5!/(2!2!)-4!/ 2!2$!.

Example 6.16. There are m different postcards and n diferent friends. (a) The number of ways of sending cards to friends is m^{n} or $(m+1)^{n}$ if one option is to NOT send a card. (b) The number of ways of sending distinct cards to friends is $m(m-1) \ldots(m-n+1)=m!/(m-n)!$.

Example 6.17. Number of 5-bit sequences with 2 ones and 3 zeroes is $\binom{5}{2}=\binom{5}{3}$. (You select the two positions that will be set to one; the other three will be set to zero.)

Example 6.18. Let $A=\{a, b, c, d\}$ and $B=\{1,2,3,4,5,6\}$. Find the number of functions $f: A \rightarrow B$ that are not 1-1.
Proof. The number of functions from A to B is at $6 \cdot 6 \cdot 6 \cdot 6=6^{4}$. The ones that are $1-1$ there are $6 \cdot 5 \cdot 4 \cdot 3=360$ Subtract and you have the answer.

Example 6.19. Find the 25 -th permutation in leaiedgraphic order of the elements of the set $\{1,2,3,4,5\}$.
Proof. The first $4!=24$ permutations in kexicographic order start with an 1 . Thus the 25 -th starts with a 2 . It is 2134.

Example 6.20.
(a) Number of combinations of (a)bjects out of n is $C(n, n)=P(n, n) / n!=n!/ n!=1$ obviously.
(b) Number of combinationsioione object out of n is $C(n, 1)=n$.

Example 6.21 (Combinationscoit 2 objects $0 \dot{1} \dot{y}$ of 3). Let $4, B, C$ be three objects. We have found previously that the
 rise to combination $\{A, B\}$, and Therefore $P(2,2) / 2!3$ is the number of esmbinvons at 2 objects out of 3.
Example 6.22 180 mbin antrons There thre thee pile of 5 20-dollar bills, 6 10-dollar bills, and 7 5-dollar bills. We are

$$
\binom{5}{3}\binom{6}{4}\binom{7}{5}
$$

Example 6.23. We have a bit sequedre consisting of 30 s and thus $51 s$. The number of such bit sequences is $\binom{8}{3}=\binom{8}{5}$.
Example 6.24 (n-bit sequences with no two consecutive ones). Let f_{n} be the number of n bit sequences with no two consecutive ones. If the left-most bit is 0 the remaining $n-1$ bit can give rise to $f_{n-1}(n-1)$-bit sequences with no two consecutive ones by induction. If the left-most bit is a 1 the next second from left bit MUST be a zero, and the remaining $n-2$ bit can give rise to $f_{n-2}(n-2)$-bit sequences with no two consecutive ones by induction. The sum rule gives $f_{n}=f_{n-1}+f_{n-1}$. Beware! $f_{1}=2$ since 0,1 are valid. Moreover $f_{2}=3$ since $00,01,10$ are valid but not 11. The Fibonacci sequence is $F_{n}=F_{n-1}+F_{n-2}, F_{0}=0, F_{1}=1$ and $F_{2}=1, F_{3}=2, F_{4}=3$. Thus $f_{n}=F_{n+2}$!

Example 6.25 (Binomial Theorem). Let n be a positive integer. Then for all x, y we have

$$
(x+y)^{n}=\sum_{k=0}^{k=n}\binom{n}{k} x^{k} y^{n-k}
$$

Proof.

$$
(x+y)^{n}=\overbrace{(x+y)}^{\text {1st term }} \cdot \overbrace{(x+y)}^{\text {2nd term }} \cdot \overbrace{(x+y)}^{\text {3rd term }} \cdot \ldots \cdot \overbrace{(x+y)}^{\text {n-th term }} .
$$

In order to form $x^{k} y^{n-k}$ we multiple the x of any k of the n terms that each one of them is $x+y$ with the y of the remaining $n-k$ terms that each one of them is $x+y$. Thus if we use the x from the first term and all $n-1$ remaining $y \mathrm{~s}$, and x of the second term and all remaining y s and so one we have formed $x^{1} y^{n-1}$ in $n=\binom{n}{1}$ possible ways.

Another way to interpret this is by string formation. Strings would represent multiplications. The terms are x or y. There is only one way to generate the all-x string of length n. Likewise for the all-y string of length n. But how many strings do we have that have $k x$ and $n-k y$? It is $C(n, k)=\binom{n}{k}$.

Example 6.26. Show that

$$
\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\ldots+\binom{n}{k}+\ldots+\binom{n}{n}=2^{n}
$$

by combinatorial interpretation.
Proof. 2^{n} maps to the number of subsets of a set of n distinct objects. Each $\binom{n}{k}$ gives the number of subsets with k out of the n objects.

Example 6.27. Show that

$$
\binom{n+m}{k}=\binom{n}{0}\binom{m}{k}+\binom{m}{k-1}+\ldots+\binom{n}{i}\binom{m}{i-1}+\ldots+\binom{n}{k}\binom{m}{0}
$$

by combinatorial interpretation.
Proof. Two types of objects, n of A and m of type B. Choose k out of the $n+m$ of them.
Example 6.28. Show that (n)
Proof. Consider $n=3$. SQow 6 div dided by ${ }^{2}$. Consider $n=4$. Show 24 ! is divided by 24^{6}.
If we have n ! objects andafe divide thentinto $(y-1)$ sets of size n each set being of the same kind completes the proof.
Example 6,29. Shou tha
远
Proof. Number of ways to splft n ogects ion three groups of $k, m-k$ and $n-m$ objects.
Example 6.30. Show that

$$
\text { o } 1!+2 \cdot 2!+\ldots i \cdot i!+\ldots n \cdot n!=(n+1)!-1
$$

by combinatorial interpretation.
Proof. The right hand side gives a hint. It is the number of permutations of $(n+1)$! objects excluding the identity permutation. Then $i \cdot i$! is the number of permutations where $p_{i+2} \ldots p_{n+1}$ are in place but p_{i+1} is not.

Example 6.31 (Vandermonde Theorem). Let p, q, r be non-negative integers with $r \leq p$ and $r \leq q$. Then

$$
C(p+q, r)=\sum_{i=0}^{i=r} C(p, i) \cdot C(q, r-i)
$$

Proof. We prove by combinatorial interpretation. Say we have p red labeled objects, and q blue labeled objects. (Labels are distinct.) In how many combinations can we pick r out of the $p+q$ objects? In an r combination i objects are red and thus $r-i$ objects would be blue. Fill-in the details. The answer is $C(p+q, r)$.

Example 6.32 (Password Insecurity). A computer has a weird password policy. A password is 7 or 8 characters. A character is lower-case letter or a digit. Each password must have at least one digit. What is the total number of passwords for an attack vector?

Proof. Let A_{7} be the number of 7 char passwords. Likewise A_{8}. The number of 7 char passwords that are all lower case is 26^{7} and these are impermissible (forbidden). Thus $A_{7}=36^{7}-26^{7}$. Likewise $A_{8}=36^{8}-26^{8}$ and thus the answer is $A_{7}+A_{8}$.

Example 6.33 (Grid climbing). We are on the cartesian $\mathbb{Z} \times \mathbb{Z}$ plane, and in particular at $(0,0)$. We want to climb to $(4,4)$. Each step we can take can be forward or up thus from (i, j) we can move to $(i, j+1)$ or $(i+1, j)$. In how many ways can we reach our destination? We need 8 steps 4 up steps and 4 right steps. Thus the problem can be simplified into a 8 long string of $4 U$ for up and $4 R$ for moving to the right. Possible solutions are UUUURRRR, URURURUR, RURU RUR, and so one. Answer is $8!/ 4!4!=C(8,4)$.
Example 6.34 (Grid climbing). We are on the cartesian $\mathbb{Z} \times \mathbb{Z}$ plane, and in particular at $(0,0)$. We want to climb to (n, n). Generalizing the previous solution the answer is $C(2 n, n)=(2 n)!/ n!n!$.

Note that i am decluttering the denominator by avoiding parentheses: $n!n!$ should have been ($n!n!$).
Example 6.35 (Grid climbing). We are on the cartesian $\mathbb{Z} \times \mathbb{Z}$ plane, and in particular at $(0,0)$. We want to climb to (n, n). How many ways are there under the restriction that we never cross (go beyond the diagonal). (That is touch (i,i) are OK.)
Proof. We have good and bad routes with thetotal $G_{n}+B_{n}=C(2 n, n)$. If we have a bad route, we find the first time the diagonal is crossed on the way up. Wettién flip the directions of the path until we reach the end or we have a further violation, by turning from that point onan up move into a right move and a right move into an up move. If the cross was at (i, i) the new path has an edgefrom (i, i) to $(i+1, i)$. Up to that point we had $i+1$ up moves and i right moves. The remainder of the path has $n-1$ up and $n-i$ right moves. We flip the directions of the path after the crossing of the diagonal. The $n-i-1$ dpbecome $n-i-1$ right moves, and the $n-i$ right moves become up moves. Adding to them the original $i+1$ upind i right moves we get a total $n-i+i+1=n+1$ up moves and $n-i-1+i=n-1$ right moves. The new path the original from $(\underset{\sim}{2}, 0)$ to $(i, i+1)$ and the flipped from $(i, i+1)$ to $(n-1, n+1)$). The

Example 6.36 (Complicated combinations). We have a candy shop with 4 types of candies. We have vanilla, chocolate, strawberry, and banana candies (V, C, S, B). In how many ways can be pick 5 candies? We could pick VVVVV, VVCSB, SSSSS, BBBCC, and so on. Counting is not easy. We would list the candies namelessly representing one instance with 1 on a line first V, then C, then S, then B In betwen there would a bar used as a separator Thus $11|1| 1 \mid 1$ represents VVCSB and $11111||\mid$ represents $V V V V V$, and $| 11| \mid 111$ representing CCBBB. Thus we have 5 one (number of candies) and 3 separators (number of candy types minus -1). The total string length (of ones and vertical bars) is thus $5+3=8$. We need to figure out the number of ways we can place the 3 bars, in fact turning 8 ones into 5 ones and 3 bars. This is $C(8,5)=8!/ 5!3!=56$. In general if the number of candy types is T and we pick D of them, the number of ways we can pick them is $C(D+T-1, D)$.

Example 6.37. How many integers $0 \ldots 9999$ do not contain 9 ? $\left(10^{4}-1\right)-\left(9^{4}-1\right)=10^{4}-9^{4}$.
Example 6.38. Number of n-bit sequences that have even number of $0 s$? Number of n-bit sequences that have odd number of 0 s? Number of n-bit sequences that have even number of 1 s? Number of n-bit sequences that have odd number of $1 s$? The answer is 2^{n-1}.

Example 6.39 (Catalan number applications). The Catalan number of order $(n+1)$ is associated with the different number of full binary trees with $n+1$ leaves.

Proof. (Short diversion: a binary tree is a rooted and ordered tree. Rooted means a node is designated as the root. Ordered means the children of a node are labeled left vs rights. And it is a binary tree in the sense that a node can have 0,1 or 2 children. A full binary tree is one where every node has 0 children, i.e. it is a leaf, or it has exactly two children.)

Thus $C(0)=1, C(1)=1$ and $C(2)=2$ (see examples below). For $C(n)$ the number of trees is the number of trees with a left subtree containing i leaves (and by induction the number of such subtrees is $C(i-1)$) and a right subtree containing $n-i$ leaves (and by induction the corresponding number is $C(n-i-1)$ for every i from 1 to n. (Note that we can not have an empty subtree as the root must have two children or the definition of a full binary tree gets violated.)

Some preliminary work. Let $C(x)$ be the o.g.f of c_{n}. Then

We compute $C(x) * C(x)$.

$$
C(x)=\left(\sum_{n=0}^{\infty} c_{n} x^{n}\right) \cdot\left(\sum_{n=0}^{\infty} c_{n} x^{n}\right)=\sum_{i=0}^{i=n} c_{i} \cdot c_{n-i} x^{n}
$$

Therefore $C(x) * C(x)$ is theg.g.f of $\sum_{i=0}^{i=n} c_{i} \cdot c_{n-i}$
Thus $C(0)=1$ and $\mathrm{f} \mathrm{O},{ }^{2}>0$ oue hâe.

By the binomial theorem

$$
(1-4 x)^{1 / 2}=1-2 \sum_{n=1}^{\infty}\binom{2 n-2}{n-1}\left(-\frac{1}{4}\right)^{n} \frac{(-4 x)^{n}}{n}
$$

Subtracting it from 1 and dividing by $2 x$ the desired result is derived.

Let us examine now the number of non-isomorphic binary trees with n vertices.

Let $C(n)$ be the number of non-isomrphic binary trees with n nodes. If we have n vertices one becomes the root. The left subtree can have i generating by indudtion $C(i)$ non-isomorphic trees, and the right side $n-1-i$ with $C(n-$ $i-1)$ trees. The total number is then $C(n)=\sum_{i=0}^{n-1} C(i) C(n-i-1)$. if we change n to $m+1$ we have $C(m+1)=$ $\sum_{i=0}^{m} C(i) C(m-i)$. The if we change the name m back to n we have, $C(n+1)=\sum_{i=0}^{n} C(i) C(n-i)$. This is the first derivation in the previous proof thatchows $C(n)$ is the n-th Catalan number.

6.4 Distributions

This selection of problems deal with the distribution of m distinct or indistinct objects into n distinct or indistinct bins.
Definition 6.11 (Distinct objects, Distinct bins). The number of ways to distribute m distinct objects into n distinct bins is n^{m}.

Definition 6.12 (Order in bins irrelevant). The number of ways to distribute m distinct objects into n distinct bins is

$$
\frac{(n+m-1)!}{(n-1)!}
$$

Definition 6.13 (InDistinct objects, Distinct bins). The number of ways to distribute m indistinct objects into n distinct bins is

$$
\frac{(n+m-1)!}{(n-1)!\cdot m!}
$$

Definition 6.14 (Distinct objects, Indistinct bins). The number of ways to distribute m distinct objects into n indistinct bins is $S(m, n)$

$$
S(m, n)=S(m-1, n-1)+n S(m-1, n)
$$

which gives by induction

$$
S(m, n)=\frac{1}{n!} \sum_{i=0}^{m}(-1)^{i}\binom{n}{i}(n-1)^{m}
$$

Proof. We can combinatorially interpert this recurrence. Pick object 1. It becomes a bin thus the remaining $m-1$ objects are to be distributed over the Geemaining $n-1$ bins. Otherwise object 1 has n choices for a bin and the remaining $m-1$ objects can utilize any of ase n bins as well.

Definition 6.15 (Partition) 4 pqkimion is the allocation of indistinct objects into indistinct bins.
Example 6.40 (Partitions ofintegers). Inteser 5 has 7 partitions.

Example.f 4 (Pantitionsx.We hQe a ser of 8 thements We want to find the number n of ordered partitions of the set into three sets containinges, , belements respetivefy. Let the three sets be A_{1}, A_{2}, A_{3}. Since the set has 8 elements, A_{1} can be formed in $C(3)$ wos. Then A_{2} car be homed in $C(8-3,2)=C(5,2)$ ways and for A_{3} we have $C(3,3)=1$. Thus

If the partitions are unorderen $A_{1} A_{2} y_{3}$ but $A_{3} A_{2} A_{1}$ are the same we have

$$
n /(2!)=2 x 5 x 7 x 8 / 2=280
$$

6.5 Pigeonhole principle

Definition 6.16 (Pigeonhole principle). If n pigeonholes are occupied by $n+1$ pigeons then at least one pigeonhole has more than one pigeon.

6.5.1 Examples

Example 6.42. In a class of 8 students, we have two students born on the same day of the Week. (We don't know what day that might be though unless we ask.)

Example 6.43. In a class of 13 students, we have two students born in the same month.
Example 6.44. In a class of 32 students, we have two students born on the same date. (We are talking about Eartch months not Martian months that are longer than 31 days.)

Example 6.45. In a class of 101 students, we have two students born on the same year. (No jokes about it. All students are less than 100 years old.)

Example 6.46. In a class of 367 students, we have two students sharing a birthday! (Accounting for leap years.)

6.6 Inclusion-Exclusion principle

Definition 6.17 (Inclusion-Exclusion principle). For two finite sets A and B we have

$$
c(A \cup B)=c(A)+c(B)-c(A \cap B)
$$

Definition 6.18 (Inclusion-Exclusion principle). For three finite sets A, B and C we have

$$
c(A \cup B \cup C)=c(A)+c(B)+C(C)-c(A \cap B)-c(B \cap C)-c(C \cap A)+c(A \cap B \cap C)
$$

A member $a \in A$ is counted in $c(A)$. If it is a member of B it has been counted in $c(B)$ as well and thus we adjust by $-c(A \cap B)$. Likewise if a is part of C as well we adjust by $-c(C \cap A)$. However if a is part of all three sets we subtracted its presence three times with $-c(A \cap B)-c(B \cap C)-c(C \cap A)$ so we adjust by adding $c(A \cap B \cap C)$.

Definition 6.19 (Generalization of Inclusion-Exclusion principle). For n sets A_{1}, \ldots, A_{n} with $k_{1}=\sum_{i} c\left(A_{i}\right)$, with $k_{2}=$ $\sum_{i<j} c\left(A_{i} \cap A_{j}\right)$, with $k_{3}=\sum_{i<j<k} c\left(A_{i} \cap A_{j} \cap A_{k}\right)$,

$$
c\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right)=k_{1}-k_{2}+k_{3}-\ldots+(-1)^{m-1} k_{m}
$$

Moreover

$$
c\left(A_{1}^{\complement} \cap A_{2}^{\complement} \cap \ldots \cap A_{n}^{\complement}\right)=c\left(\left(A_{1} \cup A_{2} \not \cup^{\bullet} \ldots \cup A_{n}\right)^{\complement}\right)=|U|-k_{1}+k_{2}-k_{3}+\ldots+(-1)^{m} k_{m}
$$

6.6.1 Examples

Example 6.47. In a class of CS61Q 70 students know C, 20 students know C++, and 30 students know Java. 15 students know C++ and Java, 5 stidents know C and Java and 8 students know C and C++. 3 students know all three. What is the total number of sturents in the class? Let A be the C students, B be the $C++$, and C the Java students...

Example 6.48. Let U be thenset of sitivetnteges up thand including 100. Find the number of them which are not divisible by, $3,5,7$ The.sen divisigle hers is $\varepsilon(A)=33$. The set B dissible by 5 is $c(B)=20$ and likewise $c(C)=14$. Also $c(A \cap B)=6, c(A \cap C)=4, c(B \sim C)$. Mobsover $c(A \cap B \cap C)=0$. Thus

$$
C\left(A \complement B^{\complement}\right.
$$

Example 6.49 (Derangements or perngations). A derangement is a permutation where no object is in initial position. Thus for ABC, the dowigs are not DERANGEMENTS: ABC,ACB, BAC, CBA. However the following two permutations are derangements: $B C A, C A B$. For a permutation with n objects (say $1,2,3, \ldots, n$) Let A_{i} be the set of all permutations that fix i. Then $c\left(A_{i}\right)=(n-1)$!. Let $c\left(A_{i} \cap A_{j}\right)=(n-2)$! i.e. all permutations that fix i and j. Thus we want to compute
$c\left(A_{1}^{\complement} \cap A_{2}^{\complement} \cap \ldots \cap A_{n}^{\complement}\right)=n!-C(n, 1)(n-1)!+C(n, 2)(n-2)!+\ldots==n!\left(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\ldots+(-1)^{n} \frac{1}{n!}\right) \approx n!/ e$

6.7 Recurrences or Recurrence Relations

A recurrence or recurrence relation describes how one can obtain the n-th term of a sequence from prior terms of the sequence.

Definition 6.20 (Doubling). Let a sequence has its first term a 1. The next term is obtained by doubling the previous term. Thus if $a_{0}=1$, the $a_{1}=2 \cdot a_{0}, a_{2}=2 \cdot a_{1}$ and in general $a_{n+1}=2 a_{n}$ for $n \geq 0$. Equivalently $a_{n}=2 a_{n-1}$ for $n>0$ ie. $n \geq 1$. We can prove by induction that $a_{n}=2^{n}$ (and in this latter case $n \geq 0$).

Definition 6.21 (Arithmetic Progression). Let $a_{0}=b$ and let $a_{n}=a_{n-1}+s$ otherwise. The initial value b is known as the base case value or boundary value. The increment is know as the step s. The sequence generated is

$$
b, b+s, b+2 s, b+3 s, \ldots
$$

Thus $a_{n}=b+n$ stor $n \geq 0$, where $a_{0}=b$ and $a_{n}=a_{n-1}+s$ for $n>0$.
Method 6.1 (Forward chain). Let $a_{n}=a_{n-1}+s$ for $n>0$ and $a_{0}=b$. We can solve this recurrence using the forward chain method.

Proof.

$$
\text { d } \cdot t^{z}
$$

$$
\begin{aligned}
a_{0} & =b \\
a_{1} & =a_{0}+s \\
a_{2} & =a_{1}+s \\
& \ldots \\
a_{n-1}^{a} & =a_{n-2}+s \\
a_{n} & =a_{n-1}+s
\end{aligned}
$$

We add up athene equations. The number of equationsis $n+1$. The left hand side of equation (0) has an a_{0} that cancels with the efighthand side of equation (1 . Likewise for $a_{1}, a_{2}, \ldots, a_{n-1}$. Thus after all those cancellation on the left-handside are left with a_{n} and the tight hand side we are left with a b and several s from equation (1) through equation (at), a tot ar of arm. Thus

$$
a_{n}=b+n * s
$$

Method 6.2 (Backtracking chain). Let $a_{n}=a_{n-1}+s$ for $n>0$ and $a_{0}=b$. We can solve this recurrence using the backtracking chain known as backward substitution or the iteration method or the repeated substitution methods.

Proof. To compute a_{n}, a_{n-1}, a_{n-2} i.e. to generate the right hand-side of each one of these terms we substitute in the reccurence $n, n-1, n-2$ for n. Then we generate the following terms

$$
\begin{aligned}
a_{n} & =a_{n-1}+s \\
a_{n-1} & =a_{n-2}+s \\
a_{n-2} & =a_{n-3}+s
\end{aligned}
$$

We will be using these terms in the solution derived below.

$$
\begin{aligned}
a_{n} & =a_{n-1}+s \\
& =\left(a_{n-2}+s\right)+s \\
& =a_{n-2}+2 \times s \\
& =\left(a_{n-3}+s\right)+2 \times s \\
& =a_{n-3}+3 \times s \\
& \cdots \\
& =a_{0}+n \times s \\
& =b+n \times s
\end{aligned}
$$

We unfold the recurrence. To compute a_{n}, a_{n-1}, a_{n-2} i.e. to generate the right hand-side of each of these terms we subsitute in the reccurence $n, n-1, n-2$ for n. We repeat until we encounter on the right-hand side the base case a_{0} which is replaced by the base case value b obtained through the base case $a_{0}=b$.

$$
a_{n}=b+n * s
$$

Definition 6.22 (Geometric Progressiond Let $a_{0}=b$ and let $a_{n}=s a_{n-1}$ otherwise. The initial value b is known as the base case value or boundary value. Thes is know as the growth factor (multiplicative step). The sequence generated is

$$
b, b * s, b * s^{2}, b * s^{3}, \ldots
$$

We can solve the follwwing with forward chain like methagd We show how a backward chain works.
 chain metrod. e°

Proof.

$$
\begin{aligned}
a_{n} & =s a_{n-1} \\
a_{n-1} & =s a_{n-2} \\
& \cdots \\
a_{3} & =s a_{2} \\
a_{2} & =s a_{1} \\
a_{1} & =s a_{0}
\end{aligned}
$$

We multiply all equations. The topmost equation (1) has a a_{n-1} in its right-hand side that will cancel out with the left-hand side a_{n-1} of Equation (2). At the end we are left again with a_{n} on the left-hand side and $n s$'s and of course a_{0} which is b. Thus

$$
a_{n}=s^{n} b=b s^{n}
$$

Note that implicitly we assumed that all cancelled out terms were not 0 !

6.8 Linear Recurrences

Definition 6.23 (Recurrence Relation of order k). A recurrence relation of order k is a function of the form

$$
a_{n}=f\left(a_{n-1}, a_{n-2}, \ldots, a_{n-k}, n\right)
$$

Definition 6.24 (Linear Recurrence Relation of order k). A linear recurrence relation of order k is a function of the form

$$
a_{n}=f\left(a_{n-1}, a_{n-2}, \ldots, a_{n-k}, n\right)
$$

where $f\left(a_{n-1}, a_{n-2}, \ldots, a_{n-k}, n\right)$ is a linear function i.e.

$$
f\left(a_{n-1}, a_{n-2}, \ldots, a_{n-k}, n\right)=A_{n-1} a_{n-1}+A_{n-2} a_{n-2}+\ldots+A_{n-k} a_{n-k}+g(n)
$$

where $g(n)$ is a function of n, and A_{n-1}, \ldots, A_{n-k} are constant coefficients. If $f(n)=0$ is called homegeneous.
We can easily compute (calculate) a_{n} if all of $a_{n-1}, a_{n-2}, \ldots, a_{n-k}$ known and if available, $f(n)$ for a given n. Thus if we are given a sequence of k initial values, for the first k elements of the sequence the sequence can be computed.

Example 6.50 (Fibonacci). Let $f_{n}=f_{n-1}+f_{n-2}$ for $n>1$, with $f_{0}=0$ and $f_{1}=1$ for $0 \leq n \leq 1$ which can also be summarialy describes as $f_{i}=i$ for $0 \leq i \leq 1$. The Fibonacci sequence is a 2 -nd order linear and homogeneus recurrence since $f(n)=0$.

6.8.1 Solution of Linear Recurrences using the characteristic polynomial

Let

$$
\begin{equation*}
a_{n} \stackrel{2}{=} L_{n-1} a_{n-1}+L_{n-2} a_{n-2}+\ldots+L_{n-k} a_{n-k} \tag{6.1}
\end{equation*}
$$

be an order k homogeneous line recurrence where L_{i} are constant and $\neq 0$. In order to be able to find a solution, the values of a_{0}, \ldots, a_{k-1} misebe given and then we can compute a_{n} for all $n \geq k$. The characteristic polynomial (equation) is

The roots of $\phi(x)$ the atracteristic kods of the recurrence qeation.

6.8.2 Examples

Example 6.51. (a) $L \mathcal{L} a_{n}=\operatorname{dor}_{n-1} M a_{n+2}, L \neq 0, M \neq 0$. Then $a_{n}-L a_{n-1}-M a_{n-2}=0$, gives $\phi(x)=x^{2}-L x-M$. Let the roots be distinct $r_{1} r_{2}$. कhen $a_{n}=A \cdot r_{1}^{n}+B \cdot r_{2}^{n}$, where A, B can be computed from other information e.g. a_{0}, a_{1}.
(b) Let $a_{n}=3 a_{n-1}-2 a_{n-2}$. Let 1 (6) 1 and $a_{1}=2$. Then $\phi(x)=x^{2}-3 x+2$. We have $\phi(x)=(x-1)(x-2)$. Thus $r_{1}=1, r_{2}=2$ and $a_{n}=A \cdot 1^{n}+\mathcal{B} \cdot 2^{n}=A+B 2^{n}$.
Since $a_{0}=1=A+B 2^{0}=A+B$.
Since $a_{1}=2=A+B 2^{1}=A+2 B$.
By subtracting we derive $B=1$ and then $A=0$. Thus $a_{n}=2^{n}$. We can confirm that for $a_{n}=2^{n}$, we have

$$
a_{n}=3 a_{n-1}-2 a_{n-2}=3 \cdot 2^{n-1}-2 \cdot 2^{n-2}=3 \cdot 2^{n-1}-2^{n-1}=2 \cdot 2^{n-1}=2^{n} .
$$

(c) $a_{n}=4 a_{n-1}-4 a_{n-2}$, with $a_{0}=1, a_{1}=2$. Then $\phi(x)=x^{2}-4 x+4$. Thus the roots of $\phi(x)$ is 2 with multiplicity 2 . Therefore $a_{n}=A \cdot 2^{n}+B \cdot n \cdot 2^{n}$.
Since $a_{0}=1$ we have $a_{0}=1=A+B \cdot 0 \cdot 1=A$. Since $a_{1}=2$ we have $a_{1}=2=A \cdot 2^{1}+B \cdot 1 \cdot 2^{1}==2 A+2 B$ which implies $B=0$. Thus $a_{n}=2^{n}$. We confirm $a_{n}=2^{n}=4 \cdot 2^{n-1}-4 \cdot 2^{n-2}=2 \cdot 2^{n}-2^{n}=2^{n}$.
(d) The Fibonacci recurrence is solved next using a characteristic equation technique as well.

Example-Proposition 6.52 (Fibonacci). The solution f_{n} for $f_{n}=f_{n-1}+f_{n-2}$, for $n>1$, with $f_{0}=0$ and $f_{1}=1$ is given below.

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Proof. Let $F(x)=\sum_{i=0} f_{n} x^{n}$.

$$
F(x)=f_{0}+f_{1} x+f_{2} x^{2}+\ldots f_{n} x^{n}+\ldots
$$

The characteristic equation derived from the recurrence $f_{n}=f_{n-1}+f_{n-2}$ is $f_{n}-f_{n-1}-f_{n-2}=0$ i.e. $\phi(x)=x^{2}-x-1$ Let r_{1} and r_{2} be the two roots of $\phi(x)=0 . r_{1}=(1+\sqrt{5}) / 2$ and $r_{2}=(1-\sqrt{5}) / 2$. Then

$$
f_{n}=A r_{1}^{n}+B r_{2}^{n}=A\left(r_{1}^{n}-r_{2}^{n}\right)
$$

Give that $f_{0}=$ and $f_{1}=1$ we have that $0=A+B$ and $1=A r_{1}+B r_{2}$. This mean $B=-A$ and $1=A r_{1}-A r_{2}$. Then $A=1 / \sqrt{5}$ and $B=-1 / \sqrt{5}$. Further details are left out and can be worked out easily.

Example 6.53. Let $a_{n}=2 a_{n-1} a_{n-2}$. How do we solve it? It is not a linear recurrence. However, if we take logarithms, $\lg a_{n}=\lg _{a_{n-1}}+\lg _{a_{n-2}}+1$. Set $\lg a_{n}$ to A_{n} and we have $A_{n}=A_{n-1}+A_{n-2}+1$. The latter can become if we add +1 to both sides $A_{n}+1=\left(A_{n-1}+1\right)+\left(A_{n-2}+1\right)$. If $F_{n}=A_{n}+1$, we have $F_{n}=F_{n-1}+F_{n-2}$ a suspiciously familiar recurrence!

6.9 Generating Functions

Definition 6.25 (Ordinary Generating Function). Let $a_{0}, \ldots, a_{n}, \ldots$ be a sequence of real numbers. Then $A(x)$ defined as follows is known as the ordinary generating function (o.g.f.) of sequence $a_{n}(n \geq 0)$.

$$
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots
$$

We shall refer to $A(x)$ as simply the generating function of a_{n}.
Definition 6.26 (Exponential Generating Function). Let $a_{0}, \ldots, a_{n}, \ldots$ be a sequence of real numbers Then $A(x)$ defined as follows is known as the exponential generating function (e.g.f.) of sequence $a_{n}(n \geq 0)$.

$$
A(x)=a_{0}+a_{1} x+a_{2} \frac{x^{2}}{2!}+\ldots+a_{n} \frac{x^{n}}{n!}+\ldots
$$

Generating functions can be manipulated as formal power series.
Properties of Generating Functions.
Definition $6.27(\mathrm{~A}(\mathrm{x})$ and $\mathrm{xA}(\mathrm{x}))$. Let $a_{0}, \ldots, a_{n}, \ldots$ be a sequence of real numbers and let $A(x)$ be its ordinary generating function. Then $B(x)=x A(x)$ is the generating function of sequence $0, a_{0}, a_{1}, \ldots$ where $b_{n}=a_{n-1}$ for $n>0$ and $b_{0}=0$.

$$
\begin{aligned}
& A(x)=a_{0}+\cdots \\
& x A(x)=a_{2} x^{2}+\ldots+a_{n-1} x^{n-1}+a_{n} x^{n}+\ldots \\
& B(x) \sim a_{0} x+a_{1} x^{2}+\ldots+a_{n-1} x^{n}+a_{n} x^{n+1}+\ldots \\
& b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{n} x^{n}+\ldots
\end{aligned}
$$

Definition $6.28\left(\mathrm{~A}(\mathrm{x})\right.$ and $A(x)-(a \theta)$. Let $a_{0}, \ldots, a_{n}, \ldots$ be a sequence of real numbers and let $A(x)$ be its ordinary generating function. Then $B(x) A(x)-a_{0}$ is the generating function of sequence $0, a_{1}, a_{2}, \ldots$ where $b_{n}=a_{n}$ for $n>0$ and $b_{0}=0$.

 generating function. Then $B(x)=(A)^{8}$-at ψx is 解 generating function of sequence a_{1}, a_{2}, \ldots where $b_{n}=a_{n+1}$ for $n \geq 0$.

Definition 6.30 (Addition of twGo.g.f). Let $a_{0}, \ldots, a_{n}, \ldots$ be a sequence of real numbers and let $A(x)$ be its ordinary generating function. Let $b_{0}, \ldots, b_{n}, \ldots$ be a sequence of real numbers and let $B(x)$ be its ordinary generating function. Then sequence $c_{n}=\left(a_{n}+b_{n}\right)$ for $n \geq 0$ has o.g.f $C(x)=A(x)+B(x)$.
Definition 6.31 (Multiplication of two of o.g.f). Let $a_{0}, \ldots, a_{n}, \ldots$ be a sequence of real numbers and let $A(x)$ be its ordinary generating function. Let $b_{0}, \ldots, b_{n}, \ldots$ be a sequence of real numbers and let $B(x)$ be its ordinary generating function. Then sequence $C(x)=A(x) B(x)$ is the generating function of the sequence

$$
c_{n}=\sum_{i=0}^{n} a_{i} b_{n-i}
$$

Remark 6.2 (Counting Problems). Counting problems can be restated as problems of determining the coefficient of x^{i} in a certain o.g.f.

Theorem 6.3. If $A(x)$ is the o.g.f for counting objects from set A, and If $B(x)$ is the o.g.ffor counting objects from set B, then $A(x) B(x)$ is the o.g.f. for counting objects from set $A \cup B$.

Proof. If $A(x)=a_{0}+a_{1} x+\ldots+a_{i} x^{i}$, and $B(x)=b_{0}+b_{1} x+\ldots+b_{i} x^{i}$, then

$$
A(x) B(x)=a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) x^{2}+\ldots+\left(\sum_{k=0}^{i} f_{k} g_{i-k}\right) x^{i}+\ldots
$$

Theorem 6.4. If $A(x)$ is the e.g.ffor counting objects from set A, and If $B(x)$ is the e.g.f for counting objects from set B, then $a_{i} b_{j}$ is the number of arrangements of two objects respectively, and the cofficient of x^{m} in $A(x) B(x)$.

Proof. If $A(x)=\sum_{i} a_{i} x^{i} / i!$ and $B(x)=\sum_{i} b_{i} x^{i} / i!A(x) B(x)$ is

$$
A(x) B(x)=\sum_{m=0}^{\infty}\left(\sum_{i+j=m} \frac{a_{i}}{i!} \frac{b_{j}}{j!}\right) x^{m}
$$

The number of ways of mixing i objects that are of one type to j objects that are of another type is $\frac{(i+j)!}{i!j!}$. Thus the e.g.f for mixing the two types of objects has coeffigient x^{m} equal to (note $m=i+j$)

6.9.1 Examples

Example 6.54. The generotion firnction of $a_{i}\binom{n}{i}$ is $A(x)=\sum_{i=0}^{n}\binom{n}{i} x^{i}=(1+x)^{n}$. Note that

Each contribython to the coeffirment consesponds to a dobice of i of the $(1+x)$ factors by choosing the x from them and multiktying then.

$$
\frac{2}{m!} \cdot \sum_{i+j=m} a_{i} b_{j} \frac{(i+j)!}{i!j!}
$$

Example 6.55 Choosing r balls from a andectiot A of r or more indistinct red balls can be done in only one way, thus $a_{i}=1$. (Anzther way to sete this is thoxwe have a collection A of an infinite number of red balls). Then $A(x)=1+x+x^{2}+$ Likernise chosing from a collection of r or more indistinct blue balls can be done in only one way, thus $b_{i} \triangleq 1$. Then $B(x)=A+x^{2}+\ldots$ Choosing r balls from a collection that contains red and blue balls can be done in $r+\Psi$ wavsy pirking $0,1,2, \ldots r$ red balls with the balance being blue balls. Thus $c_{i}=i+1$. Therefore $C(x)=1+2 x+3 x^{2}+\ldots(i+1) x^{i}$. Notice that

$$
A(x) B(x)=\left(\sum_{i=0}^{\infty} x^{i}\right) \cdot\left(\sum_{i=0}^{\infty} x^{i}\right)=\sum_{i=0}^{\infty}(i+1) x^{i}
$$

Proof. For the red balls choices of set A of red balls we have $A(x) 1+x+x^{2}+\ldots+=1 /(1-x)$. Likewise $B(x)=$ $1 /(1-x)$. The $C(x)=A(x) B(x)=1 /(1-x)^{2}=(1-x)^{-2}$. By the binomial theorem

$$
(1+x)^{m}=\sum_{i=0}^{\infty}\binom{m}{i} x^{i}
$$

where

$$
\binom{m}{i}=\frac{m(m-1) \ldots(m-i+1)}{i!}
$$

Moreover we can show that

$$
C(x)=1+2 x+3 x^{2}+\ldots+(i+1) x^{i}=(1-x)^{-2}
$$

This is because

$$
\left(1+2 x+3 x^{2}+\ldots+(i+1) x^{i}+\ldots\right) \cdot(1-x)^{2}=\left(1+2 x+3 x^{2}+\ldots+(i+1) x^{i}+\ldots\right) \cdot\left(1-x^{2}+2 x\right)
$$

and thus it is equal

$$
1+\sum_{i=1}^{\infty}\left((i+1) x^{i}-2 i x^{i}+(i-1) x^{i}\right)=1
$$

Example $6.56(A(x)=1 /(1-x)$ and $B(x)=1 /(1-k x))$. Let $A(x)=1 /(1-x)$ be an ordinary generating function. A sequence with such a generating function is the sequence $a_{n}=1$ for all n. This is because

$$
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots=1+x+x^{2}+\ldots+x^{n}+\ldots=1 /(1-x)
$$

Consider now the sequence $b_{n}=k^{n}$ for all n where k is some constant.

$$
B(x)=b_{0}+b_{1} x+b_{2} x^{2}+\overbrace{n}^{x} b_{n} x^{n}+\ldots=k^{0}+k^{1} x+\ldots+k^{n} x^{n}+\ldots=\frac{1}{1-k x}
$$

Example 6.57.

(a) Find the sequence that has $A(x)=(1+x)^{2} . A(x)=1+2 x+2 x^{2}$ thus the sequence is $1,2,2,0, \ldots$.
(b) Find the o.g.f of $0,1,1, \ldots$. It isgiven that $1+x+x^{2}+\ldots=1 /(1-x)$. This is $A(x)=0+1 \cdot x+1 \cdot x^{2}+\ldots+=$ $1 /(1-x)-1=x /(1-x)$.
(c) Find the o.g.f of $5^{0}, 5^{1}, 5^{2}, 5^{n}, \ldots$ It is $1 /(1-5 x)$.
(d) Find the e.g.f of $5^{0}, 5^{1}, \ldots, \ldots A(x)=5^{0}+5^{1} x+5^{2} x^{2} / 2!+\ldots+5^{n} x^{n} / n!+\ldots=e^{5 x}$.
 ? The generating can read off therseffcient of

Example 6,59. Haxi maxy k lettex wo ce can be fognę from the letter of the word MATHEMATICS?

Proof. There are 2 M ,A,T MATHEMADECS ath the 5 other characters appear once. Form $A(x)=\left(1+x+x^{2}\right)^{3}(1+$ $x)^{5}$ and compute the cofficient of x^{k},

Example 6.60. In how hiany has candue throw 15 indistint objects into 5 bins so that every bin gets at least 2 objects?

Proof. Formulate $A(x)=\left(x^{2}+x^{3}+x^{4}+\ldots\right)^{5}$ and calculate the coefficient of x^{k}.
Example 6.61 (Partitions revisited). We have indistinct objects into indistinct bins. The number of partitions of n is the coefficient of x^{n} in the following o.g.f $A(x) . A(x)$ is the product of o.g.f. of the form

$$
\frac{1}{1-x^{t}}=1+x^{1 \cdot t}+x^{2 \cdot t}+\ldots+x^{i \cdot t}+\ldots
$$

The term $x^{i . t}$ contributes once i instances of t in the partition. Thus

$$
A(x)=\left(1+x+x^{2}+x^{3}+\ldots\right)\left(1+x^{2}+x^{4}+x^{6}+\ldots\right)\left(1+x^{3}+x^{6}+x^{9}+\ldots\right)\left(1+x^{4}+x^{8}+x^{1} 2+\ldots\right)\left(1+x^{5}+x^{1} 0+x^{1} 5+\ldots\right)
$$

Find the partitions of 5 .

Proof. From the o.g.f $A(x)$ above the partitions of 5 and the number of partitions of 5 are determined during the computation of the coefficient of x^{5} in $A(x)$.

We observe that an x^{5} can be generated as follows:
(1) x^{5} from fifth term. This is 5 .
(2) x^{4} from fourth term and x^{1} from first term. This is $4+1 \cdot 1=4+1$.
(3) x^{3} from third term and x^{2} from second term. This is $3+2 \cdot 1=3+2$.
(4) x^{3} from third term and x^{2} from first term. This is $3+1 \cdot 2=3+1+1$.
(5) x^{4} from second term and x^{1} from first term. This is $2 \cdot 2+1 \cdot 1=2+2+1$.
(6) x^{2} from second term and x^{3} from first term. This is $2 \cdot 1+1 \cdot 3=2+1+1+1$.
(7) x^{5} from first term. This is $1 \cdot 5=1+1+1+1+1$.

Example 6.62 (NJIT Chairs in rooms). 210 chairs are to be arranged in 4 classrooms. Each classroom can get $0,30,60,90$ chairs. Rooms are distinguishable. In how many ways can we distribute the chairs?

Proof. Find the coefficient of x^{210} in

$$
\left(1+x^{30}+x^{60}+x^{90}\right)^{4}
$$

Example 6.63 (Coin Changing). A coumfly has 9cent, 17cent, 31cent, and 100cent coins. In how many different ways can the 100cent coin be changed?

Proof. Find the coefficient of x^{100} in

Example 6.64. The number of digitinequences consisting of $0,1,2,3$ with least one 2,3. The e.g.f of 0 and 1 is $\sum_{i} x^{i} / i!=e^{x}$. The egf ghd 3 iskewise $e^{x}-1$. Thus $\left(e^{x}-1\right)^{2} e^{2 x}$ has coefficient x^{n} which is the coefficient of $x^{n} / n!$ in
which is

$$
4^{n}-23^{n}+2^{n}
$$

Example 6.65. Distribute m distinct objects into n distinct bins so that there is at least one object in each bin. Order in a bin does not matter.

Proof. Each bin has e.g.f. $e^{x}-1$ and collectively $\left(e^{x}-1\right)^{n}$.

6.9.2 Solution of Linear Recurrences using o.g.f

Example 6.66. Let $a_{n}=L a_{n-1}+M a_{n-2}, L \neq 0, M \neq 0$.

Proof. We write the equation as follows. We multiply both sides by x^{2}, x^{3}, \ldots, and then add all the terms. Note that $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$.

$$
\begin{aligned}
a_{n}-L a_{n-1}-M a_{n-2} & =0 \\
a_{n} x^{n}-L a_{n-1} x^{n}-M a_{n-2} x^{n} & =0 \\
\sum_{n=2}^{\infty} a_{n} x^{n}-\sum_{n=2}^{\infty} L a_{n-1} x^{n}-\sum_{n=2}^{\infty} M a_{n-2} x^{n} & =0 \\
\sum_{n=2}^{\infty} a_{n} x^{n}-L x \sum_{n=2}^{\infty} a_{n-1} x^{n-1}-M x^{2} \sum_{n=2}^{\infty} a_{n-2} x^{n-2} & =0 \\
\left(A(x)-a_{0}-a_{1} x\right)-L x\left(A(x)-a_{0}\right)-M x^{2} A(x) & =0 \\
\left(1-L x-M x^{2}\right) A(x)-a_{0}-a_{1} x+L x a_{0} & =0 \\
A(x) & =\frac{a_{0}+a_{1} x+L a_{0} x}{1-L x-M x^{2}} .
\end{aligned}
$$

From that point on we use properties of o.g.f. to find the a_{n} with $A(x)$ as given above.

Working out the Fibonacci recurrence we have. -
Example 6.67. Let for $n>1: f_{n}=f_{n-1}+f_{n}$. We also have $f_{0}=0$ and $f_{1}=1$.
Proof. We write the equation as follons. We multiply both sides by x^{2}, x^{3}, \ldots, and then add all the terms. Note that $F(x)=\sum_{n=0}^{\infty} f_{n} x^{n}$. In the last equatien we use $f_{0}=0$ and $f_{1}=1$.

From that point on we use properties of o.g.f. to find the a_{n} with $F(x)$ as given above. Details appear in the next example.

Instead of starting with the recurrence, we may start with the generating function $A(x)$ for the given recurrence since $A(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}=\sum n=0^{\infty} a_{n} x^{n}$. Things can also grow out of hand if we are not careful with the index bounds of the sum.

Example 6.68 (Fibonacci). The solution f_{n} for $f_{n}=f_{n-1}+f_{n-2}$, for $n>1$, with $f_{0}=0$ and $f_{1}=1$ is given below.
Proof. Let $F(x)=\sum_{i=0} f_{n} x^{n}$.

$$
F(x)=f_{0}+f_{1} x+f_{2} x^{2}+\ldots f_{n} x^{n}+\ldots
$$

$$
\begin{aligned}
& F(x)=\sum_{n=0}^{n=\infty} f_{n} x^{n} \\
& F(x)=f_{0}+f_{1} x+\sum_{n=2}^{n=\infty} f_{n} x^{n} \\
& F(x)=f_{0}+f_{1} x+\sum_{n=2}^{n=\infty}\left(f_{n-1}+f_{n-2}\right) x^{n} \\
& F(x)=0+x+\sum_{n=2}^{n=\infty} f_{n-1} x^{n}+\sum_{n=2}^{n=\infty} f_{n-2} x^{n} \\
& F(x)=0+x+x \cdot \sum_{n=2}^{n=\infty} f_{n-1} x^{n-1}+x^{2} \cdot \sum_{n=2}^{n=\infty} f_{n-2} x^{n-2} \\
& F(x)=0+x+x \cdot \sum_{n=1}^{n=\infty} f_{n} x^{n}+x^{2} \cdot \sum_{n=0}^{n=\infty} f_{n} x^{n} \\
& F(x)=0+x+x\left(F(x)-f_{0}\right)+x^{2} F(x) \\
& F(x)\left(1-x-x^{2}\right)=x \\
& F(x)=\frac{x \cdot x}{1-x-x^{2}} \\
& F(\otimes)=\frac{x}{\left(1-g_{1} x\right)\left(1-g_{2} x\right)}
\end{aligned}
$$

The two solutions $1 / g_{1}, 1 /$ of the quadratic equation $1-x-x^{2}$ are such that $\left(1-g_{1} x\right)\left(1-g_{2} x\right)=1-\left(g_{1}+\right.$ $\left.g_{2}\right) x+g_{1} g_{2} x^{2}$ i.e. $g_{1}+g_{2}=$. afd $g_{1} g_{2}=-1$. Also $g_{2}-g_{1}=\sqrt{5}$. Note that

The penultimate line is derived thategh the example Proposition 6.56 with $k=g_{1}$ and $k=g_{2}$ respectively. Finally a bit of clean up is in order.

$$
\begin{aligned}
f_{n} & =\frac{1}{g_{1}-g_{2}} g_{1}^{n}+\frac{1}{g_{2}-g_{1}} g_{2}^{n} \\
f_{n} & =\frac{1}{g_{2}-g_{1}}\left(g_{2}^{n}-g_{1}^{n}\right) \\
f_{n} & =\frac{1}{\sqrt{5}}\left(g_{2}^{n}-g_{1}^{n}\right)
\end{aligned}
$$

Example 6.69. Find the number of ways of pairwise parenthesizing 4 objects. Also count the number of full binary trees with 4 leaves. For example for $n=4$ we have

Generalize for n objects or leaves!
Proof. Let a_{n} be the number. Then the recurrence for a_{n} works as follows

$$
a_{n}=a_{n-1} a_{1}+a_{n-2} a_{2}+\ldots+a_{1} a_{n-1}=\sum_{i=1}^{n-1} a_{i} a_{n-i}
$$

noting that $a_{0}=0$ and $a_{1}=1$ Let $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \times$.

$$
\begin{aligned}
& \sum_{n=2}^{\infty} a_{n} x^{n}=\sum_{n=2}^{\infty}\left(\sum_{i=1}^{n-1} a_{i} a_{n-i}\right) x^{n} \\
& A(x)-a_{1} x-a_{0}=A^{2}(x)
\end{aligned}
$$

Thus $A^{2}(x)-A(x)+x-$ Qgiven $a_{0}=$ aland 1 . Solve for $A(x)$ i.e. $A(x)=\frac{1 \pm \sqrt{1-4 x}}{2}$. Ignore the sign that generates negative a_{n} terms. Then by fife bingmal the erem have

Then

$$
\frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n}{n!}
$$

The coefficient of x^{n} in $A(x)$ is cogefieient of x^{n} in $\left(1-(1-4 x)^{1 / 2}\right) / 2$ which is thus

$$
\frac{-1}{2} \cdot \frac{-2}{n}\binom{2 n-2}{n-1}=\frac{1}{n}\binom{2 n-2}{n-1}
$$

6.9.3 Miscellanea

In courses such as CS435, and CS610 the technical recurrences there will not conform to the linear currences we discussed so far. The function or the sequence involved would be the running time $T(n)$ rather than a sequence of arbitrary and artificial numbers. Thus $T(1), T(2), \ldots$, is the 'running time' for a problem with length 1,2 , etc. What is the 'running time'? Definitely it is not time per se that can be expressed in seconds or milliseconds. We usually mean number of a fundamental operation that capture in practice what would determine the actual running time of an execution. (That actual running time is called wall-clock time.) Thus for Binary Search (but also for sorting) the
fundamental operation performed is a comparison of two keys. The keys are comparable (i.e. a total order is defined on the set of key values) and thus $\operatorname{cmp}(a, b)$ is the comparator function that compares two keys a and b with some values (key and key values are being use interchangeably) and the outcome of the comparison is a +1 for $a>b$, a 0 for $a=b$, and -1 or $a<b$. Several times a positive value also implies $a>b$, and a negative one $a<b$.

In binary search we have an array A of n sorted keys and another key k and we want to determine if $k \in A$ and thus return i such that $A[i]=k$. Otherwise a not-found is returned usually an index out of bounds. For example -1 or n. (We assume C/C++/Java indexing for the array i.e. $A[0 . . n-1]$.)

The first comparison if betweek k and $A[m]$ where m maps to the middle of the array. m can be $n / 2$ but in practice for C indexing it would be $(0+(n-1)) / 2$. And of course we have a secondary problem floor or ceiling if the result is not an integer.

$\mathrm{n}=8$								$\mathrm{n}=6$						$\mathrm{n}=7$						
0	1	2	3	4	5	6	7	0	1	2	3	4	5	0	1	2	3	4	5	6
$\mathrm{n} / 2$				*							*						*			
	1)	=3	*							*							*			

For subsequent iteration the middle point is usually computed as $m=(l+r) / 2$. Consider 32-bit (signed) integers for l, r and m, with l, r around $2,000,000,000$, eg $2,000,100,000$ and $2,000,900,000$. Alternatively consider 32-bit (unsigned) integers for l, r, m and l, r around $3,000,100,000$ and $3,000,900,000$. A better derivation for m is $m=$ $l+(r-l) / 2$ instead. In general we simplify thingssy disregarding issues with floors and ceilings: for example assum n is a power of two or more likely n is a powerof two minus one or plus one!

Proposition 6.3 (Binary Search Recurrence)' Solve the recurrence $T(n) \leq T(\lfloor n / 2\rfloor)+1$ for $n \geq 2$, and $T(1)=1$.
Proof.

The undolding of thechains eqds when $T(n)=T(1)$ i.e. for $n / 2^{i}=1$. Solving for i we have $i=\lg n$. Thus

$$
\begin{aligned}
T(n) & =T\left(n / 2^{i}\right)+i \\
& =T\left(n / 2^{\lg n}\right)+\lg n \\
& =T(1)+\lg n \\
& =\lg n+1 .
\end{aligned}
$$

In fact $T(n)$ is the maximum (or worst-case) running number of comparisons, since it is possible that we found our key with the first comparison performed!

Thus $T(n) \leq \lg n+1$ might be a better (and correct) answer. If we re-consider the fact that n is a power of n and thus $n / 2$ does not include the floor function any more, we need to utilize asymptotic notation and say $T(n)=O(\lg n)$. In such a notation the plus one disappears as the most important term is the logarithmic term. There is an added benefit in using this form. We indeed describe not just the number of comparisons but also the running time now. Everything else in Binary Search revolves around a comparison: we increment a variable i or l, decrement a variable r or j, or "compare" variables i and j or l and r plus the $(r+l) / 2$ or $(i+j) / 2$ or its variants. Thus all auxiliary operations are proportional to $\lg n$ i.e. linear to $\lg n$ also captured in the form $T(n)=O(\lg n)$.

And food for through is $i<j$ or $i \leq j$ a COMPARISON as used earlier? The answer is NO. i and j are integer values not keys. Functions $c m p$ expects objects that are keys. We compare i and j using a subtraction $i-j$ involving the accumulator of a CPU. If the result is zero i.e. $i=j$ the FLAGS set this immediately. If the accumulator is positive $i>j$ or negative $i<j$ this become immediately available in one instruction that is a subtraction i.e nanoseconds. Comparing keys or key values takes a function call i.e. a context switch or microseonds. (And if you argue otherwise keys can be quite long, required multiple reads from main memory and a read is $80-100 \mathrm{~ns}$ each.)

Example 6.70. What is the number of 0 zeroes in 1000!? (Yes it is 1000 factorial.)
Proof. 1. Since $2 \cdot 5$ is 10 , Let find the multiples of 5. Each one contributes with a even number a 10 . There are $1000 / 5=200$ such multiples.
2. A multiple of 25 contributes one more 10 since $25=5 * 5$. There are $1000 / 25=40$ of them.
3. A multiple of 125 contributes one more 10 since $125=5 * 5 * 5$. There are $1000 / 125=8$ of them.
4. Is the answer $200+40+8$?

We have missed 625!
5. Since $625=5 * 5 * 5 * 5$ we have one more 5 contributed by 625 .
6. The total is 49 .

Conclusion: Think!

6.10 Exercises

Exercise 6.1. How many distinct seven digit integers can be constructed by permuting the digits $1,1,1,2,2,3,4$?
Proof. Applying the formula for permutations (repetitions allowed), we get

$$
\frac{7!}{3!2!}=420
$$

Exercise 6.2. Calculate the number of trailing 0's in the fully expanded decimal representation of 200 !
Proof. We need to find the largest power of 10 that divides 200 !. Since $10=2 \cdot 5$, we only need find the largest power of 5 that divides 200!, since this is smaller than the corresponding largest power of 2.

The largest power of 5 that divides 200 ! is:

$$
\left[\frac{200}{5}\right]+\left[\frac{200}{5^{2}}\right]+\left[\frac{200}{5^{3}}\right]=40+8+1=49
$$

where $[\cdot]$ represents the integer part of a number (i.e. the largest integer that does not exceed the number).
The first term in the above formula counts the multiples of 5 . The second one counts the multiples of 25 which contribute one more power of 5 each, and thé third one counts multiples of 125.

Exercise 6.3.

(i) One starts in the lower left corket of an $n \times n$ chess board and makes a series of moves, where each move is to go either one square to the right $\hat{\mathrm{f}} \mathrm{m}$ ne square up, so that one ends up in the top right corner. How many different paths are there?
(ii) How many different ouths axe the gat sid the deadly land mine planted at the square in row i and column j ? Proof. (i) We can reach the topsight dorner fom thelowefleft one after moving $(n-1)$ squares to the right and $(n-1)$ squarespup. Wésan cheoss theupwardmovennentsió

different ways and thats fis the rightwat movements.
(ii) We count first the numberof path that cross the land mine. These are the number of paths we can follow from the lower left corner to thelandina times the number of paths from the land mine to the top right corner i.e. $C(i+j-2, i-1) \cdot C(2 n-i-n-n-$ (reasoning same as in part (i)). Therefore the number of paths that avoid the land mine is equal to
$C(2(n-1),(n-1))-C(i+j-2, i-1) \cdot C(2 n-i-j, n-i)$.
Exercise 6.4. In how many ways can we put in a line 10 boys and 5 girls, so that no two girls are next to each other.
Proof. First put the ten boys in a line. There are eleven spots where a girl may be inserted, but only one girl may
be placed in any spot. Thus the answer is the number of ways five objects can be selected out of eleven, which is $\binom{11}{5}=462$. If you believe that the boys and girls are distinct, then multiply that quantity by $10!5$! to account for their various permutations.

Exercise 6.5. In how many ways can $3 r$ balls be selected from $2 r$ red balls, $2 r$ blue balls, and $2 r$ white balls?
Proof. There are two (basically equivalent) ways of dealing with this problem:

1. Without generating functions

Break this into two disjoint cases. Either at least r red balls are chosen (in which case the number of blue balls must be between 0 and $3 r$ minus the number of red balls), or fewer than r red balls are chosen (in which case the number of blue balls must be between r minus the number of red balls and $2 r$). Once the number of red and blue balls are decided, the number of white balls is uniquely determined. The answer is therefore

$$
\begin{aligned}
\sum_{i=r}^{2 r} \sum_{j=0}^{3 r-i} 1+\sum_{i=0}^{r-1} \sum_{j=r-i}^{2 r} 1 & =\sum_{i=r}^{2 r}(3 r-i+1)+\sum_{i=0}^{r-1}(r+i+1) \\
& =\sum_{i=1}^{r+1}(2 r-i+2)+\sum_{i=1}^{r}(r+i) \\
& =r+1+\sum_{i=1}^{r}(2 r-i+2)+\sum_{i=1}^{r}(r+i) \\
& =r+1+\sum_{i=1}^{r}(3 r+2) \\
& =r+1+r(3 r+2) \\
& =3 r^{2}+3 r+1
\end{aligned}
$$

2. With generating functions

We must find the coefficient of $x^{3 r}$ in $\left(1+x+\ldots+x^{2 r}\right)^{3}$.

The coeffert of in this mest juet the cogficient of $x^{3 r}$ in $(1-x)^{-3}$ minus three times the coefficient of x^{r-1} in N^{-}, which is

Exercise 6.6. By giving a combinatorial interpretation for the following sum deduce a simple expression for it:

$$
\binom{n}{1}+2\binom{n}{2}+3\binom{n}{3}+\ldots+n\binom{n}{n}
$$

Proof. This sum counts the ways that one may take a subset of k out of n items, and then take another one item out of the k (for k from 1 to n). This is equivalent to selecting one item out of the n and then splitting the remaining $n-1$ into two arbitrary subsets. This may be done in $n 2^{n-1}$ ways, giving us the more concise value for the sum.

Exercise 6.7. By giving a combinatorial interpretation to each side prove that:

$$
\binom{2 n}{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}
$$

Proof. The left hand side is the number of ways of dividing $2 n$ objects into two groups of equal size. Another way to count that same quantity is to split the $2 n$ objects into two halves and then count all the ways one can take k objects from the first half and $n-k$ from the second half, over all values of k from 0 to n. This method of counting tells us that

$$
\binom{2 n}{n}=\sum_{k=0}^{n}\binom{n}{k}\binom{n}{n-k}=\sum_{k=0}^{n}\binom{n}{k}^{2}
$$

Exercise 6.8. How many ways can three distinct dice be thrown such that their sum is 9?
Proof. The o.g.f for the outcome of a dice is $x+x^{2}+\ldots+x^{6}$. So for the three dice we have $\left(x+x^{2}+\ldots+x^{6}\right)^{3}$. We can write the above formula as

$$
x^{3}\left(1+x+\ldots+x^{5}\right)^{3}=x^{3} \frac{\left(1-x^{6}\right)^{3}}{(1-x)^{3}}
$$

The coefficient of x^{9} of the formula above orequivalently the coefficient of x^{6} in $\left(1-x^{6}\right)^{3} \cdot(1-x)^{-3}$ is the answer to our problem. These two powers can be writuén as:

Exercise 6.9. Evaluate the folhowing series
(

Proof. Using

$$
\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}
$$

and simultaneous induction on n, k, we get that

$$
\binom{n}{k}+\binom{n-1}{k-1}+\binom{n-2}{k-2}+\cdots+\binom{n-k+1}{1}+\binom{n-k}{0}=\binom{n+1}{k} .
$$

Another way to solve this problem is by combinatorial arguments. The number of ways to choose k elements out of $n+1$ is equal to the number of ways to choose k out of n when element 1 is not included in the set of k elements or to choose $k-1$ out of $n-1$ when 1 is included but 2 is not or to choose $k-2$ out of $n-2$ when 1,2 are included but 3 is not included or so on or choose 0 out of $n-k$ when $1,2, \ldots, k$ are all included in the set.

Exercise 6.10. Evaluate the following series.

$$
\binom{n}{0}+2\binom{n}{1}+2^{2}\binom{n}{2}+\cdots+2^{n}\binom{n}{n}
$$

Proof. From

$$
(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i}
$$

if we set $x=2, y=1$ we obtain the answer: 3^{n}.
Exercise 6.11. Find a closed form expression for the ordinary generating function of the sequence $a_{n}=n^{2}$.
Proof. There are many ways to solve this problem. From

$$
1+x+x^{2}+\ldots+x^{n}+\ldots=\frac{1}{1-x}
$$

if we take the derivative of each side we get

$$
\begin{equation*}
0+1+2 x+3 x^{2}+4 x^{3}+\ldots+n x^{n-1}+\ldots=\frac{1}{(1-x)^{2}} \tag{6.3}
\end{equation*}
$$

and if we take the derivative of each side oncemore we get

$$
2+3 \cdot 2 x^{1}
$$

Now, we multiply both sides of the ast expression with x^{2} and we get

$$
\begin{equation*}
5 \cdot 2 x^{3}+4 \cdot 3 x^{4}+\ldots+n \cdot(n-1) x^{n}+\ldots=\frac{2 x^{2}}{(1-x)^{3}} \tag{6.4}
\end{equation*}
$$

If we multiply Eq. (6.3) withe and add thedosultaEq.(64) we get that

Exercise 6.12. Canside the recurrence $a_{n+2} \geqslant a_{n+1}+a_{n}$ where $a_{1}=a_{0}=1$. Show that

$$
0^{2} \cdot\binom{n}{1}+\binom{n-1}{2}+\cdots=a_{n+1}
$$

(the sum goes up to the last termenere $n+1-k \geq k$).
Proof. One way to solve this problem (another way is simultaneous induction on n, k and Pascal triangle's identity), is using the o.g.f. of the Fibonacci numbers. This is

$$
A(x)=\frac{1}{1-x-x^{2}}=\sum_{i=0}\left(x+x^{2}\right)^{i}
$$

. The coefficient of x^{n+1} in the power series above is

$$
\binom{n+1}{0}+\binom{n}{1}+\binom{n-1}{2}+\cdots
$$

which is just the coefficient of x^{n+1} in the o.g.f of the Fibonacci numbers i.e. a_{n+1}.

Exercise 6.13. The tower of Hanoi puzzle consists of three towers and n holed-discs (each disc has a hole in its center so that it can slip through a tower). Each disc is of a different size. The discs may be moved from to tower, provided that it is done one disc at a time and never can a disc be placed on top of a smaller disc. Initially, all n discs are in one tower.
(i) Formulate a recursive procedure to move the entire group to another tower using h_{n} individual moves, determined by the recurrence

$$
\begin{aligned}
h_{i} & =2 h_{i-1}+1 \\
h_{1} & =1
\end{aligned}
$$

(ii) Can you improve this recurrence if there is a fourth tower?

Proof. (i) Let the three towers be input, output, and temp. Procedure TOWERS shows how to legally move the towers from input to output.


```
/* Discs are numbered 1 to n. */
/* Operation move(i,j,k) moves disc i from tower j to tower k */
/* Precondition: assumes i has nothing on top of it */
    Towers(input,output,temp,n)
        if ( n==1 ) move(1,input,output)
        else {
            Towers(input,temp,output,n-1);
            move(n,input,output);
            Towers(temp,output,input,n-1)
        }
end
```

If h_{n} gives the number of moves to move n discs in the algorithm above, then we have that $h_{n}=h_{n-1}+1+h_{n-1}=$ $2 h_{n-1}+1, h_{1}=1$, by way of lines 4-6. The base case $h_{1}=1$ is by way of line 2 . The solution of this recurrence is $h_{n}=2^{n}-1$.
(ii) First, we show how a fourth tower helps. The simplest way to achieve this (let the four towers be input, output, temp1, temp2) is by moving recursively the top $n-2$ discs of the input tower to say, temp 1 , then move disc $n-1$ to temp $2, n$ to out put , $n-1$ from temp 2 to out put and recursively the $n-1$ discs from temp 1 to out put. The recurrence that describes the number of moves is the following: $b(n)=2 b(n-2)+3, b(0)=0, b(1)=1$. A solution to this is the following $b(n)=\left\{\begin{array}{ll}2 \cdot 2^{\frac{n+1}{2}}-3 & n \text { odd } \\ 3\left(2^{n / 2}-1\right) & n \text { even }\end{array}\right.$. Based on this observation, we now get the following solution. Move the top $\frac{n}{2}$ discs (we assume n even, we can handle similarly the odd case) from the input tower to temp 1 using all 4 towers. Then move the $\frac{n}{2}-1$ discs from inpót to temp 2 using only the input ,temp 2 , out put towers as in part (i). Then move disc n from input to output, the Pthe $\frac{n}{2}-1$ towers from temp 2 to output as in part (i) (using only 3 towers) and the $\frac{n}{2}$ from temp 1 to out put as inpart (ii) (recursively). We now give the recurrences that describe the number of moves in both the even and odd case.

For the even case we have

$$
c(n)=2 c\left(2 \frac{2}{2}\right)+\dot{b} \cdot(n / 2-1)+\mathbb{L}=2 c(n / 2)+2\left(2^{n / 2-1}-1\right)+1=2 c(n / 2)+2^{n / 2}-1 .
$$

For the odd case we have:

One can shgthat $c(n) \approx k\left([+\varepsilon) 3^{20}\right.$, where
Exercise 6.14. Solve ne foltowing recurrate relation:
Proof. It seems like the answer should beyof the form

$$
a_{n}=A n^{3}+B n^{2}+C n+D
$$

To verify this and determine the eoefficients, observe that

$$
\begin{aligned}
a_{n}-a_{n-1} & =n^{2} \\
A\left(n^{3}-(n-1)^{3}\right)+B\left(n^{2}-(n-1)^{2}\right)+C(n-(n-1)) & =n^{2} \\
A\left(3 n^{2}-3 n+1\right)+B(2 n-1)+C & =n^{2}
\end{aligned}
$$

This gives us the simultaneous equations

$$
\begin{array}{r}
3 A=1 \\
-3 A+2 B=0 \\
A-B+C=0
\end{array}
$$

The solution for these is $A=1 / 3, B=1 / 2$, and $C=1 / 6$. This gives the particular solution for the recurrence. To satisfy the initial condition, we must add the homogeneous solution $a_{n}=1$. The final answer is

$$
a_{n}=\frac{2 n^{3}+3 n^{2}+n+6}{6}
$$

Exercise 6.15. Solve the following recurrence relation:

$$
a_{n}=a_{n-1}+\frac{1}{n(n+1)}, \quad a_{0}=1
$$

Proof. An easy way to solve this is to write out the sequence and see what you get, but a more general technique is to use generating functions. Let $A(x)=\sum_{n=1}^{\infty} a_{n} x^{n}$ be the o.g.f. for a_{n}. Multiplying the recurrence by x^{n} for each $n \geq 1$ we get

Summing, we get

$$
\begin{aligned}
a_{1} x & =a_{0} x+\frac{x}{1(1+1)} \\
&
\end{aligned}
$$

From here we cancalculfte the reefficient of in the right hand side, which is

$$
\begin{aligned}
& =1+\sum_{i=1}^{n}\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& =1+1-\frac{1}{n+1} \\
& =\frac{2 n+1}{n+1}
\end{aligned}
$$

Exercise 6.16. For $a_{0}=r, a_{1}=s$, express in terms of the Fibonacci numbers $\left(f_{n+1}=f_{n}+f_{n-1}, f_{0}=f_{1}=1\right)$ the following recurrence relations.

$$
a_{n+2}=a_{n+1}+a_{n}
$$

Then solve

$$
a_{n+2}=a_{n+1}+a_{n}+c
$$

Proof. (i) Let $\mathrm{A}(\mathrm{x})$ be the o.g.f. for a_{n}. Multiplying both sides of the recurrence by x^{n}, and summing over all values of n from 2 to ∞, we get

$$
\begin{aligned}
\sum_{n=2}^{\infty} a_{n} x^{n} & =\sum_{n=2}^{\infty} a_{n-1} x^{n}+a_{n-2} x^{n} \\
A(x)-a_{0}-a_{1} x & =x\left(A(x)-a_{0}\right)+x^{2} A(x) \\
A(x)\left(1-x-x^{2}\right) & =x(s-r)+r \\
A(x) & =(x(s-r)+r) \frac{1}{1-x-x^{2}}
\end{aligned}
$$

But that fraction is the o.g.f. for f_{n}. Thus

$$
\begin{aligned}
a_{n} & =(s-r) f_{n-1}+r f_{n} \\
& =s f_{n-1}+r f_{n-2}
\end{aligned}
$$

(ii) To use our result from (i), we can define $b_{n}=a_{n}+c$, and get a new recurrence relation:

The solution to this is

$$
b_{n}=b_{n-1}+b_{n-2}, \quad b_{0}=r+c, b_{1}=s+c
$$

Converting back to a_{n}, we get answer
(

Proof. (i) By decomposition of the first column, it is f_{n}, the order- n Fibnacci number.
(ii) Likewise.

Exercise 6.18. In how many ways can a convex n-gon be divided into triangles by non-intersecting diagonals ? (Find the recurrence for the problem and solve it)

Proof. Let a_{n} be the number of ways to divide up an n-gon. In any division, vertex 1 and vertex n form a triangle with vertex i for some $2 \leq i \leq n-1$. For each i we can recursively determine the number of such divisions, and the possibilities for each i are disjoint. Thus

$$
a_{n}=\sum_{i=2}^{n-1} a_{i} a_{n-i+1}, \quad a_{2}=1
$$

Let $A(x)$ be the generating function for this sequence.

$$
\begin{aligned}
\sum_{n=3}^{\infty} a_{n} x^{n} & =\sum_{n=3}^{\infty} \sum_{i=2}^{n-1} a_{i} a_{n-i+1} x^{n} \\
A(x)-a_{2} x^{2} & =\sum_{n=3}^{\infty} \sum_{i=2}^{n-1} a_{i} a_{n-i+1} x^{n}
\end{aligned}
$$

Note that

Thus

$$
\frac{A^{2}(x)}{x}=\left(a_{2} x^{2}+a_{3} x^{3}+\cdots\right)\left(a_{2} x+a_{3} x^{2}+\cdots\right)
$$

$$
A(x)-x^{2}=\frac{A^{2}(x)}{x}
$$

$$
e^{x^{2}(x)-4(x)+x^{3}}=0
$$

So the answer is thecoefficignt of in ine fraction. This is

$$
a_{n}=\frac{1}{n-1}\binom{2 n-4}{n-2}
$$

Exercise 6.19. How many sequences are there of 3 not necessarily distinct integers x, y, z such that $1 \leq x, y, z \leq 100$ and the sum of them is divisible by 4 .

Proof. The first two numbers x and y may be chosen arbitrarily from the 100^{2} possibilities. For any such choice, there are exactly $100 / 4=25$ possible z values that will force the sum to be a multiple of four. Thus there are $(100)(100)(25)=250,000$ possible sequences.

Exercise 6.20. (i) Find the number of solutions $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where each $x_{i} \geq 0$ is an integer, to the equation

$$
x_{1}+x_{2}+x_{3}+\cdots+x_{n}=r
$$

(ii) Find the number of solutions when each $x_{i}>0$.

Proof. (i) Let $x_{1}+x_{2}+\ldots+x_{n}=r$ where $x_{i} \geq 0 \forall i$. Put $y_{i}=1+x_{i}$. Then $y_{i} \geq 1 \forall i$. Then we get that $y_{1}+y_{2}+\ldots+y_{n}=$ $n+r$. Therefore the number of solutions in positive y_{i} 's is equal to the number of solutions in non-negative x_{i}. If we take $n+r$ dots and place $n-1$ marks in the $n+r-1$ spaces between the dots, we may take y_{1} to be the number of the first set of dots, y_{2} as the number of the second set and so on. Therefore the number of solutions to the original problem is $\binom{n+r-1}{n-1}$. Another way to see this problem is to count the number of ways r indistinct balls can be put into n distinct bins.
(ii) If instead of having $n+r$ in equation $y_{1}+y_{2}+\ldots+y_{n}=n+r$, we have r we get the number of solutions for the second part (assuming $r \geq n$) i.e. $\binom{r-1}{n-1}$.

Exercise 6.21. Show that for any $n>r$

$$
\sum_{k=r}^{n}(-1)^{k}\binom{k}{r}\binom{n}{k}=0
$$

Proof. From combinatorial arguments we know that

$$
\sum_{k=r}^{n}(-1)^{k}\binom{k}{r}\binom{n}{k}=\sum_{k=r}^{n}(-1)^{k}\binom{n}{r}\binom{n-r}{k-r}
$$

(The inner product in both cases is the number of ways n objects can divided into piles of size $r, k-r$, and $n-k$). Thus it suffices to show that

$$
\begin{aligned}
& \sum_{k=r}^{n}\left(-\sum_{i=0}^{n-r}(-1)^{i+r}\binom{n-r}{i}\right. \\
& \\
& = \pm \sum_{i=0}^{n-r}(-1)^{i}\binom{n-r}{i} \\
& \\
& =0
\end{aligned}
$$

Note that

Thus,

Exercise 6.22. Solve

Proof. We now solve the recurrenge $3 a_{n}-4 a_{n-1}+a_{n-2}=2^{-n}, a_{0}=6, a_{1}=2.5$.
The characteristic polynomiat of this recurrence is : $3 x^{2}-4 x+1=0$, with roots $x_{1,2}=1, \frac{1}{3}$.
Therefore the general solution of the homogeneous $3 a_{n}-4 a_{n-1}+a_{n-2}=0$ is

$$
a_{n}^{g e n}=c_{1} \cdot 1^{n}+c_{2} \cdot\left(\frac{1}{3}\right)^{n}
$$

c_{1}, c_{2} constants to be computed later from the initial conditions.
We now find a particular solution of the original solution. We try the following solution $a_{n}^{\text {part }}=A\left(\frac{1}{2}\right)^{n}$ and we thus get from the original recurrence $3 a_{n}-4 a_{n-1}+a_{n-2}=2^{-n}$:

$$
3 A(1 / 2)^{n}-4 A(1 / 2)^{n-1}+A(1 / 2)^{n-2}=(1 / 2)^{n}
$$

and by multiplying both sides with 2^{n} we finally get $A=-1$.

Therefore a particulal solution to the recurrence is $a_{n}^{\text {part }}=(-1) \cdot\left(\frac{1}{2}\right)^{n}$. A general solution to the original (nonhomogeneous) one is the sum of the the two solutions i.e.

$$
a_{n}=a_{n}^{\text {gen }}+a_{n}^{\text {part }}=c_{1} \cdot 1^{n}+c_{2} \cdot\left(\frac{1}{3}\right)^{n}+(-1) \cdot\left(\frac{1}{2}\right)^{n}
$$

We now compute the constants c_{1}, c_{2}.

$$
\begin{gathered}
a_{0}=6=c_{1} \cdot 1+c_{2} \cdot 1-1 \Rightarrow c_{1}+c_{2}=7 \\
a_{1}=2.5=c_{1}+c_{2} \cdot \frac{1}{3}+(-1) \cdot \frac{1}{2} \Rightarrow 3 c_{1}+c_{2}=9
\end{gathered}
$$

This system of equations gives $\left\{\begin{array}{l}c_{1}=1 \\ c_{2}=6\end{array}\right.$ as a solution.
Therefore

$$
a_{n}=1 \cdot 1^{n}+6 \cdot\left(\frac{1}{3}\right)^{n}+(-1) \cdot\left(\frac{1}{2}\right)^{n}
$$

Exercise 6.23. You are given the following systeniぬf recurrences. Solve for a_{n} and b_{n}.

$$
\begin{aligned}
& a_{n}=2 a_{n-1}+2 b_{n}, \quad a_{0}=2 \\
& b_{n}=a_{n}+3 b_{n-1}, \quad b_{0}=3
\end{aligned}
$$

Proof. If we use the o.g.f. of $a_{n}, b_{n} d$ let them be $\left.A(x), B(x)\right)$ we get that the system of equations

$$
\begin{array}{r}
a_{n}=2 a_{n-1}+2 b_{n} \\
b_{n}=a_{n}+3 b_{n-1}
\end{array}
$$

Substituting

Now, we solve the second equatigis with respect to $A(x)$ and replace the expression of $A(x)$ in terms of $B(x)$ in the first equation. We get:

$$
\begin{gathered}
B(x)(1-3 x)=\frac{2 B(x)}{(1-2 x)}+\frac{-4}{(1-2 x)}+1 \Rightarrow B(x)\left((1-3 x)-\frac{2}{(1-2 x)}\right)=\frac{-4}{(1-2 x)}+1 \Rightarrow \\
B(x) \cdot \frac{6 x^{2}-5 x-1}{(1-2 x)}=\frac{-4}{(1-2 x)}+1 \Rightarrow B(x) \cdot \frac{(6 x+1)(x-1)}{(1-2 x)}=\frac{-4}{(1-2 x)}+1 \Rightarrow \\
B(x)=\frac{-4}{(1+6 x)(x-1)}+\frac{(-2 x+1)}{(1+6 x)(x-1)} \Rightarrow B(x)=\frac{4}{(1+6 x)(1-x)}+\frac{(2 x-1)}{(1+6 x)(1-x)}
\end{gathered}
$$

Now, we expand each of the two terms into simpler fractions. We thus get:

$$
B(x)=\frac{\frac{24}{7}}{1+6 x}+\frac{\frac{4}{7}}{1-x}+\frac{\frac{-8}{7}}{1+6 x}+\frac{\frac{1}{7}}{1-x} \Rightarrow B(x)=\frac{\frac{16}{7}}{1+6 x}+\frac{\frac{5}{7}}{1-x}
$$

We know that $1 /(1-a x)$ is the o.g.f. of a^{n} (and $\left.1+6 x=1-(-6) x\right)$. Therefore:

$$
b_{n}=\frac{16}{7}(-6)^{n}+\frac{5}{7} 1^{n}
$$

Now, from $b_{n}=a_{n}+3 b_{n-1}$ we have that $a_{n}=b_{n}-3 b_{n-1}$ and therefore we get that:

$$
a_{n}=\frac{24}{7}(-6)^{n}-\frac{10}{7} 1^{n}
$$

Exercise 6.24. Two professors in two different subjects are giving oral examinations to 12 students at the same exam time. Each student will be examined individually for 5 minutes in each subject. In how many ways can a schedule be made up so that no student will have to see both professors at the same time? Give an approximate value to the answer as well.

Proof. Suppose professor A examines students 1 through 12 in order. Then professor B may examine the students in any order that is a permutation of their indices where $\pi(i) \neq i$. This is just the number of derangements. Since A may examine the students in any order, the answer is

Exercise 6.25. Provide a combingtorial interpretation for each of the following two sums to deduce a simple expression for each of them.
a)

Proof. i) Suppose have (2ballseThe passible solorings of these balls with 3 colors (R, G, B) is 3^{n}. We express this number differently as fonlows. Rick k aुong the n balls, color the unpicked $n-k R$, and the number of colorings of the remaining k with the twoolors r, B is 2^{2}. Sum up for all values of k from 0 (all balls R colored) to n (no ball R colored) and it is straightforward that the is 3^{k}.
ii) We can choose k balls amon $n+1$ balls in $\binom{n+1}{k}$ ways.

- If the first ball is not chosen we can choose k among the remaining n in $\binom{n}{k}$ ways.
- If the first ball is chosen but the second is not we can choose $k-1$ balls among the remaining $n-1$ ones in $\binom{n-1}{k-1}$ ways and these $k-1$ balls and the first one give the k chosen balls. We proceed similarly,
- If the fist ball is chosen, the second ball is chosen, the l-th ball is chosen but not the $l+1$-th one we can choose $k-l$ balls among the remaining ones in $\binom{n-l}{k-l}$ ways, etc,

Summing for all values of l from 0 to k we get that the sum counts the number of ways of choosing k among $n+1$ balls which is $\binom{n+1}{k}$.

Exercise 6.26. Suppose we divide the numbers in the set $\{1,2, \ldots, n\}$ into l classes arbitrarily. Prove that if $n \geq e \cdot l$! then there exists a class (among the l given classes) such that x, y, z belong to this class and $x+y=z$.

Proof. We are going to use a prior problem here. Let the l classes into which the integers from 1 to n were split be C_{1}, \ldots, C_{l}. Take the complete graph K_{n+1} vertices (we number its vertices with numbers from 1 to $n+1$) and color its edges with l colors as follows. We color edge $\{i, j\}$ with color m if the number $|i-j|$ is in the class C_{m}. Since the difference of any two vertices in K_{n+1} is at most n we can always color the edges in such a way. Since $n+1 \geq e l!+1$, the graph has a monochromatic triangle, let it be (i, j, k, i) and let all edges of this triangle are colored m. This means that the numbers $|i-j|,|j-k|,|k-i|$ are all in set C_{m}. Let, without loss of generality, $i<j<k$. Then choose, $x=|i-j|, y=|j-k|$ and $z=|k-i|$. It is straightforward that $x+y=z$ and $x, y, z \in C_{m}$. Since C_{1}, \ldots, C_{l} is an arbitrary splitting of the n numbers we are done.

Exercise 6.27. In how many ways can one select n letters from an unlimited supply of A's, B's, and C's so that there are an even number of A's (zero counts as an even number)?
Proof. Using generating functions, the answer is the coefficient of x^{n} in $\left(1+x^{2}+x^{4}+\ldots\right)\left(1+x+x^{2}+\ldots\right)^{2}$, where the first term counts the number of ways of selecting the A's, and the second the B's and C's. This coefficient is equal to

$$
\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \text { coefficient of } n-2 i \text { in } \frac{1}{(1-x)^{2}}=\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-2 i+1}{n-2 i}
$$

$$
=\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor} n-2 i+1
$$

$$
=\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)(n+1)-2 \sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor} i
$$

$$
=\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)(n+1)-\left\lfloor\frac{n}{2}\right\rfloor\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)
$$

$$
=\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)\left(n-\left\lfloor\frac{n}{2}\right\rfloor+1\right)
$$

Exercise 6.28. Inthow hanty wars canene select n lefers from an unlimited supply of A's, B's, and C's so that no letter appears sactly the tiveres? \& 0^{2}
Proof. The generating functionsor each ietter do
车

The answer is therefore the coefficien of x^{n} in

$$
\left(\frac{1}{1-x}-x^{3}\right)^{3}=\frac{1}{(1-x)^{3}}-\frac{3 x^{3}}{(1-x)^{2}}+\frac{3 x^{6}}{1-x}-x^{9}
$$

This is equal to the coefficient of x^{n} in $(1-x)^{-3}\binom{n+2}{n}$), minus three times the coefficient of x^{n-3} in $(1-x)^{-2}\left(\binom{n-2}{n-3}\right)$ if $n \geq 3$, plus three times the coefficient of x^{n-6} in $(1-x)^{-1}$ (one) if $n \geq 6$, minus one in the case where $n=9$. These combine to equal

$$
\begin{cases}\frac{(n+2)(n+1)}{2}-3(n-2)+3=\frac{n^{2}-3 n+20}{2} & \text { if } n \geq 6 \text { and } n \neq 9 \\ \frac{(n+2)^{(n+1)}}{2}-3(n-2)+2=36 & \text { if } n=9 \\ \frac{(n+2)(n+1)}{2}-3(n-2)=\frac{n^{2}-3 n+14}{2} & \text { if } 5 \geq n \geq 3 \\ \frac{(n+2)(n+1)}{2} & \text { if } 2 \geq n \geq 0\end{cases}
$$

Exercise 6.29. Suppose from any point (i, j) on an infinite grid, one is allowed to make the moves $(i, j) \rightarrow(i+1, j+1)$ and $(i, j) \rightarrow(i+1, j-1)$. How many paths are there from $(0,0)$ to (m, n) ?

Proof. Suppose we make p " $\nearrow "$ moves, and q " " moves. Since any move we make increases the x coordinate by one we must have $p+q=m$. Since the net change in the y coordinate is n, it must be that $p-q=n$. From adding these equations it follows that $p=\frac{m+n}{2}$, and hence the number of times each move is made fixed. But they can be taken in any order, so the answer is

$$
\binom{p+q}{p}=\binom{m}{\frac{m+n}{2}}
$$

(assuming m and n are both odd or even, otherwise it is impossible).
Exercise 6.30. Find a closed form expression for the ordinary generating function of the sequence $a_{n}=n^{3}$.
Proof. We shall start of with the relation

$$
f(x)=1+x+x^{2}+x^{3}+\ldots+x^{n}+\ldots
$$

for which we know $f(x)=(1-x)^{-1}$ and work from there.

$$
\begin{aligned}
& f^{\prime}(x)=\quad \frac{1}{(1-x)^{2}} \quad=1+2 x+3 x^{2}+\ldots+n x^{n-1}+\ldots \\
& x f^{\prime}(x)=\frac{1 x^{2}}{(f)^{2}} \quad=x+2 x^{2}+3 x^{3}+\ldots+n x^{n}+\ldots \\
& \left(x f^{\prime}(x)\right)^{\prime}(x)=\frac{\cap}{(1<x)^{2}}+\frac{2 x}{(1-x)^{3}} \quad=1+4 x+9 x^{2}+\ldots+n^{2} x^{n-1}+\ldots \\
& x\left(x f^{\prime}(x)\right)^{\prime}(x)=\frac{x}{(1-x)^{2}}+\frac{2 x^{2}}{(1-x)^{3}} \quad=x+4 x^{2}+9 x^{3}+\ldots+n^{2} x^{n}+\ldots \\
& \left(x\left(x f^{\prime}(x)\right)^{\prime}\right)^{\prime}(x)=\mathrm{C} \frac{\sqrt{1}}{(1-x)^{2}}+\frac{6 x}{(1-x)^{3}}+\frac{6 x^{2}}{(1-x)^{4}}=1+8 x+27 x^{2}+\ldots+n^{3} x^{n-1}+\ldots \\
& x\left(x\left(x f^{\prime}(x)\right)^{\prime}\right)^{\prime}(x) \frac{x}{(1-x)^{2}}+\frac{6 x^{2}}{(1-x)^{3}}+\frac{6 x^{3}}{(1-x)^{4}}=x+8 x^{2}+27 x^{3}+\ldots+n^{3} x^{n}+\ldots
\end{aligned}
$$

That last series is what weyant, sithe answer ie $\frac{x}{(1-x)^{2}}+\frac{6 x^{2}}{(1-x)^{3}}=\frac{x^{3}+4 x^{2}+x}{(1-x)^{4}}$.
Exercise 6.31. In howmanæiays ean onerm nedigit nods (iaforder matters) from the set $\{0,1,2,3\}$ in which the number of 0 's isßeven?
Proof. For wis problem wequant toconsider expaentiafgenerating functions. For $\{1,2,3\}$ the e.g.f.'s are

For 0 , the e.g.f. is

That is true because the expansions of e^{x} and e^{-x} both include $\frac{x^{i}}{i!}$ for i even, but for i odd the latter has $-\frac{x^{i}}{i!}$ and the two terms cancel out. Thus the answer is the coefficient of $\frac{x^{n}}{n!}$ in

$$
\left(e^{x}\right)^{3} \frac{e^{x}+e^{-x}}{2}=\frac{e^{4 x}+e^{2 x}}{2}
$$

This coefficient is $\frac{4^{n}+2^{n}}{2}=2^{2 n-1}+2^{n-1}$.
Exercise 6.32. Suppose one can move on the integer grid from position $(x, y) \rightarrow(x+1, y+1)$ and from $(x, y) \rightarrow$ $(x+1, y-1)$. Show, that the number of ways one can go from position $(0,0)$ to position $(m, n)(m, n>0$ and with $m+n$ even) without touching the x-axis(except in the beginning) is:

$$
\binom{m-1}{\frac{m+n-2}{2}}-\binom{m-1}{\frac{m+n}{2}}
$$

Proof. Since every path from $(0,0)$ to (m, n) must not cross the x-axis at any intermediate point, the first possible move is to $(1,1)$ point. Take the image $(1,-1)$ of $(1,1)$ with respect to the x -axis. Take a path from $(1,1)$ to (m, n) which touches the x -axis for the first time at point $(x, 0)$. Then every path from $(1,1)$ to $(x, 0)$ above the x -axis maps $1-1$ to a path (its reflection) from $(1,-1)$ to $(x, 0)$ below the x -axis. The number of paths (unrestricted) from $(1,1)$ to (m, n) are $\binom{m+1}{\frac{m+n-2}{2}}$ while the number of paths from $(1,-1)$ to (m, n) (which cross the x -axis and each one of them corresponds to a path from $(1,1)$ to (m, n) that touches the x -axis) is $\left(\begin{array}{c}m-1 \\ m+n \\ m\end{array}\right)$. Subtracting the second number from the first we get the number of paths from $(1,1)$ (and equivalently from $(0,0)$) to (m, n) which do not touch the x -axis.

Exercise 6.33. Find the number of ways $2 n$ points on a circle can be joined pairwise with n non-intersecting chords.
Proof. Let a_{n} be the number of ways $2 n$ points on a circle can be joined pairwise with n non-intersecting chords. Take a given point on the circle, let it be x. When x is joined by a chord to another point on the circle it divides the points on the circle into two sets of say $2 i$ points on the left of the chord and $2 n-2 i-2$ points on the right (if we have an odd number of points on either side then we must have two intersecting chords). Summing up for all possible values of i we get the following recurrence for this problem:

$$
a_{n}=\sum_{i=0}^{n-1} a_{i} a_{n-1-i}, \quad a_{0}=a_{1}=1
$$

Now we sum for all possible values of $n=1,2$, note that we choose $a_{0}=1$, one can avoid this by writing separately the first and the last term of the sum which gives a_{n} above). Then we get:

$$
\sum_{n=1}^{\infty} a_{n} x^{n}=\sum_{n=1}^{\infty} \sum_{i=0}^{n-1} a_{i} a_{n-1-i} x^{n} \Rightarrow A(x)-a_{0}=x A^{2}(x)
$$

where $A(x)$ is the o.g.f. of $a_{0} 0$ From the last equation we get that $A(x)=\frac{+1 \pm \sqrt{1-4 x}}{2 x}$. We choose only the negative root and from the Binomial The get:

Therefore, tom the a st expressiopwe get that the coefficient of x^{n} in $A(x)$ is $\frac{1}{n+1}\binom{2 n}{n}$. This is just the $n+1$-st Catalan number. Onepan avoid the recomputation) Af A (x) By using $b_{n}=a_{n-1}$ and then the recurrence with respect to b_{n} follows.

Exercise 6.34. Solveite following recurrence relation:

Proof. We derive the characteristic equation $4 x^{2}-5 x+1=0$ from the recurrence:

$$
\begin{equation*}
4 x_{n+1}-5 x_{n}+x_{n-1}=(0.5)^{n}, x_{0}=2, x_{1}=1 \tag{6.5}
\end{equation*}
$$

This equation has solutions $x_{1,2}=1, \frac{1}{4}$. Therefore the general solution of the homogeneous equation given by (1) is:

$$
x_{n}^{(\text {Mom })}=A 1^{n}+B\left(\frac{1}{4}\right)^{n}
$$

For a partial solution of the non-homogeneous of (1) we try $x_{n}=c(0.5)^{n}$. If we replace this in (1) and solve with respect to c we get that $c=-1$. Therefore a partial solution for the non-homogeneous of (1) (the initial conditions are ignored) is:

$$
x_{n}^{(p a r)}=-(0.5)^{n}
$$

and therefore, a general solution for (1) is given by:

$$
\begin{equation*}
x_{n}^{(\text {gen })}=x_{n}^{(h o m)}+x_{n}^{(\text {par })}=A 1^{n}+B\left(\frac{1}{4}\right)^{n}-(0.5)^{n} \tag{6.6}
\end{equation*}
$$

Substituting $n=0$ and $n=1$ in (2) and equating each case to the initial conditions $x_{0}=2$ and $x_{1}=1$, we get then that: $A+B-1=2$ and $A+\frac{B}{4}-\frac{1}{2}=1$ which give $A=1, B=2$. Therefore:

$$
\begin{equation*}
x_{n}^{(g e n)}=1+2\left(\frac{1}{4}\right)^{n}-(0.5)^{n} \tag{6.7}
\end{equation*}
$$

Exercise 6.35. Solve the following system of recurrences:

$$
\begin{gathered}
x_{n+1}=2 x_{n}+2 y_{n}, x_{0}=3 \\
y_{n+1}=x_{n}+3 y_{n}, y_{0}=6
\end{gathered}
$$

Then solve the following recurrence:

$$
w_{n+1}=\frac{2 w_{n}+2}{w_{n}+3}, \quad w_{0}=0.5
$$

Proof. Let $X(z)$ and $Y(z)$ be the o.g.f of the sequences x_{n} and y_{n} respectively. Then, from the system of recurrences:

$$
\begin{aligned}
& x_{n+1}=2 x_{n}+2 y_{n}, x_{0}=3 \\
& y_{n+1}=x_{n}+3 y_{n}, y_{0}=6
\end{aligned}
$$

we get, by summing up for all generating functions:

From the first wet thatil (z), Roplacite this into the second one we get after some manipulations:

$$
e^{4}
$$

We note that:
and:

$$
\text { or } \frac{8(-2 z)}{8}=\frac{2}{(1-z)}+\frac{4}{(1-4 z)}
$$

$$
c^{\rho^{\prime}} \frac{3 z}{(1-z)(1-4 z)}=\frac{-1}{(1-z)}+\frac{1}{(1-4 z)}
$$

and therefore:

$$
Y(z)=\frac{1}{1-z}+\frac{5}{1-4 z} \Rightarrow y_{n}=1^{n}+5 \cdot 4^{n}
$$

We replace $Y(z)$ in the expression we got for $X(z)$ and we similarly get that:

$$
X(z)=\frac{-2}{1-z}+\frac{5}{1-4 z} \Rightarrow x_{n}=-2 \cdot 1^{n}+5 \cdot 4^{n}
$$

For the second part identify that for $w_{n}=\frac{x_{n}}{y_{n}}$ the recurrence for w_{n} is equivalent to the system of the two recurrences above and a solution for w_{n} is easily derived.
Exercise 6.36. Find the number of perfect matchings in the ladder graph shown below.

Proof. Let $f(n)$ be the number of perfect matchings in the ladder graph of size n (with $2 n$ vertices). If the edge ($1,1^{\prime}$) is in the matching the other vertices can be matched in $f(n-1)$ ways. If edges $(1,2)$ and $\left(1^{\prime}, 2^{\prime}\right)$ are in the matching the other vertices can be matched in $f(n-2)$ ways. That way we get the recurrence relation:

$$
f(n)=f(n-1)+f(n-2) \quad n \geq 3, f_{1}=1, f_{2}=2
$$

This is just the Fibonacci recurrence (for $n>0$).
Exercise 6.37. How many n-digit binary 0-1 sequences have no adjacent 0's? Express the answer in terms of Fibonacci numbers.

Proof. Let a_{n} be the number of binary strings of length n with no adjacent 0 s. If the first digit is 1 we can have a_{n-1} strings for the other digit positions. If the first digit is 0 then the second digit must be 1 (otherwise we get two consecutive 0 s) and we can have a_{n-2} strings for the rest $n-2$ digit positions. The recurrence we got is the Fibonacci recurrence shifted to the left one position i.e.

$$
a_{n}=a_{n-1}+a_{n-2} \quad a_{1}=2, a_{2}=3
$$

and therefore the answer is f_{n+1} where f_{n} is the n-th Fibonacci number of the recurrence usually defined in textbooks.

Exercise 6.38. Show by combinatorial interp,etation that the sequence

$$
f_{n}=\sum_{i=\left\lceil\frac{n}{2}\right\rceil}^{n}\binom{i}{n-i} n=0,1, \ldots
$$

is the Fibonacci sequence.
Proof. The number of binary stugs odength 1 with no 2 consecutive 0 s is f_{n}. We can also count them as follows. Let the number of 1 s in the string bd . Than, weean put -1 slot). Summing fornall values of che get (below we most havgiq $1 \geq n-i-j$ so that no two 0 s are consecutive, and the solution of the inequalitysives the bounds for $\dot{5}$

This proves our claim This sum is aso theoefficient of x^{n} in $A(x)=\frac{1}{1-x-x^{2}}=\sum_{i}\left(x+x^{2}\right)^{i}$.
Exercise 6.39. In how manaways dan one select k distinct integers from the set $\{1,2, \ldots, n\}$ so that no two are consecutive?

Proof. This is equivalent to asking how many words of length n over $\{0,1\}$ have exactly k ones, no two of which are adjacent. We can count this by laying down the $n-k$ zeros, and then chosing k of the possible $n-k+1$ gaps in which to insert ones. Thus the answer is

$$
\binom{n-k+1}{k}
$$

Exercise 6.40. Find a simple expression for the following sum:

$$
\binom{n}{0}\binom{n}{k}-\binom{n}{1}\binom{n}{k-1}+\ldots+(-1)^{i}\binom{n}{i}\binom{n}{k-i}+\ldots+(-1)^{k}\binom{n}{k}\binom{n}{0}
$$

Proof. Observe that the i 'th term in the summation is the product of the coefficient of x^{i} in $(1-x)^{n}$, times the coefficient of x^{k-i} in $(1+x)^{n}$. Therefore the entire sum is the coefficient of x^{k} in $(1-x)^{n}(1+x)^{n}=\left(1-x^{2}\right)^{n}$. This is the coefficient of $y^{k / 2}$ in $(1-y)^{n}$, which is

$$
\begin{array}{ll}
0 & \text { if } k \text { is odd } \\
(-1)^{\frac{k}{2}}\binom{n}{\frac{k}{2}} & \text { if } k \text { is even }
\end{array}
$$

Exercise 6.41. Solve the following recurrence relation:

$$
x_{n+1}-6 x_{n}+9 x_{n-1}=2^{n}, x_{0}=3, x_{1}=10
$$

Proof. First guess a particular solution of the form $x_{n}^{(p)}=A 2^{n}$. Substituting into the recurrence this gives

$$
\begin{array}{r}
A 2^{n+1}-6 A 2^{n}+9 A 2^{n-1}=2^{n} \\
4 A-12 A+9 A=2 \\
A=2 \\
x_{n}^{(p)}=2^{n+1}
\end{array}
$$

To find the homogeneous solution observe thathe characteristic polynomial is $\lambda^{2}-6 \lambda+9=(\lambda-3)^{2}$. So the solution is of the form $x_{n}^{(h)}=(B n+C) 3^{n}$ (recalothis was how we handled a root of multiplicity more than one).

The complete solution is $x_{n}=x_{n}^{(p)}+x^{(h)}=2^{n+1}+(B n+C) 3^{n}$ where B and C are selected to satisfy the initial conditions. These give the pair of equapors $3=2+C$ and $10=4+(B+C) 3$, whose solutions are $B=C=1$. Thus the final answer is

$$
x_{n}=n 3^{n}+3^{n}+2^{n+1}
$$

Exercise 6.42. Solve the thowion recurncenclation:

Proof. The etharacteristic equation gfthe homogereous is $\mathscr{d}^{2}-a+1=0$ which gives two complex roots $a_{1,2}=\frac{1 \pm i \sqrt{3}}{2}$.
 solution for oustecurreince is.
ere

We now apply the initial conditions to this solution. We get:

$$
x_{0}=2=A+B+\frac{2}{3}
$$

and

$$
x_{1}=2=A\left(\frac{1+i \sqrt{3}}{2}\right)+B\left(\frac{1-i \sqrt{3}}{2}\right)+\frac{4}{3}
$$

which give $A=B=\frac{2}{3}$. Therefore, the solution of the recurrence is:

$$
x_{n}=\frac{2}{3} a_{1}^{n}+\frac{2}{3} a_{2}^{n}+\frac{4}{3} 2^{n}=\frac{4}{3} \cos \left(\frac{n \pi}{3}\right)+\frac{2}{3} 2^{n}
$$

Exercise 6.43. Find the coefficient of x^{n} in

$$
\frac{x}{(1-x)(1-2 x)^{2}} .
$$

Proof. We expand

$$
\frac{x}{(1-x)(1-2 x)^{2}}
$$

as follows:

$$
\frac{x}{(1-x)(1-2 x)^{2}}=\frac{1}{(1-x)}+\frac{-1}{(1-2 x)}+\frac{2 x}{(1-2 x)^{2}}
$$

Therefore the coefficient of x^{n} in the original expression is the coefficient of x^{n} in $\frac{1}{1-x}$ which is 1 plus the coefficient of x^{n} in $\frac{-1}{1-2 x}$ which is -2^{n} plus the coefficient of x^{n} in $\frac{2 x}{(1-2 x)^{2}}$ which is $n 2^{n}$ (since the sequence $n=1,2, \ldots$ has o.g.f. $\left.\frac{x}{(1-x)^{2}}\right)$ Therefore the coefficient of x^{n} is $1+(n-1) 2^{n}$.

Exercise 6.44. For the recurrence relation:

$$
\begin{gathered}
A(n)=32 \cdot A\left(\frac{n}{4}\right)+16 n^{2} \\
A(4)=128
\end{gathered}
$$

compute $A(n)$ exactly for n a power of 4 .
Proof. Expanding out the recurrence, we get

Exercise 6.45. How winany खositiverategexs less than 10^{n} (in the decimal scale) have their digits in non-decreasing order?

Proof. We represent the probIem arollows. We pick $n+9$ balls. Among these balls we will pick 9 of them, and these will become the separators that eill split the other ones in 10, possibly empty, parts (the first part is on the left of the first separator, the tenth on the right of the last one, the other ones are between any two successive separators). We label the balls of part i with number $i-1$, and thus, we use numbers $0, \ldots, 9$. If there's no ball in part i, then no label $i-1$ will be assigned to any ball. After we had chosen the separator balls, and labeled the other n balls, reading the labels from left to right we get a number whose digits are in non-decreasing order. It is easy to see that the number of ways we can choose the 9 separator balls among the $n+9$ ones is $\binom{n+9}{9}=\binom{n+9}{n}$, and among them, there are $\binom{n+9}{n}-1$ positive ones.

Exercise 6.46. How many ways can four distinct dice be rolled so that they sum to 10 ?
Proof. For each die, the ordinary generating function is

$$
x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}=x\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}\right)=\frac{x\left(1-x^{6}\right)}{1-x}
$$

The answer is the coefficient of x^{10} in $\left(\frac{x\left(1-x^{6}\right)}{1-x}\right)^{4}$, which is the same as the coefficient of x^{6} in $\left(\frac{1-x^{6}}{1-x}\right)^{4}$. This generating function is equal to

$$
\left(1-4 x^{6}+6 x^{12}-4 x^{18}+x^{24}\right)(1-x)^{-4}
$$

The coefficient of x^{6} in this is the coefficient of x^{6} in $(1-x)^{-4}$, minus four times the constant term of $(1-x)^{-4}$. The answer is therefore

$$
\binom{4+6-1}{6}-4\binom{4+0-1}{0}=\binom{9}{6}-4\binom{3}{0}=80
$$

Exercise 6.47. Show the following identities by combinatorial interpretation:

$$
\begin{align*}
\sum_{i=1}^{n} i\binom{n}{i}^{2} & =n\binom{2 n-1}{n-1} \tag{6.8}\\
\sum_{r=k}^{n-k}\binom{r}{k}\binom{n-r}{k} & =\binom{n+1}{2 k+1} \tag{6.9}\\
S(n+1, m+1) & =\sum_{k=m}^{n}\binom{n}{k} S(k, m) \tag{6.10}
\end{align*}
$$

Proof. Suppose we have $2 n$ distinct objeats, split evenly between two bins. The right hand side counts the number of ways we can select a single object fion the first bin, and then divide the remaining objects into two groups of size $n-1$ and n. The left hand side counts the same quantity when viewed in the following way. For some $1 \leq i \leq n$, pick i objects from the first bin, and $n-i$ objects from the second bin. From among the i objects chosen from the first bin, pick the single element. The remaining $(i-1)+(n-i)$ objects chosen are the set of $n-1$, and the $2 n-n$ objects not chosen are the set of n.

The right hand side ε elnts thenumber of ways we can select an odd number of objects $(2 k+1)$ from a set of $n+1$ distinct objects. The left hanf side \&ounts the sane quabity when viewed in the following way. Suppose the $n+1$ objects are ordere . To piek the elk" 1 consider separately the Qarious possibilities for the "middle" element of the $2 k+1$. This object muste atseast the +1 'sand an most by k or morebjects). If themiddteobjectis at pestion the number of ways the remaining objects can be completed is $\binom{i-1}{k}$ (piek the first haff times ($\begin{gathered}k-i \\ k\end{gathered}$ epick the second half). This is what is counted on the left hand side (where r is actually the position before the one of the hadde element selected).

The Stirling n\&naber $\& n+1$ counts number of ways that $n+1$ distinct objects may be placed in $m+1$ indistinct bins, with atleast ore object per bonsider the bin in which object 1 is placed. There must be at least m objects not placed in this bin (sincethe other bins cannot be empty), and at most n (since that's how may other objects there are). Once we know howanany $\hat{0}$ bects are not placed in the same bin as 1 , we may reduce the quantity to the number of ways we may chôse tho (k) objects, times the number of ways we may place those remaining objects in the remaining m bins with at leaso one object per bin. This is what is counted on the right hand side.

Exercise 6.48. Find a closed form expression for

$$
\sum_{i=0}^{n} \sum_{j=0}^{i} 2^{i} 2^{j}\binom{n}{i}\binom{i}{j}
$$

Using calculus and generating functions, determine the value of the sum

$$
\binom{n}{1}+2\binom{n}{2}+3\binom{n}{3}+\ldots+n\binom{n}{n}
$$

Proof. We show the answer is 7^{n} by applying the binomial theorem backwards.

$$
\begin{aligned}
\sum_{i=0}^{n} \sum_{j=0}^{i} 2^{i} 2^{j}\binom{n}{i}\binom{i}{j} & =\sum_{i=0}^{n} 2^{i}\binom{n}{i} \sum_{j=0}^{i} 2^{j}\binom{i}{j} \\
& =\sum_{i=0}^{n} 2^{i}\binom{n}{i}(1+2)^{i} \\
& =\sum_{i=0}^{n} 6^{i}\binom{n}{i} \\
& =(1+6)^{n}
\end{aligned}
$$

Exercise 6.49. Using calculus and generating functions, determine the value of the sum

$$
\binom{n}{1}+2\binom{n}{2}+3\binom{n}{3}+\ldots+n\binom{n}{n}
$$

Proof.
observe that

$$
f(x)=1+\binom{n}{1} x+\binom{n}{2} x^{2}+\binom{n}{3} x^{3}+\ldots+\binom{n}{n} x^{n}
$$

$$
f^{\prime}(x) \approx\binom{\prime \prime}{1}+2\binom{n}{2} x+3\binom{n}{3} x^{2}+\ldots+n\binom{n}{n} x^{n-1}
$$

The answer is therefore $f^{\prime}(1)$. But $\mathcal{E}(x)$ is simply $(1+x)^{n}$, so $f^{\prime}(x)$ is $n(1+x)^{n-1}$. Thus the answer is $n 2^{n-1}$.

Exercise 6.50. Find a closed foritexpression for the ordinary generating function $\sum_{n=0}^{\infty} \alpha_{n} x^{n}$, where

Assume $\binom{r}{s}$ is if $s \times$ or ${ }^{\circ}$

$$
\begin{aligned}
& =\sum_{n=0}^{\infty} \sum_{k \geq 0}\binom{k}{n-k} x^{n} \\
& =\sum_{k=0}^{\infty}\binom{k}{n-k} x^{n} \\
& =\sum_{k \geq 0} x^{k} \sum_{n=0}^{\infty}\binom{k}{n-k} x^{n-k} \\
& =\sum_{k \geq 0} x^{k} \sum_{n=k}^{2 k}\binom{k}{n-k} x^{n-k} \\
& =\sum_{k \geq 0} x^{k}(1+x)^{k} \\
& =\sum_{k \geq 0}\left(x+x^{2}\right)^{k} \\
& =\frac{1}{1-x-x^{2}}
\end{aligned}
$$

Exercise 6.51. Solve the following recurrence relation:

$$
a_{n}=a_{n-1} \cdot a_{n-2}, \text { where } a_{1}=2, \text { and } a_{2}=4
$$

Proof. We take the logarithms base 2 of both sides. We thus have: $\lg a_{n}=\lg a_{n-1}+\lg a_{n-2}$. We then substitute $b_{n}=\lg a_{n}$. Then the given recurrence becomes $b_{n}=b_{n-1}+b_{n-2}$, where $b_{1}=\lg a_{1}=\lg 2=1$ and $b_{2}=\lg a_{2}=\lg 4=2$. This is just the Fibonacci recurrence. Let f_{n} be the n-th term of the Fibonacci recurrence. Then $a_{n}=2^{f_{n}}$.

Exercise 6.52. a) Solve the following recurrence relation:

$$
a_{n}-7 a_{n-1}+16 a_{n-2}-12 a_{n-3}=0, \text { where } a_{0}=2, a_{1}=7, a_{2}=21
$$

b) Use some of the results of part (a) to solve the following recurrence relation:

$$
a_{n}-7 a_{n-1}+16 a_{n-2}-12 a_{n-3}=4^{n-1}, \text { where } a_{0}=2, a_{1}=7, a_{2}=35
$$

Proof. noindent a) The characteristic equation of the recurrence relation is $x^{3}-7 x^{2}+16 x-12=0$, which has 3 roots, $x_{1,2}=2$ (double root), and $x_{3}=3$. Therefore the general solution of the recurrence is:

$$
a_{n}=A 2^{n}+B n 2^{n}+C 3^{n}
$$

We substitute the initial conditions to (1) and solving a system of 3 equations on 3 unknows we easily find that $A=B=C=1$, therefore the solution to the reevrience is $a_{n}=(n+1) 2^{n}+3^{n}$.
b) We examine first the general solution $a_{n}^{g e n}$ gtthe homogeneous recurrence, that is: $a_{n}-7 a_{n-1}+16 a_{n-2}-12 a_{n-3}=$ 0 . This is identical to the one of part (a), i.e., $a_{n}^{\text {gen }}=A 2^{n}+B n 2^{n}+C 3^{n}$. We then find a partial solution of the nonhomogeneous, that is:

$$
\begin{equation*}
a_{n}-7 a_{n-1}+16 a_{n-2}-12 a_{n-3}=4^{n-1} \tag{2}
\end{equation*}
$$

We fist try as a solution the $a_{n}^{p r e}=c 4^{n}, c$ a constant, to be computed by replacing a_{n} in (2) by $a_{n}^{\text {par }}$. Substituting that way in (2) and solving withrespect to c we get that $c=4$. Therefore, $a_{n}^{\text {par }}=4 \cdot 4^{n}=4^{n+1}$. We sum the two partial results to find the general shention the originab recurrence relation:

Now and only now can apery the inutial coudition? We geta system of 3 equations with 3 unknowns that gives as a solution the $A=C=-1, B=-2$ and thas $\left.a_{n}+1,2 n\right) 2^{n}-3^{n}+4^{n+1}$.
Exercise 6.53, coin equalized for the firsy time ffer 2 \&osses?
a) Find the answer byerating this protem tothe Catalan numbers.
b) Give a second progf usig combinatal interpretation arguments (DO NOT use generating functions or recurrences).

Proof. a) The first question is ease Let the two outcomes of a coin toss be H and T. Suppose that the outcome of the first coin toss is H. Then, we replace each H by a (and each T by a) and the connection to Catalan numbers is straightforward. If the first outcome is T, then we replace each T by a (and each H by a). Therefore, the result is the sum of these two cases, i.e. twice the n-th Catalan number.
b) We prove the result here by counting the number of ways we can move on the integer grid in some way. The integer grid is the real plane where we are only allowed to make either a $(x, y) \rightarrow(x+1, y+1),(\mathrm{a}+)$ move, or a $(x, y) \rightarrow(x+1, y-1),(\mathrm{a}-)$ move, where x, y are integers in both cases.

Question. What is the number of paths we can traverse from $(0,0)$ to $(n, m)(n \geq m>0)$ using $+/-$ moves?
Answer. Let each + move be represented by an 1 and each - move by a -1 . Then we are counting the number of solutions to the equation $x_{1}+\ldots+x_{n}=m$, where $x_{i} \in\{-1,+1\} \forall i$. If p is the number of +1 's and q the number of -1 's we get that we must have $p+q=n$ and $p-q=m$. If we solve this system we get $p=(n+m) / 2, q=(n-m) / 2$, and the number of ways we can go from $(0,0)$ to (n, m) thru + or - moves is simply $\binom{n}{p}=\binom{n}{q}$ (choose p 1's among the n choices and let the other $n-p=q$ choices be -1 's). It is easy to generalize this result for any starting (say
(a, b)) and final position (say (m, n)) (by finding the number of solutions in $\{-1,1\}$ of an appropriate equation such as $\left.x_{1}+\ldots+x_{m-a}=n-b\right)$.

Question. What is the number of paths we can traverse from $(0,0)$ to $(2 n, 0)$ by moves that lie only on the first quadrant (that is positive x and y coordinates) without touching the x-axis?

Answer. Let us call this number $Q . Q$ is equal to the number of such paths from $(1,1)$ to $(2 n-1,1)$ since the first move must be a + one, and the last move must be a - one, otherwise we leave the first quadrant. Q is also the number of paths Q_{1} we can go from $(1,1)$ to $(2 n-1,1)$ unconditionally (that is we may touch or not the x-axis) minus the number of such paths Q_{2}, that always touch the x-axis. Q_{1} can be found from the earlier question, and it is $Q_{1}=\binom{2 n-2}{n-1}$. Let's now try to find the number of paths that meet or cross the x-axis (that is Q_{2}). Let us consider such a path P from $(1,1)$ to $(2 n-1,1)$, and let it touch the x-axis for the first time at point $(r, 0)$. Let P_{1} be the part of P between $(1,1)$ and $(r, 0)$ and P_{2} the part between $(r, 0)$ and $(2 n-1,1)$. We reflect P_{1} with respect to the x-axis so that point $(1,1)$ maps to $(1,-1)$ while $(r, 0)$ remains fixed. P_{1} thus maps uniquely to a path of the fourth quadrant(positive x, negative y), call it P_{1}^{\prime}. This path concatenated with P_{2} gives a pathfrom $(1,-1)$ to $(2 n-1,1)$ that is in 1-1 correspondence with P and crosses the x-axis. So, the number of paths Q_{2} that touch or cross the x axis is just the number of all paths from $(1,-1)$ to $(2 n-1,1)$, which is, from the earlier question, equal to $\binom{2 n-2}{n}$. Subtracting, we get:

$$
Q=Q_{1}-Q_{2}=\binom{2 n-2}{n-1}-\binom{2 n-2}{n}=\frac{(2 n-2)!}{(n-1)!(n-1)!}-\frac{n-1}{n} \frac{(2 n-2)!}{(n-1)!(n-1)!}=\frac{1}{n}\binom{2 n-2}{n-1}
$$

We map every H outcome of the toin coss to a fove, and every T to a move. Then Q above counts all outcomes in which the number of heads equalizes the number of tails for the first time after $2 n$ tosses AND the first coin toss is a H. We must add to this the number of sach outcomes when the fist coin toss is a T. We only then need to count the number of ways one can go from $(0, Q)$ to $(2 n, 0)$ by $+/$ - moves with out leaving the fourth quadrant and without touching the x-axis, which, by symmetry from the latter question, is also $Q .2 Q$ is thus the answer to the problem.
Exercise 6.54. By a pile of cô̂s we mean an arrangement of n coins in rows such that (see also attached figure):
(i) the coins in the first row form a single contiguous block,
(ii) in each higher row eaciscoin ouches exacth two coins from the row beneath it,
(iii) and every row consists of singlecontiserous block occoins. e

Let f_{k} be the number.of pito that diove ofirst ronconsising ofreactly k coins.
a) Show that:

Proof. a) If the firstyow odmists of k cand, wean place on top of it any number of j coins, where $1 \leq j \leq k-1$. We can place j coinsiol - kays gitop ${ }^{(1)}$ the first row (because there are so many slots the leftmost coin of a contiguous block of jeoins Can occlpy) As soon as we place j coins in row 2, we can place on top of this row coins in f_{j} different ways (indotivelde ${ }^{\circ} j^{\circ}$ (no coins are placed) we get one configuration, which consists of one row only. Therefore, we get the recurrene (we take $f_{0}=1$ as a convention to denote the empty arrangement):

$$
f_{k}=\sum_{j=1}^{k-1}(k-j) f_{j}+1=\sum_{j=1}^{k}(k-j) f_{j}+1=\left(\sum_{j=0}^{k}(k-j) f_{j}\right)-k f_{0}+1=\left(\sum_{j=0}^{k}(k-j) f_{j}\right)-k+1
$$

b) We will now find the o.g.f of f_{j}. We multiply both sides of it by x^{k} and sum for all values of k from 1 to ∞ :

$$
\sum_{k=1}^{\infty} f_{k} x^{k}=\sum_{k=1}^{\infty}\left(\left(\sum_{j=0}^{k}(k-j) f_{j}\right)-k f_{0}+1\right) x^{k} \Rightarrow F(x)-1=\sum_{k=1}^{\infty} \sum_{j=0}^{k}(k-j) f_{j}-\sum_{k=1}^{\infty} k x^{k}+\sum_{k=1}^{\infty} x^{k}
$$

where, $F(x)=\sum_{i=0}^{\infty} f_{i} x^{i}$ and we know that $\sum_{j=0}^{\infty} j x^{j}=x /(1-x)^{2}$, and $f_{0}=1$. The double sum is just the product of the o.g.f. of the sequence $j, j \geq 0$ and the sequence $f_{j}, j \geq 0$ (from the multiplication rule of o.g.f.) and thus:

$$
F(x)=\left(x /(1-x)^{2}\right) F(x)-x /(1-x)^{2}+1 /(1-x) \Rightarrow F(x)=\frac{1-2 x}{x^{2}-3 x+1}
$$

Exercise 6.55. A derangement of numbers is a permutation of them that has no fixed points. For example for $n=3$ and numbers $\{1,2,3\}$ the permutation $\sigma, \sigma(1)=2, \sigma(2)=3, \sigma(3)=1$ is a derangement, while the permutation τ, $\tau(1)=2, \tau(2)=1, \tau(3)=3$ is not a derangement, since 3 is a fixed point. Let D_{n} denote the number of derangements of n numbers. Let $D(x)$ be the exponential generating function of D_{n}.
a) Show that:

$$
n!=\sum_{k}\binom{n}{k} D_{n-k},(n \geq 0)
$$

b) Show that $D(x)=\frac{e^{-x}}{1-x}$, and hence deduce that:

$$
D_{n}=n!\left(1-\frac{1}{1!}+\frac{1}{2!}-\ldots+(-1)^{n} \frac{1}{n!}\right)
$$

Proof. a) The number of permutation over n numbers is just $n!$. We count this number by counting all permutations that have exactly k fixed points, for every $k=0, \ldots, n$, and then we sum up all such counts. Suppose k specific numbers will be fixed points in a permutation. Then the other $n-k$ numbers must form a derangement on $n-k$ numbers in this permutation, to have only k fixed points in it. We can choose the k fixed points in $\binom{n}{k}$ ways and for each such choice we have D_{n-k} derangements on the other $n-k$ numbers. Thus we get: $n!=\sum_{k=0}^{n}\binom{n}{k} D_{n-k}$.
b) We now multiply both sides of the previous equation by x^{n} / n !, and summing for all values of n we get:

$$
\sum_{n=0}^{\infty} n!\frac{k^{n}}{n!}=\sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{n}{k} D_{n-k} \cdot 1^{k} \cdot \frac{x^{n}}{n!}
$$

The left hand side is just $1 /(1-x)$, Dxhile the right hand side (from the formula that gives the coefficient of x^{n} / n ! of the product of two e.g.f.'s) is just e (this is the e.g.f. of the sequence $\left.a_{i}=1, \forall i\right)$ times $D(x)$, the e.g.f of D_{n}. Thus $1 /(1-x)=e^{x} D(x)$, and $D(x) \underset{e^{-x} /(1-x) \text {. }}{ }$

On a separate note, suphse that the sequence $f_{n}, n \geq 0$ has o.g.f $F(x)$. Then $F(x) /(1-x)$ is the o.g.f. of the sequence $\sum_{i=0}^{n} f_{i}, n \geq 0$. The proor is seaightfocward from the fact that $F(x) /(1-x)=\left(f_{0}+f_{1} x+f_{2} x^{2}+\ldots\right)(1+x+$ $\left.x^{2}+\ldots\right)$. We also note that thescoefficient $0 x^{n} / n$ bin $e^{-x}(1-x)$)is $n!$ times the coefficient of x^{n} in $e^{-x} /(1-x)$.

Since $D(x)=x^{-x} /(1 \times-x)$, then the coefficient of x^{n} in $B\left(x^{x}\right)$ is just (from the result of the previous paragraph) $\sum_{i=0}^{n}(-1)^{i} / i!$. Therefore the cefficient of x^{2} ! ing (x) int times the previous sum, that is $n!(1-1 / 1!+1 / 2!-$ $\left.\ldots+(-1)^{n}\right)^{2}$, as desireds ς
 cards so that every friengetsone cafor (iis how many ways can you send cards so that every friend gets at most one card? (iii) If youkuy oneof eqci kincof card, in how many ways can you send them to friends (a friend may get no cards, or more than o carde

Proof. (i) For each of the n frends there are k choices. The answer is k^{n}.
(ii) For each of the n friends there is now one more choice (the possibility of not sending a card). The answer now becomes $(k+1)^{n}$.
(iii) For each of the k cards there are n choices. The answer is n^{k}.

Exercise 6.57. In how many ways can one select a set of $2 r$ balls from an urn that contains r identical white balls, r identical blue balls, $2 r$ identical green balls, and $3 r$ identical red balls? (The solution should be a closed form expression in r, but don't worry about purely algebraic simplification).
Proof. The generating function for the white and blue balls is $1+x+\ldots+x^{r}=\frac{1-x^{r+1}}{1-x}$. For the green balls it is $\frac{1-x^{2 r+1}}{1-x}$, and for the red balls it is $\frac{1-x^{3 r+1}}{1-x}$. Thus the answer is the coefficient of $x^{2 r}$ in

$$
\frac{\left(1-x^{r+1}\right)\left(1-x^{r+1}\right)\left(1-x^{2 r+1}\right)\left(1-x^{3 r+1}\right)}{(1-x)^{4}}
$$

We can ignore the effect of higher order terms in the numerator, so this is the same as the coefficient of $x^{2 r}$ in

$$
\frac{1-2 x^{r+1}}{(1-x)^{4}}
$$

This is the coefficient of $x^{2 r}$ in $(1-x)^{-4}$, minus twice the coefficient of x^{r-1} in $(1-x)^{-4}$. This equals

$$
\binom{2 r+3}{3}-2\binom{r+2}{3}
$$

Chapter 7

Asymptotic Comparison of functions

7.1 Limits, Derivatives and Integrals

A refresh on derivatives, limits and integrals.
Fact 7.1 (Limits in computing). In computing limis' are used for asymptotic considerations and are for $n \rightarrow \infty$ i.e. for asymptotically large values of some integer parameter n. The parameter n is sometimes referred to as problem size and less often as input size. Derivatives arêthus $\frac{d}{d n}$.

Fact 7.2 (Simple derivatives). For any constant $k>0$, we have that

$$
(k)^{\prime}=0, \quad\left(e^{n}\right)^{\prime}=k \cdot n^{k-1}, \quad\left(a^{n}\right)^{\prime}=a^{n} \cdot \ln (a), \quad(\ln (n))^{\prime}=\frac{1}{n},
$$

Fact 7.3 (Maltiplicaton and Divisiontin).

$$
\left(\frac{f(n)}{g(n)}\right)^{\prime}=\frac{f^{\prime}(n) g(n)-f(n) g^{\prime}(n)}{g^{2}(n)}
$$

Fact 7.4 (Integrals).

$$
\left.\int n^{k} d n=n^{k+1} /(k+1)+c, \quad \int\left(e^{n}\right) d n\right) d n=\ln (|n|)+c, \quad \int\left(e^{n}+c, \quad \int\left(a^{n}\right) d n=a^{n} / \ln (a)+c,\right.
$$

Fact 7.5 (Limits). For any constant $k>0$,

$$
\lim _{n \rightarrow \infty} n=\infty, \quad \lim _{n \rightarrow \infty} n \lg n=\infty, \quad \lim _{n \rightarrow \infty} n^{k}=\infty, \quad \lim _{n \rightarrow \infty} \lg n=\infty, \quad \lim _{n \rightarrow \infty} 2^{n}=\infty
$$

Fact 7.6.

$$
\lim _{n \rightarrow \infty}(a / b)^{n}= \begin{cases}0 & a<b \\ 1 & a==b \\ \infty & a>b\end{cases}
$$

Fact 7.7.

$$
\lim _{n \rightarrow \infty} \frac{2^{n}}{n!}=0
$$

Exercise 7.1 (L'Hospital). For infinite limits, if L'Hospital is to be applied, constants from base conversions are less of an issue and can be ignored without affecting the end result. Thus in the third equality do not spend time thinking of whether $1 / n$ must be multiplied with $\ln 2$ or divided by $\ln 2$ or something else.

$$
\lim _{n \rightarrow \infty} \frac{n \lg n}{n^{2}}=\lim _{n \rightarrow \infty} \frac{\lg n}{n}=\lim _{n \rightarrow \infty} \frac{(\lg n)^{\prime}}{(n)^{\prime}}=\lim _{n \rightarrow \infty} \frac{(1 / n)}{1}=0
$$

Fact 7.8.
(a) In general $n^{k}>\lg ^{l} n$ for any positive constant k, l and large enough n.
(b) $2^{n}>n^{k}$ for any positive constant k and large enough n.
(c) $n!>n^{k}$ for any constant k and large enough n.
(d) Stirling's formula: $n!\approx(n / e)^{n} \sqrt{2 \pi n}$ for large enough n. Sometimes we use only $n!\approx(n / e)^{n}$ to derive that $\lg (n!) \approx n \lg n-n \lg e$.

7.2 Growth of functions: asymptotic notation

The analysis of the performance of algorithms is done for large problem sizes and this is known as asymptotic analysis. If problem size is n and if the performantee measure is running time $T(n)$, asymptotic analysis is considering the running time asymptotically for large n, in other words, as $n \rightarrow \infty$. This analysis derives the asymptotic growth of the running time. Note that problem size n is a non-negative integer. The discussion below however can extend to the domain of positive real numbers

Deriving the asymptotic gervth of $T(n)$ is equivalent to identifying the dominant function term in $T(n)$. Thus for example, if $T(n)$ is such that $T\left(2 n^{3}+100 \theta n^{2}+10000\right.$, we care only that $T(n)$ has a cubic growth contributed by the n^{3} term. The manplicanve cergstantioú is irrelevant as both $2 n^{3}$ and n^{3} are cubic functions. The remaining terms are asmptotiealy negticible antce n^{2} indicats quadetice grywth (and so does $1000 n^{2}$) and 1 (or 10000) indicate constant growth Anothet Way de think of thisers by ansiderof $\lim 2 n^{3} / 1000 n^{2}$ or $\lim 2 n^{3} / 10000$ for $n \rightarrow \infty: 2 n^{3}$ is asymptotically yrgerthan $1000 \mathrm{n}^{2}$ at 10000 sine
 the dominant telm. In hatheratic con have ased the notation $T(n) \approx n^{3}$ which is equivalent to saying that $\lim _{n \rightarrow \infty} T(n) / n^{3}=1$ We aregoingto propese atsore elegant approach.

Moreover establishiag the asymptose performance of one or more algorithms, performance comparison becomes more intricate. Whentwe co@pare the perfermance of two algorithms, we have available through asymptotic analysis only their asymptotic performande Thuswe perform an asymptotic comparison rather than a regular comparison of their performance.

Thus two algorithms, one withor $(n)=2 n^{3}+1000 n^{2}+10000$ and the other $T_{2}(n)=n^{3}$ are to be declared as having the same asymptotic performance. Their running time are asymptotically equal even if $T_{1}(n)>T_{2}(n)$ for all $n>0$. This is because $T_{1}(n), T_{2}(n)$ are both cubic functions.

The "best algorithm" becomes "the asymptotically best algorithm" or the "algorithm with the best asymptotic performance". And we prefer to use the term efficient for best. And efficient might be further refined to time efficient if $T(n)$ is to be used for asymptotic comparison, or space efficient if $S(n)$ is to be used, or even comparison efficient if we talk about a comparison-based algorithm and $C(n)$ is known. Moreover with asymptotic efficiency one needs to be aware of its limitations (not limits). For example if we say a person A is of height at most 6 ft and a person B is of height at most 7 ft , it might be wrong to concluce B is taller than A . It might be the case that B is 5 ft 10 in and A 5 ft 11 in .

We introduce asymptotic notation that we will use to describe and compare the asymptotic performance of algorithms. We do this on the understanding that exact comparison of two algorithms is usually futile. In practice, compiler settings, cpu architectures, including memory speed and memory hierarchies (L1, L2, L3 caches) might misclassify the relative performance of two algorithms.

For the previous example we will use the notation $T_{1}(n)=\Theta\left(n^{3}\right)$ or $T_{2}(n)=\Theta\left(n^{3}\right)$ to denote that the two functions are cubic. Sometimes we may even write $T_{1}(n) \in \Theta\left(n^{3}\right)$ or $T_{2}(n) \in \Theta\left(n^{3}\right)$. This is a more elegant way, and after definition, more complete way, to denote $T_{1}(n) \approx n^{3}$. This can be read as "the order of growth of $T_{1}(n)$ is n^{3} ", or "the order of growth of $T_{1}(n)$ is cubic". It should never be read literally however that " $T_{1}(n)$ is equal to $n^{3 "}$: this is plainly wrong. Moreover the alternative writing that uses \in can also be read " $T_{1}(n)$ belongs to the set of cubic functions", which is the same as saying "the order of growth of $T_{1}(n)$ is cubic".

7.3 Asymptotic Comparison: An informal approach

Fact 7.9 (Comparison vs Asymptotic comparison). When we compare two functions $f(n)$ and $g(n)$ we directly compare them using $<,>$ etc. When we asymptotically compare two functions $f(n)$ and $g(n)$ we take the limit of $\lim _{n \rightarrow \infty} f(n) / g(n)$ and then we use the asymptotic symbols o, ω, Θ depending on whether the limit is $0, \infty$ or some non-zero (and positive) constant.

Formally, an asymptotic comparison of functions involves limits.
Definition 7.1 (Formal Approach for asymptotic comparison of functions). In order to compare asymptotically two functions $f(n)$ and $g(n)$ we consider the limit $\lim _{n \rightarrow \infty} f(n) / g(n)$ for $n \rightarrow \infty$.

Informally, an asymptotic comparison of function WILL NEVER involve a calculator to determine what if $n=1$ or $n=2$ or etc $n=10$.

Definition 7.2 (Informal Approach for asymptotic comparison of functions). In order to informally compare asymptotically two functions $f(n)$ and $g(n)$ we eliminate from both function all low-order terms, and turn multiplicative constants into one and then compare the leftovers $F(n)$ and $G(n)$ of $f(n)$ and $g(n)$. Note that then a careful conclusion needs to be drawn!

Example 7.1 (Asymptotic comparison of functions: a no-limit informal approach). A "naive way" to asymptotically compare two functions $f(n), g(n)$ involves eliminting low-order terms and multiplicative constant terms. The leftovers $F(n)$ and $G(n)$ are then directly compared using $<o r>$ or $=o r \leq$ and \geq. A direct comparison of the $F(n)$ and $G(n)$ does not imply a same-like comparison for $f(n)$ and $g(n)$. Only an asymptotic comparison is then possible for $f(n), g(n)$. Therefore special symbare introduced as asymptotic equivalents to $<,>,=, \leq, \geq$ to establish the relationship between $f(n), g(n)$. Thesp are $o, \omega, \Theta, O, \Omega$ respectively.

We then conclude that $f(n)=\Theta(g(n))$ and equivalently in this case, $g(n)=\Theta(f(n))$. We may also write (few books use this alternate notation), $f(n) \in \Theta(g(n))$ and equivalently in this case, $g(n) \in \Theta(f(n))$.

One way or the other $f(n)$ has the asymptotic growth of $g(n)$ i.e. they both have the same asymptotic growth i.e. they are asymptotically equal.

If function $f(n)$ and $g(n)$ are such that $f(n)=g(n)$ for all n, we say function $f(n)$ is equal to function $g(n)$.
However if $f(n)=\Theta(g(n))$ this only means that $F(n)=G(n)$. The function $f(n), g(n)$ may or may not be equal to each other. The example above indicates two such functions.

7.4 Asymptotic notation: writing the symbols

Definition 7.3 (Asymptotic notation Symbols). For positive or non-negative funtions $f(n)$ and $g(n)$ that depend on an integer variable n, we shall introduce symbols to denote asymptotically smaller, asymptotically at most (no greater), asymptotically larger, asymptotically at least (no smaller), and asymptotically equal respectively.

- o (little oh),
- O (big oh),
- ω (little omega),
- Ω (big omega), and
- Θ (big theta, or plain theta)

Definition 7.4 (Writing). We would write

$$
f(n)=?(g(n)),
$$

where ? is one of $o, O, \omega, \Omega, \theta$ to indicateythe relationship between $f(n)$ and $g(n)$.
An alternative writing is $f(n) \in \mathscr{U}(n)$).
Definition 7.5 (Alternative Wring). We would write
where ? is one of $\alpha, \omega, \Omega \theta$ to indicate the rethonshipbeturgea $f(n)$ and $g(n)$.
The ? $(g(x)$ denotes a set of fugetions It is acourated reflected by the use of $f(n) \in ?(g(n))$. We "abuse it" by writing $f(m)=?\left(g\left(n^{n}\right)\right)$ intread. Then therelatiønship $f(n)=?(g(n))$, becomes also a set-membership relationship. It should be borne mina that the lefthand side of is a function and the right hand side is a set of functions.
Remark 7.1. Never user on nor Thust $(n) \leq \Theta(n)$ is NONSENSE.
Remark 7.2. Never write a $\Theta(g(\pi))^{\top}=\delta(n)$ since it is meaningless and wrong! The notation $f(n) \geq \Theta(g(n))$ is also meaningless and wrong (see previous inamark)!

Remark 7.3. $A T(n) \notin \Theta(n)$ wodmean that $T(n)$ does not have linear growth, whereas a $T(n) \in \Theta(n)$ means that $T(n)$ has linear growth, belongs to the set of linear functions and thus is a linear function itself.

Remark 7.4. If we write $\Theta(f(n))=\Theta(g(n))$, this is to mean that no matter how we choose a function on the left hand side, there is a way to choose a function on the right hand side to make equality to hold.

In other words, the two sets are equal.
Definition 7.6 (Meaning of Θ). What does $f(n)=\Theta(g(n))$ mean? It means that the two functions have the same growth or $f(n)$ is asymptotically equal to $g(n)$ or $g(n)$ is asymptotically equal to $f(n)$, or $f(n)$ belongs to the set of functions that have the same growth as $g(n)$.

Definition 7.7 (Meaning of O). What does $f(n)=O(g(n))$ mean? It means that the growth of $f(n)$ is no more than the growth of $g(n)$ (or abusing notation that $f(n)$ is asymptotically at most no greater than $g(n)$).

IT DOES NOT NECESSARILY MEAN that $f(n) \leq g(n)$. For example for $f(n)=10 n$ and $g(n)=n$ we have the same growth i.e. $10 n=O(n)$, even if $10 n \geq n$. It is also $n=O(10 n)$. And in fact $f(n)=\Theta(g(n))$!

Definition 7.8 (Meaning of Ω). What does $f(n)=\Omega(g(n))$ mean? It means that the growth of $f(n)$ is greater than (faster) or equal to the growth of $g(n)$, or that $f(n)$ is asymptotically at least (no smaller) than $g(n)$.

IT DOES NOT NECESSARILY MEAN that $f(n) \geq g(n)$. For example $f(n)=n$ and $g(n)=10 n$ have the same growth i.e. $n=\Omega(10 n)$, even if $n \leq 10 n$.

Definition 7.9 (Meaning of o). What does $f(n)=o(g(n))$ mean? It means that the growth of $f(n)$ is slower than the growth of $g(n)$ or $f(n)$ is asymptotically smaller than $g(n)$. (It also means that the growth of $g(n)$ is faster than the growth of $f(n)$ or $g(n)$ is asymptotically larger than $f(n)$.)

Definition 7.10 (Meaning of ω). What does $f(n)=\omega(g(n))$ mean? It means the growth of $f(n)$ is faster than the growth of $g(n)$ or $f(n)$ is asymptotically larger than $g(n)$. (Likewise as above for the other direction.)

A formal definition for O and Ω and Θ is given on the next page. This reminds you of the formal definition of a limit. In fact the formal definitions of o and ω on the following page use limits for large enough n i.e. as $n \rightarrow \infty$.

7.5 Asymptotic Comparison: The Formal Approach

Definition $7.11(\Theta$ definition). Let $f(n)$ and $g(n)$ be asymptotically non-negative functions. For a function $g(n)$ we denote by $\Theta(g(n))$ the set of all functions $f(n)$ that have the following property. There exist positive constant c_{1}, c_{2}, n_{0} such that

$$
0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)
$$

for all $n \geq n_{0}$. For a function $f(n)$ that satisfies this property we write

$$
f(n)=\Theta(g(n))
$$

or equivalently

$$
f(n) \in \Theta(g(n))
$$

We read this by saying that function $f(n)$ has the asymptotic growth of $g(n)$ or that $f(n)$ is asymptotically equal to $g(n)$.

Definition 7.12 (Ω definition). Let $f(n)$ and $g(n)$ be asymptotically non-negative functions. For a function $g(n)$ we denote by $\Omega(g(n))$ the set of all functions $f(n)$ that have the following property. There exist positive constant c_{1}, n_{0} such that

$$
0 \leq c_{1} g(n) \leq f(n)
$$

for all $n \geq n_{0}$. For a function $f(n)$ that savisfies this property we write

$$
f(n)=\Omega(g(n))
$$

or equivalently

$$
f(n) \in \Omega(g(n))
$$

Definition 7.13 defintion): exet $f_{1}(2)$ and \&n) bedsymptetically non-negative functions. For a function $g(n)$ we denote by $O f(n))$ theset of all fugqoions of (n) thishave?he following property. There exist positive constant c_{2}, n_{0} such that
for all $n \geq n_{0}$. Forafunction f thatsinsfied property we write

$$
f(n)=O(g(n))
$$

or equivalently

$$
f(n) \in O(g(n))
$$

We read this by saying that function $f(n)$ has at most the asymptotic growth of $g(n)$.
We can also say respectively that $g(n)$ is an asymptotic tight bound, is an asymptotic lower bound, and is an asymptotic upper bound of $f(n)$ respectively.

Definition 7.14 (o definition). Let $f(n)$ and $g(n)$ be asymptotically non-negative functions. We write

$$
f(n)=o(g(n))
$$

or equivalently

$$
f(n) \in o(g(n))
$$

if and only if

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
$$

We then say that $f(n)$ is asymptotically smaller than $g(n)$ or the asymptotic growth of $f(n)$ is smaller (slower) than the asymptotic growth of $g(n)$.

Definition 7.15 (ω definition). Let $f(n)$ and $g(n)$ be asymptotically non-negative functions. We write

$$
f(n)=\omega(g(n))
$$

or equivalently
if and only if

$$
f(n) \in \omega(g(n)) .
$$

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty
$$

We then say that $f(n)$ is asymptoticallytarger than $g(n)$ or the asymptotic growth of $f(n)$ is greater (faster) than the asymptotic growth of $g(n)$.

We can then provide an altegnative definition for Θ.
Definition 7.16 (Θ altergQive derition). Let n) and $g(n)$ be asymptotically non-negative functions. We write

where c is a non-zero posive contant then say that $f(n)$ is asymptotically equal to $g(n)$ or the asymptotic growth of $f(n)$ is equal to the asympatic granth of $g(n)$.

7.5.1 Asymptotic comparison: In 10 lines

Two functions $f(n)$ and $g(n)$ are formally asymptotically compared as follows.
Definition 7.17 (Quick o, ω, Θ). In order to asymptotically compare two non-negative functions $f(n)$ and $g(n)$ with the three symbols o, ω, Θ, we first find the limit $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}$ and then determine which case is applicable as follows. (c is a positive constant).

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}= \begin{cases}0 & \Rightarrow f(n)=o(g(n)) \\ \infty & \Rightarrow f(n)=\omega(g(n)) \\ c \neq 0 & \Rightarrow f(n)=\Theta(g(n))\end{cases}
$$

Corollary $7.1(o \Rightarrow O$ implication). If $f(n)=o(g(n))$, then $f(n)=O(g(n))$.
Corollary $7.2(\omega \Rightarrow \Omega$ implication). If $f(n)=\omega(g(n))$, then $f(n)=\Omega(g(n))$.
Corollary $7.3(\Theta \Leftrightarrow \Omega \bigwedge O)$. $f(n)=\Theta(g(n))$, if and only if $f(n)=\Omega(g(n))$ and $f(n)=O(g(n))$.

7.5.2 Bare definitions

Definition 7.18 (Little-oh). $f(n)=o(g(n))$, i firm $_{n \rightarrow \infty}^{\circ} \frac{f(n)}{g(n)}=0$.
Definition 7.19 (Little-omega). $f(n)=$ actg $(n))$, of $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$.

Definition 7.20 (Big-Oh). $f(n) O(g(n))$ eff \exists positive constants $c_{2}, n_{0}: 0 \leq f(n) \leq c_{2} g(n) \forall n \geq n_{0}$.

Definition 7.21 Big-Qnega) Cf n)
Corollary 7 ${ }^{5}$ (Big-Omega. If litile-omega then Big-Qmega.). If $f(n)=\omega(g(n))$, then $f(n)=\Omega(g(n))$.

Definition 7.22 (Theta $\Phi f(n)=\Theta(\theta))$ positive constants $c_{1}, c_{2}, n_{0}: 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n) \forall n \geq n_{0}$.
Definition 7.23 (Theta -limit definitions. $f(n)=\Theta(g(n))$, iff $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=c$, where $c>0$ is a (positive) constant (and other than zero).

Corollary 7.6 (Theta: Big-Oh and Big-Omega if-and-onlyif Theta.). $f(n)=\Theta(g(n))$, iff $f(n)=\Omega(g(n))$ and $f(n)=O(g(n))$.

7.5.3 Corollaries

The corollaries below restate the definitions.
Corollary 7.7. We have $f(n)=o(g(n))$ if and only if $f(n)=O(g(n))$, and $f(n) \notin \Omega(g(n))$. (There is no way we can write $f(n) \neq \Omega(g(n))$ without violating what we have clearly stated earlier.)

Corollary 7.8. We have $f(n)=\omega(g(n))$ if and only if $f(n)=\Omega(g(n))$, and $f(n) \notin O(g(n))$.

Corollary 7.9 (Antisymmetry). We have $f(n)=o(g(n))$ if and only if $g(n)=\omega(f(n))$.
Corollary 7.10 (Antisymmetry). We have $f(n)=O(g(n))$ if and only if $g(n)=\Omega(f(n))$.
Corollary 7.11. We have $f(n)=\Theta(g(n))$ if and only if $f(n)=O(g(n))$ and $g(n)=O(f(n))$.
Corollary 7.12. Let $\lim _{n \rightarrow \infty} f(n) / g(n)$ exists. $f(n)=O(g(n))$ if and only if $\lim _{n \rightarrow \infty} f(n) / g(n) \leq c$ for positive constant c.

Corollary 7.13. Let $\lim _{n \rightarrow \infty} g(n) / f(n)$ exists. $f(n)=\Omega(g(n))$ if and only if $\lim _{n \rightarrow \infty} g(n) / f(n) \leq c$ for positive constant c.

7.6 Running time using asymptotic notation

Let A be an algorithm, and I an input instance of n keys.
Definition 7.24 (Running time of instance I for algorithm A). The running time of algorithm A on an input instance I of n keys, i.e. of problem size n is denoted by $T_{A}(n, I)$.

Definition $7.25\left(W_{A}(n)\right)$. The worst-case running 凶ime of A is denoted by $W_{A}(n)$ and defined as follows

$$
W_{A}(n)=\max _{I,|I|=n}\left\{T_{A}(n, I)\right\} .
$$

Definition $7.26\left(B_{A}(n)\right)$. The best-case running time of A is denoted by $B_{A}(n)$ and defined as follows

$$
B_{A}(n)=\min _{I,|I|=n}\left\{T_{A}(n, I)\right\}
$$

Definition $7.27\left(T_{A}(n)\right.$ or (n)) Ahe running tige of algorithm A is denoted $T_{A}(n)$ or $T(n)$ and defined as follows.

Example 7.2. The best-case rumping ting of InsertionSort is attained by a sorted sequence: Thus

$$
T_{\mathrm{InsSort}}(n, \text { Sorted })=\Theta(n)
$$

Example 7.3. The worst-case running time of InsertionSort is attained by a reverse sorted sequence:

$$
T_{\text {InsSort }}(n, \text { ReverseSorted })=\Theta\left(n^{2}\right)
$$

Example 7.4. The running time bound of InsertionSort is

$$
O\left(\max _{I} T_{\text {InsSort }}(n, I)\right)=O\left(n^{2}\right)
$$

This is because

$$
\max _{I} T_{\text {InsSort }}(n, I)=\Theta\left(n^{2}\right)
$$

as the maximum is the running time of a reverse sorted sequence.

When we say that the running time of InsertionSort is $O\left(n^{2}\right)$ we mean that its running time can be $\Theta\left(n^{2}\right)$ for some inputs, or anything that is asymptotically smaller than quadratic. This includes $\Theta(f(n))$ for any function $f(n)$ such that $f(n)=O\left(n^{2}\right.$.

The running time of an algorithm is an expression that describes its performance on ANY and EVERY input. Thus we CANNOT SAY that the running time of InsertionSort is $T(n)=\Theta\left(n^{2}\right)$ because we know that for some inputs the running time would be linear that is not $\Theta\left(n^{2}\right)$ but "less than" $\Theta\left(n^{2}\right)$ or equivalently $o\left(n^{2}\right)$.

Likewise we CANNOT SAY that the running time of InsertionSort is $T(n)=\Theta(n)$ because for a reverse-sorted sequence the running time would be "much more than $\Theta(n)$ i.e. $\omega(n)$ and in fact it would be quadratic i.e. $\Theta\left(n^{2}\right)$. The Θ notation is used when we know that the asymptotic best case and worst case running time coincide i.e. for an algorithm A when $W_{A}(n)=\Theta\left(B_{A}(n)\right)$.

7.7 Notes and remarks

Fact 7.10 (Large enough means asymptotically large). The expression "for large enough n " means "there is a positive constant n_{0} such that for all $n>n_{0}$ ", that is for "asymptotically large values of n ".

Remark 7.5. Normally, the phrase "the running time is $O\left(n^{2}\right)$ " is meaningless as the running time is expressed by a number and a unit of time (e.g. 6 seconds, 10 milliseconds). This expression when used this way in this class means that the worst-case running time (which is a function of n) is $\Theta\left(n^{2}\right)$, and by extension, no matter what a particular input of size n is chosen for each value of n, th凶ulnning time on that set of input instances is $\Theta\left(n^{2}\right)$ or smaller, i.e. no worse than the worst-case running time.

Remark 7.6. A running time of $\Omega(g(n)$ for an algorithm means that no matter what the input of size n is, for each value of n, the running time of the algorithm will be at least cg(n), for some constant c for large enough n. For example the running time of insertion-sort $t s \Omega(n)$. Yet the running time of bubble-sort is $\Omega\left(n^{2}\right)$.

Fact 7.11 (Polynomial funcitons). A.function n^{m} for any positive constant integer $m>0$ is a polynomial in n i.e. a polynomial function. Therancar ombixation.ablynomial functions is also a polynomial function.
Fact 7.12 (Polylogarithmicefinctions). A fomctiox $\mathrm{Ig}^{m} n$ for anxogsitive constant integer $m>0$ means $(\lg n)^{m}$ and is a polylogarithmisừiction.
Fact 7.13 (G\&tynomial vs Pchylogâthmic). For any pogive constant integer $k, m>0$ and integer $n>0$, we have that
 function of the same variablen.
Fact 7.14 (Exponential Poldxomial Foxary positive constant integer m and integer $n>0$, we have that $2^{n}>n^{m}$ for large enough n. This meats that everyponential function (base two) is asymptotically larger than any polynomial function of the same varible n_{6}

The results above are true evenfor non-integer but positive constant values for k, m. Any such constant value is bounded between two integer constant values.

Fact 7.15 (Linear, Log-linear, Quadratic, Cubic). A linear functions is n, a quadratic function is n^{2} and cubic n^{3}. A \log-linear functions is $n \lg n$ the product of a linear and a logarithmic function. A linear function is asymptotically smaller than a log-linear function which is likewise smaller than a quadratic function and likewise (asymptotically) smaller than a cubic function.

A log-linear function can be considered a polynomial function as $n<n \lg n<n^{2}$ for large enough n. Note also that $n \lg n=n^{1+\lg \lg n / \lg n}$.

Fact 7.16.
(a) In general $n^{k}>\lg ^{l} n$ for any positive constant k, l and large enough n.
(b) $2^{n}>n^{k}$ for any positive constant k and large enough n.
(c) $n!>n^{k}$ for any constant k and large enough n.
(d) Stirling's formula: $n!\approx(n / e)^{n} \sqrt{2 \pi n}$ for large enough n. Sometimes we use only $n!\approx(n / e)^{n}$ to derive that $\lg (n!) \approx n \lg n-n \lg e$.

Note 7.1 (Set theoretic view of $O, o, \Theta, \omega, \Omega)$. When we say $n^{2}+10=O\left(n^{2}\right)$ we view $O\left(n^{2}\right)$ as the set containing all quadratic functions. Thus it also contains $n^{2}+10$ which is indeed a quadratic function. Likewise $5=O(1)$ means 5 belongs to the set of all constant functions. Some textbooks are using the notation $n^{2}+10 \in O\left(n^{2}\right)$ or $5 \in O(1)$ instead of using the equal sign. And as a side note, $5=\Theta(1)$ or $5 \in \Theta(1)$ is a better tighter description and so is $n^{2}+10=\Theta\left(n^{2}\right)$ or $n^{2}+10 \in \Theta\left(n^{2}\right)$.
$O\left(n^{2}\right)$ includes not only quadratic functions, but also linear, log-linear, logarithmic and everything else in-between or asymptotically smaller.

Note 7.2 (Non-commutative use of symbols). $\Theta(1)=5$ means nothing. The symbols as defined earlier appear always to the right of the equal $=$ sign. The set theoretic view make it easy to argue that $\Theta(1) \in 5$ does not make sense.

Note 7.3 (Tomatoes vs Potatoes or $<$ and O etc). $1 \leq O(n)$ is meaningless. One can say $1=O(n)$ and this was properly defined above, or $1=o(n)$. Nothing else was defined involving the $<,>, \leq, \geq$ and the five letter symbols!

Fact 7.17 (Polynomial vs Polylogarithmic: aposymptotic comparison). Some obvious results (constant m, $k>0$): $n^{m}=\omega\left(\lg ^{k} n\right)$. This derives from the fact that in general $n^{m}>\lg ^{k} n$ for any positive constant m, k and large enough n.
Fact 7.18 (Exponential vs polynomiat. an asymptotic comparison). Some obvious results (constant $m>0$): $2^{n}=$ $\omega\left(n^{m}\right)$. This derives from the fact than in general $2^{n}>n^{m}$ for any positive constant m and large enough n.

Fact 7.19 (Factorial). Some obvins results (constant $m>0): n!=\omega\left(n^{m}\right)$. This derives from the fact that $n!>n^{m}$ for any constant m and large enemgh.ns.
Fact 7.20 (Log-factorta9. Some obvion's resints (constant $k): \lg (n!)=\Theta(n \lg n)$. Also, a result of Stirling's approximation formula for the factevial.

7.8 Examples and Exercises

Example 7.5. $10=$?(1). Since $\lim 10 / 1=10$ as $n \rightarrow \infty$, we have $10=\Theta(1)$. By Lemma 3 we have $10=O(1)$ and $10=\Omega(1)$ as well.

Example 7.6. $n=?(\lg n)$. Since $\lim n / \lg n=\lim 1 /(1 / n)=\infty$ as $n \rightarrow \infty$, we have $n=\omega(\lg n)$. By Lemma 2 we have $n=\Omega(\lg n)$ as well.

Example 7.7. $2^{\lg n}=$?(n). Since $\lim 2^{\lg n} / n=\lim n / n=1$ as $n \rightarrow \infty$, we have $2^{\lg n}=\Theta(n)$. By Lemma 3 we can also use O and Ω.

Example 7.8. $2^{n}=?(n)$. Since $\lim 2^{n} / n=\infty$ as $n \rightarrow \infty$, we have $2^{n}=\omega(n)$. By Lemma 2 we have $2^{n}=\Omega(n)$ as well.
Example 7.9. $n=$? $\left(n^{3}\right)$. Since $\lim n / n^{3}=0$ as $n \rightarrow \infty$, we have $n=o\left(n^{3}\right)$. By Lemma 1 we have $n=O\left(n^{3}\right)$ as well.
Example 7.10. $2^{n}=?\left(3^{n}\right)$. Since $\lim 2^{n} / 3^{n}=0$ as $n \rightarrow \infty$, we have $2^{n}=o\left(3^{n}\right)$. By Lemma 2 we have $2^{n}=O\left(3^{n}\right)$ as well.

Example 7.11. $n \lg n=$? $(\lg (n!))$. Note that by Stirling's approximation formula $\lg (n!) \approx n \lg n$. Since $\lim n \lg n / \lg (n!)=$ $c>0$ as $n \rightarrow \infty$, and c some constant, we have $n \lg n=\Theta(\lg (n!))$. By Lemma 3 we have O and Ω as well.

Example 7.12. $2^{n}=?\left(n^{2}\right)$. Since $\lim 2^{n} / n^{2}=\infty a s{ }^{n} \rightarrow \infty$, we have $2^{n}=\omega\left(n^{2}\right)$. By Lemma 2 we have $2^{n}=\Omega\left(n^{2}\right)$ as well.

Example 7.13. $n!=$? $\left(2^{n}\right)$. Since $\lim n!/ 2^{\prime} \infty$ as $n \rightarrow \infty$, we have $n!=\omega\left(2^{n}\right)$. By Lemma 2 we have $n!=\Omega\left(2^{n}\right)$ as well.

Example 7.14 (Asymptotically equal does not mean equal). 5 and 6 as number are not the same, 5 is smaller than 6 i.e. 5 is not equal to 6 . But $(\%)=5$ and $g(n)=6$ means that ' 5 ' and ' 6 ' are both constant functions. They are asymptotically equal as $\lim _{\text {in }} 55 / 6$ is a non-zero constant. Thus functions 5 and 6 are asymptotically equal (and by functions we mean $f(n)=5$ and $(\bar{n})=6)$.
Example 7.15. Functions 5yand 6mare asymptotically thal. Their limit is $5 / 6$ (or $6 / 5$ the other way around). They are both linear functions il
Example 7.0. Functions $5 \operatorname{sh}^{2}$ and ont areasympticallhequal. Their limit is 5/6 (or $6 / 5$ the other way around). They are both quddratieffinctions.
Example 7.17. Fundion n asynetoticallargethan 1,000,000,000,000. Their limit is ∞. (It does not matter what happens if $n=1$ orn $=0000 \mathrm{~N}=1,000,000$. It only matters what happens for $n \rightarrow \infty$.)
Example 7.18. Which of $a_{4}+a_{2} n^{3}+a_{3} n^{3}$ and n^{2} is asymptotically larger, where $a_{i}>0$ for all i ?
Proof. Consider $a_{0}+a_{1} n+\omega_{2} n^{2}+n^{3}$. As all a_{i} are positive, then $a_{0}>0$ and $a_{1} n>0$ and $a_{2} n^{2}>0$ and thus $a_{0}+a_{1} n+a_{2} n^{2}+a_{3} n^{3}>a_{3} n^{3}$.

We now show that our lower bound $a_{3} n^{3}$ is $\Omega\left(n^{2}\right)$. As $a_{3}>0$, it is obvious that $a_{3} n^{3}>1 \cdot n^{2}$ for any $n>1 / a_{3}$ (note that $a_{3}>0$ DOES NOT MEAN THAT $a_{3}>1$, as a_{3} is real and not necessarily an integer).

Therefore for $c=1$ and $n_{0}=1 / a_{3}$ we have shown that $a_{0}+a_{1} n+a_{2} n^{2}+a_{3} n^{3}=\Omega\left(n^{2}\right)$.
Exercise 7.2. Which of the two functions is asymptotically larger $a_{0}+a_{1} n+a_{2} n^{2}+a_{3} n^{3}$ or n^{4}, where $a_{i}>0$ for all i ?
Proof. Hint. When we intend to prove $f(n)=O(g(n))$, as is the case here, it sometimes helps to find an upper bound $h(n)$ for $f(n)$ ie one such that $f(n) \leq h(n)$ and then show that $h(n)=O(g(n))$. Since in $a_{0}+a_{1} n+a_{2} n^{2}+a_{3} n^{3}$ all a_{i} are positive we take the maximum of all a_{i} and we call it A. Then we have that $a_{i}<A$ for all i. Also, $A n^{i}<A n^{3}$ for $i \leq 3$. Then

$$
a_{0}+a_{1} n+a_{2} n^{2}+a_{3} n^{3} \leq A+A n+A n^{2}+A n^{3} \leq A n^{3}+A n^{3}+A n^{3}+A n^{3}=4 A n^{3}
$$

Finally $4 A n^{3} \leq n^{4}$ for all $n>4 A$.

We have shown that

$$
a_{0}+a_{1} n+a_{2} n^{2}+a_{3} n^{3} \leq 4 A n^{3} \leq 1 \cdot n^{4}
$$

for all $n \geq n_{0}=4 A$, where A is the maximum of $a_{0}, a_{1}, a_{2}, a_{3}$. As all a_{i} are constant, so is $4 A$. Therefore the constants in the O definition are $c=1$ and $n_{0}=4 A$, where $A=\max \left\{a_{0}, a_{1}, a_{2}, a_{3}\right\}$.

Example 7.19. Show that $n^{2}-2 n=\Theta\left(n^{2}\right)$. We determine POSITIVE CONSTANTS c_{1}, c_{2}, n_{0} so that for all $n \geq n_{0}$.

$$
c_{1} n^{2} \leq n^{2}-2 n \leq c_{2} n^{2}
$$

We separate the O from the Ω part and then combine the two parts.
Part O first. As $n^{2}-2 n \leq n^{2}$ for all $n \geq 1$, we have shown that $n^{2}-2 n \leq c_{2} n^{2}$, for $c_{2}=1$ and for all $n \geq n_{1}=1$. This is equivalent to showing that $n^{2}-2 n=O\left(n^{2}\right)$ as well.
Part Ω next. As $n^{2} / 2 \leq n^{2}-2 n$ for all $n \geq 4$, we have shown that $c_{1} n^{2} \leq n^{2}-2 n$, for $c_{1}=1 / 2$ and $n \geq n_{2}=4$. This is equivalent to showing that $n^{2}-2 n=\Omega\left(n^{2}\right)$ as well.
Combine the two. The n_{0} in the definition is the largest of n_{1} and n_{2} i.e. $n_{0}=4$. Then, for $c_{1}=1 / 2, c_{2}=1$ and for all $n \geq n_{0}=4$, we have

$$
c_{1} n^{2} \leq n^{2}-2 n \leq c_{2} n^{2}
$$

Note 7.4. $c_{1}=1 / 2, c_{2}=1$ and $n_{0}=1000$ is also \&correct answer to this problem. OUR OBJECTIVE IS TO FIND A SET OF SATISFYING CONSTANTS not THE BڭST SET OF SATISFYING CONSTANTS.

Example 7.20. Since a constant is a degree Q'polynomial any constant c is such that $c=\Theta(1), c=O(1)$, and $c=\Omega(1)$.
Example 7.21. Show that $n^{3}=\omega(n)$ Since $\lim n^{3} / n=\infty$ as $n \rightarrow \infty$, we have $n^{3}=\omega(n)$. The result can also be proved as a consequence of $n=o\left(n^{3}\right)$.
Example 7.22. Show that n^{2} O $=o(n)$.

Thus $n^{2 / \lg n}=(n)$.
Example 又23. sforw thon $n!=\omega(n)$, efom Sitlingcapproximation formula, $n!\approx(n / e)^{n}$. Therefore, $\frac{n!}{n} \rightarrow \infty$. Thus $n!=\omega(n)$.
 $n^{3}=\Omega(n)$.

Example 7.25. Is $2^{n}=2^{\Theta(n)}$ Be cafeeful. The Θ is not on the right of the equal size. You are looking for trouble (or not)! (We sometimes write somethor similar to this because it is convenient.) Let me rephrase it: Is $2^{n}=\Theta\left(2^{\Theta(n)}\right)$? A function $g(n)$ that is $\Theta(n)$ for the second Θ is $g(n)=2 n$. So let me rephrase the question: Is $2^{n}=\Theta\left(2^{2 n}\right)$? Well $2^{n} / 2^{2 n} \rightarrow 0$.

Example 7.26. Show that $n^{2}-10 n+2=O\left(n^{2}\right)$. We are going to determine for $f(n)=n^{2}-10 n+2$ and $g(n)=n^{2}$, that there

$$
\exists \text { positive constants } c_{2}, n_{0}: f(n) \leq c_{2} g(n) \forall n \geq n_{0}
$$

Towards this

$$
f(n)=n^{2}-10 n+2 \leq n^{2}+0+2 \leq n^{2}+0+2 n^{2} \leq 3 n^{2}
$$

Note that $-10 n \leq 0$ is true for all $n \geq 0$ and thus for positive n_{0} and $n \geq n_{0}$. Moreover $2 \leq 2 n^{2}$ for all $n \geq 1$ and this requires $n_{0} \geq 1$.
Conclusion. There exist $c_{2}=3$ and $n_{0}=1$ such that $f(n)=n^{2}-10 n+2=O\left(n^{2}\right)$ for all $n \geq n_{0}=1$.

Example 7.27. Show that $n^{2}-10 n+2=\Omega\left(n^{2}\right)$. We are going to determine for $f(n)=n^{2}-10 n+2$ and $g(n)=n^{2}$, that there

$$
\exists \text { positive constants } c_{1}, n_{0}: 0 \leq c_{1} g(n) \leq f(n) \forall n \geq n_{0}
$$

Towards this

$$
\frac{1}{2} n^{2} \leq n^{2}-\frac{1}{2} n^{2} \leq n^{2}-10 n \leq n^{2}-10 n+0 \leq n^{2}-10 n+2
$$

For $n^{2}-10 n \geq n^{2}-(1 / 2) n^{2}$ to hold we need $n^{2} \geq 20$ n i.e. $n \geq 20$. Thus $n_{0} \geq 20$; we pick $n_{0}=20$.
Conclusion. There exist $c_{1}=1 / 2$ and $n_{0}=20$ such that $f(n)=n^{2}-10 n+2=\Omega\left(n^{2}\right)$ for all $n \geq n_{0}=20$.
We can also show that $n^{2}-10 n+2=\Theta\left(n^{2}\right)$. This is true for $c_{1}=1 / 2$ and $c_{2}=3$ and $n_{0}=\max \{20,1\}=20$.
Exercise 7.3. Show that

$$
\sum_{i=1}^{n} i^{2}=\Theta\left(n^{3}\right)
$$

What are the values of c_{1}, c_{2} and $n_{0} ?$ Justify your answer.
Example 7.28. Use the definitions to show that $n^{5}-25 n=\Theta\left(n^{5}\right)$.
Proof. We show first that $n^{5}-25=O\left(n^{5}\right)$ and then that $n^{5}-25=\Omega\left(n^{5}\right)$.
Case a. Show that $n^{5}-25=O\left(n^{5}\right)$.
For all $n \geq 1$ we have that

$$
n^{5}-25 \leq n^{5}
$$

Therefore there exist ©nstanto $n_{2}=1$ and. 1 such that $n^{5}-25 \leq c_{2} n^{5}$ for all $n \geq n_{2}$. This proves the claim.
Technique 1. What weafse in this proof is the factythat $\eta^{2} 2 \pm A n \pm B$ is bounded above, for positive A, B, by

Technique \mathcal{H} can nog usecin thisolase, The nextstep is non-trivial. We bound $n^{5}-25$ from below by $n^{5} / 2$. This is so as long as

We can do this as long as n is not zero; this is true since for all cases we assume that at least $n \geq 1$. Therefore there exist constant $n_{1}=3$ and $c_{1}=1 / 2$ such that $n^{5}-25 \geq n^{5} / 2$ for all $n \geq n_{1}=3$. This proves the claim. Note that 3 is not the best possible constant. We don't need to find the best possible constant but THE EASIEST POSSIBLE!

In order to show that $n^{5}-25=\Theta\left(n^{5}\right)$ we need to establish c_{1}, c_{2} and $n_{0} . c_{1}$ and c_{2} are $1 / 2$ and 1 respectively. $n_{0}=\max \left(n_{1}, n_{2}\right)=3$. For these values the problem is thus shown.

Example 7.29. Show that $1000=O(1)$.
Proof. There exists constant $c=2000$ such that $1000 \leq c \cdot 1=2000 \cdot 1=2000$, for all $n \geq 1=n_{0} \cdot c=1000$ works also. Be reminded: We don't need to find the best c or n_{0}.

Exercise 7.4. $n=\Omega(1), 2^{3 \lg n}=\Omega\left(n^{2}\right), 1000000=\Omega(1), n^{3}=\Omega\left(n^{2}\right), n=\Omega(n / \lg n), n!=\Omega\left(n^{1000000}\right), 1=\Omega(1000000)$. How many of the Ω are also ω ?

Exercise 7.5. TRUE or FALSE?

1. $\lg (n!)=O\left(n^{2}\right)$.
2. $n+\sqrt{n}=O\left(n^{2}\right)$.
3. $n^{2}+\sqrt{n}=O\left(n^{2}\right)$.
4. $n^{3}+2 \sqrt{n}=O\left(n^{2}\right)$.
5. $1 / n^{3}=O(\lg n)$.
6. $n^{2} \sin ^{2}(n)=\Theta\left(n^{2}\right)$. (sin is the well-known trigonometric function).

Exercise 7.6. Prove the following.

1. $(n-10)^{2}=\Theta\left(n^{2}\right)$.
2. $n^{4}+10 n^{3}+100 n^{2}+1890 n+98000=\Omega\left(n^{4}\right)$.
3. $n^{4}+10 n^{3}+100 n^{2}+1890 n+98000=2\left(2 n^{2}\right)$.
4. $n^{4}-10 n^{3}-100 n^{2}-1890 n+100000=O\left(n^{4}\right)$.
5. $n^{2}-20 n-20=\Omega(n)$.
6. $n^{2}+20 n=O\left(n^{2}\right)$.

Chapter 8

Recurrence relations

8.1 Recurrences

8.1.1 Introduction

For a recursive algorithm like mergesort, its running time is described by a recurrence like the one shown below. We call it sometimes a recurrence dropping the remation from recurrence relation.

$$
T(n)=\text { 〇(n/2)+T(n/2)+ఆ(n)=2T(n/2)+ఆ(n). }
$$

Likewise the number of comparis in mergesort (upper bound of number of comparisons) is also described by the following recurrence

$$
C(n)=2 C(n / 2)+(n-1) \quad C(1)=0
$$

In order to solve the forment recakence we neea boundary condition for the base case of the recurrence. The base case for the running time of merge-sori is thetunning tim\& for an jnput of size 1 or in general, of some small constant size. In this case, may asumedtrat $T\left(\mathbb{P}=1,0 T^{2}(1)=(d j\right.$.e. the sorting of a one-key sequence takes one step or constant time. The seflation this gecurree waselaime \& to be $T(n)=\Theta(n \lg n)$ (proof by induction or by using a recursion tree).

Floorsand ceitingstin the Recurfonce above, we tgnored floors and ceilings. When we solve recurrences, we first remove flous/ceikits, show the flaimed bounds and then check whether the existence of floors/ceilings would or could have made a difference. Foxthe renainderol this course we assume that values like $n / 2$ are always integer, and so the effect of the rem@al of floors/cêingserill not be discussed.

Bounday values and Boundary valueconditions. For boundary conditions we assume in general that $T(k)=$ $\Theta(1)$, for some small constant k as constant problem sizes can be solved in constant time. We use $T(k)=\Theta(1)$ instead of a more specific/explicit $T\left(V^{2}\right)=5$ some constant), as such a choice affects only constants in the expression for $T(n)$; i.e. growth rate is preservedoln general, we shall ignore statements about boundary conditions, because this simplifies the recurrence solution. If a boundary condition is explicitly given, the solution must be consistent with it. By the way the value k is a boundary value and $\Theta(1)$ or $T(k)=\Theta(1)$ is the corresponding boundary condition.

8.1.2 Three methods

We introduce three methods to solve recurrences.

- Master method: Provides a solution formula for recurrences of certain form such as $T(n)=a T(n / b)+f(n)$, for constant $a \geq 1$ and $b>1$ and asymptotically positive $f(n)$.
- RecursionTree/Iteration method: Unfold recurrence by turning it into a sum.
- Substitution or "guess and check" method: Guess solution and then verify/check it (eg. proof by induction).

The Master method only provides a tight Θ asmptotic bound.
The Recursion tree (iteration) method is more versatile and can provide exact or asymptotic answers but is math manipulation intensive.

The substitution method is more versatile and can provide exact or asymptotic answers it is math manipulation intensive, uses (strong) induction and one needs to have a good guess. Usually the good guess is after spending some time with the recursion tree or iteration method.

We start the discussion of the master method on the next page.

8.2 Master method

The master method is one of three methods to solve recurrence relations. The solution however it provides is an asymptotic one and it works only for recurrences of a certain form.

Method 8.1 (Master method). Let $T(n)=a T(n / b)+f(n)$ be such that $a \geq 1, b>1$ are constant and $f(n)$ is an asymptotically positive function. Then $T(n)$ is bounded as follows.
M1 If $f(n)=O\left(n^{\lg _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$, then $T(n)=\Theta\left(n^{\lg _{b} a}\right)$.
M2 If $f(n)=\Theta\left(n^{\lg _{b} a}\right)$, then $T(n)=\Theta\left(n^{\lg _{b} a} \lg n\right)$.
M3 If $f(n)=\Omega\left(n^{\lg _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$, and if af $\left.n / b\right) \leq c f(n)$ for some constant $0<c<1$ and for large n, then $T(n)=\Theta(f(n))$.

There is an alternative formulation for Case 2 (aka M2) of the master method. Sometimes the condition $a \geq 1$ is stated as $a>0$.

Method 8.2 (Master method alternative formulation of case M2).

- M2' If $f(n)=\Theta\left(n^{\lg _{b} a}(\lg n)^{k}\right)$, for some non-negative constant k, then $T(n)=\Theta\left(n^{\lg _{b} a}(\lg n)^{k+1}\right)$.

Method 8.3 (Alternative form of Master method). Let $T(n)=a T(n / b)+f(n)$ be such that $a>0, b>1$ are (real) constant and $f(n)$ is an asymptotically proitive function. Then $T(n)$ is bounded as follows.
M1 If $f(n)=O\left(n^{\lg _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$, then $T(n)=\Theta\left(n^{\lg _{b} a}\right)$.
$M 2^{\prime}$ If $f(n)=\Theta\left(n^{\lg _{b} a}(\lg n)^{k}\right)$, for some non-negative constant k, then $T(n)=\Theta\left(n^{\lg _{b} a}(\lg n)^{k+1}\right)$.
M3 If $f(n)=\Omega\left(n^{\lg _{b} a+\varepsilon}\right)$ forsomegonstant $\varepsilon>0$, and if af $\left.n / b\right) \leq c f(n)$ for some constant $0<c<1$ and for large n, then $T(n)=\Theta(f(n))$.

8.3 Master methodexatuples

Proof. $a=2>0$,
$b=2>1$ and
$\lg _{b} a=1$ i.e. $n^{\lg _{b} a}=n$
$f(n)=n$
Obviously $f(n)=\Theta\left(n^{\lg _{b} a}\right)$ i.e. $n=\Theta(n)$ thus CASE 2 is applicable. Then $T(n)=\Theta(n \lg n)$.
Example 8.2. Solve the recurrence relation using the master method.

$$
T(n)=8 T(n / 2)+n^{2}
$$

Proof. $a=8>0$,
$b=2>1$ and
$\lg _{b} a=\lg _{2} 8=3$ i.e. $n^{\lg _{b} a}=n^{3}$,
$f(n)=n^{2}$
Obviously $f(n)=O\left(n^{\lg _{b} a-1}\right)$ i.e. $n^{2}=\Theta\left(n^{3-1}\right)$ thus CASE 1 is applicable with $\varepsilon=1>0$. Then $T(n)=\Theta\left(n^{3}\right)$.

Example 8.3. Solve the recurrence relation using the master method.

$$
T(n)=2 T(n / 2)+n^{2}
$$

Proof. $a=2>0$,
$b=2>1$ and
$\lg _{b} a=1$ i.e. $n^{\lg _{b} a}=n$, $f(n)=n^{2}$

Obviously $f(n)=\Omega\left(n^{\lg _{b} a+1}\right)$ i.e. $n^{2}=\Omega\left(n^{1+1}\right)$ with $\varepsilon=1>0$, i.e. CASE 3 might be applicable. For that we need to verify the second condition $a f(n / b) \leq c f(n)$.

$$
\begin{aligned}
a f(n / b) & \leq c f(n) \\
2 f(n / 2) & \leq c f(n) \\
2(n / 2)^{2} & \leq c n^{2} \\
n^{2} / 2 & \leq c n^{2}
\end{aligned}
$$

If we choose $c=1 / 2<1$ the secondary condition

Example 8.4. Note that $a^{\lg n / \lg b}=2^{\lg g+g^{n} \lg b}=n^{\lg a / \lg b}$. Consider $T(n)=9 T(n / 3)+f(n)$. Then $a=9, b=3$ and $\lg _{b} a=2$ i.e. $n^{\lg _{b} a}=\Theta\left(n^{2}\right)$. If $f(n)=n$, then $T(n)=\Theta\left(n^{2}\right)$. If however $f(n)=n^{2}$, then $T(n)=\Theta\left(n^{2} \lg n\right)$.

Example 8.5. $T(n)=T(n f) \neq f\left(\frac{50}{}\right)$, where $a=1$ and $b=2$, and $n^{\lg _{b} a}=n^{0}=1$. If $f(n)=1$, then $T(n)=\Theta(\lg n)$. If $f(n)=\sqrt{n}$, then begertse of $n / b\rangle=a \sqrt{2}=1 \sqrt{n} / \sqrt{2} \leq \sqrt{1 / 2} \sqrt{n}=c f(n)$ for $c=\sqrt{1 / 2}$, we get that $T(n)=$ $\Theta(\sqrt{n})$.

8.4 Substitution method

The second method for solving a recurrence is known as the substitution method. In order to use it either we have a good guess of a solution, or we exhaustively search for multiple solution candidates. Here we know what the solution would look like either through trial of error or some prior knowledge. We would like to verify indeed that this is a solution. We verify a candidate solution by using strong induction. (Reminder a $T(n / 2)$ implies or reminds a $P(n / 2)$ as part of the induction hypothesis.) The solution to be verified can be an exact one, an asymptotic one (Big-Oh, or little-oh, Big-Omega, or little-omega) or a tight one (Theta).

8.4.1 Substitution method: Example 1

Example 8.6. Solve the following recurrence $T(n)=T(n / 5)+T(7 n / 10)+n$ where $T(5)=10$.
Solution Preliminaries. This is a the recurrence for worst-case linear time selection (k order statistic problem) of a later Subject. Thus we know that solution is supposed to be linear i.e. $T(n)=\Theta(n)$. We prove the result in two steps first $T(n)=O(n)$ and then $T(n)=\Omega(n)$, utilizing the definition of O and Ω

Proof.
$T(n)=\Omega(n)$. We will find two positive constant $\mathcal{Y N O}_{0}$ such that $c_{1} n \leq T(n)$ for all $n \geq n_{0}$. We define $P(n): T(n) \geq c_{1} n$.

Base case ($n=5$). Show $P(5)$ is true. This is equivalent to $T(5) \geq c_{1} \cdot 5$. For the latter to be true utilizing the base case we need to have the following.

$$
P(5) \text { is true? }
$$

$$
T(5) \geq ? \quad c_{1} \cdot 5
$$

$$
10 \geq ? \quad c_{1} \cdot 5
$$

Thus if c
Inductive Step.

There is not much'to belone starting vith recurrence $T(n)=T(n / 5)+T(7 n / 10)+n \geq 0+0+n$ we conclude that $T(n) \geq 1 \cdot n$.

Conclusion. From the base case we have $T(n) \geq c_{1} n$ for $c_{1} \leq 2$. From the inductive we have $T(n) \geq c_{1} n$ with $c_{1} \leq 1$. Reconciling the two we pick $c_{1}=$ With n_{0} the base case value i.e. $n_{0}=5$.

We continue with the second part and proving that
$T(n)=O(n)$. We will find two positive constant c_{2}, n_{0} such that $T(n) \leq c_{2} n$ for all $n \geq n_{0}$. We define $P(n): T(n) \leq c_{2} n$.
Base case $(n=5)$. Show $P(5)$ is true. This is equivalent to $T(5) \leq c_{2} \cdot 5$. For the latter to be true utilizing the base case we need to have the following.

$P(5)$	is	true?
$T(5)$	$\leq_{?}$	$c_{2} \cdot 5$
10	$\leq_{?}$	$c_{2} \cdot 5$
2	$\leq_{?}$	c_{2}

Thus if $c_{2} \geq 2$, then $P(5)$ is true and base case is proved.

Inductive Step.

$$
P(5) \wedge \ldots \wedge P(n / 5) \wedge \ldots \wedge P(7 n / 10) \wedge \ldots \wedge P(n-1) \Rightarrow P(n)
$$

$\mathrm{X}: P(n / 5)$ and $\mathrm{Y}: P(7 n / 10)$. The induction hypothesis implies $P(n / 5)$ and $P(7 n / 10)$ i.e. $\mathrm{X}: T(n / 5) \leq c_{2} n / 5$ and $\mathrm{Y}: T(7 n / 10) \leq c_{2}(7 n / 10)$. We then use the recurrence and X and Y as follows.

$$
\begin{aligned}
T(n) & =T(n / 5)+T(7 n / 10)+n \\
& \leq_{X} \quad c_{2} n / 5+T(7 n / 10)+n \\
& \leq_{Y} c_{2} n / 5+c_{2}(7 n / 10)+n \\
& \leq c_{2}(9 n / 10)+n
\end{aligned}
$$

We have shown so far that $T(n) \leq c_{2}(9 n / 10)+n$. If we manage to prove that $c_{2}(9 n / 10)+n \leq c_{2} n$ then by transitivity we have shown $P(n): T(n) \leq c_{2} n$ and we are done.

In the previous derivation n was cancelled out provided $n>0$. Since by the definition of big-Oh n is integer we use $n \geq 1$. Now if $T(n) \leq c_{2}(9 \times 10)+n$ and $c_{2}(9 n / 10) \leq c_{2} n$ provided $n \geq 1$ and $c_{2} \geq 10$ we have also shown by transitivity $T(n) \leq c_{2} n$ and thutwe conclude the inductive step.
Conclusion. By the basecases ≥ 2 ant n_{0}. By the inductive step $n_{0}=1$ and $c_{2} \geq 10$. To reconcile we use $n_{0}=5$ and $c_{2}=10$.
O and Ω reconciliation. Forthe Ω fart wedred $=5$ and $c_{1}=1$. For the O part we have $n_{0}=5$ and $c_{2}=10$. Thus

8.4.2 Substitution method: Example 2

Example 8.7. Solve the recurrene $T(n)=2 T(n / 2)+n$ using the substitution (a.k.a. guess-and-check) method. (Implicit assumption is that T (n 个 is nonnegative and defined for all positive n, or for arbitrarily large n).

Since no boundary condition is given we can thus choose k and l constants greater than zero so that $T(k)=l$. We choose k, l in such a way to make the inductive proof as simple as possible. Let us choose $T(1)=0$.

Proof. A. Guess Step: $T(n)=O(n \lg n)$. We guess $T(n)=O(n \lg n)$, i.e. \exists pos. constant $c_{2}, n_{0}: T(n) \leq c_{2} n \lg n$, $\forall n \geq n_{0}$.
A. 0 Check Step (Strong Induction). We shall prove our claim by using induction. Our $P(n)$, the proposition to be proven true would be $T(n) \leq c_{2} n \lg n$ for arbitrarily large values of $n \geq n_{0}$, for some positive constant n_{0}.
A.1. Base Case of Induction. We show $P(1)$ is true is $T(1) \leq c_{2} \cdot 1 \cdot \lg 1$. Since $T(1)=0$ it is trivially true that $0=T(1) \leq c_{2} \cdot 1 \cdot \lg 1=0$ for all choices of a positive and constant c_{2}. Base case completed.
A.2. Inductive Step. $P(1) \wedge \ldots \wedge P(n / 2) \wedge \ldots \wedge P(n-1) \Rightarrow P(n)$. We show that if $P(i)$ is true for all $i<n$ then we will show that $P(n)$ is also true. $P(n)$ is $T(n) \leq c_{2} \cdot n \cdot \lg n$. If $P(i)$ is true for all $i<n$, since $n / 2<n$ then $P(n / 2)$ is also true. Then by the inductive assumption for $i=n / 2$ we have $T(n / 2) \leq c_{2}(n / 2) \lg (n / 2)$. We then use the recurrence and utilize the inductive hypothesis for $T(n / 2)$

$$
\begin{aligned}
T(n) & =2 T(n / 2)+n \\
& =2 \overbrace{T(n / 2)}^{P(n / 2): T(n / 2) \leq c_{2}(n / 2) \lg (n / 2)}+n \\
& \leq 2 c_{2}(n / 2) \lg (n / 2)+n=c_{2} n \lg n-c_{2} n+n
\end{aligned}
$$

To complete the inductive step we must show that the rightmost expression $c_{2} n \lg n-c_{2} n+n$ is at most $c_{2} n \lg n$. For that to be true i.e $c_{2} n \lg n-c_{2} n+n \leq c_{2} n \lg n$ we need $-c_{2} n+n<0$ i.e. $c_{2} \geq 1$.

Thus if we choose a $c_{2}=1$ which is ≥ 1 and for the n_{0} of the base case i.e. $n_{0}=1$ we have that

$$
T(n) \leq n \lg n \quad \forall n \geq 1
$$

Can we do better in the guessing game? Let us try a lower bound.
B. Guess Step: $T(n)=\Omega(n \lg n)$. We guess $T(n) \varnothing \Omega(n \lg n)$, i.e. \exists pos. constant $c_{1}, n_{0}: T(n) \geq c_{1} n \lg n, \forall n \geq n_{0}$.
B. 0 Check Step (Strong Induction). We shallprove our claim by using induction. The $P(n)$ is $T(n) \geq c_{1} n \lg n$ for arbitrarily large values of $n \geq n_{0}$, for some α sitive constant n_{0}.
B.1. Base Case of Induction. We shov $P(1)$ is true: $T(1) \geq c_{1} \cdot 1 \cdot \lg 1$. Since $T(1)=0$, it is true that $0=T(1) \geq$ $c_{1} \cdot 1 \cdot \lg 1=0$ for all choices of a poritive and constant c_{1}. Base case completed.
B.2. Inductive Step. $P(1) \wedge \wedge P(n / 2) \wedge \ldots \wedge P(n-1) \Rightarrow P(n)$. We show that if $P(i)$ is true for all $i<n$ then we will show that $P(n)$ is also thet. $\left.P()^{\prime}\right)$ is $T(n) \geq c e n \cdot \lg n$. If $P(i)$ is true for all $i<n$, since $n / 2<n$ then $P(n / 2)$ is also true. Then by the inductive assyntigofor $n / 2$ we have $T(n / 2) \geq c_{1}(n / 2) \lg (n / 2)$. We then use the recurrence and utilize the inductive hypethesisfor $T(2) \cdot 0^{e}$

To complete the inductive seep we nust show that the rightmost expression $c_{1} n \lg n-c_{1} n+n$ is at least $c_{1} n \lg n$. For that to be true i.e $c_{1} n \lg n \theta^{\prime} c_{1} n \geq \dot{q} N \operatorname{itg} n$ we need $-c_{1} n+n>0$ i.e. $c_{1} \leq 1$.

Thus if we choose a $c_{1}=$ whighis ≤ 1 and for the n_{0} of the base case i.e. $n_{0}=1$ we have that

$$
T(n) \geq n \lg n \quad \forall n \geq 1
$$

Well we have just proven that $T(n) \geq n \lg n$. We also proved (previous page) that $T(n) \leq n \lg n$. Both of them prove that $T(n)=n \lg n!$ (The last mark is an exclamation mark, not a factorial!)

Thus while our objective was to prove a tight asymptotic bound the derivation of the three constants n_{0}, c_{1}, c_{2} allowed us to determine an exact bound.
C. Guess Step : $T(n)=A n \lg n+B n+C$. Let us guess an answer that contains a log-linear, a linear and a constant term. Let's try to compute the constant values A, B and C. Only condition is that A should be positive.
C.1. Base Case utilization. We have $T(1)=0$ substituting 1 for n in $T(n)=A n \lg n+B n+C$ we get $0=T(1)=$ $A \cdot 1 \cdot \lg 1+B \cdot 1+C$ i.e. $B+C=0$.
C.2. Recurrence utilization. Since $T(n)=2 T(n / 2)+n$ we have that

$$
\begin{aligned}
T(n) & =2 T(n / 2)+n \\
A n \lg n+B n+C & =2(A n / 2 \lg (n / 2+B n / 2+C)+n \\
A n \lg n+B n+C & =A n \lg n+(B-A+1) n+2 C
\end{aligned}
$$

In the last equality the first term of both sides cancels out. We then equate the coefficients of n and the constant terms and solve for A, B, C also utilizing the base case $B+C=0$.

The constant terms C and $2 C$ should be equal to each other for $C=0$. Since $B+C=0$ we also have $B=0$.
The linear term coefficients B and $(B-A+1)$ should be equal to each other $B=B-A+1$. This results to an $A=1$. Thus the guessed function $T(n)=A n \lg n+B n+C$ gets resolved to having $A=1$ and $B=C=0$ leading to the same result with the iteratiion or previous substitution method. No need to explicitly do induction.

8.4.3 Substitution method: Example 3

Let us try to guess the solution of a variant where the linear term is replaced now with a constant term.
Example 8.8. What if we try to solve $T(n)=T(n / 3)+T(2 n / 3)+7$?
Proof. If we try to prove that $P(n): T(n) \leq c n$ ufizing $P(n / 3)$ and $P(2 n / 3)$ we end up with proving

$$
\int^{1}(n) \leq c n / 3+c 2 n / 3+7 \leq c n+7
$$

not $T(n) \leq c n$. The +7 is causing as problems. How do we fix this "tiny" problem? By subtracting something smaller than the high order term from the solution i.e. try for a solution a $T(n) \leq c n-a$. ($c n-a$ MUST be positive as well i.e. $n>a / c$). We then gef

 assumption hold it suffiges that o 7 . O'
Remark. What if we tix sode $T(n)=T(N / 2)+T(n / 3)+10 n$? Guess $T(n)=\Theta(n)$ (note that $1 / 2$ of $n / 2$ plus $1 / 3$ of $n / 3$ is $5 / 6$ 安 1)
Remark. What if we try tonolve $T(n) \Rightarrow(2 n / 3)+T(n / 3)+10 n$? Guess $T(n)=O(n \lg n)$ as $2 / 3+1 / 3=1$. $T(n)=\Theta(n \lg n)$ is the tightest possible bound.
Remark. What if we try to sane $T(n)=T(4 n / 3)+T(n / 3)+10 n$? Guess $T(n)=O\left(n^{\alpha}\right)$ or $T(n)=\Theta\left(n^{\alpha}\right)$ for some constant $\alpha>1$.

Remark. Useful Tricks: Change of variables might help. Remember to derive the correct boundary conditions when changing variables. $T(n)=T(\sqrt{n})+\lg n$. Change variables $H(m)=T\left(2^{m}\right)$.

8.4.4 Substitution method: Example 4

Example 8.9. Solve the following recurrence using the substitution method : $T(n)=T(n / 3)+T(n / 5)+90 n, T(1)=$ 45.

Proof. 1. Showing Ω directly, not by induction.

For $n=1, T(n)$ is given by the base case and for all other natural values, $T(n)$ is given by the recurrence. We observe that because $T(n)=T(n / 3)+T(n / 5)+90 n$, we have obviously $T(n)=T(n / 3)+T(n / 5)+90 n \geq 90 n$. Therefore let us try to establish $Q(n): T(n) \geq 90 n . Q(n)$ is true for all $n>1$. Is this, however, true for $n=1$ as well?

For $n=1$ using the base case we have $45=T(1)$. However establishing $Q(1)$ is true is not possible. $45=T(1) \geq$ $90 \cdot 1$ is false! Therefore we can not show that $T(n) \geq 90 n$ for all $n \geq 1$!

This is easily fixable by observing that $T(n)=T(n / 3)+T(n / 5)+90 n \geq 45 n$. Therefore we shall prove that $P(n): T(n) \geq 45 n$ is true for all $n \geq 1$ by also showing that it is true for $n=1$, given that by the recurrence $T(n) \geq 45 n$, for $n>1$. Using the base case for $n=145=T(1) \geq 45 \cdot 1$ we derive $P(n)$ true for all $n \geq 1$.

Therefore $T(n) \geq 45 n$ for all $n \geq 1$, i.e. there exist positive constant $c_{1}=45>0$ and $n_{1}=1$ such that for all $n \geq n_{1}$. This shows that $T(n)=\Omega(n)$.
2. Showing $O(n)$ using induction.

We show that $T(n)=O(n)$ using strong induction, i.e we are going to show that "there exist positive constants n_{2} and c_{2} such that $T(n) \leq c_{2} n$ for all $n \geq n_{2}$ ". We shall call $P(n)$ the $T(n) \leq c_{2} n$, and show $P(n)$ true for all $n \geq n_{2}$ for some postivie n_{2}, c_{2}. 2's Base Case. This is for $n=1$. We are going to show $P(1)$ is true. For $n=1$ we have $T(1)=45$. By $P(1), 45=T(1) \leq_{?} c_{2} \cdot 1$ is true as long as $c_{2} \geq 45$. Therefore $P(1)$ is true for all $n \geq 1$, as long as $c_{2} \geq 45$. Our current values for c_{2}, n_{2} are ≥ 45 and 1 respectively.

2's (Strong) Inductive Hypothesis. We are going to use strong induction i.e. we are going to establish that "if $\mathrm{P}(\mathrm{j})$ is true for all $j=n_{2}, \ldots, n-1$, then $P(n)$ will also be true".

This is equivalent (since $n_{2}=1$) to "If $T(j) \leq c_{2} j$ for all $j=1, \ldots, n-1$, then $T(n) \leq c_{2} n$ ".
2's (Strong) Inductive Step. We show the inductive step using the recurrence. By the Inductive Hypothesis since $j=n / 3<n$ and also $j=n / 5<n$, we have that $P(n / 3)$ and $P(n / 5)$ are both true and thus $T(n / 3) \leq c_{2}(n / 3)$ and $T(n / 5) \leq c_{2}(n / 5)$. We apply the inductive hypothesis twice in the first and second terms of the first equation below, whereas our objective is to establish the inequatity on the fifth line.

$$
\begin{array}{ll}
= & T(n / 3)+T(n / 5)+90 n \\
= & c_{2}(n / 3)+T(n / 5)+90 n \\
= & c_{2}(n / 3)+c_{2}(n / 5)+90 n \\
= & c_{2}(8 n / 15)+90 n \\
\leq_{?} & c_{2} n
\end{array}
$$

For the latter to be true five need have $c_{2} \geq 200$ as is shown in detail below.

Therefore the inductive steqes truefor alloand 200. Again, 200 is not the best possible constant, 1350/7 is less than 200, more acturate fut mokecumbersome. This ($c_{2} \geq 200$) supersedes the $c_{2} \geq 45$ of the base case; the induction is valid for all $n \geq 1$ and $c_{2} \max (45,202)=200$. Therefore there exist $c_{2}=200$ and $n_{2}=1$ such that $T(n) \leq c_{2} n$ for all $n \geq n_{2}$. Thus $T(n) \dot{\beta}^{2} O\left(n d^{2}\right.$

We proved O and Ω i.e. $T(\lambda)=\Theta(n)$.

8.5 Iteration or Recursion tree method

If the method is done graphically it is sometimes called the recursion tree method. The traditional name is iteration method.

Method 8.4 (Iteration method). Expand the recurrence all the way down to the base case and sum up or combine the residuals.

In order to avoid problems with floors and ceilings we are going to make an assumption that n is a power of 2 and thus $n / 2, n / 4, n / 8$ etc are all integer, or a similar, along to the same line assumption, as needed. Otherwise one may have to make use of identities such as that for all integers n, a, b, we have $\lfloor\lfloor n / a\rfloor / b\rfloor=\lfloor n /(a b)\rfloor$.

8.5.1 Iteration method: Example 1

Example 8.10. Solve exactly $T(n)=2 T(n / 2)+n, \quad T(1)=0$. You may assume that n is a power of two.

Proof. In order to compute $T(n)$ we need to establish $T(n / 2)$. Likewise in order to compute $T(n / 2)$ we need to establish $T(n / 4)$. We iterate i iterations until $\left.T\left(n^{2}\right)^{i}\right)$ with the intent of making $n / 2^{i}$ equal to the base case value 1 . If $n / 2^{i}=1$ then we know that $T\left(n / 2^{i}\right)=T(1) \sim$. For $n / 2^{i}=1$ we have $n=2^{i}$ and solving for i we get $i=\lg n$. Thus unfolding the recurrence involves $i=\lg n$ iterations!

- Keep track of sum of terms per iteration/level of recursion tree.
- Sometimes, the two previous steps and experience allow us to guess the solution correctly. We can then stop the solution with this method and switch to the substitution method instead.

Example redone

Example 8.11. Solve exactly $T(n)=2 T(n / 2)+n, T(2)=1$. Assume n is a power of 2 .

Proof. Same recurrence but different formulation. The recurrence becomes formula (A1). We then substitute $n / 2$, $n / 2^{2}, n / 2^{3}$, etc for n in (A1). This way we generate (A2), (A3), through (Ai). (Note that $T(n)=2 T(n / 2)+n$ gets rewritten as $T\left(n / 2^{0}\right)=2 T\left(n / 2^{1}\right)+n / 2^{0}$.

$A 1$	is	$T\left(n / 2^{0}\right)=2 T\left(n / 2^{1}\right)+n / 2^{0}$
$A 2$	is	$T\left(n / 2^{1}\right)=2 T\left(n / 2^{2}\right)+n / 2^{1}$
$A 3$	is	$T\left(n / 2^{2}\right)=2 T\left(n / 2^{3}\right)+n / 2^{2}$
$A 4$	is	$T\left(n / 2^{3}\right)=2 T\left(n / 2^{4}\right)+n / 2^{3}$
	\ldots	
$A i$	is	$T\left(n / 2^{i-1}\right)=2 T\left(n / 2^{i}\right)+n / 2^{i-1}$

Moving forward, we use (A2) to rewrite (A1) then (A3), then (A4) all the way to (Ai).

$$
\begin{aligned}
T(n) & =2 T(n / 2)+n={ }_{(A 2)} 2\left(2 T\left(n / 2^{2}\right)+n / 2^{1}\right)+n / 2^{0}=2^{2} T\left(n / 2^{2}\right)+2 n \\
& =2^{2} T\left(n / 2^{2}\right)+2 n={ }_{(A 3)} 2^{2}\left(2 T\left(n / 2^{3}\right)+n / 2^{2}\right)+2 n=2^{3} T\left(n / 2^{3}\right)+3 n \\
& =2^{3} T\left(n / 2^{3}\right)+3 n={ }_{(A 4)} 2^{3}\left(2 T\left(n / 2^{4}\right)+n / 2^{3}\right)+3 n=2^{4} T\left(n / 2^{4}\right)+4 n \\
& \ldots \\
& =2^{i} T\left(n / 2^{i}\right)+i \cdot n
\end{aligned}
$$

Thus $T(n)=2^{i} T\left(n / 2^{i}\right)+i \cdot n$. We want to reach the base case i.e. $T\left(n / 2^{i}\right)=T(1)$. This implies $n / 2^{i}=1$ i.e. $i=\lg n$. Continuing from where we stopped using ${ }^{\prime} \lg n$ we have the following.

$$
\begin{aligned}
& =2^{i} \cdot T\left(n / 2^{i}\right)+i \cdot n \\
& =2^{\lg n} \cdot T\left(n / 2^{\lg n}\right)+\lg n \cdot n \\
& =e^{n \cdot T(1)+n \lg n=n \cdot 0+n \lg n}
\end{aligned}
$$

$$
n \lg n
$$

Example refcedone

Proof. Same recufrence but different raismutation.

$$
\begin{aligned}
\text { A }
\end{aligned}
$$

We notice that the left-hand side appears in the right-hand side of the previous equation. Thus we can multiply each equation with some quantity and then add up the resultin equations. For the base case we reutilize that $T\left(n / 2^{i}\right)=T(1)$ implies $i=\lg n$ as before.

$$
\begin{aligned}
T(n) & =2 T(n / 2)+n \\
2^{1} \times T\left(n / 2^{1}\right) & =2^{1} \times\left(2 T\left(n / 2^{2}\right)+n / 2^{1}\right) \\
2^{2} \times T\left(n / 2^{2}\right) & =2^{2} \times\left(2 T\left(n / 2^{3}\right)+n / 2^{2}\right) \\
2^{3} \times T\left(n / 2^{3}\right) & =2^{3} \times\left(2 T\left(n / 2^{4}\right)+n / 2^{3}\right) \\
& \cdots \\
2^{i-1} \times T\left(n / 2^{i-1}\right) & =2^{i-1} \times\left(2 T\left(n / 2^{i}\right)+n / 2^{i-1}\right)
\end{aligned}
$$

We then have

$$
\begin{aligned}
T(n) & =2 T(n / 2)+n \\
2 T\left(n / 2^{1}\right) & =2^{2} T\left(n / 2^{2}\right)+n \\
2^{2} T\left(n / 2^{2}\right) & =2^{3} T\left(n / 2^{3}\right)+n \\
2^{3} T\left(n / 2^{3}\right) & =2^{4} T\left(n / 2^{4}\right)+n \\
& \cdots \\
2^{i-1} T\left(n / 2^{i-1}\right) & =2^{i} T\left(n / 2^{i}\right)+n
\end{aligned}
$$

All but the first term of the left hand side cancel out. The n terms of the right hand side are retained. The inner terms of the right hand side cancel out except for the last term. The end result is that $T(n)=2^{i} T\left(n / 2^{i}\right)+n$. We conclude that $T(n)=n \lg n$ as needed.

8.5.2 Iteration method: Example 2

This is a variation of Example 1.
Example 8.13. Solve exactly $T(n)=2 T(n / 2)+n$ where $T(4)=12$. You may assume n is a power of 2 .
Proof.

$$
\begin{array}{rl}
A 1 \quad \text { is } \quad T\left(n / 2^{0}\right) & =2 T\left(n / 2^{1}\right)+n / 2^{0} \\
A 2 \quad \text { is } \quad\left(n / 2^{1}\right) & =2 T\left(n / 2^{2}\right)+n / 2^{1} \\
A 3 & T\left(n / 2^{2}\right) \\
=2 T\left(n / 2^{3}\right)+n / 2^{2} \\
\text { Ais is } \quad T\left(n / 2^{3}\right) & =2 T\left(n / 2^{4}\right)+n / 2^{3} \\
& \text { is } \quad T\left(n / 2^{i-1}\right)=2 T\left(n / 2^{i}\right)+n / 2^{i-1}
\end{array}
$$

Moving forward, we use (A2) rarewrite (A1d then (A3), then (A4) all the way to (Ai).

 $i=\lg n-2$. Continuing from whe we stopped using $i=\lg n-2$ we have the following.

$$
\begin{aligned}
\mathcal{O}_{T}(n) & =2^{i} \cdot T\left(n / 2^{i}\right)+i \cdot n \\
& =2^{\lg n-2} \cdot T\left(n / 2^{\lg n-2}\right)+(\lg n-2) \cdot n \\
& =(n / 4) \cdot T(4)+n(\lg n-2) \\
& =n / 4 \cdot 12+n(\lg n-2) \\
& =n \lg n+n
\end{aligned}
$$

We conclude that $T(n)=n \lg n+n$ as needed. This is the closed form solution (answer).

8.5.3 Iteration method: Example 3

The previous examples were straightforward and uncomplicated. Let's go back to the merge-sort recurrence to estimate an upper bound on the number of comparisons. We use $T(n)$ below to count for the number of comparisons (upper bound) of MergeSort.

Example 8.14. Solve exactly $T(n)=2 T(n / 2)+n-1, \quad T(1)=0$. You may assume n is a power of two.
Proof. Again we shall terminate recursion for $T\left(n / 2^{i}\right)$ when $n / 2^{i}=1$ and solving for i we shall get $i=\lg n$. We shall also need the geometric sequence result $2^{0}+2^{1}+\ldots+2^{i-1}=2^{i}-1$.

$$
\begin{aligned}
T(n) & =2 T(n / 2)+n-1 \\
& =2\left(2 T\left(n / 2^{2}\right)+n / 2-1\right)+n-1=2^{2} T\left(n / 2^{2}\right)+2 n-1-2 \\
& =2^{2}\left(2 T\left(n / 2^{3}\right)+n / 2^{2}-1\right)+2 n-1-2=2^{3} T\left(n / 2^{3}\right)+3 n-2^{0}-2^{1}-2^{2} \\
& \ldots \\
& =2^{i} T\left(n / 2^{i}\right)+i \cdot n-2^{0}-2^{1}-\ldots-2^{i-1}=2^{i} T\left(n / 2^{i}\right)+i \cdot n-\left(2^{i}-1\right) \\
& =2^{i} T\left(n / 2^{i}\right)+i \cdot n-\left(2^{i}-1\right) \quad \text { Now, Substitute } \quad i=\lg n \\
& =2^{\lg n} \cdot T\left(n / 2^{\lg n}\right)+\operatorname{dg} \cdot n-\left(2^{\lg n}-1\right) \\
& =n \cdot T(1)+\lg n, n n n+1=n \lg n-(n-1)
\end{aligned}
$$

The previous recurrences were gengrating an additive term which was the same in each iteration: n. This one generates a term that is iteration dependent: $n-2^{i-1}$ for iteration i. Thus for $i=1$ we get $n-1$, for $i=2$ we get $n-2$, and so on.

The answer for $T(n)$ with the ($-(n-1$) low-order term) is the one we got through the recursion tree method as well.

Example 8.55 Solve exactis the rourrenco $T(n \leq 2 T,(2) 2)+n, T(2)=5$. Assume n is a power of 2 .
Proof. Substitwtyg $n / 2+8$ n n on the ecurrence we get. $T(n / 2)=2 T((n / 2) / 2)+n / 2=2 T\left(n / 2^{2}\right)+n / 2$.
Substituting $n / 4=1 / 22^{2}$ forn weset. . रथ $n / 2^{2}=2 T((n / 4) / 2)+n / 4=2 T\left(n / 2^{3}\right)+n / 2^{2}$
Substituting $n / 8=n / 2$ Ctor n ve get $\rho^{2} T\left(2^{3}\right)=2 T\left(n / 2^{4}\right)+n / 2^{3}$
Similarly we can substitute $n / z^{40}, \ldots, 2^{i-1}, \ldots$ for n to resolve the $4, \ldots, i-1$-st iteration all the way to the base case, and get similarly stated regorrencies. We utilize all the derived recurrences to expand $T(n)$ by observing that $T(n)$ is $2 T(n / 2)+n$. Then we use the denration for $T(n / 2)$ to formulate the expression in terms of $T\left(n / 2^{2}\right)$, then $T\left(n / 2^{2}\right)$ is expressed in terms of $T\left(n / 2^{3}\right)$ ernd'so on \ldots in terms of $T\left(n / 2^{i}\right)$. This goes on until we reach the based case of $n=2$ since $T(2)=5$ is given. We establish what value of i provides the base case by equating $T(2)=T\left(n / 2^{i}\right)$ and solving for i. The unfolding of the recurrence stops then and all the terms unfolded get combined (summed). A closed form solution for $T(n)$ can then be found.

$$
\begin{aligned}
T(n) & =2 T(n / 2)+n=2\left(2 T\left(n / 2^{2}\right)+n / 2\right)+n=2^{2} T\left(n / 2^{2}\right)+2 n \\
& =2^{2}\left(2 T\left(n / 2^{3}\right)+n / 2^{2}\right)+2 n=2^{3} T\left(n / 2^{3}\right)+n+2 n=2^{3} T\left(n / 2^{3}\right)+3 n \\
& =\ldots=2^{i} T\left(n / 2^{i}\right)+i \cdot n
\end{aligned}
$$

From the boundary condition $T(2)=5$, we decide when to stop the unfolding of $T(n)$. The expansion ends at $n / 2^{i}=2$ since then $T\left(n / 2^{i}\right)=T(2)=5$. We solve for i by taking logarithms base two of both sides. Then we get that $\lg n-i=1$ ie $i=\lg n-1$. Then, for $i=\lg n-1$, we get that.

$$
\begin{aligned}
T(n) & =2 T(n / 2)+n=\ldots=2^{i} T\left(n / 2^{i}\right)+i \cdot n \\
& =2^{\lg n-1} T\left(n / 2^{\lg n-1}\right)+(\lg n-1) \cdot n \\
& =(n / 2) T(2)+(\lg n-1) \cdot n=(n / 2) 5+(\lg n-1) \cdot n \\
& =(3 n / 2)+n \lg n
\end{aligned}
$$

Thus we have obtained the following solution to the recurrence: $T(n)=3 n / 2+n \lg n$.

Solution verified

Question 8.1. Is the obtained solution the correct one?
Answer. Yes, unless we missed something.

Question 8.2. How can we be sure?

Answer.
Check the solution ie. make sure that $T(n)$ ns
(a) $T(2)=5$ (i.e. boundary condition carne verified), and
(b) $T(n)=2 T(n / 2)+n$ (i.e. recurrence can be verified).

Verify boundary condition.

$$
T(2)=3 \cdot 2 / 2+2 \lg 2=3+2=5
$$

Since $T(2)=5$ indeed bethe brondarycondition, our solution satisfies the boundary condition.
Verify recurrence We obtained dee solution b^{8}

We start from the right hard side thevecurrence using the preceding equality.

$$
2 T(n / 2)+n=2(n / 4+n / 2 \lg n)+n=3 n / 2+n \lg n=T(n)
$$

The last term is $T(n)$. We have thus proved that for $T(n)=3 n / 2+n \lg n$, we have that $T(n)=2 T(n / 2)+n$, i.e. the recurrence is satisfied.

By (a) and (b) the solution satisfies both the recurrence and the boundary condition, ie. it is indeed a solution to the recurrence.

8.5.5 Iteration method: Example 5

This is the master method recurrence with $f(n)=0$.
Example 8.16. Solve exactly $T(n)=a T(n / b)$ where $T(1)=1 . a, b$ as in the master method.

Proof. First we generate (A1) through (Ai) as needed.

$$
\begin{aligned}
T(n) & =a T(n / b) \\
T\left(n / b^{0}\right) & =a T\left(n / b^{1}\right) \\
T\left(n / b^{1}\right) & =a T\left(n / b^{2}\right) \\
T\left(n / b^{2}\right) & =a T\left(n / b^{3}\right) \\
T\left(n / b^{3}\right) & =a T\left(n / b^{4}\right) \\
& \cdots \\
T\left(n / b^{i-1}\right) & =a T\left(n / b^{i}\right)
\end{aligned}
$$

As there are no additive terms above, we can multiply all the equations but the first together (The second equation is the first equation rewritten; it makes no sense to use both of them). The result is $T(n)=a^{i} T\left(n / b^{i}\right)$. We then equate $T\left(n / b^{i}\right)$ with the base case $T(1)$ and solving for i we determine the number of iteration needed. $n / b^{i}=1$ implies $i=\lg n / \lg b$.

8.5.6 Iteration methodzExampla 6

Example 8.17. Sptre the recunence $T(1)=5$.

Proof.

$$
\begin{aligned}
T(n \vartheta & =8 T(n / 2)+n \\
& =8\left(8 T\left(n / 2^{2}\right)+n / 2\right)+n \\
& =8^{2} T\left(n / 2^{2}\right)+8 n / 2+n \\
& =8^{2} T\left(n / 2^{2}\right)+(8 / 2)^{1} n+(8 / 2)^{0} n \\
& =8^{2}\left(8 T\left(n / 2^{3}\right)+n / 2^{2}\right)+(8 / 2)^{1} n+(8 / 2)^{0} n \\
& =8^{3} T\left(n / 2^{3}\right)+8^{2} n / 2^{2}+(8 / 2)^{1} n+(8 / 2)^{0} n \\
& =8^{3} T\left(n / 2^{3}\right)+(8 / 2)^{2} n+(8 / 2)^{1} n+(8 / 2)^{0} n \\
& =\ldots \\
& =8^{i} T\left(n / 2^{i}\right)+(8 / 2)^{i-1} n+\ldots+(8 / 2)^{1} n+(8 / 2)^{0} n
\end{aligned}
$$

Again the boundary case is $T(1)=5$. We set $n / 2^{i}=1$, ie $i=\lg n$. Then for $i=\lg n, T\left(n / 2^{i}\right)=T(1)=5$. We therefore get for $i=\lg n$.

$$
\begin{aligned}
T(n) & =8 T(n / 2)+n \\
& =8^{i} T\left(n / 2^{i}\right)+(8 / 2)^{i-1} n+\ldots+(8 / 2)^{1} n+(8 / 2)^{0} n \\
& =8^{\lg n} T\left(n / 2^{\lg n}\right)+\frac{(8 / 2)^{\lg n}-1}{8 / 2-1} \cdot n \\
& =2^{3 \lg n} T(1)+\frac{(4)^{\lg n}-1}{3} \cdot n \\
& =n^{3} T(1)+\frac{(4)^{\lg n}-1}{3} \cdot n \\
& =5 n^{3}+\frac{n^{2}-1}{3} n
\end{aligned}
$$

To verify our calculations we observe that $T(1)=5+(1-1) / 3=5$ and

$$
\begin{aligned}
T(n) & =87^{\circ}(n / 2)+n \\
& =5\left(5(n / 2)^{3}+\frac{(n / 2)^{2}-1}{3} n\right)+n \\
& =T(n)
\end{aligned}
$$

ie the recurrence is verifies.

8.5.7 Iteration method: Example

Example 8.18 Use the iteration method solve recurrence, $T(n)=4 T(n / 2)+n, T(4)=6$.

Proof.

$$
\begin{aligned}
& =4\left(4 T\left(\frac{n}{2^{2}}\right)+\left(\frac{n}{2}\right)\right)+n \\
& =4^{2} T\left(\frac{n}{2^{2}}\right)+\frac{4^{1} n}{2^{1}}+n \\
& =4^{2}\left(4 T\left(\frac{n}{2^{3}}\right)+\left(\frac{n}{2^{2}}\right)\right)+2^{1} n+2^{0} n \\
& =4^{3} T\left(\frac{n}{2^{3}}\right)+2^{2} n+2^{1} n+2^{0} n \\
& =\cdots \\
& =4^{i} T\left(\frac{n}{2^{i}}\right)+2^{i-1} n+\ldots+2^{1} n+2^{0} n \\
& =4^{i} T\left(\frac{n}{2^{i}}\right)+n\left(2^{i}-1\right)
\end{aligned}
$$

The base case is $T(4)=6$. We set $n / 2^{i}=4$, i.e. $n=2^{i+2}$. If we solve this for i, we get $i=\lg n-2$. Then $T\left(n / 2^{i}\right)=$ $T(4)=6$. In addition, $2^{i}=n / 4,4^{i}=2^{i} \cdot 2^{i}=n / 4 \cdot n / 4=n^{2} / 16$. Therfore the formula for $T(n)$ becomes.

$$
\begin{aligned}
T(n) & =4^{i} T\left(\frac{n}{2^{i}}\right)+n\left(2^{i}-1\right) \\
& =\left(n^{2} / 16\right) T(4)+n(n / 4-1) \\
& =3 n^{2} / 8+n^{2} / 4-n \\
& =5 n^{2} / 8-n
\end{aligned}
$$

Note 8.1. It is easy to verify for example that $T(4)=5 \cdot 4^{2} / 8-4=6$. This can serve as a checking mechanism that the solution that you have established satisfies at least the base case.

8.5.8 Recursion tree method: Example 8

We have already solved two recurrences with this method. The first one was the running time of the Fibonacci divide-and-conquer time and space inefficient solution. The second one was the running time (comparison upper bound) of MergeSort.

If the recurrence is complex then the iteration method will not work (easily). Moreover floors and ceilings will complicate things. Suppose $T(n)=T(n / 4){ }^{\prime} T(3 n / 4)+n$. Try to use a recursion tree. Start with a tree with one node labeled $T(n)$. Expand the $T(n)$ node by $r e$ placing it with a new node that is labeled with the non-recursive part of the recurrence i.e. n. Make that node have two children, the $T(n / 4)$ and $T(3 n / 4)$ recursive parts of the recurrence. (If one had $2 T(n / 2)$ instead write it as $T(n / 2)+T(n / 2)$. Then expand similarly (using the recurrence) the two nodes labeled $T(n / 4)$ and $T(3 n / 4)$. Expansion is shown. The recursion tree can be lopsided (Fibonacci case) or not. In this case it does not show aftep two iterations but it will be lopsided. The left-most path goes $n, n / 4, n / 4^{2}$ and so on. It reaches some constant vatie, say 1 , $\operatorname{after}, n / 4^{i}=1$ i.e. $\lg (n) / 2=\log _{4} n$ iterations and it is $\lg n / 2$ levels deep (or hight). The righnoss path it goes (2), $3 n / 4,(3 / 4)^{2} n$, and it reaches some constant value 1 after $(3 / 4)^{i} n=1$ which solves for $i=\log 4=12=\lg (48)$. Nore thatoparentheses agedropped and thus the last expression should be read $\lg (n) / \lg (4 / 3)+$ The richt patiois longer/deyper/higher by йybe a factor of 4 or more. After i iterations the tree's height is i. The tree 15 lopsided (the Fiboncti sequencetree for the recursive solution was also lopsided). Deepest subtree is the rightmost ohe of depth dgh $/ \lg (\Psi 3)$, çotal time is thus $O(n \lg n)$. A Θ becomes too cumbersome to derive.

Note 8.2. The $T\left(n / 4^{2}\right)$ and $T\left(3 n / 4^{2}\right)$ that appear in the third level of the tree in the figure above look awkward. And even more the $T\left(\left(3^{2} / 4^{2}\right) n\right)$ last term shown.

Chapter 9

Graphs

9.1 Undirected Graphs

Definition 9.1 (Undirected graph). An undirected graph G is an (ordered) pair $(V, E) . V$ is a finite set of vertices, and E is a finite set of edges. An edge is an unorered pair of vertices. Therefore $G=(V, E)$ denotes an undirected graph G on set of vertices V and set of edges. E. The number of vertices of G is denoted by n and therefore, $|V|=n$. The number of edges of G is denoted by m andtherefore, $|E|=m$.
V is called the vertex set or set of neftices, and E is called the edge set or set of edges of G. The elements of both V and E are called respectively the vertices and edges of G.

Remark 9.1. One may use thengtation $G=(V(G), E(G))$ if more that one graph is defined in a given context.
Remark 9.2 (Alternative foffinitisin). An undirected graph $G=(V, E)$ is an (ordered) pair, where V is a finite set of vertices, and E is a finte set edgers Andge is a set two yertices. This definition will NOT be utilized in the remainder.
Definition 9,2 Edges and Eáge Ladels). An edgesis andórdered pair of vertices or a set of two vertices. Thus for graph $G=0$, E, Let u, nev. Then (u, ψ) definer an edse. If $(u, v) \in E$ it is an edge of graph G. We can also assign a
 appearance of u and y in thepair isirrelenent. Therefore edge (v, u) is the same as edge (u, v).

Definition 9.3 (Adjacent and Incident). Por edge $e_{1}=(u, v) \in E$ of an undirected graph $G=(V, E)$ we say that vertices u and v are adjagent torach.other, or u is adjacent to v, or v is adjacent to u. We also say that edge e_{1} is incident on vertex u and vertex20.

Example 9.1. $\left\{\{1,2,3\},\left\{e_{1}=(\mathrm{d}, 2), e_{2}=(2,3), e_{3}=(1,2), e_{4}=(2,2)\right\}\right\}$ is an undirected graph. If we write however, $V=\{1,2,3\}$, and $E=\left\{e_{1}=(1,2), e_{2}=(2,3), e_{3}=(1,2), e_{4}=(2,2)\right\}$ we can define $G=(V, E)$. The graph has multiple edges between vertex 1 and vertex 2 . There are two edges e_{1}, e_{3} incident on vertices 1 and 2 . Moreover graph G has a self-loop $e_{4}=(2,2)$, i.e. an edge whose two end-points coincide.

Definition 9.4 (Multiple edges and self-loops). A self-loop is an edge (u, u) whose two end-points coincide. Multiple edges means that there more than one edge incident on the same two vertices $u \in V$ and $v \in V$ of a graph $G=(V, E)$.

Definition 9.5 (Simple Undirected Graph). An undirected graph is simple if it contains no self-loops and no multiple edges (between the same two end-points). In the remainder, all undirected graphs will be simple. (Multiple edge are sometimes referred to as parallel edges.)

Remark 9.3 (Vertex, Node). We prefer to use the term vertex (plural vertices) to refer to the elements of set V. Later we are going to use the term vertexto refer to the vertices of a class of graphs known as trees. Some other times the term vertexcan be used instead of the term vertex especially for the case of a directed graph (to be defined).

Remark 9.4 (Edge, Arc). We prefer to use the term edge to refer to the elements of set E. Some other times the term arc can be used instead of the term edge especially for the case of a directed graph (to be defined).

Definition 9.6 (Set incidence). For an undirected graph $G=(V, E)$, let $S \subseteq V$. an edge is incident on S if exactly one of the edge's endpoints is in S.

Definition 9.7 (Degree of a vertex). For an undirected graph $G=(V, E)$ the degree of vertex u is the number of edges incident on u. We use the notation $d(u)$ or $\operatorname{deg}(u)$ for the degree of u.

Remark 9.5. If an undirected graph has a self-loop and a degree computation is to be realized, the degree of the vertex counts it as a two. If a directed graph has a self-loop and a degree computation is to be realized, the degree of the vertex counts it as a two, in-degree as one, and out-degree as one.

The same edge $e=(u, v)$ is counted twice in a degree computation. Once to derive $d(u)$, the degree of u, and once to derive $d(v)$, the degree of v. Thus the following theorem can be derived.

Theorem 9.1 (Degree sum). For a (simple) undivegted graph $G=(V, E)$ with $|V|=n$ and $|E|=m$, the sum of the degrees of all the vertices of the graph is an evnumber. Moreover this sum is 2 m .

Proof. Every edge $e=(u, v)$ is counted twice once to the degree of one end-point i.e. $d(u)$ and once to the degree of the other end-point i.e. $d(v)$. Thus

$$
\sum_{w \in V} d(w)=2 m
$$

Example 9.2. Let $G=(\mathcal{Q})$. with V, 2 , and $E=\left\{e_{1}=(1,2), e_{2}=(2,3)\right\}$ This graph is simple, $n=3$ and $m=2$. Degree-wise, $d(1)=d(2) d 2$ and $d(3)=1$. Therefore $\sum_{w \in V} d(w)=d(1)+d(2)+d(3)=1+2+1=$ $4=2 \cdot m$. In the renaindeno either write $E=1,2)(2,3) d, 000 E=\left\{e_{1}, e_{2}\right\}$, and define separately $e_{1}=(1,2)$ and $e_{2}=(2,3)$.
Example 9.5^{3} (Syfe Monns). The mons A, and B of the opposite of a mountain range are moving in opposite directions starting at inesametevation. They nevermove at a lower elevation than their common starting one, and they always move in ync ard strug anthe samelevation. Will they swap locations? (I.e. (A, B) becomes (B, A).)
Example-Proposition9.4. Z\&e number ofvertices of odd degree is even.
Proof. If the number of Pertice of oddegree were odd, then their contribution to the sum $\sum_{w \in V} d(w)$ would have been odd \times odd which is an odd number. The contribution of the even degree vertices, whether the number of such vertices is odd or even would beghn even number.

Adding the contributions of odd-degree and even-degree vertices is equivalent to adding an odd number and an even number. The result is an odd number. We do know from a prior theorem that this result $2 m$ i.e. an even number. Thus the number of vertices of odd degree MUST be odd!

Theorem 9.2. In an undirected graph $G=(V, E)$ with at least two vertices we have at least two vertices with the same degree. (Reminder: graph is simple i.e. no self-loops, no multiple vertices.)

Proof. We prove the result by induction.
Base case. If we have two vertices and they are isolated, their degree is 0 . If there is an edge connecting them the degree of both vertices is one. Base case completed.

Inductive step. Let the result be true for all graphs with n or fewer vertices.
Suppose we have a graph G with $n+1$ vertices.

Case 1. One vertex say u has degree 0 i.e. it is an isolated vertex. Then the remainder $G-u$ has n vertices. By induction there are two vertices say a, b with the same degree. Adding to $G-u$ the isolated vertex u would not changes the degrees of a, b. Result proven.

Case 2. All vertices have degrees greater than zero i.e. $1 \leq d(u)<n$. There are n vertices and $n-1$ degrees the values $1,2, \ldots, n-1$. By the pigeonhole principle there are must be two vertices of the same degree (value). Result Proven.

Proof completed.

9.2 Directed Graphs

Definition 9.8 (Directed graph). A directed graph, also known as digraph, G is an (ordered) pair $(V, E) . V$ is a finite set of vertices, and E is a finite set of edges. An edge is an ordered pair of vertices. Therefore $G=(V, E)$ denotes a directed graph G on set of vertices V and set of edges E. The number of vertices of G is denoted by n and therefore, $|V|=n$. The number of edges of G is denoted by m and therefore, $|E|=m$.

For a directed graph $G=(V, E), E$ is a binary relation on V i.e E is a subset of $V \times V$ which means $E \subseteq V \times V$. V is called the vertex set or set of vertices, and E is called the edge set or set of edges of G. The elements of both V and E are called respectively the vertices and edges of G.
Remark 9.6. One may use the notation $G=(G \sqrt{\circ} \cdot, E(G))$ if more that one graph is defined in a given context.
Definition 9.9 (Edges and Edge Labels). An edge is an ordered pair of vertices. Thus for graph $G=(V, E)$, let $u, v \in V$. Then (u, v) may define a differvedge from (v, u). The former has direction from u to v, whereas the latter has direction from v to u. If $(u, v) \in E$, then it is an edge of graph G. This does not necessarily imply that $(v, u) \in E$. The latter might or might not be thecase. We can also assign a label on an edge: $e_{1}=(u, v)$. Thus edge $e_{1} \in E$ has end points u and v. Because theraph is directed, the order of appearance of u and v in the pair matters. Therefore edge (v, u) is different from èso (u, v), if both exist.
Definition 9.10 (Adjacentand Acidett). Forcdge $e_{1}=(u, v) \in E$ of a directed graph $G=(V, E)$ we say that vertices u and v are adjacent heachbother, u is acento v, ox is adfacent to u. We also say that edge e_{1} is incident from vertex u and incident to kextex vs lote tave adjegency roes ngeonvey direction information but incidence does.
Remark 9.72he term"ineident din^{2} is used fors undrected graph and "on" does not imply direction. The terms "incident likewise "to"
Definition 9.11 (Set ingdence).For axe undireted graph $G=(V, E)$, let $S \subseteq V$. an edge is incident on S if exactly one of the edge's en arpints is in S.
Example 9.5. $\left\{\{1,2,3\},\left\{e_{1}=\{1,2)\right.\right.$ e $\left.\left.e_{2}=(2,3), e_{3}=(1,2), e_{4}=(2,2)\right\}\right\}$ is a directed graph. If we write however, $V=\{1,2,3\}$, and $E=\left\{e_{1}\left(1,2, e_{2}=(2,3), e_{3}=(1,2), e_{4}=(2,2)\right\}\right.$ we can define $G=(V, E)$. The graph has multiple edges from vertex 1 to 厄ertex 2. There are two edges e_{1}, e_{3} incident from vertex 1 , and incident to vertex 2. Moreover graph G has a self-loop $e_{4}=(2,2)$, i.e. an edge whose two end-points coincide.

Definition 9.12 (Multiple edges and self-loops). A self-loop is an edge (u, u) whose two end-points coincide. Multiple edges means that there are more than one edge from a vertex $u \in V$ to a vertex $v \in V$ of a graph $G=(V, E)$.

Definition 9.13 (Simple directed Graph). An directed graph is simple if it contains no self-loops and no multiple edges. In the remainder, all directed graphs will be simple.

Remark 9.8 (Vertex, Node, Edge, Arc). We prefer to use the term vertex (plural vertices) to refer to the elements of set V. Some other times the term vertexcan be used instead of the term vertex. Then the term arc is used instead of edge. Then $G=(N, A)$ and thus the set of nodes(vertices) is denoted by N and the set of arcs (edges) is denoted by A.

Definition 9.14 (Degree of a vertex). For an undirected graph $G=(V, E)$ the degree of vertex u is the number of edges incident from u or incident to u. We use the notation $d(u)$ or $\operatorname{deg}(u)$ for the degree of u. Furthermore the outdegree of u, denoted by $\boldsymbol{o}(\boldsymbol{u})$ or out (\boldsymbol{u}), is the number of edges incident from u. Likewise, the in-degree of u, denoted by $\mathbf{i}(\boldsymbol{u})$ or $\operatorname{in}(u)$, is the number of edges incident to u.

The same edge $e=(u, v)$ is counted twice in a degree computation. Once to derive $d(u)$, the degree of u, and once to derive $d(v)$, the degree of v. Moreover the edge is being used to derive the $\mathbf{o}(\mathbf{u})$ as well. Furthermore the edge is being used to derive the $\mathbf{i}(\mathbf{u})$ as well. Thus the following theorem can be derived.
Theorem 9.3 (Degree sum). For a (simple) directed graph $G=(V, E)$ with $|V|=n$ and $|E|=m$, the sum of the degrees of all the vertices of the graph is an even number. Moreover this sum is $2 m$.Thus the following is true.

$$
\sum_{w \in V} d(w)=2 m
$$

Furthermore,

$$
\sum_{w \in V} i(w)=m=\sum_{w \in V} o(w)
$$

Proof. Every edge $e=(u, v)$ is counted twice once to the degree of one end-point i.e. $d(u)$ and once to the degree of the other end-point i.e. $d(v)$. Thus

The rest follows immediately.
Example 9.6. Let $G=(V, E)$ with $V=\{2,3\}$, and $E=\left\{e_{1}=(1,2), e_{2}=(2,3), e_{3}=(2,1)\right\}$ This graph is simple, $n=3$ and $m=3$. Degree-wise, $d(1)=2, d(2)=3$ and $d(3)=1$. Therefore $\sum_{w \in V} d(w)=d(1)+d(2)+d(3)=$ $2+3+1=6=2 \cdot m$. Furthermoreci $\boldsymbol{l} \boldsymbol{l})=1, \boldsymbol{i}(\mathbf{2})=1, \boldsymbol{i}(\mathbf{3})=1$, and $\sum_{w \in V} i(w)=3=m$. Finally, $\boldsymbol{o}(\mathbf{1})=1, \boldsymbol{o}(\mathbf{2})=2$, $\boldsymbol{o}(3)=0$, and $\sum_{w \in V} o(w)=3=$,

9.3 Other defiginions ongrapd

Definition 9.15 (Bipartite fraphs). Agraph $G \theta^{\ell}(V, E)$ is bipaptite if its vertices V can be partitioned into two sets

Definition 9.1务 Induçed Sûgrapha. Let $\sigma_{1}^{2}=\left(k_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right) . G_{1}$ is an induced subgraph of G_{2} by its

Definition 9.18 (Indueed Subgrapht) Let $\theta^{\prime}=(V, E)$. Let $u \in V$. Then $G-u$ is the subgraph of G obtained after deleting u from V and alsgall edgees of E nat are adjacent to u (incident on, or from, or to u).
Definition 9.19 (Induced Sutograph)! Let $G=(V, E)$. Let $e \in E$. Then $G-e$ is the subgraph of G obtained after deleting e from E.
Theorem 9.4. The following are equivalent for a graph G : (a) G is 2-colorable, i.e. every vertex is assigned one of two colors so that no edge contains vertices of the same color, $(b) G$ is biparite, and (c) every cycle in G has even length (we count edges).
Proof. Let G be two colorable. Let B and W are the two colors. Color the vertices. Then the B vertices form V_{1} and the W vertices form V_{2}. The induced graph is a bipartite graph.

Let G be a bipartite graph. Let V_{1} and V_{2} be a bipartition. A cycle that starts from $u \in V_{1}$ can only then go to a v in $v \in V_{2}$. (if it went to a vertex v such that $v \in V_{1}$ we would have a violation of the bipartition property.) The last edge of the cycle must end to the starting vertex u of V_{1}. This means the cycle is of even length.

Let every cycle of G is of even length. We pick an arbitrary vertex and we color B. All its neighbors are colored W. If a vertex is W all of its neighbors would be colored B. There is no danger that two adjacent vertices would be colored the same color because that would imply an odd-length cycle.

Definition 9.20 (Complete (undirected) graph K_{n}). A complete graph on n vertices is an undirected graph such that every pair of vertices is adjacent. It is denoted by K_{n} and contains $n(n-1) / 2$ edges.

Definition 9.21 (Regular or k-regular (undirected) graph). A graph is k regular if and only if every vertex of it has degree k.

Definition 9.22 (Complete (undirected) bipartite graph $K_{a, b}$). The complete bipartite graph $K_{a, b}$ is defined as a graph with $n=a+b$ vertices, where $\left|V_{1}\right|=a$ and $\left|V_{2}\right|=b$ and all $a \times b$ possible edges from V_{1} to V_{2} are in E. The graph is denoted by $K_{a, b}$ and contains ab edges.

Definition 9.23 (Isomorphic Graphs). Two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic if there exist a bijection (surjective and injective function) from V_{1} to V_{2} such that $(u, v) \in E_{1}$ is mapped to $(f(u), f(v)) \in E_{2}$.

9.4 Paths on graphs

Definition 9.24 (Paths on graphs). Let $G=(V, E)$ be a graph. Let $u, v \in E$ be two vertices of V. We denote a path starting at u and ending in v by $u \leadsto v, \quad u \underset{G}{\leadsto} v, \quad u \stackrel{k}{\sim} v, \quad u \underset{G}{\stackrel{k}{\rightrightarrows}} v$, where the wavy line indicates a path rather than edge, the length of the path is over the wavy lin@and underneath it the graph name might or not appear. A path starting at u and ending in v is defined as follo (bs.

$$
u \leadsto v \text { or } u \stackrel{k}{\sim} v \quad: \quad\left\langle u_{0}, u_{1}, \ldots, \text { lit) }\left\langle u, u_{1}, \ldots, v\right\rangle \text { with }\left(u_{i}, u_{i+1}\right) \in E \text { for } 0 \leq i<k, \text { and } u_{0}=u, u_{k}=v\right.
$$

We say that there is a path from $u t \mathrm{v}$ and indicate it as $u \leadsto v$ or we say that there is a path of length k from u to v and indicate it as $u \stackrel{k}{\sim} v$, if thexis a sequence $\left\langle u_{0}, u_{1}, \ldots, u_{k}\right\rangle$ of $k+1$ distinct vertices such that $u_{0}=u$ and $u_{k}=v$, and consecutive vertices maip distinct edges i.e. $\left(u_{i}, u_{i+1}\right) \in E, 0 \leq i<k$. The vertices $u_{0}=u$ and $u_{k}=v$ are the endpoints of the path. The tengthof the path is (the number of (distinct) edges in it. We also say that u_{i} is reachable from u.
Definition 9.25 (Sinpletpaths) ol pathes defiod is defante simple, if the are no duplicate vertices (i.e. all vertices in the path qke distinet). In epath weshave faique istinelvertices and edges.

Definition 9.20 Subpathof math) subsath of chath is a contiguous subsequence of its (path's) vertices.
Definition 9.27 (alk) A wahn ind finition similar to that of a path. In a walk all edges are also distinct; but vertices are not neceserrily dssinct (unlque).
Definition 9.28 (Alternative Definition Walk and Path). A walk is (alternatively) a sequence of alternate vertices and edges

$$
\left(u_{0}, e_{0}, u_{1}, e_{Y}, \ldots, u_{k-1}, e_{k-1}, u_{k}\right), \text { such that } e_{i}=\left(u_{i}, u_{i+1}\right), \quad \forall 0 \leq i \leq k-1
$$

thus defining a walk of length k from $u_{0}=u$ to $u_{k}=v$. A path is likewise defined as a walk in which no vertex appears twice.

Definition 9.29 (Chain). A chain is a sequence of edges $\left(u_{0}, u_{1}\right), \ldots,\left(u_{k-1}, u k\right)$ such that the $u_{i} s$ are distinct including the end-points.

Definition 9.30 (Tour). A tour has a definition similar to that of a cycle. In a tour all edges are also distinct; but vertices are not necessarily distinct (unique). A closed walk is known as a tour.

Remark 9.9 (Paths, Cycles, Circuits, Walks, Tours). The definition sometimes vary from one source to the other. Pay attention to a particular definition.

Definition 9.31 (Cycle). In a directed graph $G=(V, E)$, A cycle (or circuit) of length $k \geq 0$, is a path with at least one edge whose endpoints close. That is $\left\langle u_{0}, u_{1}, \ldots, u_{k}\right\rangle$ defines a cycle of length k if and only if

$$
\left(u_{i}, u_{i+1}\right) \in E, \forall 0 \leq i<k, \text { and }\left(u_{k}, u_{0}\right) \in E
$$

Sometimes the cycle is indicated $\left\langle u_{0}, u_{1}, \ldots, u_{k}, u_{0}\right\rangle$. A cycle in an undirected graph is defined identically. A self-loop is a cycle of length 1. (Self-loops are not allowed in general in graphs under consideration as those graphs are simple.)

Definition 9.32 (Simple cycle). A cycle is simple if all $u_{1}, \ldots u_{k}$ are distinct. (This is true by definition of a path.)
Definition 9.33 (Acyclic graph). A graph with no cycles is called acyclic.

Figure 9.1: A directed graph

Figure 9.2: An undirected graph

Example 9.7. These are two examples of a directed and an undirected graph. In the directed graph, there exists a path of length two from 1 to 2 a $1 \sim 2$ since $1 \rightarrow 4 \rightarrow 2$. The same obviously applies to the undirected graph.

Definition 9.34 (Hamiltonian cycle). A Hamiltonian cycle is a (simple) cycle that contains all the vertices of the graph.
Definition 9.35 (Hamiltonian path). A Hamiltonian path is a path that contains all the vertices of the graph.
Lemma 9.1 (Auxiliary Hamiltonian Cycle Result (AHCR)). Let G be an undirected graph $G=(V, E)$. Let d(u)+ $d(v) \geq n$ for two non-adjacent vertices. If $G+(u, v)$ is Hamiltonian, then G is also Hamiltonian.

Proof. Suppose that $G+(u, v)$ has a Hamiltonian cycle c. If c does not utilize edge (u, v) then this means c is also a Hamiltonian cycle in G and we are done.

If c utilizes edge u, v, then c contains a path p such that $p=c-(u, v)$. For the sake of simplicity let us relabel the vertices of the cycle/path as follows is $u_{1}=u, u_{2}, u_{3}, \ldots, u_{n-2}, u_{n-1}, u_{n}=v$.

We form two sets

$$
F=\left\{u_{i}:\left(u, u_{i-1}\right) \in E, \text { and } 3 \leq i \leq n-1\right\}
$$

$$
G=\left\{u_{i}:\left(v, u_{i}\right) \in E, \text { and } 3 \leq i \leq n-1\right\}
$$

utilizing

$$
H=\left\{u_{3}, \ldots, u_{n-1}\right\}
$$

which contains $n-3$ vertices. Since $d(u)+d(v) \geq n$ we have

$$
|F|+|G|=d(u)-1+d(v)-1=d(u)+d(v)-2>n-2 .
$$

by the pigeonhole principle there must be an i i.e. $u_{i} \in F$ and $u_{i} \in G$. Then we can do the following to generate a new Hamiltonian cycle

$$
u_{i} \leadsto u_{1}=u \leadsto u_{2} \leadsto u_{3} \ldots \leadsto u_{i-1} \leadsto u_{n}=v \leadsto u_{n-1} \leadsto \ldots \leadsto u_{i}
$$

by reusing segments of the

$$
u_{1}=u \leadsto u, u_{2} \leadsto u_{3} \ldots \leadsto u_{n-2} \leadsto u_{n-1} \leadsto u_{n}=v .
$$

A Hamiltonian cycle has been obtained for G from the Hamiltonian cycle c of $G+(u, v)$.
Theorem 9.5 (Dirac's Theorem). In an undirected graph $G=(V, E)$, with $n \geq 3$, if every vertex u has $d(u) \geq n / 2$, then G has a Hamiltonian cycle.

Proof. Note that for every two vertices a and since $d(a) \geq n / 2$ and $d(b) \geq n / 2$ for all $a, b \in V$ we also have $d(a)+d(b) \geq n$.

Case 1. G has a Hamiltonian cycle. Done.
Case 2. G does not have a Hamiftonian cycle. Utilizing AHCR, if there are two vertices u, v unconnected, we explore whether $G+(u, v)$ has a $\wp m i l t o n i a n ~ c y c l e . ~ I f ~ i t ~ d o e s ~ b y ~ A H C R ~ s o ~ s h o u l d ~ G ~ c o n t r a d i c t i n g ~ t h e ~ " ~ G ~ d o e s ~$ not have a Hamiltonian cycle" $\$$ Chus we go on adding edges to unconnected vertices in G until it eventually gets a Hamiltonian cycle (in the wosfease it becomes K_{n}). Then we undo the addition of edges using AHCR to show that G must have a Hamiltonian eycle cointradicting theassumption that "G does not have a Hamiltonian cycle". Thus Case 2 does not exist.

9.4.2 Graph connectiviay

Connectivity is deftiod forundireted gophs oay.
Definition 9.36 (Connecte@(undirectedb) Graplf). An undirected graph is connected if and only if each vertex v is reachable from every gther vertex u. That is $\forall v \in V$ we have that there exists a path $\exists u \leadsto v$. By symmetry there is also a path $v \leadsto u$ fromv to (0.)

$$
\text { à dis connected } \forall u \in V, \forall v \in V, \exists u \leadsto v
$$

Definition 9.37 (Connected Components). The connected components of a graph are the equivalence classes under the " is reachable from" relation or in other words they are the maximal connected subgraphs of G.

Lemma 9.2 (Connected Graph's connected components). An undirected graph is connected if the number of its connected components is one.

Strong connectivity is defined for directed graphs only.
Definition 9.38 (Strongly Connected (directed) Graph). A directed graph is strongly connected if and only if each vertex v is reachable from every other vertex u. That is $\forall u, \forall v \in V$ we have $\exists u \leadsto v$ and $\exists v \leadsto u$. We say then that u, v are mutually reachable.

Definition 9.39 (Strongly Connected components). The strongly connected components of a graph are the equivalence classes under the "are mutually reachable" relation.

9.4.3 Eulerian tours

Example 9.8 (The bridges of Köningsberg (Kalinigrad)). Define an undirected graph $G=(V, E)$ with multiple edges such that

$$
V=\{1,2,3,4\}
$$

and

$$
E=\left\{e_{1}=(1,2), e_{2}=(1,2), e_{3}=(2,3), e_{4}=(2,3), e_{5}=(1,4), e_{6}=(2,4), e_{7}=(3,4)\right\}
$$

The question that the people of Köningsberg asked the famous mathematician Leonhard Euler was the following "Is there a closed walk (tour) of this graph?" The graph represents the two shores of the city of Köningsberg indicated as vertices 1 and 3, separated by river Pregel and the two islands of Kneiphof and Lopse represented by vertices 2 and 4.

Proof. We show that there is no Euler tour neither an Euler walk.
In this discussion we assume that the graphs have NO self-loops even if they have multiple edges.
Definition 9.40 (Euler tour). An Euler (or Eulerian) tour is a tour that contains all the vertices and all the edges of a graph $G=(V, E)$. (It is also known as Euler or Eulerian cycle and sometimes as an Euler or Eulerican circuit.)

Definition 9.41 (Euler walk or Euler path). An Euler (or Eulerian) walk is a "path" that contains all the vertices and all the edges of a graph $G=(V, E)$. (We extpnd the notion of the path as defined in this work to allow for any vertex to be listed more than once. This is knowiga a walk or alternatively as an Euler path or Eulerian path.)
Theorem 9.6 (Euler tour / Euler cycle). $\operatorname{lf}^{\prime} G=(V, E)$ has an Euler tour then G is connected and every vertex has even degree.

Proof. If there is an Euler tour we cisolate for any u and any v the walk from u to v. If it is also a path it means there is a path from u to v. If idis not a path, it is a walk and it meanse there is a vertex w that appears multiple times. We remove the edges.obthe walk between after the first appearance of w through the last appearance of w. (For example: $(1,2,3,4,5,6,3,7,8)$ witan $\dot{w}=3$ would be reduced to $(1,2,3,7,8)$ by eliminating the cycle $(3,4,5,6)$.) In the remainder w appearsonly amee (thedirstehcounter). The reduced walk (or path) still allows us to go from u to v as one or more cycles or tousowerexemove We do so fat othegkertices q that appear multiple times until we are left with a path fromu $0^{\circ} v$. Wrepeafthis or every u and Thig 0°.

If there is anteuler our every vistoof a vertex κ ohat progresses to another vertex includes an in-visit followed by an out-visit of v thus conswining tro edges outat the slegree $d(v)$ of v. Thus if G has an Euler tour the graph must be connected to he able \boldsymbol{Q}° in- Risitandout-xisit a given vertex v for all v. If G were not connected a vertex v would have been unreachable and thus there wold have been no tour, contradicting to the existence of the Eulerian tour (moreover, an isofated vertex v has d (iv) 0 , hich is an even number). If G is connected there can be no isolated vertex v and there cane no ystex v_{6} th odddegree. Every visit to an arbitrary vertex v and progress to another vertex away from v consumes twe from the degtee of v. If there was a vertex v of odd degree, let that v had $d(v)=2 k+1$, an odd number, we could in-visit and \emptyset at-visit $v k$ times without problems but then the $k+1$-st time an in-visit leads to getting stuck at v as there wouldee no unvisited edge for the out-visit. (A symmetric case would be a sequence of out-visits followed by in-visit.) This completes the proof.

Theorem 9.7 (Euler's Theorem). An undirected connected graph $G=(V, E)$ has an Euler tour (walk) if and only if either none or exactly two vertices have odd degree. This implies that all vertices have even degree or two vertices have odd degree and every other vertex has even degree. In the former case we talk about an Euler tour and in the latter case about an Euler walk.

Proof.

1. Necessary part.

1a. Euler tour case. If there is an Euler tour, then this means that the graph is connected. This was shown in the previous result. Moreover we showed in the previous result that every vertex has even degree.
1b. Euler walk case. If there is an Euler walk, then this means that the graph is connected. It can be shown in the same way the previous result was shown. Moreover we showed in the previous result that every vertex has even degree
for the case of an Euler tour. But in case of a walk the starting and ending vertices can be of an odd degree if there is no Euler tour.

Therefore in the case of an Euler tour or Euler walk in a connected undirected graph either all vertices have even degree or 2 vertices have odd degree and the remaining one have even degree. The two vertices with odd degree are the starting and ending vertices of the Euler walk.

2. Sufficient part.

We show by induction the following.
If there are only two vertices u and v with odd degree then there exists an Euler walk that starts from u and ends in v; if there are no vertices with odd degree, then graph has an Eulerian tour.

We prove this by induction on m, the number of edges of G. We shall assume that the statement above is true for all graphs with k edges, where $k<m$, and show that it is also for a graph G with m dges. We assume that there are two vertices u, v of odd degree.

Let us start with u to create a walk W. We move along by never visiting an edge twice. If we reach $q \neq v$, through an edge there is a way out of through another edge since w has even degree. (If $d(q)=2 k$ and we had visited $q k-1$ times there are two unvisited edges, one on the way into q and one on the way out of q.) When it is no longer possible to move it means we have reached v. It is possible then that not all edges have been visited (used) in walk W.

After we remove the visited (used) edges from G, the remainder of the graph is such that every vertex has even degree (including u and v). Let $G_{1}, G_{2}, \ldots, G_{k}$ be the connected components of G that have at least one edge (ie. at least two vertices). By induction they have Euler cycles $c_{1}, c_{2}, \ldots, c_{k}$. Since G is connected the original walk W encounters all of G_{1}, \ldots, G_{k}. Let W encounters G_{1} at vertex r_{1}, G_{2} at vertex r_{2}, and so on. Then we generate the walk by combining W, c_{1}, \ldots, c_{k}.

$$
W_{c}\left(\downarrow \mathcal{C} x_{1}\right) \leadsto c_{1} \leadsto W\left(x_{1} \leadsto x_{2}\right) \leadsto c_{2} \leadsto \ldots W\left(x_{k} \leadsto v\right)
$$

The resulting walk is an Eulek Walke(or The resulting tour is an Euler tour).
Theorem 9.8 (Euler tour / Ebuler excle). dfe is aconned gesph and every vertex has even degree, then G has an Euler tour.

Example 9.9 (The Dridgesof Köngsberg (Kitinigrad)). To conclude this problem the bridges of Köningsberg graph is a graph where 4 versces gae of dagree. Thus there is neither an Euler walk nor an Euler tour.

Note that the discussion on ther tors and Euler walks can be extended to directed graphs adjusted accordingly. (Thus a vertex of even degree ecomes a vertex whose in degree is equal to its out degree; two odd degree vertices become vertices where one has out degree excess of one and the other in degree excess of one.)

Example 9.10. A DeBruijn graph of order $m=3$ is defined as a directed graph $G=(V, E)$ where the vertices are m-bit sequences. Thus $n=2^{m}$. There is an edge from $a_{1} a_{2} a_{3}$ to $a_{2} a_{3} a_{4}$, for all $0 \leq a_{i} \leq 1$. Thus for the $m=3$ case the vertex set is

$$
V=\{000,001,010,011,100,101,111\}
$$

Moreover, the edge set E is
$E=\{(000,000),(000,001),(001,010),(001,011),(010,100),(010,101),(011,110),(011,111),(100,000),(100,001),(101,010),(101, C$
An edge such as $(000,000)$ may be labeled 000,0 , whereas $(000,001)$ may be labeled 000,1 . Assuming the self-loop of vertices 000 and 111 contibutes two two the degree of those vertices, the graph has an Eulerian walk.

9.5 Forests and Trees

The following definitions are for undirected graphs.
Definition 9.42 (Forest). A forest is an acyclic undirected graph.
Definition 9.43 (Tree). A (free) tree or just a tree is a connected acyclic undirected graph.
A connected forest is thus a tree.
Theorem 9.9. Let G be an undirected graph. The following statements are equivalent

1. G is a free tree.
2. Any two vertices in G are connected by a unique single path.
3. G is connected but if any edge is removed from E the resulting graph is disconnected.
4. G is connected and $|E|=|V|-1$.
5. G is acyclic and $|E|=|V|-1$.
6. G is acyclic but if any edge is added to E the resulting graph contains a cycle.

Proof. We show how 1 leads to 4 and 5. If G afree tree it is both connected and acyclic. We show $|E|=|V|-1 \Rightarrow$ $m=n-1$ by induction as follows.

For $n=1$ and $n=2$ the result is true by inspection since $m=0$ and $m=1$ respectively. Pick edge $e=(a, b)$ and remove it from the tree. The graph (tree) G is split into a number (two) of connected components. This is because otherwise there would still be a patid from a to b and adding to that path e the tree would have had a cycle. Let the two connected components be Thand T_{2} with n_{1}, n_{2} vertices respectively where $n_{1}+n_{2}=n$. Each one has $n_{1}<n$ and $n_{2}<n$ and are both connected acyclic inheriting the properties of T thus by induction $m_{1}=n_{1}-1$ and $m_{2}=n_{2}-1$. The $m=m_{1}+m_{2}+|\{e\}| \leq n_{1}-n_{2}-1+1 \circlearrowleft n-1$. Both have been shown.
(An alternative inductive stisp. Pige paithy of maximum length in tree. The last vertex has degree one. Call it u and the edge leading to ite? (If its degree was avo, it wuld lead either to a longer path, or to a previously traverse vertex indicating cycle tres an imposibitity). Then $G \rightarrow$ has one fewer vertex and one fewer edge as e the edge leading to u is not in u. By induetion $G-u$ is (atree \mathcal{S} course) and has $n-1$ vertices and $n-2$ edges. Adding u and e we कbain G has n wedtices rod n edges)
Corollary 9.1. Evexy tree has least two qertigesof degree 1.
Proof. Let $d(i)$ be the degree of vertegroi. We know that $\sum_{i} d(i)=2(n-1)=2 n-2$. Moreover assume there is only one vertex of degree one. Lethat yeftex betvertex 1 (or rename vertices otherwise). Then $d(1)=1$ and $d(i) \geq 2$. Then $\sum_{i} d(i)=d(1)+d(2)+0^{2}+d(2) \geq 102(n-1)=2 n-1$. The latter however is larger than the sum of the degrees $2 n-2$, an impossibility.

Definition 9.44 (Spanning Tree). For an undirected graph $G=(V, E)$ a spanning tree $T^{\prime}=\left(V, E^{\prime}\right), E^{\prime} \subseteq E$ is a subgraph of G that is a tree and touches all of the vertices of G, in other words for every vertex $u \in V$ there is an edge $e^{\prime} \subseteq E^{\prime}$ such that e^{\prime} is incident on u.

Definition 9.45 (Minimum Cost Spanning Tree). For an undirected graph $G=(V, E)$ whose edges have weights W (where $w_{i j}$ is the weight of edge (i, j)) a minimum cost spanning tree of G is a spanning tree $T^{\prime}=\left(V, E^{\prime}\right), E^{\prime} \subseteq E$ that also has the following property: the $\sum_{(i, j) \in E^{\prime}} w_{i j}$ is minimized over the edgeset E^{\prime} of T i.e. every other spanning tree $T_{2}=\left(V, E_{2}\right)$ has $\sum_{(k, l) \in E_{2}} w_{k l} \geq \sum_{(i, j) \in E^{\prime}} w_{i j}$. If for every T_{2} we have $>$ instead of \geq, the T^{\prime} is known as the minimal cost spanning tree of G.

Minimal means only one has the minimum cost. Minimum is used if there are multiple instances that have the minimum cost. In the latter case we pick one out of them!

Definition 9.46 (Rooted tree). A rooted tree is a free tree in which one of the vertices is distinguished from the others and is called the root. The root of a tree T will be represented sometimes by r.

Definition 9.47 (Vertex in Graph, Node in a tree). Vertices of a tree are also called nodes. The same u can be a vertex (of the graph) in one context and node (of a tree that is the graph) in another context.

Definition 9.48 (Ancestor, Descendant). In a rooted tree T, let P be a path from root r to some vertex (node) x. Then any node y of the unique path from r to x is called an ancestor of x. x is a descendant of y (including r and itself). If $x \neq y$ then the x is a proper descendant of y and y is a proper ancestor of x. x is an ancestor/descendant of x. The subtree rooted at x is the tree induced by descendants of x rooted at x.

Definition 9.49 (Degree of Vertex, degree of Node). The degree of a vertex that is a node of the tree is as previously defined. The degree of a (rooted tree) node is the number of its children. For a rooted tree we can define relationships such as descendant, ancestor, child and parent relative to the root. The number of children of the root (of a rooted tree) define the 'degree' of the root. Likewise we can define the degree of a node as the number of its own "children"

Definition 9.50 (Parent, Child, Sibling). In a rooted tree T, let P be a path from root r to some vertex (node) x. If in P the last edge is $(z, x) z$ is called parent of x, x is called child of z. If x and u are both children of z they are called siblings.
Definition 9.51 (Leaf or an external node; Internal node). A node with no children is called a leaf or an external node. A non-leaf is called an internal node. the root is also an internal node unless there is only one node in the tree, that node is the root, and the root is RAsó a leaf, i.e. an external node.

Definition 9.52 (Depth). The length ofthe path from the r of a rooted tree to a node x is the depth of x. A root r has depth $d(r)=0$. If v is a rooted trek wode then $d(v)=d(p(v))+1$ where $p(v)$ is parent of v.

Definition 9.53 (Tree height: ©depth-based definition). The largest depth of any node is the height of the tree T.
Definition 9.54 (Heightor a node). ©a roon tree T with root r, the height of a leaf v is $h(v)=0$. For a non-leaf node $u, h(u)=(\max (b)(w))$ length of the longest pathexom thenodedo a descendane leaf, 20
Definition $9 \cos ^{5}$ (Tree height; heighebased definition) ehe height of a rooted tree is the height of its root.
Definition 9.56 rideed tree). Ansorderedtree is \bar{a} (rooted) tree in which the children of every node are ordered (i.e. we can talk of he first seconenode efc). je

Definition 9.57 (Binary trees A Binary Tree is a rooted and ordered tree that either

- contains no nodes Yi.e. in empin),or
- it consists of three disjointets of nodes: a root node, a binary tree called left-subtree and a binary tree called right-subtree.

Example 9.11. The number of binary trees with $n=1$ is 1. The number of binary trees with $n=2$ is 2 . The number of binary trees with $n=3$ is 3. Show that the number of binary trees with $n=4$ is 14 . Show that the number is $C(n)=(1 /(n+1))\binom{2 n}{n}$, the Catalan number of order n.

The root of the left subtree is called the left child of the root and that of right subtree the right child of the root.

Definition 9.58 (Binary tree vs ordered tree). If a node has only one child it matters whether it is a left or a right child in a binary tree, as opposed to ordered trees, where it doesn't matter. Binary trees maintain left and right notion, ordered trees do not.

Definition 9.59 (A full binary tree). A full binary tree is a tree where each node has degree 2 or 0 (leaf).
Definition 9.60 (A complete binary tree). A complete binary tree (CBT), is a tree where each leaf has the same depth and all internal nodes have degree two.

Remark 9.10. Several textbooks call a full binary tree what we defined as a complete binary tree.
Example-Proposition 9.12 (Height h of CBT). The number of vertices (nodes) in such a tree of height h is

$$
1+2+2^{2}+\ldots+2^{h}=2^{h+1}-1
$$

Example-Proposition 9.13 (Number of internal nodes). The number of internal nodes in a CBT of height h is $2^{h}-1$.
Example-Proposition 9.14 (Number of internal nodes). The number of external nodes in a CBT of height h is 2^{h}.

Question 9.1. Question: A complete binary thee has n nodes. How many of them are leaves, and how many of them are internal nodes?

9.6 Planar graphs

Definition 9.61 (Planar graphs). A graph is planar if it can be drawn on the plane without intersecting edges.
Example 9.15. $K_{2,3}$ is a planar graph. ($V_{1}=\{1,2\}$ and $V_{2}=\{3,4,5\}$.)

1	Face A: interior of $1,3,2,4,1$
/ 1 \	Face B: interior of $1,4,2,5,1$
345	Face C: outside of $1,3,2,5,1$
\1/	
2	
n (\# vertices)	$=5$
m (\# edges)	$=6 \quad \mathrm{n}-\mathrm{m}+\mathrm{f}=5-6+3=2$
f (\# faces)	$=3$

Example 9.16. K_{4} is a planar graph.)

n (\# vertices) $=4$
m (\# edges) $=6 \quad \mathrm{n}-\mathrm{m}+\mathrm{f}=4-6+4=2$
f (\# faces) $=4$
Theorem 9.10 ((Yet another) Euler's theorem). A planar graph with n vertices, m edges and f faces satisfies the following equality.

$$
n-m+f=2
$$

Proof. Base case $n=1$, 0 and then $f=1$ daviously. Base case $n=2, m=1$ and then $f=1$ obviously. Both by inspection.

Induction on $n x^{\text {Assumasit is for and planal graph? with obedges of less. }}$
Pick a planar graph eith $m=1$ edges andyeick oneof the edges call it e.
Case 1: Redge e connects ăn isolated vêrtex ω
Graph let ustsay. ithas n yettices +1 adges and f faces. We want to calculate $n-(m+1)+f$ and confirm it is equal to two. Rendove e De. Gee. Grath has $n-1$ vertices m edges and the same number of faces as before. Moreover it is stif planar. Thus beindacton $(1)-m+f=2$. Then $n-(m+1)+f=(n-1)-m+f=2$ and the result has been proven.

Case 2. Edge e connectetwo yerticesthat are not isolated.
Graph G let us say it 1 as n, is equal to two.

Graph $G-u$ in this case stilhas n vertices m edges. The removal of e joins two faces on either side into one thus the number of faces becomes $f-1$. Therefore by induction

$$
n-m+(f-1)=2 \Rightarrow n-(m+1)+f=2
$$

and the result has been proven. Proof is thus complete by case analysis.
Example-Proposition 9.17. K_{5} is not planar.
Proof. Say K_{5} is a planar graph. K_{5} has $n=5$ and $m=10$ and then $n-m+f=2$ implies $f=7$.
Each face must be surrounded by at least 3 edges. Let then b be the number of boundarye (edges) of those faces i.e. $b \geq 3 f$. Moreover $b=2 m$ since an edge is used as a boundary twice (one side is a face, the other side is another face).

Then $b=2 m \geq 3 f$ implies $m \geq 3 / 2 f$. But then $10 \nsupseteq 3 / 2 \cdot 7$, since $m=10$ and $f=7$.

Example 9.18. Show $K_{3,3}$ is not planar.
Corollary 9.2. In any connected planar graph with at least two faces $m \leq 3 n-6$.
Proof. Every face has at least 3 edges.
Each edge is shared by two faces
Thus $2 m \geq 3 f$ and $m \geq 3 f / 2$.
Using $n-m+f=2$ we have $f=2-n+m$ and $m \geq 3(2-n+m) / 2$ which leads to

$$
m \leq 3 n-6
$$

as required.
Definition 9.62. A planar embedding of a graph is a drawing of a graph in the plane with out crossing edges.
Definition 9.63. A graph $G_{1}=\left(V_{1}, E_{1}\right)$ is homomorphically embeded into graph $G_{2}=\left(V_{2}, E_{2}\right)$ if there is an 1-1 mapping $p: V_{1} \rightarrow V_{2}$ such that for all edges $(u, v) \in E_{1}$, edge (u, v) of G_{1} maps to path $p(u) \sim p(v)$ of G_{2} such that the paths are vertex disjoints except for the end-points.

Theorem 9.11. A graph is planar if and only if it contains no homomorphic emdedding of K_{5} or $K_{3,3}$.

9.7 Coloring

Definition 9.64 (Vertex Coloring). Given a graph $G=(V, E)$ a vertex coloring is an assignment of distinct colors to its vertices such that no pair of adjacent vertices have the same color.

Definition 9.65 (Edge Coloring). Given a graph $G=(V, E)$ an edge coloring is an assignment of distinct colors to its edges such that no pair opesesqucident on the same vertex have the same color.
Definition 9.66 (Chronatic Number) The needed in a vertex coloringe
Definition 9.67 (Chrougtic Index). ©he chromaticendexy G (or $\gamma(G)$) of G is the smallest number of colors needed in an edge gtoring.

Let $D=\max _{u} d\left(u_{\cdot} \cdot{ }^{K}\right.$

Example 9.21. For a genericgraph G, we have $2 \leq \gamma(G) \leq D+1$ and then $D \leq \chi(G)=D+1$.
Theorem 9.12 (Kempe (1875)). Every planar graph $G=(V, E)$ is 5 -vertex colorable.
Proof. The result will be proven by induction on the vertices of the planar graph $G=(V, E)$.
Before that we utilize Corollary 9.2.
Claim 9.1. In every planar graph there must be a vertex of degree 5 or less.
The proof is by way of Corollary 9.2. Otherwise every vertex has degree 6 or more. Given that the sum of the degrees is twice the number of the edges we can then show $2 m=\sum_{i} d(i) \geq 6 n$ which implies $m \geq 3 n$ that would then contradict the $m \leq 3 n-6$ of Corollary 9.2.
Base case ($n=1$). It is true for $n=1$ obviously.
Inductive step. Suppose it is true for all planara graphs with $k<n$ vertices. Consider a $k+1$ vertex planar graph G.

Case 1. Vertex $v, d(v)<5$. Pick a vertex v of degree $d(v) \leq 5$. If the degree of v is less than 5 i.e. $d(v)<5$ by induction, $G-v$ can be colored with 5 colors, and then v can be colored with a color not utilized by its four or fewer neighbors to provide a 5 -coloring to G.

Case 2. Vertex $v, d(v)=5$. Suppose v has $d(v)=5$. Similarly as before, $G-v$ by induction can be colored with 5 colors. Let $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ be the five vertices ordered according to the planar embedding of G, whose edges are incident on v. If Vertices v_{1}, \ldots, v_{5} have fewer than 5 distinct colors altogether, G can become 5 -colorable by the argument of the previous case.

In the remainder we discuss the case where vertices v_{1}, \ldots, v_{5} have 5 distinct colors. Let without loss of generality the color of v_{i} be i. Let V_{i} be the set of vertices of $G-v$ with color i.
Claim 9.2. In $G_{13}=\left(V_{1} \cup V_{3}, E \cap V_{1} \times V_{3}\right), v_{1}$ and v_{3} are in the same connected component of G_{13}.
Proof. If they were not we could flip the color of one or the other in one connected component, and thus we would color v_{1}, v_{3} with the same color, free one color, and use it to color v with the fred color.

For the same reason,
Claim 9.3. In $G_{14}=\left(V_{1} \cup V_{4}, E \cap V_{1} \times V_{4}\right), v_{1}$ and v_{4} are in the same connected component of G_{14}.
Likewise,
Claim 9.4. In $G_{25}=\left(V_{2} \cup V_{5}, E \cap V_{2} \times V_{5}\right)$, v_{2} ard v_{5} are in the same connected component of G_{25}.
Because of the planarity of G, then the path/chain $v_{1} \leadsto v_{3}$ would intersect or the path/chain $v_{1} \leadsto v_{4}$ would intersect a chain $v_{2} \leadsto v_{5}$ contradicting the planakity of G, unless one of v_{2}, v_{5} are in a in a different component than the other and then we save up a color (2 or 5) to color v.

Theorem 9.13 (Appel+Haken+conputer(1976)). Every planar graph is 4-vertex colorable.

9.8 Matchings in bipartite graphs

In the remainder of this section, all graphs are undirected (and simple).
Definition 9.68 (Matching). For a bipartite graph $G=(A \cup B, E)$, where $V=A \cup B$, and A and B define the bipartition of the vertices, a matching M is is a subset of E such that for every vertex of A there is exactly one edge of M that is incident on it (and the other end point of the edge is in B) and no vertex b of B belongs to more than one edge in M. Thus if $d_{M}(u)$ defines the degree of vertex u in the subgraph $(A \cup B, M)$, we have $d_{M}(a)=1$ and $d_{M}(b) \leq 1$ for all $a \in A$ and all $b \in B$.

Definition 9.69 (Saturating set). For a matching M the vertices of the matching belong to the saturating by the matching vertex set $S(M)$, i.e. $S(M)=\{z \mid(z, b) \in M, \boldsymbol{O R}(a, z) \in M\}$.
Definition 9.70 (Saturating vertex). A vertex u is saturated or is a saturating vertex if edge (u, v) belongs to a matching M. Saturation is with respect to a matching and thus u is a saturating vertex with respect to M if $u \in S(M)$.

The definition can extend to an arbitrary graph. In the edges of a matching a vertex appears only (at most) once. Sometimes it is known as a complete matching. A complete matching covers A completely i.e. $|M|=|A|$.

Definition 9.71 (Maximum Matching). For a bipartite graph $G=(A \cup B, E)$, a maximum matching is a matching M of maximum cardinality that saturates as many vertices of A as possible. Thus $|M| \leq|A|$. (It is also possible that we have more matchings of the same cardinality $\mid M \odot{ }^{*}$

For a graph rather than a bipartite graph, a maximum matching saturates as many vertices of V as possible.
Definition 9.72 (Complete Matchingł For a bipartite graph $G=(A \cup B, E)$, a complete matching is a matching M of maximum cardinality that saturatex all vertices of A. Thus $|M|=|A|$.

For a graph rather than a bipatite graph, a complete matching is of size $\lfloor n / 2\rfloor$.
Definition 9.73 (Perfect Matching): For a bipgrtite graph $G=(A \cup B, E)$, a perfect matching is a matching M of maximum cardinality thesatuknes alAverticary of A and of B. Thus $|M|=|A|=|B|$.

For a graph rather than suipatite grap \mathbb{A}, a perfect matehing 980 of size $n / 2, n$ is even.
Definition 9.74 (Maximal Mátuing It isea matcing Mef maximum cardinality $|M|$, and every other matching has cardinality ess than $|M|$ What istere gan be two more matchings of the same cardinality $|M|$.)

A perfect pratching M is s 18 ch tha $M|O A=S B|$
Definition 9.75 (NeighborhoodN of aset of ©ertices). For a bipartite graph $G=(A \cup B, E)$, where $V=A \cup B$, and A and B define the blytition) the vertices, and some set $S \subseteq A$, we define by $N(S)$ the vertices of B that are adjacent to at least one vertex of $S O^{W}$ We cardefinc (S) for a set $S \subseteq B$ likewise.
Theorem 9.14 (Hall's theorem). $\mathcal{C D} G=(A \cup B, E)$ be a bipartite graph, where $V=A \cup B$ and A and B define the bipartition of the vertices V of C Then G has a (complete) matching M saturating A if and only if

$$
\forall S \subseteq A:|N(S)| \geq|S|
$$

where

$$
N(S)=\{v \in B: \exists u \in S:(u, v) \in E\}
$$

Proof.
Only if. If G has a matching M, it must be $|N(S)| \geq|S|$ for all $S \subseteq A$. This is because if there is a T such that $|N(T)|<|T|$, then there are not enough vertices in B to match the $N(T) \subseteq B$ vertices to the $|T|$ vertices of T.

If. Proof by induction. Assume result is true for all graphs with fewer than n vertices, i.e is true for all $m<n$ vertices of A. That is

$$
\forall G \forall A,|A|=m, \text { if } \forall S \subseteq A,|N(S)| \geq|S| \Rightarrow \text { G has a (complete) matching. }
$$

Base case is $n=1$. True by inspection.

Inductive step.

Case 1 of inductive step : $\forall S \subseteq A, S \neq \emptyset, S \neq A:|N(S)|>|S|$.
Pick an edge $e=(a, b) \in E$ and remove edge e and also all other edges incident on a, b from graph G to get say graph $G^{\prime}=G-a-b$. Graph G^{\prime} has one fewer vertex in A after the removal of a (and also b and all those relevant edges). Furthermore, for all $S \subseteq A, N(S)$ has descreased possibly by one and thus $|N(S)| \geq|S|$. The remaining graph has one fewer vertex in A and one fewer in B and thus the induction hypothesis applies and a (complete) matching exists in G^{\prime}. Such a matching saturates $A-\{a\}$. Adding e to this matching we get a matching of size one more that saturates all of A. Case completed.
Case 2 of inductive step : $\exists Z \subseteq A, Z \neq \emptyset, Z \neq A:|\mathbf{N}(\mathbf{Z})|=|\mathbf{Z}|$.
We split A into Z and $A-Z$. Z maps to $N(Z)$ and we have by assumption that $|N(Z)|=|Z|$. Moreover $A-Z$'s neighborhood is $N(Z)$ and $B-N(Z)$. Because $Z \neq A, Z$ is at least one smaller than A, i.e. $|Z|<|A|=n$ or $|Z| \leq|A|-1$.

Then the subgraph, $G_{1}=(Z \cup N(Z), E \cap Z \times N(Z))$, with $|Z|<n$ satisfies the inductive hypothesis and a complete (and perfect) matching exists that saturates Z and its equal $\operatorname{sized} N(Z)$.

The rest of the graph consists of $A-Z$ and $N(A-Z) \subseteq N(Z) \cup B-N(Z)$. Since $Z \neq$ emptyset, $A-Z$ is such that $|A-Z|<|A|$ and thus the inductive hypothesis is potentially applicable. For this to be indeed the case, we need to dismiss the possibility that there exists an $A_{2} \subseteq A-Z$ such that $|\mathbf{N}(\mathbf{A} \mathbf{2})|<\left|\mathbf{A}_{\mathbf{2}}\right|$. Then the induction hypothesis would apply.

For the dismissal of that possibility we work $2 \gg$ follows.
We first observe that $Z \cup A_{2}$ has $\left|N\left(Z \cup, A_{2}\right)\right| \leq|N(Z)|+\left|N\left(A_{2}\right)\right| \leq|Z|+\left|A_{2}\right|$. This contradicts the induction hypothesis $|N(S)| \geq|S|$ for all S including $S=Z \cup A_{2}$. This completes the proof.

Corollary 9.3. Let $G=(A \cup B, E)$ be abipartite graph. If $|A|=|B|$ and G is k-regular then there is perfect matching for all $a \in$ and $b \in B$.

Proof. If there is no perfectmatchine from the theorem above there exists an S such that $|N(S)|<|S|$. Set S has vertices that have degree 1. Thus the contribution of the sum of the degrees of those vertices is $|S| k$. If $|N(S)|<|S|$ and the sum of the degree of dhose exices should also be $|S| k$ but intstead it is something smaller: $|N(S)| k$ since to $|N(S)| k<|S| k$. This cannotde the a a o ρ^{ℓ}
Definition 9.76 Alterafing chain with respect tomateching M). Let M be a matching of a bipartite graph $G=$

Lemma 9.3. Let 4 and \wedge_{2} be wo ming of a bipartite graph $G=(A \cup B, E)$. Consider the subgraph of G $G=\left(A \cup B, M_{1}+M_{2}\right) \sqrt{2}$ th edge-set $M M_{4}+M_{2}$ the symmetric difference of M_{1} and M_{2}, i.e. $M_{1}+M_{2}=\left(M_{1}-M_{2}\right) \cup$ $\left(M_{2}-M_{1}\right)$. Each contrected compenent symmetric difference is one of the following types.
(1) An isolated vertex,
(2) A cycle of even length withedges alternating in M_{1} and M_{2},
(3) An alternating chain with end-points distinct and both unsaturated in either one or the other matching.

Proof. Let $a \in A$. We do a case analysis
Case 1: $a \notin S\left(M_{1}-M_{2}\right)$ and $a \notin S\left(M_{2}-M_{1}\right)$. This means a is an isolated vertex.
Cases 2,3: $a \in S\left(M_{1}-M_{2}\right)$ and $a \notin S\left(M_{2}-M_{1}\right)$ and its symmetric case. This means a is in matching M_{1} and moreover it is in $M_{1}-M_{2}$. There is no other edge in $M_{1}-M_{2}$ incident on a because a is in matching M_{1}.

Moreover no edge of $M_{2}-M_{1}$ is incident on a either. Furthermore, $a \notin S\left(M_{2}\right)$ since otherwise a would be on an edge of M_{2}, but then it could not be $a \in S\left(M_{1}-M_{2}\right)$.

Case 4. $a \in S\left(M_{1}-M_{2}\right)$ and $a \in S\left(M_{2}-M_{1}\right)$ there exists an edge in $M_{1}-M_{2}$ incident on a and an edge in $M_{2}-M_{1}$ incident on a and no other edge is such.

In case $1 a$ is of degree 0 , in Cases 2 and 3 of degree 1 and in case 4 of degree 2 .

Theorem 9.15 (Berge's theorem). A matching M is maximum (i.e. of the longest size) if and only if there can't be an alternating chain between two vertices that do not belong to $S(M) . S(M)=\{z \mid(z, b) \in M, \boldsymbol{O R}(a, z) \in M\}$.

Proof.

Only-If. Let M be a maximum matching and let us assume that an alternating chain exists with end points outside of the matching M. Then we can extend the matching by one contradicting to the maximality of M by picking in the alternating chain the edges not in M to become the edges of a new matching M^{\prime} that is one larger than M in (matching) size.

If. Let M be a matching. Let us assume that an alternating chain DOES NOT exist between two vertices that do not belong to $S(M)$. Then we show that M is a maximum matching.

Say M (for the sake of contradiction is not a maximum matching) and let M_{1} be a maximum matching i.e. of size at least one more. Consider $G_{1}=\left(A \cup B, M+M_{1}\right)$ where $M+M_{1}$ is the symmetric difference of M and M_{1} i.e. $M+M_{1}=\left(M-M_{1}\right) \cup\left(M_{1}-M\right)$. Naturally $\left|M_{1}\right|>|M|$. In G_{1} based on the previous theorem, a vertex a is either isolated, or have degree 2 and is on a cycle of even length, or is in a chain. The first two cases are neutral with respect to the number of edges of M versus M_{1}. Only in the case of chain can we have either M or M_{1} contributing one more edge if both end-points are from M or M_{1} respectively. Given that $\left|M_{1}\right|>|M|$, there must then be a chain whose end-points are in M_{1}. Thus we found an alternating chain with respect to M that is not supposed to exist! Thus M is a maximum matching.

Example 9.22. We have a chessboard that we have remove the top left square and bottom right square. (A square is indicated by T.) We want to cover all the board $\odot 62$ squares) with domino pieces. A domino piece is a rectangle that can cover horizontally or vertically two squares. Can we cover the incomplete square with 31 domino pieces?

```
```

T T T T T T T

```
```

T T T T T T T
T T T T T T T T
T T T T T T T T
T TTTTTTTT
T TTTTTTTT
T T T T T T TT
T T T T T T TT
T T T T T T T T
T T T T T T T T
T T T T T T T T
T T T T T T T T
T T T T T T T T
T T T T T T T T
TTTTTTT

```
```

TTTTTTT

```
```

```
W
```

Proof. If we coldr the squar
same type. Thus domá pire ${ }^{2}$. If there 30 of type and 32 of anether type the same type. Thes domaro pieqe canenly cever one and W. If there 30 of one type and 32 of another type they cannot be copered by 31 donvino pieces.

For a graph theoretio proofebaild binaitite graph with one set containing the B squares and the other the W squares. An edge determines whether twosquares are next to each other in the North, Sourth, East, West direction. The problems becpmes a match 198 problom.

A maximum matching $O \mathscr{P}=(\hat{A} \cup B$, is a matching M of largest cardinality.
Definition 9.77 (Deficiency) The deficiency $\delta(X)$ for a set $X \subseteq A$ is defined as

$$
\delta(X)=|X|-|N(X)| .
$$

The deficiency of graph G is defined as the maximum deficiency of a subset of A.

$$
\delta(G)=\max _{X \subseteq A} \delta(X) \geq \delta(X)
$$

We have $\delta(G) \geq 0$ since $\delta(\emptyset)=0$.
Theorem 9.16. In any bipartite graph $G=(A \cup B, E)$ the size of a maximum matching is $|A|-\delta(G)$.
Proof. Let $X \subseteq A$ such that $\delta(G)=\delta(X)=|X|-|N(X)|$. Since at most $|X|-\delta(G)$ vertices in B forming $N(X)$ can be matched to a vertex in A that is X, we have that $m=|M|$ is such that

$$
m \leq|A|-\delta(G)
$$

We show now that a matching M of size at least $\geq|A|-\boldsymbol{\delta}(G)$ exists. We add $\boldsymbol{\delta}(G)$ new vertices in B and connect them to every vertex in A. We call the new augmented graph G_{1}. In the new graph for every $X \subseteq A$ we have

$$
\left|N_{G_{1}}(X)\right|=\left|N_{G}(X)\right|+\delta(G)=|X|-\delta(X)+\delta(G) \geq|X|
$$

since $\delta(G) \geq \delta(X)$. Thus by Hall's theorem G_{1} has a maximum matching. If we remove from that matching $\delta(G)$ edges/vertices mapped to the newly inserted vertices into B, we get a matching of size at least $|A|-\delta(G)$, i.e. $m \geq$ $|A|-\delta(G)$. The two conditions $m \leq|A|-\delta(G)$ and $m \geq|A|-\delta(G)$ lead to $m=|A|-\delta(G)$.

Definition 9.78 (Vertex Cover). A vertex cover $V^{\prime} \subseteq V$ of a graph $G=(V, E)$ is a set of vertices such that every vertex of G is incident on some vertex in V^{\prime}.
Definition 9.79 (Line). A line is a row or a column of a matrix.
Definition 9.80 (Order of a matrix). For a square matrix $n \times n$ its order is n.
Theorem 9.17 (König - Egervary). In a 0-1 matrix of order let n be the minimum number of lines that contain all the ones is equal to the maximum number of ones that are in distinct rows and columns (In other words a maximum matching is equal to a minimum vertex cover.)

Proof. The $0-1$ matrix can be viewed as an adjagency matrix of a bipartite graph with the row indexes mapping to vertices in A and column indexes to vertices in B, where $G=(A \cup B, E)$.

Let (C) be the minimum number of lines thpat contain all the ones. Let (M) be the maximum number of ones that are in distinct lines.

It is clear that $(C) \geq(M)$. A mininut cover contains all the vertices of a maximum matching. A vertex in a minimum cover can cover a maximun of one edge of the maximum matching.

In order to show that $(C) \leq(M)$, we first note that a maximum matching M is of size m such that $m=|A|-\delta(G)$. Let $X \subseteq A$ whose deficiency.iss $(X)=\delta(G)$.

9.9 Representation of a graph

For a graph $G=(V, E)$, let $n=|V|$ and $m=|E|$, as already noted.
Definition 9.81 (Dense graph). A graph G is dense if $m \gg n$. The condition $m \gg n$ can be restated as $m=\Theta\left(n^{2}\right)$. Therefore, a graph G is dense if and only if $m=\Theta\left(n^{2}\right)$.
Definition 9.82 (Sparse graph). A graph G is sparse if $m \ngtr n$. The condition $m \ngtr n$ can be restated as $m=o\left(n^{2}\right)$. Therefore, a graph G is sparse if and only if $m=o\left(n^{2}\right)$.

There are two major ways one can use to represent a graph in the memory of a computer: (a) the adjacency matrix, and (b) the adjacency list representation.

9.9.1 Adjacency matrix

In the remainder of this discussion for a matrix A that is, a two dimensional array, the element at the intersection of row i and column j will be denoted interchangeably as $A_{i j}$ or $A_{i, j}$ or $A(i, j)$ or $A[i][j]$. Likewise for a linear array B that is, a column vector, the element at index i or row i will be denoted by B_{i} or $B(i)$ or $B[i]$.
Definition 9.83 (Adjacency matrix representation). A graph $G=(V, E)$ on n vertices and m edges is represented by an $n \times n$ adjacency matrix A (a two dimensional array) $A=\left[a_{i j}\right]_{i=1, j=1}^{i=n, j=n}$. Element $a(i, j)$ is 1 if there is an edge (i, j) in the graph, otherwise it is 0 .

The amount of space used for the represchtation is $\Theta\left(n^{2}\right)$.
Remark 9.11 (Adjacency matrix for directed graphs). The number of ones in A is equal to m, the number of edges.
Remark 9.12 (Adjacency mat for undirected graphs). For undirected graphs, A will be a symmetric matrix since for every edge $(i, j) \in E$ we have $(\underset{\sim}{(}, i) \in E$ and thus both $a(i, j)=a(j, i)=1$ in that case. The number of ones in A is equal to $2 m$.
Example-Proposition 9.23 OUndegree Fndegree). The outdas cee of vertex i can be found by scanning row i of the adjacency matiland sontinethe nember ones Likense, The indegree of vertex i can be found by scanning column i of the adjacency horntrix and col(n)ting the number of ones. The degree of vertex i can be found by adding the indegre and obidegree of kex i The ruming time of all these operations is $\Theta(n)$, as a row or column with n elements needsto be sednned. A do
Example-Proposifion 924 (Degree offa vertex of an undirected graph). The degree of vertex i can be found by scanning row i (or cotumn iぬof the adjacency matrix and counting the number of ones. The matrix is symmetric and thus it does not matter wherther ror column i. The running time of all this operation is $\Theta(n)$, as a row or column with n elements need 5 de be sodnned.

When edges of the graphs here numeric labels sometimes we call these labels invariably weights, distances or costs. We can use a representation similar to the adjacency matrix in addition to the adjacency matrix, or we can use a representation that also captures the information of the adjacency matrix of a graph $G=(V, E)$ with weights (distances, costs).

Definition 9.84 (Weight matrix representation). If the edges of the graph have weights assigned to them, then instead of using an 1 to indicate an edge from vertex i to vertex j, we store the weight of the edge instead. Because 0 can be a weight, we use ∞ for the cost of a non-edge. The diagonal elements capture the weight of an edge from i to i that is a self-loop that does not exist for simple graphs. We artificially populate the diagonal elements with 0 or some other value, as needed. Thus a weight matrix representation of a graph $G=(V, E)$ utilizes a weight matrix W such that $W=\left[w_{i j}\right]_{i=1, j=1}^{i=n, j=n}$.

$$
a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise, i.e. }(i, j) \notin E\end{cases}
$$

$$
w_{i j}= \begin{cases}w_{i j} & \text { weight of edge } \quad(i, j) \in E, i \neq j \\ 0 & \text { weight of "edge" } \quad(i, i) \in E \\ \infty & \text { otherwise, i.e. } \quad(i, j) \notin E\end{cases}
$$

We can use a separate W (or D or C) matrix to store this information or capture it into A instead. The amount of space used for the representation is Total space requirements are still $\Theta\left(n^{2}\right)$.

In the remainder the a_{i} would be denoted as $a(i, j)$.
Theorem 9.18. Let $G=(V, E)$ has adjacency matrix A. Form the matrix products $A, A^{2}=A * A, A^{3}=A^{2} * A, \ldots, A^{k}$. Then $a_{k}(i, j)$ is the (i, j) entry of A^{k}. The following properties are shared by A^{i}, where $i=1, \ldots, k$. A i.e. a (i, j) gives the number of paths of length 1 from a vertex i to a vertex $j . A^{2}$ i.e. $a_{2}(i, j)$ gives the number of paths of length 2 from a vertex i to a vertex j. A^{k} i.e. $a_{k}(i, j)$ gives the number of paths of length k from a vertex i to a vertex j.

Proof. Proof by induction. Base case is obvious. Let A^{m} shows the number of paths of length m from i to j.
We compute $A^{m+1}=A^{m} * A$. Note that

$$
a_{m+1}(i, j)=\sum_{p=1}^{p=n} a_{m}(i, p) * a(p, j)
$$

The first term of the sum $a_{m}(i, p)$ shows by induletion the number of paths from i to a given vertex p of length k. Likewise $a(p, j)$ shows the number of path fraps to j of length 1 . Thus $a_{m}(i, p) * a(p, j)$ gives the number of path of length $m+1$ from i to j through penultimate vertex p. We repeat this for every candidate p and the total number of paths becomes $\sum_{p=1}^{p=n} a_{m}(i, p) * a(p, j)$. Rostult is shown.

Theorem 9.19. Let $G=(V, E)$ has saljacency matrix A. For $B=A+A^{2}+A^{3}+\ldots+A^{k}$. Then $b(i, j)$ gives the number of path of length at most k fromo j.

Theorem 9.20. Let $G=(y)$. 2 adjacency matrix A. For $C=A+A^{2}+A^{3}+\ldots+A^{n-1}$. Then $c(i, j)$ gives the number of path of lengetat miat n-Dfromino j. Form T such that $T_{i j}=T(i, j)=1$ if $C(i, j)>0$ and $T_{i j}=0$ if
 there is a path fromito icand zee if there is nopathyom ito 9.
Theorem 9.24. Graph G isconnegta, or Qaph ois strgegly connected if and only if T contains n^{2} ones. (We assume

Question 9.2. What the thetnnindimer find whether (i, j is an edge or not in a graph, if the adjacency matrix representation is useds ${ }^{\circ}$

9.9.2 Adjacency list

Definition 9.85 (Adjacency list representation). A graph $G=(V, E)$ on n vertices and m edges is represented by an adjacency list $A . A$ is an array of length n. Each element of A is a linked list (usually doubly-linked). Element $A(i)$ stores the adjacency list of vertex i that is all vertices j such that $(i, j) \in E$. The length of $A(i)$ is o(i) for a directed case and $d(i)$ for an undirected graph. The amount of space used for the representation is $\Theta(n+m)$.

We examine in more detail the directed case first.
The adjacency list representation of a graph $G=(V, E)$ utilizes n linked lists, one linked list for each vertex $i \in V$. The linked list of vertex i is known as the adjacency list of vertex i and is denoted by $A(i)$. Thus the adjacency list representation uses an array A of linked lists of length $n . A(i)$ is (points to) the adjacency list of vertex i.

The adjacency list $A(i)$ stores information about the edges that are incident from vertex i. If there is an edge $e=(i, j) \in E$, edge e will be stored in the adjacency list of i i.e. in $A(i)$. We do not need to store in $A(i)$ both endpoints i and j of edge e. We just store the endpoint j of edge $e=(i, j)$ since i is already known by way of dealing with liist $A(i)$.

Thus in the adjacency list of $A(i)$ we only store vertices j for which $(i, j) \in E$. Equivalently these correspond to the 1 s of row i of the adjacency matrix A of the graph. There is no reason to store the vertices k for which $A_{i k}=0$. Since $A_{i k}=0$ this means $(i, k) \notin E$ and thus k should not be in $A(i)$.

How long is the adjacency list of $A(i)$? The answer is simple: it is $o(i)$ i.e. out-degree of verte i long.
To summarize the space requirements for an adjacency list scheme. We account first the use of an array A of linked lists. The array is of length n thus space requirements for the array are $\Theta(n)$. Every adjacency list $A(i)$ has length equal to the out-degree of vertex i. Thus in total the length of all linked lists and thus the amount of space used by them is

$$
\sum_{u \in V} o(u)=\Theta(m)
$$

since the sum of the outdegrees of all vertices of the graph is equal to the number of its edges.
(In an implementation, through $A(i)$ we might provide a pointer to the head of the linked list, a pointer to the tail of the linked list, and sometimes a count variable that indicates the lengh of the linked list. Moreover the linked list can be singly-linked or doubly-linked. These are implementation details that are skipped in this description.)

Thus the storage requirements of an adjacency list scheme is $\Theta(n+m)$. The $\Theta(n)$ contribution is for the array A itself, and the $\Theta(m)$ contribution is for the information linked by the elements of the array A i.e. the $A(i)$'s.

We now examine the case of an undirected graph.
The scheme is the same with some minor observations and adjustments. In $A(i)$ we store information for all edges $e=(i, j)$ that are incident on vertex i by storing the end-point j in $A(i)$. For an undirected graph, if $(i, j) \in E$, this edge is incident both on vertex i and vertex j. Theretore not only $j \in A(i)$ but also $i \in A(j)$. Thus the same edge is stored in two adjacency lists but a different end-point ís stored in each list.

The length of the adjacency list $A(i)$ now the degree $d(i)$ of i rather than the out-degree $o(i)$ of i. The sum of the length of the adjacency lists is altogether $2 m$ instead of m since $\sum_{u \in V} d(u)=2 m$ as opposed to $\sum_{u \in V} o(u)=m$. But the storage requirements of this scheme are still $\Theta(n+m)$.

Definition 9.86 (Weight listrepresentation). For a graph $G=(V, E)$, if every edge $e=(i, j) \in E$ is associated with a weight (distance, ost). (10), we can exted the adjacency list representation and turn it into a weighted list representation. A we ght list çan epriched defjacency liss In anclement of adjacency list $A(i)$ we store not only the end-point j assoantad withedge j) butwe ako stote $w_{i j}$ thogeight of edge (i, j). The space requirements of this representation reanain-gen + n
 representationsusedse

Figure 9.3: A directed graph

$$
A=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Figure 9.4: Its adjacency matrix

Figure 9.5: Its adjacency list A

Figure 9.6: An undirected graph

$$
A=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

Figure 9.7: Its adjacency matrix

Figure 9.8: Its adjacency list A

Figure 9.9: A weighed directed C)

Figure 9.11: Its adjacency list A

Figure 9.12: Its weight matre

9.9.3 Incidence matrix

Definition 9.87 (Incidence matrix representation). The incidence matrix of a directed graph $G=(V, E)$, where $|V|=n$ and $|E|=m$, is an $m \times n$ matrix $B=\left[B_{i k}\right]_{i=1, k=1}^{i=n, k=m}$. such that $b_{i k}=-1$ if edge k leaves vertex i, $b_{i k}=+1$ if edge k enters vertex $i, b_{i k}=0$ otherwise.

$$
b_{i k}= \begin{cases}-1 & k=(i, j), \\ +1 & k=(j, i), \\ \text { for some } j \in V \\ 0 & \text { otherwise }\end{cases}
$$

The space requirements of this scheme are $\Theta(n m)$.

9.10 Tree Traversals

A tree traversal is a process of visiting each of the vertices of a rooted tree exactly once.
For rooted trees preorder, postorder tree traversals are defined.
For the specific case of a binary tree, three such traversals are quite known: inorder, postorder, preorder.
In a preorder traversal a parent is visited before its children.
In a postorder traversal a parent is visited after its children.
In all (binary tree or just rooted tree) traverals left children are visited before right (or higher ordered) children.
An inorder traversal has a meaning only for binary trees: the left subtree of a parent is visited before the parent, followed by a visit of the right subtree of the parent.

Because a rooted tree may or may not be ordered, inorder is not well-defined/meaningful for arbitrary rooted trees.

```
pre-visit(u) :: {pre[u]=pre++; print(<u,pre[u]>);} ;
in-visit(u) :: {in[u]=in++; print(<u,in[u]>);} ;
post-visit(u) :: {post[u]=post++; print(<u,post[u]>);} ;
    if u != NULL {
    BT-Inorder (left(u));
    BT-Postorder(u)
    if u != NULL {
if u!= NULL {
    pre-visit(u);
    BT-Postorder(left(u));
    in-visit(u) ;
    BT-Preorder(left(u));
    u));
    BT-Inorder (right(u));
    }
    BT-Preorder(left(u));
    BT-Postorder(right(u));
    }
```

 BT-Preorder(u)
 BT-Preorder(u)
 BT-Perform-All-Three(u) {
 BT-Perform-Al
 if left(u) != NULL
 BT-Perform-All-Three (left(uy);
 in-visit(u);
 if right(u) != NULL
    ```
```

```
{
```

```
```

{

```
```

 BT-Perform-All-Three right(u)j
 post-visit (u);
 }
    ```

\section*{/* Not defined */}
```

Euler-tour(u)
left-visit(u);
if left(u)!=NULL
Euler-tour (left(u));
down-visit(u);
5. if right(u) != NULL
$6 . \ell$ Euler-tour(right(u));
post-visit (u);
right-visit(u);
\}

```

\subsection*{9.10.1 BreadthGorst oîder traversal}

Definition 9.88(Breadi 1 -firstorder caversal). A byeadth-first order (BFO) traversal is obtained as follows.


. repeat until all एertices are vogsited
3. visit an unvisited cherd of the LEAST RECENTLY VISITED
vertex with an unvisited skild
END_BFO
If LEAST RECENTLY is replaced by MOST RECENTLY, a depth-first order (DFO) traversal is obtained.
Definition 9.89 (Depth-first order traversal). A depth-first order (DFO) traversal is obtained as follows.
```

RT-DFO(root(RT)) // RT is a rooted (not necessarily binary) tree

1. visit(root(RT)); // visit[root(RT)]=i++; print(visit[root(RT)]);
2. repeat until all vertices are visited
3. visit an unvisited child of the MOST RECENTLY VISITED
vertex with an unvisited child
END_DFO
```

Example 9.25. A DFO and BFO traversals on a rooted tree is shown in this example. The root is the higher level node i.e. the node with label 1. (There is an \(r\) next to it to indicate that it is indeed the root; in most cases that \(r\) would be omitted.)


\subsection*{9.10.2 DFO and BFO on graphs}

We can extend these two traversals from rooted trees to graphs. If \(G\) is a graph and \(s\) is an arbitrary starting vertex, we use this vertex as the "root" of the traversal by visiting \(s\) first and then repeating the following step until there is no unexamined edge \((u, v)\) such that vertex \(u\) has been visited.
Search Step. Select an unexamined edge \((u, v)\) such that \(u\) has been visited and examine this edge, visiting vertex \(v\) if \(v\) has not been visited yet.


\subsection*{9.11 Union-Find}

Definition 9.90 (Disjoint sets of elements: Data). A disjoint-set data structure maintains a collection of \(S=\) \(\left\{S_{1}, S_{2}, \ldots S_{k}\right\}\) of disjoint dynamic sets that is consisting of \(n\) elements of a set \(E\). Thus
\[
\begin{gathered}
E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\} \\
S=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\} \quad \text { for some } 1 \leq k \leq n \quad \text { where } \\
S_{i} \cap S_{j}=\emptyset \quad \text { and } \quad \cup_{i=1}^{k} S_{i}=E .
\end{gathered}
\]

Thus a collection of disjoint sets is characterized by the tuple ( \(n, k, E, S_{1}, \ldots, S_{k}\) ). Each set \(S_{i}\) is identified by a representative that is a leader of set \(S_{i}\) which is some arbitrary member of that set. We denote the representative of set \(S_{i}\) by rep \(\left(S_{i}\right)\).

The collection of disjoint sets of elements is a dynamic collection, thus its structure changes with time. "Dynamic" characterizes the sets \(S_{1}, \ldots, S_{k}\) and thus \(k\). Initially the starting state is \((n, 0, E, \emptyset)\). Operations defined on the collection can change its state

Definition 9.91 (Disjoint sets of elements: Operations). The following operations are defined on a collection of disjoint sets of elements with initial state \((n, 0(\emptyset)\), where \(n\) is the number of elements of a set \(E\) of elements.
- Operation Make Set \(\left(e_{r}\right)\) that crest es a single element set provided that the elements is not currently in any of the sets of the collection.
- Operation Find \(\left(e_{r}\right)\) that finds the set of the collection to which \(e_{r}\) belongs (or not).
- Operation Union \(\left(e_{r y}\right)\) ) thiandorms the (set theoretic) union of the two distinct sets of the collection that contain \(e_{r}\) and \(e_{s}\).
More information about hemostics the obeYationsfollono: The data structure that implements the data organization that support thessthregperations is.rejerrecso fresilently as the Union-Find data structure.

\subsection*{9.11.1}


Operation:
Make Set (b)
Input. Element \(e_{r} \in E\) (and collection state \(\left(n, k, E, S_{1}, \ldots, S_{k}\right)\) ).
Output. A set is formed containing \(e_{r}\) with representative \(e_{r}\) itself provided that \(e_{r} \notin S_{i}\) for all \(1 \leq i \leq k\). Thus \(\operatorname{rep}\left(\left\{e_{r}\right\}\right)=e_{r}\).
Side effects. The state of the collection changes. As a by product of this operation the number \(k\) of sets of the collection increases by one. There is one more set in the collection. Thus MakeSet is a dynamic modifying operation.

\subsection*{9.11.2 Operation Find}

Operation: \(\quad\) Find \(\left(e_{r}\right)\)
Input. Element \(e_{r} \in E\) (and collection state \(\left(n, k, E, S_{1}, \ldots, S_{k}\right)\) ).
Output. The set \(S_{j}\) that contains \(e_{r}\) is found and the representative \(\operatorname{rep}\left(S_{j}\right)\) of \(S_{j}\) is returned.
Side effects. The state of the collection does not change. Thus Find is a static probing operation.

\subsection*{9.11.3 Operation Union}

\section*{Operation: Union \(\left(e_{r}, e_{s}\right)\)}

Input. Element \(e_{r}, e_{s} \in E\) such that \(e_{r} \in S_{i_{1}}\) and \(e_{s} \in S_{i_{2}}\) for some \(1 \leq i_{1}, i_{2} \leq k\) and \(i_{1} \neq i_{2}\), (and collection state \(\left(n, k, E, S_{1}, \ldots, S_{k}\right)\) ).
Output. The union \(S_{i_{1}} \cup S_{i_{2}}\) is formed of the sets containing \(r\) and \(s\) respectively. The \(\operatorname{rep}\left(S_{i_{1}} \cup S_{i_{2}}\right)\) is one of \(\operatorname{rep}\left(S_{i_{1}}\right)\) \(\operatorname{rep}\left(S_{i_{2}}\right)\).
Side effects. The state of the collection changes. As a by product of this operation the number \(k\) of sets of the collection decreases by one. Sets \(S_{i_{1}}, S_{i_{2}}\) are replaced by their union \(S_{i_{1}} \cup S_{i_{2}}\). There is one fewer set in the collection. Thus Union is a dynamic modifying operation.

\subsection*{9.11.4 Union-Find State}

Definition 9.92. Union-Find state For a Union-Find problem we shall assume that its initial state is given by the tuple \((n, 0, E, \emptyset ; n, m)\), where \((n, 0, E, \emptyset)\) is that starting state of the disjoint sets of elements associated with the Union-Find problem, and \(n\) is the number of elements of \(E\), and \(m\) is the number of MakeSet, Find, and Union operations that will be associated with the Union-Find.

Theorem \(9.22((n, 0, E, \emptyset ; n, m))\). The number of MakeSet operations can be no more than \(n\) as there are \(n\) elements in E. The number of Union operations is at most 21. Thus the number of Find operations is at least \(m-n-(n-1)=\) \(m-2 n+1\).
Proof. The number of MakeSet operationsis at most \(n\), one for each element. The number of elements in \(E\) is \(n\). The operations MakeSet, Union and Find maintain a collection of disjoint sets of elements. If \(e_{r}\) is part of the collection \(e_{r}\) was created through a MakeSet ©peration. There can be no more than \(n\) MakeSet operations as for each \(e_{r}\) in the collection at most one such operxion can be performed since the sets of the collection are disjoint.

The number of Union operifions is (at most) \(n-1\). If the number of MakeSet operations is \(n\) all \(n\) elements are in the collection of the disjoint sets. every Union operation decreases the number of sets by 1 . If we start with \(N\) sets after \(K\) Union operations wereare lefwith \(-K\) (disjoint) sets. Since \(N \leq n-1\) and \(K>0\), we have that \(N-K \leq n-1\).

The number of Find operations is \(m\) mintus theeupperboundof \(n\) and \(n-1\) of the number of MakeSet and Union operations.
Exercise 9.-'n the examste depiced be wow wave performed a number of MakeSet operations, and a number of Union openationeto endeyb with the tyolsetsess depicted. Answer the following questions
(a) Who is the rep (x)
(b) Who is the repes?
(c) How many MakeSex \&perations wexe issind if the initial state of the collection was (?, \(0, E, \emptyset)\) ?
(d) How many Union operations ıegre issed if the initial state of the collection was \((?, 0, E, \emptyset)\) ?
(e) After the Union operation perfornadqo get one (final) set what is the cost of the Union in term of representative element updates?

Proof.
(a) Element \(x\) belongs to the set who representative is 5 .
(b) Element \(z\) belongs to the set who representative is 8 .
(c) The number of MakeSet operations is equal to number of elements found in the two disjoint sets. This is 9 .
(d) The number of Union operations. is \(9-2=7\). The nine participating elements are the results of 9 MakeSet operations. There are two sets left. Therefore the number of Union operations to go from 9 sets down to 2 is 7 .
(e) After the Union operation \(\operatorname{Union}(x, z)\) the representative member of the union is the element of the larger of the two sets. This is element 8 . We did so because such a choice causes the smallest number of representative member updates. Element \(x\) belongs to a set of cardinality 4, and since the cardinality of the set containing \(z\) is 5 , and \(4<5\) this choice of a representative member causes the smallest number of representative element updates: 4.

Moreover the cardinality of the new set created after the Union is 9 which is more than twice the cardinality of the smaller of the two sets of the Union (who representative member got updated).
```

Example : The representative of the set appears as a superscript
[5 5
Example : { x, 2, 3, 5 }, {z, 8, 7, 6, 4 }
8
Union(x,z) ={ x, 2, 3, 5, z, 8, 7, 6, 4 }

```

\subsection*{9.11.5 A (simple) data structure for Union-Find}

Definition 9.93 (A data structure for Union-Find). There is a simple data structure for Union-Find that is based on using an Array of Linked Lists. To keep things simple we assume the elements of \(E\) are the subscripts of its elements, thus \(E=\{1,2, \ldots, n\}\) rather than \(E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}\) or using the latter is also trivial yet a bit cumbersome to describe.
- A set \(S_{i}\) is maintained as a doubly-linked list of elements that are member of \(S_{i}\). The elements appear in \(S_{i}\) in an arbitrary order. The linked list has a head and tail pointer pointing to the first and last of its elements. Every element of the list has a previous, next pointes associated with the linked list structure, a name field indicate the name of the element ( \(i\) for \(e_{i}\) ), and a representative pointer to the element that is the representative member of the set.
- a previous pointer called prev,
- a next pointer called next ,
- a name field called name
- a rep pointer called rep
- An array \(E\) of linked lists used to represent the elements and their properties. The length of the array \(E\) is \(n\), where \(n\) is the number: \(Q\) 位ements of the set \(E\) of elements represented by the namesake array E. Every element


- A head list pointer. Afelemert \(j\) is the repesentave member of a set this pointer points to the first element (held) of the linked list gepresesting theses. e
A taistrist. वO inter. If demeter is the representative member of a set this pointer points to the last element (tate of the inkedust representing the jet.
- A car field. elem be in e resesentative member of a set this field shows the cardinality of the set that is thengthothe liked listrepresenting the set.
We call such a data structure LesS. is
Theorem 9.23. In a UF-DS data shictures over a set of elements \(E\) with cardinality \(n\), the running time of operations MakeSet, Find and Union have the following properties.
1. In UF-DS the running time of a MakeSet \(\left(e_{r}\right)\) operation is constant i.e. \(\Theta(1)\).
2. In UF-DS the running time of a Find \(\left(e_{r}\right)\) operation is constant ie. \(\Theta(1)\).
3. In UF-DS the running time of a Union \(\left(e_{r}, e_{s}\right)\) operation is \(O(n)\) where \(n\) is the cardinality of \(E\), under reasonable assumptions.
4. In UF-DS the running time of an arbitrary number of possible Union operations that can be defined on the set \(E\) of \(n\) elements is \(O(n \lg n)\), where \(n\) is the cardinality of \(E\).
5. In UF-DS the running time of \(m>n\) operations that include an arbitrary set of MakeSet, Union and Find operations is \(O(m+n \lg n)\), under reasonable assumptions.

Proof.
1. MakeSet \(\left(e_{r}\right)\). Operation MakeSet requires constant time.
(a) We first create a single element set \(S\) represented by a doubly linked list that contains \(e_{r}\) and set its prev, next pointers to NULL. The name field is set to \(r\). The rep field points to the linked-list element just created.
(b) Furthermore in array \(E\) and in particular \(E_{r}\) we set the p pointer to point to element just created in step (a) above, and so do we the head and tail pointers as \(e_{r}\) is the representative of the set containing \(e_{r}\). The car field is set to 1 as the cardinality of the set which is also the length of the linked list just created is 1 .

Obviously all those steps require \(\Theta(1)\) time.
2. Find \(\left(e_{r}\right)\). Operation Find requires constant time.

For element \(e_{r}\) we first access \(E[r]\). If pointer \(p\) is invalid (e.g. NULL) the element does not belong to a set (yet). Otherwise, through pointer \(p\) we access the element, and through its rep we find the representative of the set to which \(r\) belongs. We return that linked list element (not \(r\), nor \(e_{r}\) not \(E[r]\) ).

Obviously all those steps require \(\Theta(1)\) time.
3. Union \(\left(e_{r}, e_{s}\right)\). Operation Union requires \(O(n)\) time.

We first find in constant time the \(\operatorname{rep}\left(e_{r}\right)\) and \(\operatorname{rep}\left(e_{s}\right)\) and let them be \(a\) and \(b\) respectively. If \(a==b\) we stop, there is no need for a Union. Otherwise we proceed as follows.

We then access the car fields of \(E[a]\) and \(E[k]\), the larger of the two decides the representative member of the \(\operatorname{Union} \operatorname{Union}\left(e_{r}, e_{s}\right)\). Let \(e_{a}\) be the element whose \(E[a]\).car is the largest. This implies that we need to update the representative pointers of the smaller of the two sets which is the one with rep the other element, in this example \(e_{b}\). Through the \(E[b]\) information (head pointer) we scan the linked list of the smaller of the two sets and update the rep information to point to \(\operatorname{Find}\left(e_{a}\right)\) whiehis Find \(\left(e_{r}\right)\). We then concatenate the two linked lists updating information in \(E[a]\) and invalidating informationin \(E[b]\) including its head, tail, car fields. The presence of head, tail pointers allow us to concatenate the two linked lists in constant time. Finaly the car field of \(E[a]\) will be set to the sum of its previous value and thecar field of \(E[b]\).

The most expensive stepis the update of the representative pointers of the smaller of the two sets (in this example the one having a representative ©ement elemeot \(e_{b}\) ). This update can be \(\Theta(n)\) in the worst case and \(O(n)\) in general. For example think of a scenato whe \(n /\) 2elements in the largeab the two sets and \(n / 2-1\) elements in the smaller of the two sets anfthose sel are bo be upited.

Obviously all thoseps equire
4. Severaßnion operahons. ThQcolleclive ruming, timne of all \(n-1\) possible Union operations that can involve the \(n\) elements of \(F\) no nore than \(O(n \pi n)\). \(0^{e}\)

The proof is as tollows
Pick an arbitrary element 5 How, inany tintes do we update the representative pointer of 5? Every time we update it, it means two thingst. (a) Suas in the sidler of two sets on which a Union was performed, and (b) the size of the new set is at least doubloof thesize of he containing 5. (that fact that 5 had its representative pointer updated means that 5 belongs to the spaller of the two sets of the Union operation.)

The number of times we update (the representative pointer of 5) is the number of times we can double the size of the set containing 5. Originally 5 is in a set of size 1 . Thus \(1 \rightarrow 2 \rightarrow 4 \rightarrow \ldots\) shows that the number of updates for 5 is no more that \(\lg n\). This is true for all elements, not just for element 5 . We have \(n\) elements, thus the collective cost of updating all the representative pointers of all the elements in all those at most \(n-1\) Union operations is no more than \(O(n \lg n)\).

Thus any number of Union operations on a set \(E\) of \(n\) elements has running time \(O(n)\).
5. Running time of \(m>n\) operations. The collective running time of all those \(m\) operations is no more than \(O(m+n \lg n)\).

There can be no more than \(n\) MakeSet operations. Each one is constant time thus the total number of MakeSet is \(O(n)\) in general.

There can be no more than \(n-1\) Union operations. Each one is \(O(n)\) time but if there are several of them the collective running time of those several one is \(O(n \lg n\).

There can be at least \(m-n-(n-1\) and thus at most \(m\) Find operations. The cost of a Find operations is constant, the collective cost of all of them is \(O(m)\).

Adding all contributions the running of \(m>n\) arbitrarily mixed Find, Union and MakeSet operations is the sum of those three contributions i.e. \(O(m+n \lg n)\).

Definition 9.94 (Amortized Analysis of Union). One Union Operation can be \(O(n)\) or \(\Theta(n)\). Yet \(n-1\) Union operations can and will be \(O(n \lg n)\). Thus the amortized cost of a Union operation is defined as the cost of all Union operations divided by the number of Union operations. Thus the amortized cost of anion is \(O(\lg n\).

E


Example 9.26 An aprieatio of disjemts is instinding the connected components of an undirected graph \(G\).
Definition 9.95 (Decision Problan). Adecisi\&n problem is problem with a YES or NO answer.
Here is a list of problems tha are related to the connectivity of an undirected graph and can be solved using a UF-DS.

Problem 1: Is \(G\) connected?
Input. A (undirected) graph \(G \in(V, E)\) with the appropriate representation.
Output. YES if \(G\) is connected, NO if \(G\) is not connected.
Problem 2: Path connectivity between \(u, v \in V\) in \(G\).
Input. A (undirected) graph \(G=(V, E)\) with the appropriate representation and two vertices \(u, v \in V\).
Output. YES if there is a path from \(u\) to \(v\), NO otherwise.
Problem 3: Number of connected components of \(G\).
Input. A (undirected) graph \(G=(V, E)\) with the appropriate representation.
Output. Print number of connected components of \(G\).
Problem 4: Give connected component of \(u\) in \(G\).
Input. A (undirected) graph \(G=(V, E)\) with the appropriate representation and a vertex \(u \in V\) of \(G\).
Output. Find the connected component of \(u\).

Problem 5: Give vertex info of connected component of \(u\) in \(G\).
Input. A (undirected) graph \(G=(V, E)\) with the appropriate representation and a vertex \(u \in V\) of \(G\).
Output. List all the vertices that are in the same connected component as \(u\).
Problem 6: Give cardinality of connected component of \(u\) in \(G\).
Input. A (undirected) graph \(G=(V, E)\) with the appropriate representation and a vertex \(u \in V\) of \(G\).
Output. Print the number of vertices in connected component of \(u\).

Theorem 9.24. Algorithm CC can be utilized for solving a variety of problems associated with the connectivity of an undirected graph \(G=(V, E)\).
```

CC(G) // CC: Connected Compondent
for each vertex u in V {
MakeSet(u);
}
cc=n;
for each edge (u,v) in E {
if Find(u) != Find(v)
Union(u,v);
cc--;
}

```

Analysis of CC. We use a UF-DS as preajotasly described and analyzed. We build the UF-DS by utilizing the structure of graph \(G=(V, E)\). A set of UF-DS will map to a connected component of the graph. The number of connected components of the graphs will be equal to the number of sets available at the end of the execution of the CC algorithm.

If edge \(e=(u, v)\) exists thiseans \(u\) and \(v\) must be in the same connected component. Thus the algorithm starts with a number of candidate oornected components equal to \(n\), each connected component being an individual vertex and then considers all the edges gethe graph oneby one. Edge \((u, v)\) can trigger one of two events: (a) nothing if \(u, v\) already belong to the same componewile. they are in thes same set of a collection of disjoint sets maintained, (b) the union of \(u, v\) if curkently yout \(v\) aren differentser (whien imphes that so far there has been no indication that would put them into thosame sinnected comenent of at and the discovery of \(e=(u, v)\) leads to the conclusions that \(u\) and \(v\) shoutd be in the same conngeted cegraponepalongwith the vertices \(u^{\prime}\) that are already in the same connected components \(u\), atid the portices \(e^{2}\) thatare already in the same connected component as \(v\). Those vertices are in the sets of UF-DSto which and curgently \(\&\) ong. The set is then extended by the discover of \(e\) through the union operation of line 7

The elements of UFOS are the eleorents \(V\) that is the \(n\) vertices of the graph. Each vertex triggers a MakeSet operation on the vertex itsel The number MakeSet operations is thus \(n\). The collective running time of MakeSet operations is thus \(\Theta(n)\)

Each edge of the graph possibly friggers a Union operation. Two vertices joined by an edge i.e. an edge being incident on those two vertices males those two end-points belonging to the same connected component by way of them belonging to the same set of a UF-DS. The number of Find operations are 2 per edge (two endpoints of an edge). Thus the collective running time of all Find operations is \(\Theta(2 m)=\Theta(m)\).

The Union operations is no more than \(n-1\). It is in fact \(n\) minus the number of connected components of graph \(G\) or equivalent \(n\) minus the number of sets available at the completion of the execution of CC.

Based on previous claims the collective running time of all Union is \(O(n \lg n)\). Thus the running time of CC is \(O(m+n \lg n)\).

Example 9.27 (Problems 1-3). We provide solutions for Problem 1, Problem 2, Problem 3.


Question 9.4 (Problems 4-6). Reason about the proof of correctness as shown for Problems 1-3. Solve the remaining Problems 4-6 similarly.

\section*{Example 9.28.}


\subsection*{9.12 Graph Search}

Depth-Search Search (DFS for short) is a method for traversing graphs. In essence it is a generalization on a graph of the depth-first order traversal on trees described earlier. Below we give a very brief outline of how the method works for the case of an undirected graph.

\subsection*{9.12.1 Depth First Search on Undirected graphs}

Method 9.1 (DFS on Unidirected Graphs).
```

graph G(V,E);
boolean d[|V|] = false; // d for discovered
label t[|E|] = unlabeled; // t for tree
// It just explores all vertices reachable from u
U-DFS(G,u) // Graph G=(V,E) is undirected.
d[u] = true;
for all edges e incident on u
if edge e has not been labeled
let v be the other end-point of e i.e.e=(u,v)
if v is unexplored // i.e.cd\v}]== fals
t[e] = tree;
U-DFS(G,v);
else
t[e] = back;

```

Starting from \(u\) we chack thg jacency listof \(u\). For every edge \(e=(u, v)\) in this adjacency list we identify the
 search exploration in initiated at \(v\) otherulase, if has already geen explored, we label \(e\) as a back edge. We can keep


Procedure U-DFS has some interestingoppliciturs. the following problem can be solved easily. We have seen


\subsection*{9.12.2 Undirected DFS exampide}

In picking a vertex from the adjagerty his of a vertex, say \(u\) we are going to use the convention lowest vertex label first. This means that verfices of the adjeency list of a vertex \(u\) are visited in increasing Vertex label.


\section*{Application 9.1 (Reachability). Determine whether \(w\) is reachable from \(u\).}

Solution. Run U-DFS (u). If discovered [w] is true it means \(w\) is reachable from \(u\).
Application 9.2 (Connectivity). Determine whether graph is connected.

Solution. Run U-DFS (u). If for some vertex \(z\) discovered \([z]\) is false it means \(z\) is unreachable from \(u\), ie. the graph is not connected.

\section*{Application 9.3 (Cycles). Does \(G\) have a cycle that includes \(u\) ?}

Solution. Run U-DFS (u). If there is a cycle that includes \(u\) then in the U-DFS one of its edges would be labeled as back. The existence of such an edge indicates a cycle. To determine whether that cycles contains \(u\), we must trace the cycle. For that in line 5 of U-DFS we add a line that does parent \([\mathrm{v}]=\mathrm{u}\) i.e. it keeps track of tree edges in an alternate form. Alternatively, we can trace the cycle by walking back the path/cycle in a more laborious way. If for example we are in \(v\) we check the adjacent list of \(v\) and identify the edge \(e\) that is tree that leads to \(v\) from some other vertex. The other end-point (i.e. \(u\) ) is traced similarly and so on.

\section*{Application 9.4 (Connected Components). Find the connected components of \(G\).}

Solution. We start with U-DFS (u) for an arbitrary \(u\). This gives the connected component of \(u\). If there is a vertex \(w\) that is still undiscovered (we can check this by checking discovered []) we then initiate a U-DFS (w) to discover the connected component of \(w\), and go on until we discover all vertices.

Application 9.5 (Bipartiteness). Determine whether the graph is bipartite, i.e whether we can color the vertices R or B so that no two adjacent vertices have the same color.

Solution. Left as an exercise.

\subsection*{9.12.3 Depth First Search on Directed graphs}

A more general framework for DFSis) shown on the following pages). It searches a whole graph, not only the portion reachable from a given vertex such as \(u\). It works for both directed and undirected graphs.

This generalized framework labels all vertices with two timestamps:
- \(D[u]\) first visit or discovery of vertex \(u\).
- \(F[u]\) final visit of vertex wat allerticesin the Refacing list of \(u\) have been discovered and searched.

In addition BF S labe thesdgesof the graph with a torr of four different labels for the directed case.

- Label back (b) \(x^{0} a^{2}\)
- Label forward \(\nrightarrow\),
- Label cross (c),

For the undirected case it on the the tree and back labels as it also does the variant of the previous section (U-DFS). Although the labelings are different for an undirected and a directed graph, in both cases, an edge labeled \(b\) indicates the existence of a cycle in the graph. The collection of all this information in depth-first-search (for a directed graph) can facilitate the easy solution of the problem of topological sorting.

\section*{Starting DFS on a directed graph.}

Let \(G=(V, E)\) with \(|V|=n\) and \(|E|=m\) be a directed graph. A DFS invocation includes the initialization of the appropriate Data Structures (arrays) by calling DFS (G) and then a complete and exhaustive search of the Graph by issuing \(d f s(G, u)\) function calls for every vertex \(u\) that has been left unexplored in previous invocations. The argument to DFS (G) implies that \(G\) has the appropriate representation either adjacency matrix or adjacency list as needed. Several times we only need to issue one or few ifs (Gu) calls. Then we initialize as needed DFS(G), and issue only the relevant function call invocations instead if performing an exhaustive exploration.

\section*{DFS data structures: Time, L.}

Scalar value time is used to timestamp entries of \(D\) and \(F\). Timestamps are integers from 1 to \(2 * n\). \(\mathbf{L}\) is not used by default but it can collect information about the topological sorting of the vertices of the graph, if this is possible. If a topological sorting exists, at the conclusion of DFS, traversing \(L\) head to tail, would list the vertices of \(G\) on a line so that all edges could be drawn in a left to right direction: this is the definition of topological sorting.

\section*{More DFS data structures: color, D, F, p arrays}

All arrays are of length \(n\) and indexed by a vertex.
- color[u]. Every vertex of \(G\) is colored during DFS of \(G\). the Color of a vertex is W, G, B. Initially, every vertex is a W (white). After exploration of \(u\) starts ( \(d f s(G, u)\) starts) the color of a vertex \(u\) becomes G (gray), and when it is about to complete ( \(d f s(G, u)\) ends) the color of \(u\) becomes B (black) and stays so. For an undirected graph only W and B are possible.
- \(\mathbf{D}[\mathbf{u}]\) records the time the exploration of \(u\) with \(d f s(G, u)\) starts (when the color of \(u\) would change from \(W\) into \(G\) ).
- \(\mathbf{F}[\mathbf{u}]\) records the time the exploration of \(u\) with \(d f s(G, u)\) ends (when the color of \(u\) would change from \(G\) into \(B\) ).
- \(\mathbf{p}[\mathbf{v}]\) records the edge \((u, v)\) that is traversed to reach \(v\) for the first time; following this traversal \(v\) will be explored in a \(d f s(G, v)\) exploration that starts immediately after the setting of \(p[v]=u\).

\section*{Edge labels}

Edges can be labeled \(t, f, c\), Ahd \(b\) for a directed graph \(G\), similarly to the labels \(t\) and \(b\) utilized in the DFS of an unidirected graph.
- Edge label treo ( 9 , an edge ( \(u\) ) is dated to indicate atree edge when we traverse \((u, v)\) and determine color \([\mathrm{v}]=\mathrm{W}_{\mathrm{V}}\).
- Edge laberbac ; an dge (cuv) is abeled to incóate a back edge when we traverse \((u, v)\) and color[v]=G. A balso indicates thexistence ofa Cycleff a cyele exists a graph CANNOT have a topological sorting.
- Edge laper cross (c); anedge (ov v) is tabeledt to indicate a cross edge when we traverse \((u, v)\) and color[v]=B but \(D[u]<\mathbb{P}+\)
- Edge label foryard ( \()\) an edge ( \(\mu v)^{v}\) is labeled f to indicate a forward edge when we traverse \((u, v)\) and color \([\mathrm{v}]=\mathrm{B}\) but \(D[\omega \perp D[\mathcal{D}\)

\section*{DFS: pseudocode.}
```

//For an undirected graph, DFS labels edges b,t
//For a directed graph, DFS labels edges b,t,f,c
//The code thus for f,c is erased for an undirected graph
dfs(G,u)
color [u]=G;
time++;
D[u]=time;
foreach (edge (u,v) in E) { // Visit edge (u,v)
if (color[v]== W) { // if v is W first visit
p[v]=u; // (u,v) is t, tree edge
dfs(G,v); // Go Visit v i.e. Discover v
}// if
} // foreach --------->9a elseif (color[v]==G)
color[u]=B; 9b (u,v) is b, back edge

```
```

time++;
. F[u]=time;
9c else if (color[v]==B)
9d if D[u]<D[v] (u,v) is f, forward edge
9e else (u,v) is c, cross edge
9g } //This is line 9 closing brace of line 4
DFS(G) //G=(V,E)
for each vertex u {
color [u]=W; D[u]=F[u]=-1;
p[u] = NULL;
}
time=0; L=NULL; // Start timer ; L is optional
for each vertex u { // Start Search
if color[u] == W { // Node u non visited yet?
dfs(G,u);
}
.}

```

The following is an alternative to function \(\operatorname{DFS}(\mathrm{G})\) when we search only one vertex called \(w\) !
```

search(G,w)
for each vertex u { //Initialize 9h
color[u]=WHITE;D[u]=F[u]=0;
p[u] = NULL;
}
time=0; L= NULL ; // Start timer ; in@ (optional)
dfs(G, w);

```

\section*{DFS example}

In picking a vertex from the adjadency list of a vertex, say \(u\) we are going to use the convention lowest vertex label first. This means that vertices of adje adjacency list of a vertex \(u\) are visited in increasing Vertex label.

We could use some of theorrays of the directed graph DFS to enhance the capabilities of the undirected graph DFS pseudocode given eagher. Focexample, weroan collect \(D[u], F[u]\) ) information for every vertex. In the examples below, both for an undiected aht alseadireded graph this information is shown as a pair of labels ( \(D[u], F[u]\) ) on the


Edges \((1,2),(1,3),(3,4),(1,4),(1,5),(5,6),(5,4)\) in directed graph below.


\subsection*{9.12.4 Analysis of DFS}

Theorem 9.25 (DFS running time). The running time of \(\operatorname{DFS}(G)\), where \(G=(V, E)\) is a directed graph depends on the representation of graph \(G\). For an adjacency matrix representation the running time \(T(n, m)\) of \(D F S(G)\) is \(T(n, m)=\Theta\left(n^{2}\right)\). For an adjacency list representation the running time \(T(n, m)\) of \(D F S(G)\) is \(T(n, m)=\Theta(n+m)\).

Proof. Number of \(d f s\) calls. In order to assist the search process, vertices are colored with three colors during DFS, \(\mathrm{W}, \mathrm{G}\) and B . Initially all vertices are W (i.e. undiscovered). A call to \(d f s(u)\) or \(d f s(v)\) is always preceded by a check of the corresponding vertex's color: see line 5 of \(d f s(G, u)\) or line 7 of \(D F S(G)\). As soon as the corresponding dfs operations starts (line 7 of \(d f s(G, u)\) or line 8 of \(D F S(G)\) ) the color of the vertex being visited changes from W into a G. Eventually it will be changed into a B prior to the conclusion of the \(d f s\) operation. Every vertex is visited through \(d f s\) once and only once. If the vertex is not visited through the dfs of another vertex (Line 7 of \(d f s\) ), then it will be visited through DFS in line 8 of \(D F S(G)\). Thus the total number of \(d f s(\).\() calls is the number of vertices and it is n\).

Number of edge \((u, v)\) visits. Every edge \((u, v)\) is visited once through line 4 of \(d f s(G, u)\).
Running time of DFS. Every vertex is visited once: this means a dfs call on vertex \(u\) is issued only once. This implies an \(\Omega(n)\) bound contribution to the running time. Every edge is visited once this implies an \(\Omega(m)\) bound contribution on the running time for an adjacency list representation. For an adjacency matrix representation the \(m\) edges must be extracted (identified) out of the \(n^{2}\) entries of the adjacency matrix (separate the ones from the zeroes) and this would require \(\Omega\left(n^{2}\right)\) time instead. We use \(T(n, m)\) to denote the running time of DFS We next a running time bound that depends on the representation of granh \({ }^{\circ}\).
\[
\text { AdjácencyMatrix : } T(n, m)=\Omega\left(n^{2}\right)
\]

AdjacencyList : \(T(n, m)=\Omega(n+m)\)
We know show that those bougds are tight and thus can replace the \(\Omega\) with a \(\Theta\) instead.
The best way to conceptulize the process of analyzing the recursive pseudocode of DFS(G) that call recursively \(\mathrm{dfs}(\mathrm{G}, \mathrm{u})\) that can then cap recuravely \(\mathrm{dfs}(\mathrm{G}\); wis to consider using \(n+1\) stop watches. One of them is active when the code runs \(\operatorname{DFS}(\mathbb{C})\) Wecstop the time of the stopway when line 8 is reached. The other \(n\) stopwatches are associated with the \(d \cdot f s(G) M\) andestop measurindtimeerhen \(\mathfrak{d} f(G, v)\) invocation starts in line 7 and resumes when
 stopwatch. \()^{-}\)

For the adjaceacy matix representer weobsert the following: the number of invocations of \(\operatorname{dfs}(G, u)\) is \(n\) and each invocationspends \(\Theta(n)\) time overall 9 thin \(f_{s}(G, u)\) since the adjacency list of \(u\) is formed by scanning row \(u\) of the adjacency pratrix and we petract the verices corresponding to the one entries of the adjacency matrix, a \(\Theta(n)\) operation. Therefore


Thus \(T(n)=T(n, m)=\Theta\left(n^{2}\right)\).
For the adjacency list representation we observe the following: the number of invocations of \(d f s(G, u)\) is still \(n\) and each invocation spends \(\Theta(\) outd \((u))\) overall within \(d f s(G, u)\) since the adjacency list \(A(u)\) of \(u\) is outd \((u)\) vertices long, contains vertices \(v\) such that \((u, v) \in E\), and it is fully traversed in steps 4-9 of \(d f s(G, u)\). Therefore
\[
T(n, m)=\overbrace{\Theta(n)}^{\mathrm{ndfs}(.) \text { calls }}+\sum_{u \in V} \overbrace{\Theta(\text { outd }(u))}^{\mathrm{A}(\mathrm{u}) \text { of adjacency List }}=\Theta(n)+\Theta(m)=\Theta(n+m)
\]

Thus \(T(n, m)=\Theta(m+m)\).

\subsection*{9.12.5 Applications of DFS}

Application 9.6 (Topological sorting).
Input: A graph \(G=(V, E)\) that does not have a cycle.
Output: Listing of its edges on a line so that edges can be drawn in a left to right direction.
(More fomally, a topological sort is a linear ordering of all its vertices such that if \(G\) contains an edge \((u, v)\) then \(u\) appears before \(v\) in the ordering.)

Solution 1 for topological sorting. There are two solutions available at the conclusion of DFS for topological sorting. We provide first a simple solution that utilizes linked list \(L\).
```

TopologicalSort(G)
DFS(G);
2. if G has no b edge print L

```

The running time of topological sorting is \(O(D F S)+\Theta(n)\). The latter term is because \(L\) can have \(n\) vertices to list.

Solution 2 for topological sorting. We provide a simple solution that utilized linked list \(L\).
```

TopologicalSort(G)
DFS(G);
if G has no b edge
print vertices of V in decreasing orleter of F[u]

```

The running time is \(O(D F S)+\Theta\left({ }^{2}\right.\) Which is \(O(D F S)\). The linear bound of the second term absorbd DFS-related costs but lso the cost of CountSort that is being used to sort the vertices of the graph in decreasing \(F[u]\) order. We have \(n\) vertices to sort. Each \(F[\).\(] label is an integer from 1\) to \(2 * n\). This range is thus a subset of \(0 . .2 n\). The running time of CountSort is \(\Theta(n+(2 n+.1)=\Theta(n)\).

As we have mentioned Jearlier, a decision oroblem is a problem whose output is either a YES or a NOT (or

```

Cycle(G)
DFS(G);
if G has a b edge ppint (%S
else

Application 9.8 (Social network of u : "friend").
Input. Graph G and vertices $u, v \in V$.
Output. YES if in $G u \leadsto v, N O$ otherwise.

Solution.

```
Friend(G,u,v)
search(G,u);
if color[v]==B print YES
    else print NO
```

Application 9.9 (Social network of u : "friends").
Input. Graph G and vertex $u \in V$.
Output. List of friends of u ie. all v such that $u \leadsto v$.

Solution.

```
Friends(G,u)
search(G,u);
for all v in V and v !=u do
    if color[v]==B print v is friend of u
```

A directed graph is strongly connected if for every two vertices u, v there is a path from u to v and also a path from v to u. One way to determine whether G is strongly connected is to initiate a DFS (more precisesly a ifs (u)) starting from every vertex u of the graph. A better way is to replace the top call of $D F S(G)$ with a call to $\operatorname{search}(\mathbf{G}, \mathbf{u})$, the alternative to $\operatorname{DFS}(\mathbf{G})$ highlighted earlier. This needs to be repeated for all possible u. This is equivalent to running DFS n times altogether. A better approach requires only two DFS calls. how we can determine strong connectivity in just $O(n+m)$ time instead.

```
Application 9.10 (Strong Connectivity).
Input. Graph G.
Output. YES if G is stronly connected and NQOtherwise.
```

Solution.
StrongConnectivity (G, V, E)
Pick arbitrary u of V.
dfs(u,G); // Use G as input otherwise identical to dfs(u) of page 5
If there is a vertex w. with color [w] == WHITE
return ("G is not strongly connected");
else // all vertices pate reachable from 18
create $G^{\prime}=\left(V, E^{\prime}\right)$ Where ch contains the reverse of the edges of E

if there is a vertex w. edith apron [w] WHITR
reform " G is hot strongly connegted")

The dis call of lin 2 ca(1)only determine whether G is NOT strongly connected. If lines 6-12 are executed, this means that all vertices are reachable from We then reverse the directions of all the edges of G to get G^{\prime}. In G^{\prime} we run DFS from u again as we hi in line 2 for G. If all vertices are reachable from u in G^{\prime} (ie. we are in line 12 rather than line 10), this means that in (OWe can go from u to every other vertex w. Given that G^{\prime} is the reverse of G this means that we can go from every w to u in G.

Therefore reaching line 12 we can do two things: (a) From u we can reach every other w (line 2 leads to line 6), and (b) from every w we can reach u (line 6 leads to line 12). This is equivalent to saying that G is strongly connected. If we want to go from a to b, we first go from a to u and then from u to b. Of course this defines not necessarily a path, but probably a tour. But it suffices to show that G is strongly connected anyway. A refinement can show how one can determine a path from this potential tour.

9.12.6 Breadth First Search

In BFS we explore vertices starting from a given vertex s by first finding all vertices adjacent to s, then all vertices reachable from s within two edge traversals, ie. at distance two, then those at distance three, and so on.

This graph exploration process can be summarized as follows.

```
BFS (s)
label[s] = REACHED;
QUEUE= <s>;
while QUEUE is not empty {
remove u from queue; // A Dequeue operation
for every vertex v in adjacency list of u do {
        if label[v] != REACHED {
        add v to QUEUE; // An Enqueue operation
        label v REACHED;
        Maintain fact that v was discovered while traversing (u,v);
        }
. }
```

A more robust implementation of the pseudocode, label vertices by assigning them colors as before for DFS. Step 9 requires a single array and is equivalen to assigning $p[v]=u$ i.e. indicating that the parent of v is vertex u. The QUEUE is implemented as a FIFO queue. In addition we may keep track of the distance of a vertex v from s by using a distance array $d[]$ and in step 9 also performing the update step $d[v]=d[u]+1$.

```
BFS(s) //s is the start vertex of the search process on Graph G=(V,E)
for each u in V-{s} {
    color[u]=W;
    d[u] = infinity; // d[u] gives the dist组ce of u from s.
    p[u] = NULL // p[u] represents the/ parent of u in BFS search
}
color[s]=G;
d[s]=0;
p[s]=NULL;// s is to be expanded_frrst
queue= <s> //A single queue containing s.
while queue != <> { // <> stands for an empty queue
    u = Dequeue(queue) //rempve an element from queue
    foreach ((u,v) an edgie|f E&.{
            if (color(v)== W)
                color[v]=G; 
                d[v]=d[u]+(1;)
                p[v]=u.\ %.
```

```
        } // i instatemint enese
    }
    *)
```


9.13 All-pairshostest path problem

Application 9.11 (All-pair shofest paith proble).
Input. Graph $G=(V, E)$ and its andociated weight matrix or weight list W.
Output. For every $i \in V$ and every $j \in V$ the weight of the path with minimal total weight from i to j maintained in a matrix $D_{i, j}$.

In this problem we do not minimize the number of edges in the path; we minimize the sum of the weights of the edges of the path. The weight of the minimal weight path from i to j will be maintained in $D_{i, j}$. If the cost of a shortest path is ∞, then it will mean that no such path exists. A minimal weight path may not be the "shortest" in terms of number of edges in the path.

The term shortest path, minimum weight path, and minimum cost path will be used interchangeably in the remainder.

A solution to this problem for a special class of graphs utilizes dynamic programming. Dynamic programming, like the divide-and-conquer method, solves problems by dividing a problem into subproblems, solving the subproblems, and combining the solutions to subproblems. In divide and conquer, subproblems are usually independent of
each other. Dynamic programming however, is used in cases where subproblems are not independent. A dynamic programming algorithm solves subproblems once, saves the solutions in a table and avoids recomputing the answer for a problem that has already been solved before. The development of a dynamic programming algorithm is broken into a sequence o steps.
(1) Characterize the structure of an optimal solution.
(2) Recursively define the value of an optimal solution.
(3) Compute the value of an optimal solution in a bottom-up fashion.
(4) Construct an optimal solution from computed information.

Solution for All-pair shortest path. A dynamic-programming based algorithm due to Floyd and Warshall can be used to solve the all-pairs shortest path problem (i.e. all-pair minimal weight path problem). The algorithm works correctly even in the presenece of negative edge weights as long as there are NO NEGATIVE COST CYCLES.

9.13.1 Floyd-Warshall algorithm

The algorithm works with graphs with negative weight edges. The graphs however should not have a negative cost cycle: this is a cycle where the sum of the weights of the edges of the cycle is negative.

```
FloydWarshall(G,A,W)
    (0)
    D (i,j)=d(i,j)
    for k=1 to n
        for i=1 to n
            for j=1 to n
            (k) (k-1) (k-1) (k-1)
            D (i,j)=MIN(D (i,j) , D (i,k)+D (k,j));
                n
    return(D=D );
```

Theorem 9.26 (Floyd-Warshall). Algorithm FloydWarshall computes in $D_{i, j}^{(n)}$ the cost of the minimal weight path from i to j. The running time of FloydWarshall is $T(n)=\Theta\left(n^{3}\right)$.

Proof. We first analyze the performance of algorithm FloydWarshall. The Algorithm has three nested for loops. Thus its running time is $T(n)=\Theta\left(n^{3}\right)$. Although one may consider its space requirements as being $\Theta\left(n^{3}\right)$ since it seems to need a new $n \times n$ matrix in every iteration, in truth, we can fulfil the computation with two copies, one for the previous and one for the current iteration. Thus $S(n)=\sim n)$ for the space requirements, if $S(n)$ are the space requirements for FloydWarshall.

We provide a proof correctness usinginduction.
Inductive assumption. At completion f iteration $k, D_{i, j}^{(k)}$ is the cost of the minimal weight path from i to j that ONLY USES in-between vertices from set $\mathbb{d} l, \ldots, k\}$.
Basis of induction $k=0$. Before the loop is executed for the first time, all paths with no internal vertices are single edges; $D_{i, j}^{(0)}=W_{i, j}$ is the cost σ an edge path between i and j with NO internal vertices ie. $k \leq 0$, noting that vertex indexes are positive.
Inductive Step: $k-140$ Anime that in e inactive hypethesis is true for $k-1$ and consider the triangular inequality for k, ie.

We have two eases to consider.
Case 1. If shortest path $40 \mathrm{~m} i$ to with inbetyeen vertices at most k does not go through k then the part utilizing the first term of the incorrectly update D for iteration $k\left(D_{i, j}^{(k)}=D_{i, j}^{(k-1)}\right)$.
Case 2. If shortest pathorom jor winger vertices at most k does go through k we need to check $D_{i, j}^{(k-1)}$ vs $D_{i, k}^{(k-1)}+D_{k, j}^{(k-1)}$. By inductive assemmptionatl $D_{i, j}^{(k-1)}, D_{i, k}^{(k-1)}, D_{k, j}^{(k-1)}$ are optimal.
Conclusion: At the conclusiorfof iteration $D_{i, j}^{(n)}$ gives the cost of the shortest path from i to j.

Example 9.29. Run Floyd-Warshall on the graph whose W is $D^{(0)}$.
Proof.


```
                                    1.2 2.3
    (2) | 0 8 5 | path 1 to 3 through 2 min( 5, 8 + 8) = 16 no change
D = | 3 0 8_1|
        |5_2 2 0 |
    path 3 to 1 through 2 min(oo, 2 + 3)=5 through 2
                                    1.3 3.2
    D (3)}=||\begin{array}{llll}{|}&{7_3}&{5}\\{3}&{0}&{8_1}\end{array}
    |5_2 2 0 |
    path 1 to 2 through 3 min( 8, 5 + 2 )= 7 through 3
        |
        path 2 to 1 through 3 min( 3, 8 +5) = 3 no change
```

Application 9.12 (Transitive Closure Problem).
Input: A graph $G=(V, E)$ and its adjacency matrix or list.
Output: A matrix T, the transitive closure matrix. $A T_{i, j}=1$ indicates there is a path from ito j, and $T_{i, j}=0$ otherwise.

Solutions.

Solution 1. Run n DFS operations in other words, run $\operatorname{search}(G, i)$ for all $i=1, \ldots, n$. Set $T_{i, j}=1$ if color $[j]=B$, otherwise $T_{i, j}=0$. One DFS is $\Theta(n+m)$ or $\Theta\left(h^{2}\right)$, and thus n DFS operations lead to an $\Theta(n(n+m))$ or $\Theta\left(n^{3}\right)$ algorithm.
Solution 2. Form a weight matrix W with $W_{i, j}=1$ if edge $(i, j) \in E$ and 0 otherwise. Maintain ∞ in the diagonal entries. Run the all-pairs shortest path oydWarshall. If for a non-diagonal entry of D^{k} we have $D^{k}(i, j)>0$ it means there is a path from i to j of length that value. This is equivalent to solving the transitive closure problem. We have also solved the strong connectivity problem by extension.
Solution 3. Modify line 5 of Fred Warshall. The MIN can be replaced by an OR and the + by an AND. Explain why this works as claimed.

Question 9.6. Wow cart we keep trek of the paths, rather than just the lengths of these paths in Floyd-Warshal? Explain.

 cation? What is A ?

Question 9.8. How fast cen you computer?
(Hint. Think of Strassen and the exponentiation problem applied to matrices).

9.14 Single source shortest path problem

We examine now a simple version of the all-pair shortest path problem. It is the single source shortest path problem sometimes known as SSSP.

Application 9.13 (Single source shortest path).
Input. Graph $G=(V, E)$ and its associated weight matrix or weight list W; a source vertex $s \in V$.
Output. For every $u \in V, D[u]$ maintains the weight of the minimal weight path from s to u.
Solution. A greedy algorithm due to Dijkstra can be used to solve the single source shortest path problem. The algorithm is sensitve and to work correctly the graph must not have negative edge weights.

9.14.1 Dijkstra algorithm

The algorithms works with graphs that have no negative weight edges. Thus the class of graphs for Dijkstra algorithm is more restrictive than that of Floyd-Warshall.

```
Dijkstra(G,W,s)
for every u in V
    D[u]= oo ; p[u] = NULL
S={ }; D[s]=0;
Q=V ; BuildMinHeap(H,[V,D]);
while Q is not empty do
    u= RemoveMin(H); //EXTRACT node u with min D(u)
    S=S U {u}; Q=Q-{u};
    for each v in A(u) AND v in Q do
        if (D[v] < D [u] + W[u][v])
            D[v] = D[u] + W[u][v];
            p[v] = u;
```

Theorem 9.27 (Dijkstra). Algorithms Dijkstra computes in D_{u} the weight of the minimal weight path from a given input source vertex s to u. The running time of Dijkstra for a heap-based implementation is $T(n, m)=\Theta((n+m) \lg n)$, which for $m>n$ is $T(n, m)=\Theta(m \lg n)$.

Proof. We provide an analysis of the running time of Dijkstra's algorithm first. The analysis assume an adjacency list representation of the graph. Q is implementated as a priority queue that utilizes a MINHEAP with priorities the elements of $D[$.$] . The operation of line 1 Q$ decreases the element v of the heap with priority $D[v]$ to a lower value $D[u]+W[u][v]$. Such an operation in MNUEAP with n keys takes time $O(\lg n)$ to resolve

Lines 1-3 take $\Theta(n)$ time and so-the Building of a MINHEAP in line 4. The while loop is performed n times total. For vertex u line 6 is $O(\lg n)$ by Stஞject 5 . Line 7 's $\Theta(1)$ is absorbed to that cost. Lines $8-10$ are executed outdeg (u) time with a cost $O(\lg n)$ as expronted earler and a total cost for one vertex u of outdeg $(u) \times O(\lg n)$. The total cost over all n iterations of Dijkstra is thit

Thus Dijkstias running tide for $10 Q^{2} n$ is $P(n, n)=O(2 \operatorname{lig} n)$.
We provide aproofofeorretness $8 f$ Didestra's alsorithm. It is by induction on the cardinality of S.
In Dijkstrats algoxithm, imitiall\& $|S|$. Qand $\mid \mathcal{E}=n$, and during the course of the execution, the size of S increases by one in every iteration and these of decrases by one. Therefore, at the conclusion of the execution of Dijkstra's algorithm $|S|=n$ and $\downarrow 2 \mid=8$ \&

The following invariags wilbe maingained as part of the inductive hypothesis.
Invariant-1. For $u \in S, D$ nis thefength of the shortest path from s to u.
Invariant-2. For $u \notin S, D[u]$ is length of the shortest path from s to u with intermediate vertices in S.
Base case $|S|=1$. In the first execution of line $6, s$ is extracted from Q and moved into $S . D[s]$ is 0 by default and given that there are no negative weights we have concluded the base case.

Moreover, Invariant-1 is true for s when it records $D[s]=0$, the only member of S by default. For Invariant-2, we note that $D[]=.W[s][$.$] in line 9-11$ is the length of the shortest edge path from s to an arbitrary . if such edge exists. Thus both invariants are true.
Inductive Step: from $|S|=k$ to $|S|=k+1$. Let the inductive hypothesis apply to any set S of size k, i.e. $|S|=k$. We are going to prove that the hypothesis is true for a set S such that $|S|=k+1$ (inductive step). Let u be the vertex outside S with MINIMUM $D[u]$. Thus any other $b \in Q$ is such that $D[b]>D[u]$. Then the shortest path from s to u (by rule 2 above) is internal in S except for a single edge that goes from a vertex of S directly to u and $u \in Q$. Let us call this path P. For otherwise, if P was not the shortest path, then there would be another path P^{\prime} whose intermediate vertices were not internal in S and thus there would be another vertex say b in P^{\prime} from s to u that is also in Q and that is closer to s than u, a contradiction to the minimality of $D[u]$. That is, if the shortest path would not be internal in S,
there would be a path P^{\prime} of the form $s \leadsto a, a \rightarrow b$ and $b \leadsto u$, where all vertices of the path from s to a are internal in S, b is the first node in Q, i.e. outside of S, and then the path from b to u might also include nodes internal or external to S. Then $\operatorname{cost}\left(P^{\prime}\right)<\operatorname{cost}(P)$ and therefore $\operatorname{cost}\left(s \neg^{P^{\prime}} b\right)+\operatorname{cost}\left(b \neg^{P^{\prime}} u\right)<\operatorname{cost}\left(s \neg^{P} u\right)$. The first term is $D[b]$ and the last term is $D[u]$ thus $D[b]+\operatorname{cost}\left(b \sim P^{\prime} u\right)<D[u]$. Given that all edges are positive this means $D[b]<D[u]$ which contradicts $D[b]>D[u]$ i.e. the minimality of $D[u]$. This satisfies Invariant- 1 for u just inserted into S. Moreover, the line 9 update with respect to $D[u]$ guarantees the maintenance of Invariant-2, for vertices still in Q.

Remark 9.13. Invariant-1 and Invariant-2 look only on paths where intermediate vertices are in S. They ignore all paths with intermediate vertices in Q. Why? Because of the greedy principle behinds Dijkstra. When Dijktrar pulls a u from Q into S the recorded $D[u]$ which by induction show the shortest path cost from s to u using intermediate vertices in S can not be beatern by an path that use an $a \in Q$. The reaon is that u is pulled into S because its $D[u]<D[a]$. Any path utilizing a would be longer than $D[u]$ up to a, let alone the remainder from a to u. The latter is going to make the path through a even more expensive than $D[u]$ since the edges cannot be negative. The absence of negative edges is of paramount importance.
Example 9.30. Run Dijkstra's algorithm on the graph whose weighed adjacency list is know below. (In a weighed adjacency list $A(i)$, in addition to j, such that $(i, j) \in E$, we also store $W_{i, j}$.)

Solution.

9.15 Spanning Trees

The discussion on minimal cost spanning trees (MCST) is for undirected graphs. Recalling our earlier discussion, a tree is a connected acyclic undirected graph.

Fact 9.1. A tree with n vertices has $n-1$ edges.
Therefore Depth First Search on a tree would only take $\Theta(n)$ time.
Definition 9.96 (Spanning tree of undirected graph G). A spanning tree of an undirected connected graph G is a tree that saturates every vertex of the graph and also has $n-1$ edges.

Definition 9.97 (Minimal cost spanning tree). If graph edges have weights (also known as distances, costs), a minimal cost spanning tree (MCST) is a spanning tree for which the sum of the weights of the edges of the tree is minimal.

Definition 9.98 (Minimal Cost Spanning Tree: Problem Definition).

Input. Undirected graph $G=(V, E)$ and its associated weight matrix/list W.
Output. A spanning tree $T=\left(V, E^{\prime}\right)$, where $E^{\prime} \subseteq E$, of minimal total weight cost, i.e. a minimal cost spanning tree T of G.

1. Algorithmic design principle to be used. For this problem, the solution is going to be through a greedy algorithm. We present below two algorithms for finding minimal cost spanning trees: one due to Kruskal and one due to Prim. Both algorithms are greedy algorithms.
2. Greedy principle of a MCST algorithm: Pick the edge with the lowest cost to attempt to add it to a tree that is being formed (and thus currently has fewer th $n-1$ edges, if its number of vertics is n) and do add if the addition does not cause the tree to have a cycle.

9.15.1 Kruskal's method

Proposition 9.1 (Kruskal's method). Algorithm Kruskal works as claimed.

Lemma 9.4. Let $\mathcal{G}=\left(\biguplus^{2}\right)$ be conjected ouph, and $T=(V, E(T)$ be a spanning tree of G. Then
(1) For all u, v the pathfrom x fov is whtque.
(2) If an edge $E-E(T)$ is added T it causes T have a (unique) cycle.
(3) If an edge $E-E(T)$ is added to T it causes T have a (unique) cycle; furthermore if another edge gets deleted from the resulting cycle, a new spanning tree is obtained.

The tree obtained by Algorithm Kruskal is a spanning tree as long as G is a connected graph. Let $T=\left\{e_{1}, \ldots, e_{n-1}\right\}$ be the tree generated by Kruskal's algorithm. If G is connected there is no isolated vertex in G.

Let T be not a minimal spanning tree. Let T^{\prime} be the minimal spanning tree of G with the maximal number of edges (starting with e_{1}) common with T, and let this number be $k-1$.

Then $e_{k}=(a, b)$ is the first edge in T that is not in T^{\prime}. It can't be the other way i.e. $e_{k} \notin T$ and $e_{k} \in T^{\prime}$ because this would imply e_{k} caused a cycle in Kruskal (and thus was not picked). Then it would also cause a cycle in T^{\prime} as up to that point both of the algorithms have common edges!

Let P be the path in T^{\prime} that connects a, b since $e_{k}=(a, b)$ is not in T^{\prime}. (The addition of e_{k} would cause P plus e_{k} to become a cycle.)

There must be an edge $w\left(e^{\prime}\right)>w\left(e_{k}\right)$ in P. If there was no such edge, Kruskal would have picked all those edges for T (they are lighter than e_{k}) and by including afterwards the heavier edge e_{k} would have generated a cycle: a contradiction. Thus an $e^{\prime}>e_{k}$ exists. Consider then $T^{\prime}-e^{\prime}+e_{k}$. It is a spanning tree better that T^{\prime}, a contradiction. (Moreover it has more edges in common with T a contradiction to the maximality of T^{\prime}.)
(Alternatively, let G_{k} be the connected component containing $\left\{e_{1}, \ldots, e_{k-1}\right\}$ that touches a. Then there exists an edge e in P connecting G_{k} to a vertex outside G_{k}. Since Kruskal chooses e_{k} over e in $T, e_{k} \leq e$. But $T^{\prime}-e+e_{k}$ is a spanning tree at least as cheap as T^{\prime}, but with one more edge in common with T than T^{\prime} a contradiction to the choice of T^{\prime}.)

Example 9.31 (Kruskal's method: example). An example that highlights the operations in Kruskal's algorithm is shown below.

1------ 3----- 4	Step 0:	T:	1	3	4
\| 87 /					
1 /	$\mathrm{T}=\{ \}$		2		
14 /					
1 /	Step 1: Pick (1,2)	T:	1	3	4
\| 12 /	cost is 4		\|		
$1 /$	$\mathrm{T}=\{(1,2)\}$ no	cycle	2		
$1 /$					
$1 /$	Step 2: Pick (3,4)	T:	1		
$1 /$	$\cos 1+5$		1		
$1 /$	$\mathrm{T}=\left\{(1,2)\left(33^{\prime}, 4\right)\right\}$ no	cycle	2		
$1 /$	-----				
$1 /$	Step 3. Pick (1,3)	T:		$3-$	-4
$1 /$	(C) cost is 8		I		
1/	K		2		
2	fo cycle T has $\mathrm{n}-1$	edges	STOP		

Proposition 9.2 (KruskS and W be the weigh Chatrixs orr listissocived with G. An impRementation of Kruskal's algorithm using a UnionFind data structurey is shoun befor. It runnifg timefis $T\left(g^{2} n^{\rho}=O(m \lg n+n \lg n)\right.$ and for $m>n$ it simplifies to

T=empty;
for each u in
do MakeSet (u).
while there are strill edges to be pianed \{
Pick SHORTEST edge (rav, v) arailablo (that has not already been picked)
if Find (u) ! = Find (v) $T=T \cup\{(u, v)\}$; Union(u,v);
10.$\}$

Proof. (Analysis of the algorithm's running time.)
Running Time (Union-Find operations). Lines 3-4 perform n MakeSet operation which collectively cost $\Theta(n)$ (Subject 3). The number of Find operations is $2 m$ since we can have m edges and each edge has two end-points. Cost is $O(m)$. (It is not clear for a given G if we exhaust all the edges or complete the tree T before hand.) Moreover the number of Union operations is no more than $n-1$. Thus line 10 . will be executed no more than $n-1$ times and thus collectively all those operations have a cost $O(n \lg n)$ (per Subject 3 implementation of Union-Find). Therefore Union-Find related time is $O(m+n \lg n)$
Running Time (Edge ordering). We can sort the edges in $\Theta(m \lg m)$ time in Line 1. Then Line 6 is a constant step per edge, and thus the total execution time of Line 6 overall edges is a $O(m)$. Combining the two we get $\Theta(m \lg m)$. Alternatively, we can build a MINHEAP in $\Theta(m)$ time in Line 1. Then Line 6 involves an ExtractMIN operation in
$O(\lg m)$ time, and thus the total execution time of Line 6 overall edges is a $O(m \lg m)$. Combining the two (Line 1 and Line 6 costs) we get $O(m \lg m)$.

Therefore running time of Kruskal using Union-Find is $T(n, m)=O(n \lg n+m \lg m)$.
In most cases $m>n$, and because the graph is connected $m \geq n-1$. Then it simplifies to $T(n, m)=O(m \lg m)$.
Example 9.32 (Kruskal example using UF-DS). We show below an example when a UF-DS is being used in the implementation of Kruskal's algorithm.

9.15.2 Prim's method

Proposition 9.3 (Prim's method). Algorithom Prim works as claimed.
Prim (G,W)
// Input $G=(V, E)$ and W
// Output minimal spannthg tree $T=(V, E(T)),|E(T)|=n-1$

1. $T=\{ \} ; X=\{4\} ; Q=i 火 \%$. Sh 4 is an arbitrary vertex of V;
. while ($X \quad!=\mathrm{V}$)
2. Let $e=(x, q)$ be SHQRtESTedge Arom an x \& X te a q in Q
3. $T=T U\{(\hat{x}, q)\}, \rho^{2}$
4.
5. \}

Proof. (By contradicfionio) Weque gaitg to rse thêfollowing Lemma.
Lemma 9.5. Let $V_{0} V_{\text {be }}$.
(1) For all u,v the $\overline{\text { Rath }}$ frot u to vis unique.

(3) If an edge $E-E(T)$ is addedto T it causes T have a (unique) cycle; furthermore if another edge gets deleted from the resulting cycle, a new spanning tree is obtained.

Let $X \subset V$. If (u, v) is the lowest cost edge from X to $Q=V-X$, then there is a minimum cost spanning tree that includes (u, v).

The tree obtained by Algorithm Prim is a spanning tree as long as G is a connected graph. Let $T=\left\{e_{1}, \ldots, e_{n-1}\right\}$ be the tree generated by Prim's algorithm. and let $T_{k}=\left\{e_{1}, \ldots, e_{k}\right\}$ be the Prim tree after k iterations. We claim that T is a minimal spanning tree.

Let us assume that T is not a minimal spanning tree, and let T^{\prime} be a minimal spanning tree that has as the maximum number of edges n common with T.

We show by contradiction that $T^{\prime}=T$ or we have a tree whose cost is smaller than the minimal spanning tree T^{\prime}.
Let T^{\prime} has $k-1$ edges in common with T and $k-1$ is thus the maximum number of edges a minimal spanning tree has in common with T.

The first edge T^{\prime} and T differ is edge $e_{k}=(a, b)$. Let $S\left(T_{k-1}\right)$ be the set of vertices saturated by the first $k-1$ edges common to T^{\prime} and T. Let us assume $a \in S\left(T_{k-1}\right)$.

Since T^{\prime} is a minimal spanning tree there is a path P in it from a to b. We have $a \in S\left(T_{k-1}\right)$ and $b \notin S\left(T_{k-1}\right)$. Thus the path P has an edge (u, v), where $u \in S\left(T_{k-1}\right)$ and $v \notin S\left(T_{k-1}\right)$.

Consider edge (u, v) versus edge (a, b). Then form $T_{1}=T^{\prime}-(u, v)+(a, b) . T_{1}$ is a spanning tree of G.
We have the following possibilities for T_{1}.
Case 1: $w(a, b)<w(u, v)$. Prim chose (a, b) because it is of the lowest cost. The end results is that T_{1} has cost $c\left(T_{1}\right)<c\left(T^{\prime}\right)$. We have found a spanning tree T_{1} of cost smallest than the minimal cost spanning tree. Contradiction.

Case 2: $w(a, b)>w(u, v)$. Prim chose (a, b) instead of (u, v). Impossible because Prim always picks the smallest edge and should have picked (u, v). Contradiction to Prim's algorithmic choices.

Case 3: $w(a, b)=w(u, v)$. The two edges have the same cost and thus T_{1} is such that $c\left(T_{1}\right)=c(T)$ and thus T_{1} is a minimal spanning tree. It is possible that Prim picked one over the other of equal cost edges. Since Prim did not pick at that stage (u, v) it means that (u, v) is not one of the edges of T_{k-1}. But now we have found minimal spanning tree T_{1} that has k edges in common with T versus T^{\prime} 's $k-1$ edges. This is a contradiction to the "maximality" of T^{\prime}.

All three cases lead to contradiction because we assumed that there was something better than Prim. Prim is optimal.

Example 9.33 (Prim's method: example). An example that highlights the operations in Prim's algorithm is shown below.

Proposition 9.4 (Prim's algofithmimplementation using a Priority Queue). Let $G=(V, E)$ with $|V|=n$ and $|E|=$ m and W be the weight mest ossiated with G. An implementation of Prim's algorithm using a priority queue is shown below. Its running time is $T \mathfrak{j n}, m)=O(m \lg m+n \lg n)$ and for $m>n$ it simplifies to $T(n, m)=O(m \lg m)$.

```
Prim (G,W) // G is a Connected graph
for every u in V
    cost[u]=00 ; p[u] = NULL
cost[1]= 0;
Q=V;X=empty; BuildMinHeap(H,[V,cost]); //Priorities in heap H are the cost[.]
while Q is not empty do
            u= ExtractMin(H);
    X=X U {u}; Q=Q-{u};
    for each v in A(u) i.e. for each edge (u,v) and v in Q do
            if W[u][v] < cost[v];
                cost[v]=W[u][v]
                p[v] = u;
```

Proof. (Analysis of the algorithm's running time.) Prim's algorithm uses the structure of Dijkstra's algorithm. Thus the analysis of the running time is identical to that of Dijkstra's. Note that the test in line 8 of membership in Q is
implemented by having one extra bit per vertex. This bit is set to 1 for a vertex in Q . For a removed vertex it is set to 0 . Thus the use of X is redundant.

Prim's running time for $m>n$ is $T(n, m)=O(m \lg n)$.
Example 9.34 (Prim example using a priority queue). We show below an example when a priority queue is being used in the implementation of Prim's algorithm.

9.16 Ramsey numbers

The discussion below is for simple undirected graphs.
Definition 9.99 (A complete undirected graph). A complete graph with n vertices denoted by K_{n} is an undirected graph where every vertex is connected to every other of the $n-1$ remaining vertices. The graph has $\binom{n}{2}=n(n-1) / 2$ edges.
Definition 9.100 (k-clique). A k-klique is a graph that is isomorphic to K_{k}, the complete graph on k vertices. In other words, each vertex of the clique is connected to the remaining $k-1$ vertices of the clique.

Definition 9.101 (\mathbf{k}-independent set). A k-independent set is a graph whose complement is isomorphic to K_{k}. In other words, each vertex of the independent set is NOT connected to the remaining $k-1$ vertices of the clique. We shall call it k-is in short.

Definition 9.102 (Ramsey numbers). For any two positive integers p, q, there exists a minimum positive integer $R(p, q)$ that is known as the Ramsey number $R(p, q)$ such that for $r \geq R(p, q)$ if we arbitrarily color the edges of the complete graph with r vertices red or blue then we get

- either a red-complete graph with p vertices,
- or a blue-complete graph with q vertices.

Number r is noted as the $R(p, q)$ Ramsay nuprof. [Another way to describe this problem is to say that that there is either a p-clique or a q-independent set.]

A further interpretations is that a $p-\alpha$ leque is p people each one knowing the other $p-1$, and q-independent sets is a group of q people where noone knows anyone else of the set.
Example 9.35. There is a partw two students. Either they know each other or they do not know each other. Thus $2=R(2,2)$.
Example 9.36. Consider $\left(3,3 \nrightarrow Y\right.$ yow consid coloring the edges of K_{5} you realize that $R(3,3)>5$.
Example 9.37. There is a gerty afo studrints. claix that: © fither (i) some 3 people know each other (this is a

Proof. Let the σ students bes $, B, C O, E, E^{\circ}$
Case 1. A knows thee or more) Net A khow, three others and let them be B, C, D. If two of the three friends of A know each other then A andthose kno eachoother, (i) is true and we are done.

Case 2. (A knowstwo or kess). Leff otherwise know two or less people and let those people be B, C. Then A does not know D, E, F. If $\bar{D}, E_{,} P$ know each other we have found a triplet that satisfies (i) and we are done. If however there are two of D, E, F that dozet knoweach other, and let those two be D, F, then consider the triplet A, D, F : none knows the other two and thushey satisfy (ii).

Consequently we proved $R(3,3) \leq 6$. Given (from the previous example) that $R(3,3)>5$, we have $R(3,3)=6$.
Example 9.38. For $R(p, q)$ we expect $p>1$ and $q>1$, since a complete graph with one vertex has no edges.
Lemma 9.6. For all $p, q>0$ we have $R(p, q)=R(q, p)$.
Lemma 9.7. For all $k>0$ we have $R(1, k)=1$ and $R(2, k)=1$.
Theorem 9.28. Show that $R(4,3) \leq 10$. That is in a 10 -vertex graph either there is a 4 -clique or a 3-independent set.
Proof.
Case 1: A knows at least 6 people. By the $R(3,3)=6$ result among the 6 there is either a 3 -clique or a 3 -is. In the first case the 3 plus A give a 4 -clique. Done.
Case 2: A knows at most 5 people. That is A does not know 4 (total of $1+5+4=10$). Either all those 4 know each other and we found a 4-clique, or there are two who do not know each other. Those two plus A form a 3-is. Done.

Theorem 9.29. $R(4,4)=18$.
Theorem 9.30 (Ramsay Theorem). For $p \geq 2, q \geq 2$ we have

$$
R(p, q) \leq R(p-1, q)+R(p, q-1)
$$

Proof.

A. Use a people interpretation.

Consider a number of people. Among them pick 5. Call A the set of people who know 5 . Call B the set of people who do not know 5 .

We claim $R(p, q) \leq R(p-1, q)+R(p, q-1)$ and thus $c(A)+c(B)+1=R(p-1, q)+R(p, q-1)$.

- $c(A) \geq R(p-1, q)$. Set A of size at least $R(p-1, q)$ either contain $p-1$ people knowing each other or q people who do not know each other. The $p-1$ people who know each other also know 5 thus generating, including 5, a set of p people who know each other. Thus one way or the other for $A \cup 5$ we get p people knowing each other and for A we also have q people not knowing each other. Case completed.
- $c(B) \geq R(p, q-1)$ We then argue as follows for set B. Set B includes all people who do not know 5. B is of cardinality at least $R(p, q-1)$ and by induction either there exist p people in B who know each other or there are $q-1$ who do not know each other. In the latter case the addition of 5 generates q people not knowing each other. One way or the other the result hasbeen proven.
- Otherwise $c(A)<R(p-1, q)$ and $q(B)<R(p, q-1)$ i.e. $c(A) \leq R(p-1, q)-1$ and $c(B) \leq R(p, q-1)-1$ thus giving $c(A)+c(B)+1 \leq R(p-1, q)-1+R(p, q-1)-1+1 \leq R(p-1, q)+R(p, q-1)-1$. But this contradicts $c(A)+c(B)+1 \underset{\mathcal{C} R}{ }(p-1, q)+R(p, q-1)$ i.e. this cases IS NOT a case, it does not exist.
Thus $R(p, q) \leq R(p-1, q)+R(p, q-1)$.

B. We use a coloringofirn interpretation. Let $n=R(p-1, q)+R(q) p-1 y$. We efim that $R(p \mathfrak{O}) \leq R \in \mathcal{G}-1, q)+R(q, p-1)$.

Consider rapon coloing the edgesof K_{n} with colon, red and blue. Pick an arbitrary vertex of K_{n} and call it 5. Among the n-1 edges sincideht on P areqed af Q O Q are blue where $P+Q=n-1$ and thus $P+Q+1=$ $R(p-1, q)+R(q, p-1)$

We do a casalanalyio $e^{e} a^{e} a^{e}$
Case 1: $P \underline{\underline{E}} R\left(\mathcal{x}-1, q\right.$ Thenthe rededgesfend-points either contain a red K_{p-1} or a blue K_{q}. We are done in the latter case; in the fogner caseadding 5 weaturn the red K_{p-1} into a red K_{p}. Thus one way or the other a red K_{p} or a blue K_{q} is generatedt

Case 2: $Q \geq R\left(p, q-\delta^{\prime}\right)$. The blatedges' end-points either contain a red K_{p} or a blue K_{q-1}. In the former case we are done; in the latter case teding 5 to the $q-1$ blue edge end-points, we generate a blue K_{q}. Thus one way or the other a red K_{p} or a blue K_{q} is genefated.
Theorem 9.31. $R(p, q)$ is finite for all $p>1$ and $q>1$.
Proof. Proof is by induction of $p+q$.
Base case. The base case is for $p=q=1$. Either a red or a blue 1 -subgraph results and the statement is true by inspection trivially.

Inductive step. Now suppose that $R(p-1, q)$ and $R(p, q-1$ are finite. We proved before that $R(p, q) \leq R(p-$ $1, q)+R(p, q-1)$. Thus $R(p, q)$ is finite as it is bounded by the sum of two finite numbers.

Example 9.39. Show that $R(p, q) \leq\binom{ p+q-2}{p-1}$.
Proof. It follows by induction from $R(p, q) \leq R(p-1, q)+R(p, q-1)$ and simple algebraic manipulations.

Theorem 9.32. Show $R(k, k) \leq\binom{ 2 k-2}{k-1} \leq 2^{2 k}$.
Theorem 9.33. For any $k>4$, show $R(k, k) \geq 2^{k / 2}$.
Proof. The number of n vertex graphs is $2\binom{n}{2}$.
The number of n vertex graphs containing at least one k-clique is at most $\binom{n}{k} \cdot 2\binom{n}{2}-\binom{k}{2}$.
The number of n vertex graphs containing either at least one k-clique or at least one k-is is at most $2 \cdot\binom{n}{k} \cdot 2\binom{n}{2}-\binom{k}{2}$.
Thus if $2 \cdot\binom{n}{k} \cdot 2\binom{n}{2}-\binom{k}{2}<2\binom{n}{2}$, then there is some n vertex graph that has neither a k-clique nor k-inpdendent set. For this we need to show

$$
2 \cdot\binom{n}{k}<2^{\binom{k}{2}}
$$

or equivalently

$$
2 \cdot n^{k} / k!<2^{k(k-1) / 2}
$$

and for $n=2^{k / 2}$ it suffices to show that

$$
k!/\left(2 \cdot 2^{k / 2}\right)>1
$$

which is true for $k \geq 4$.
Theorem 9.34 (Schur's Theorem). For any finitedeoloring of the positive integers there exist x, y, z such that $x+y=z$ and all three are of the same color.
Proof. Color the numbers $1 \ldots S(r)$ with différent colors. $S(r)=R(3,3, \ldots, 3$ i.e. the Ramsey number of order 3 and multiplicity r. Consider $K_{S(r)}$. Color edge (a, b) with $|b-a|$'s color. By definition of Ramsey numbers There exists a triangle $x>y>z$ whose edges are of the same color. Then $A=x-y, B=y-z C=x-z$ have the same color. Note that $A+B=x-y+y-z=x-z=C$.

9.17 Exercises

 the goat andthe cabbage. USing asoraph del the fermike the shortest time required for the boatman to achieve his task. Pe ios es eo eos
 can take them to the right bankwithoitry any dosses and in the shortest time possible. We use the following graph representation of the poblem. The gertices Below correspond to legal occurrences of W, C, G, B on the left bank of the river, and our aim is findzshortgst path between vertex $W G C B$ (all on the left bank) to \oslash (none on the left blank). The edges of the grapecorrespond to legal moves under which the boatman can take some of the animals from(to) the left bank to(from) therpht without causing any losses of animals on either bank.

Let the W (olf), G (oat), C (abbage), and Boatman be initially on the left bank of the river. We use the following graph representation of the problem. The vertices below correspond to legal occurrences of $\mathrm{W}, \mathrm{C}, \mathrm{G}, \mathrm{B}$ on the left bank of the river, and our aim is to find a shortest path between vertex $W G C B$ (all on the left bank) to \emptyset (none on the left blank). The edges of the graph correspond to legal moves under which the boatman can take some passenger from (to) the left bank to (from) the right without attrition on either bank.

Exercise 9.3. Show that if every vertex in an n vertex graph (where n is even) has degree at least $n / 2$, then the graph has a perfect matching.

Proof. By Dirac's theorem, such a graph has a Hamiltonian cycle of length n. Taking every second edge from this cycle gives a matching, since no vertex will be included more than once. Because n is even, every vertex will be included once, so the matching is perfect.

Exercise 9.4. Using Eulerian tours find a circular arrangement of nine A's, nine B's and nine C's such that each of the 27 subsequences of length 3 are distinct.

Proof. We give first the definition for the generalized De Bruijn graph. Let $h, k \geq 2$ be natural numbers and set $V=\{1,2, \ldots, h\}^{k}$. The De Bruijn graph $B(h, k)$ has vertex set V and every vertex $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is adjacent to every vertex $\mathbf{b}=\left(a_{2}, a_{3}, \ldots, a_{k}, *\right)$ (left shift) by an edge (\mathbf{a}, \mathbf{b}), where $*$ denotes an arbitrary element of $\{1,2, \ldots h\}$. The following is immediate from the definition.

Claim 9.5. The de Bruijn graph $B(h, k)$ has order (number of vertices) h^{k} and indegree $=$ outdegree $=h$.
Since for every vertex indegree $=$ outdegree we conclude that there exists a closed Eulerian walk in $B(h, k)$.
For the solution of this exercise, we need to construct $B(3,2)$ where $V=\{A, B, C\}^{2}$ (the square here means Cartesian product), and find an Eulerian tour in this graph.

The following shows a circular arrangement with the desired properties (with 9 A's, 9 B 's , 9 C 's):

AAACACBCCBBBCBAABABBACCCABC

Exercise 9.5. Let G be an n vertex graph with no isolated vertices and with every vertex having degree at most d. If v is the number of edges in a maximum matching for G, show that

$$
\nless \cdot v \geq \frac{n}{d+1}
$$

Proof. Suppose M is a maximum matching for G of size v. Let X be the vertex of G matched in M, and let Y be the vertices of G unmatched in M. No two mertices in Y may have an edge between them, since otherwise adding that edge to M would give a larger matching If (u, v) is in M, and u has a neighbor $w \in Y$, then v cannot be adjacent to any vertex $z \neq w$ in Y. Otherwise there would be an M-augmenting path w, u, v, z which contradicts the assumption that M is maximum. Since there are no isolated vertices, each of the $n-2 v$ vertices in Y is connected to some vertexin X. But each of the v pairs of vertices in X can have at most only $d-1$ distinct neighbors in Y. Therefore it follows that

 adjacent squares dlong ate same rowas coluæn, and no two dominos overlap. It is possible to completely cover the checker board with 32 domas. If avo divonally opposite corner squares are removed, prove or disprove that the remaining 62 squares cande cored 421 dominos.
Proof. This is not possible. Any precement of a domino will cover one black and one white square, but two opposite corner squares are the same color. Of the remaining 62 squares, 30 are one color and 32 are the other. No more than 30 dominos may be legally placed.
(The graph representation of this problem is a bipartite graph where one side corresponds to the black squares, the other side corresponds to the white squares, and the edges correspond to adjacency between squares. The question then becomes whether this graph has a perfect matching.

Exercise 9.7. Show that if G is a connected undirected graph with k vertices of odd degree $(k>0)$ then there are $k / 2$ walks no two of which share an edge, that between them contain all the edges.

Proof. First, one must show that the problem is well defined in the sense that k is always even. This follows form the following claim

Claim 9.6. The number of odd-degree vertices in a graph $G=(V, E)$ is even.

Proof. Counting Argument.
We have that k is an even number. Let $k=2 m$. We divide the k points into m pairs and we form a new graph G^{\prime} by adding to $G m$ new edges, each joining a pair of the odd degree vertices (even if such edges already exist). Then we have that G^{\prime} is a connected graph, all of whose vertices have even degree. From Euler's theorem, we get that there's a cycle C in G^{\prime} that crosses each edge exactly once. We now remove from C the m edges we added, breaking the cycle into m segments such that the remaining edges consist of m paths that use all edges of G each path starting from an odd vertexand ending in another. In any collection of paths using all edges of G, every odd vertex must be the end of a path and so with k odd degree vertices we cannot cover all edges of G using less than m paths.

Exercise 9.8. A set of $2 k+1$ people plan to have dinner together around a circular table on k successive nights in such a way that no pair sit next to each other more than once. Show that this is possible for $k=5$.

Proof. For the case $k=5$ one can find the following ordering of the people around a circular table (assuming a circular order of the lists below)

- First night: $1,2,3,4,5,6,7,8,9,10,11$.
- Second night: $1,3,5,7,9,11,2,4,6,8,10$.
- Third night: $1,4,7,10,2,5,8,11,3,6,9$.
- Fourth night: $1,5,9,2,6,10,3,7,11,4$.
- Fifth night: $1,6,11,5,10,4,9,3,8,2,7$.

We now show how we can fard k circular orderings of the $2 k+1$ people for any k. Initially, each person can sit next to anyone else. We represent this relationship with a graph. The vertices of the graph are the people, and we have an edge between a and b ifican be seated next to b. The graph constructed is the $K_{2 k+1}$ (complete graph on $2 k+1$ vertices). Here'os howive caffind the k orderings. We put $2 k$ of the points on a circle and the other point in the center, and we.constract the anitial ordering shownonere, ofgure 1 below illustrates this construction. Figure 2 shows the initiaKorderingior $k_{0} 94$ whle Figere 3 .sAus hea we can get a new ordering (edge disjoint) by a right one step rotation of Figure 2. Rotatiag Fignice 1 chookwise ${ }^{\prime}$ in the sense shown in Figure 3, by $1,2, \ldots k$ steps, we get all possibleorderings wenace.. 0 o

We now on h needroprone thata theserderings do not use the same edge twice, i.e. that the k hamiltonian cycles of the $K_{2 k+1}$ complete grapegenerated bythese rotations are edge-disjoint, and so the traversal of the vertices of each cycle give a yathd ordeting.

One can see, using the labelling of the kertices in Figure 1, that two vertices (on the circle) are adjacent in Figure 1 if their sum is 2 or 3 modio $2 k$. we retate this first ordering clockwise by one step the sum of two adjacent vertices on the circle becomes 4 , or 5 Hoduld $2 k$. Another rotation gives a sum of 6,7 modulo $2 k$ and so on. It is easy to see, that the "diameter edges" are ${ }^{\text {disjoint }}$ for these k orderings. Therefore the rotation of the original ordering can be repeated a total of $k-1$ times before getting the original one. Hence, in that way we get k edge-disjoint Hamiltonian cycles i.e. the orderings of people we would like to have .

Exercise 9.9. Show that any edge in a regular bipartite graph can be included in some perfect matching.
Proof. Let $G=(X \cup Y, E)$ where $E \subseteq X \times Y$ be a regular degree k bipartite graph. By the corollary to Hall's theorem, every regular bipartite graph has a perfect matching. Find a perfect matching M for G and consider $G^{\prime}=(X \cup Y, E-M)$. This is also a regular bipartite graph, of degree $k-1$. So G^{\prime} has a perfect matching which may be removed leaving a regular bipartite graph of degree $k-2$, and so on, until we are finally left with a graph that has no edges. Since every edge was removed as part of some perfect matching for G, this proves the claim.

Exercise 9.10. Show that a regular degree k bipartite graph has at least k ! different perfect matchings.

Proof. This can be shown by induction on $n=|X|$ in the statement: If $G=(X \cup Y, E)$ is a bipartite graph such that $\forall v \in X, \operatorname{deg}(v) \geq k$, and if G has a perfect matching, then G has at least k ! different perfect matchings. (We're actually claiming a slightly stronger result than required, since G need not be regular).

For $n=k$ (n 's smallest possible value), we have a complete bipartite graph, and all of the conceivable $n!=k!$ matchings are legitimate. Now assume the statement is true for $n \leq \hat{n}$ and consider a case where $n=\hat{n}+1$. Call a subset $A \subset X$ critical if $|R(A)|=|A|$. If X has no critical subsets, any edge may be put in the matching (k choices for $x_{1} \in X$), and the graph remaining after deleting this edge, its endpoints, and all of their edges will still satisfy the criterion of Hall's theorem and hence have a perfect matching. $\left|X-\left\{x_{1}\right\}\right|=\hat{n}$, and every vertexof this graph has degree at least $k-1$, so by induction, we get the $k(k-1)!=k!$ bound. If A is critical, there must be a perfect matching consisting only of edges between A and $R(A)$ and between $X-A$ and $Y-R(A)$. Any combination of two such matchings forms a perfect matching for G, and every perfect matching for G must be a combination of two such matchings. Matching A and $R(A)$ is a similar problem of smaller size, so by the inductive hypothesis there are at least k ! possible solutions.

Exercise 9.11. Show that for any regular degree three graph with a Hamiltonian cycle $\chi(G)=3$. (Recall $\chi(G)$ and $\gamma(G)$ are the minimum numbers of colors used in edge and vertexcolorings resepectively of G).

Proof. Since the graph is regular of degree 3, it has an even number of vertices, otherwise the sum of the degrees of the vertices would be odd. Therefore the Hamiltonian cycle is of even length and we can color its edges alternately using two colors, say 1 and 2. If we delete the edges of the Hamiltonian cycle from the original graph, we get a matching (we reduce the degree of each vertexby 2 by ramoving the cycle, and every vertexhad initially degree 3). We color the edges of the matching using a third color stay 3 .

Exercise 9.12. An edge cover of a graph is a set of edges that touch every vertex. If M is a maximum matching, C is a minimum edge cover, and n is the hember of vertices in the graph, show that $|M|+|C|=n$.

Proof. Let $G=(V, E)$ a graphet M be a maximum matching. We get a cover C^{\prime} from that by adding edges to M that saturate, unsaturated vertices (assuming a mininam cover exists, such edges always exist, otherwise edges between vertices in $V-S(M)$ exis, congadictigg to tha maximality of the matching M (since in that case, we could extend the maximum matching by adding to itedges conaect veritces in 4

where $S(M)$ is theset of saturated vertices dueto the matching M. The number of saturated vertices is equal to $2|M|$. Each edge we add to the matahing to get adoveringsaturates one previously unsaturated vertex. Therefere the number of such edges we prust add to gex covegng is qual to $n-2|M|$, where n is the number of vertices of G. Therefore,
and

Now suppose, we have a minimum covering, let it be C. We can get a matching from C as follows (we give a 'high level' description). Remove edges from C which are incident to vertices of degree greater than 1, until each vertex would be of degree 1 . In that way, we get a matching (each vertex is touched by at most 1 edge), and, let it be M^{\prime}. Since paths (chains) of length 3 cannot exist in C (otherwise, if a path $v_{1} e_{1} v_{2} e_{2} v_{3} e_{3} v_{4}$ were part of C, then, we could get a minimum covering of size one less by using only the edges e_{1}, e_{3} which cover all 4 vertices, a contradiction to the minimality of C), the removal of an edge from C creates exactly one unsaturated vertex. Therefore, we have:

$$
|C|-\left|M^{\prime}\right|=(\text { number of unsaturated vertices created })=n-2\left|M^{\prime}\right|
$$

which is equivalent to

$$
\begin{equation*}
|C|+\left|M^{\prime}\right|=n \tag{9.2}
\end{equation*}
$$

C is a minimum covering, therefore, $|C| \leq\left|C^{\prime}\right|$ This implies (from (1), (2)) that:

$$
n-|C| \geq n-\left|C^{\prime}\right| \Rightarrow\left|M^{\prime}\right| \geq|M|
$$

Since M is a maximum matching, we must have

$$
|M|=\left|M^{\prime}\right|
$$

and again from (1),(2), we get

$$
|C|=\left|C^{\prime}\right|
$$

This means M, M^{\prime} are both maximum matching and C, C^{\prime} are minimum coverings of the same size. This implies that:

$$
|M|+|C|=n
$$

Exercise 9.13. Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ (where V_{1} and V_{2} need not be disjoint). Define $G_{1} \cup G_{2}=$ $\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$. Show that

$$
\gamma\left(G_{1} \cup G_{2}\right) \leq \gamma\left(G_{1}\right) \gamma\left(G_{2}\right)
$$

Proof. Let α be a minimum coloring for G_{1}, i.e α mapping that maps vertices of G_{1} onto the $\gamma\left(G_{1}\right)$ colors we need to color G_{1}. Let β be the corresponding colorigifor G_{2}. Then we color a vertex v of $G_{1} \cup G_{2}$ using color $(\alpha(v), \beta(v))$ (the "colors" are ordered pairs here). If a vertexexists only in G_{1} or in G_{2} then we "fill" the other part of the pair with a color arbitrarily chosen from the set of colors used to color G_{2} (or G_{1} respectively). It is easy to see, that such a coloring is a valid one (since by its debnition it doesn't color with the same color two vertices that are adjacent in $G_{1} \cup G_{2}$ because that would implythat these two vertices which must be adjacent in G_{1} or G_{2} must also be colored the same color there, a contradictionto the validity of the initial coloring of G_{1} and/or G_{2}) and the total number of colors used is equal to at most $\gamma\left(G_{1}\right) \gamma\left(G_{2}\right)$.

You can show that equality hots in the casewhere G_{1} is a circuit on 6 vertices and G_{2} is $K_{6}-G_{1}$. One can see that $\gamma\left(G_{1}\right)=2$ and $\gamma\left(G_{0}\right)=3\left(\mathcal{L}_{2}\right)=\gamma\left(K_{6}\right)=6$. This also serves as a counterexample to an incorrect claim that $\gamma\left(G_{1} \cup G_{2} \leq \gamma\left(\sigma_{2}\right)+\gamma\left(\mathcal{U}_{2}\right)\right.$. Acountexample to acyaim $\gamma\left(G_{1} \cup G_{2}\right) \leq \gamma\left(G_{1}\right)+\gamma\left(G_{2}\right)-1$ is to have K_{8} instead of K_{6} abo

and

Proof. Left empty.
Exercise 9.15. If $G=(V, E)$ and $\Phi_{1} \subset V$, let $G\left(V_{1}\right)=\left(V_{1}, E \cap\left(V_{1} \times V_{1}\right)\right)$.
(i) Show $\exists V_{1}, V_{2} \subset V$ such that $V=V_{1} \cup V_{2}$ and $\gamma\left(G\left(V_{1}\right)\right)+\gamma\left(G\left(V_{2}\right)\right)=\gamma(G)$.
(ii) Show $\exists V_{1}, V_{2} \subset V$ such that $V=V_{1} \cup V_{2}, V_{1} \cap V_{2}=\emptyset$, and $\gamma\left(G\left(V_{1}\right)\right)+\gamma\left(G\left(V_{2}\right)\right)>\gamma(G)$ (Hint: Let $G\left(V_{1}\right)$ be a maximum complete subgraph of G).

Proof. The first part is rather easy. Color G with $\gamma(G)$ colors. Let V_{1} be the set of vertices of G colored with a particular color (among the $\gamma(G)$ colors), and V_{2} be the rest of the vertices of G. Therefore, a coloring of G also colors $G\left(V_{1}\right), G\left(V_{2}\right)$, hence, we have that $\gamma\left(G\left(V_{1}\right)\right)+\gamma\left(G\left(V_{2}\right)\right) \leq \gamma(G)$. The $<$ cannot hold in the previous inequality because otherwise we could color G with less than $\gamma(G)$ colors (using the $\gamma\left(G\left(V_{1}\right)\right)+\gamma\left(G\left(V_{2}\right)\right)$ colors of the subgraphs, and coloring the vertices of G as they were colored in $G\left(V_{1}\right), G\left(V_{2}\right)$), a contradiction to the minimality of γ.

First note that, $\gamma\left(G\left(V_{1}\right)\right)+\gamma\left(G\left(V_{2}\right)\right) \geq \gamma(G)$ is always true since a valid coloring of $G\left(V_{1}\right)$ and $G\left(V_{2}\right)$ is also a valid one for G (assuming the colors used to color V_{1} are different from those used for coloring the V_{2} vertices). We would
now prove that for $G\left(V_{1}\right)=K_{k}$, the maximum complete subgraph of G, equality cannot hold in the previous inequality. We prove it by contradiction.

Let's assume we can color both $G\left(V_{1}\right), G\left(V_{2}\right)$ with $\gamma(G)$ colors, i.e. $\gamma\left(G\left(V_{1}\right)\right)=k, \gamma\left(G\left(V_{2}\right)\right)=\gamma(G)-k$. Then, we would prove that we can eliminate one color from $G\left(V_{1}\right)$, and therefore color G with only $\gamma(G)-1$ colors, a contradiction to the minimality of $\gamma(G)$. Suppose, w.l.o.g., we color $G\left(V_{1}\right)$ with colors $1, \ldots, k$ and $G\left(V_{2}\right)$ with colors $k+1, \ldots, \gamma(G)$. Then, w.l.o.g., we would eliminate color 1 from $G\left(V_{1}\right)$ and color the vertex colored with color 1 (only one such vertex exists since $G\left(V_{1}\right)$ is a complete graph) with say (w.l.o.g.) color $\gamma(G)$.

Let v be the vertex colored with color 1 in $G\left(V_{1}\right)$. We then consider all the neighbors of v in G that belong to $G\left(V_{2}\right)$ and are colored with color $\gamma(G)$. Let these neighbors be w_{1}, \ldots, w_{l}. No two w vertices are connected with an edge since that would contradict to the identical coloring of these vertices. In graph theoretic terms, the set of vertices w_{1}, \ldots, w_{l} is called independent set. Each of the w vertices is not connected to at least one of the vertices in $G\left(V_{1}\right)$ (otherwise, we could get a complete subgraph of size one more). Let w is not connected to u of $G\left(V_{1}\right)$ (in case we have more than one choices for coloring w we choose one color arbitrarily).

Then, we can color this w with the color of the vertex u in $G\left(V_{1}\right)$, and repeating this for all w vertices we can finally color all neighbors w_{1}, \ldots, w_{l} of v (initially colored $\gamma(G)$) with colors taken from the set $\{1, \ldots, k\}$. Note, that some of the w might be colored with the same color, but this is admissible, since the w 's form an independent set. Now we color v with $\gamma(G)$ since this color is available (we make it available for v by recoloring all its $\gamma(G)$-colored neighbors). Now, color 1, does not participate in the coloring of G (since only vertex v was colored 1 and now is colored $\gamma(G)$), and therefore we have a $\gamma(G)-1$ coloring of G, a contradiction.

Exercise 9.16. (i) Show that the number offices in a planar graph is at most $2 n-4$, where n is the number of vertices.
(ii) Show that if a planar graph has 6 vertices and 12 edges then every face is bounded by exactly 3 edges.

Proof. (i) Recall Euler's theonethat any planar embedding of a connected graph with e edges and n vertices has f faces where

$$
f=e-n+2
$$

In a graph with k connectedeompentent, hen thesis truedor eadfomponent. Summing, we get

The external face is being counted $\mathrm{k}^{4 i m a n}$ this sum, once for each component, so

$$
\begin{aligned}
f+(k-1) & =e-n+2 k \\
f & =e-n+k+1 \\
f & \geq e-n+2
\end{aligned}
$$

Furthermore each edge contributes to only two faces, and each face is formed by at least three edges (assuming $e \geq 3$), so $e \geq \frac{3}{2} f$. Substituting, we get

$$
\begin{aligned}
f & \geq \frac{3}{2} f-n+2 \\
-\frac{1}{2} f & \geq-n+2 \\
f & \leq 2 n-4
\end{aligned}
$$

(ii) Substituting $n=6$ and $e=12$ into $f \geq e-n+2$, we find that $f \geq 8$. Suppose one of these faces has four or more edges. Then by drawing a new edge diagonally across it we can get another planar graph that has 13 edges and at least 9 faces. But this contradicts $e \geq \frac{3}{2} f$.

Exercise 9.17. Show that there exists a graph G which does not contain K_{4} as a subgraph but requires at least 4 colors for a vertex coloring.

Proof. An example is a wheel like graph. The outside cycle is of odd length and therefore requires three colors. A fourth is needed for the center point and its spikes.

Exercise 9.18. Show that if the vertices of a bipartite graph $G=(X \cup Y, E)$ have degree $\leq k$, then there exists a matching that saturates (touches) all vertices of degree k.

Proof. Let $G=(X \cup Y, E)$ be a bipartite graph, which has degree $\leq k$. We make G regular of degree k by adding extra edges and possibly extra vertices. Note, that by doing so, we add no edges incident to vertices that already have degree k. In that way, we get a k-regular graph. By the Corollary of Hall's theorem proven in class, the new graph has a perfect matching. The edges of the perfect matching that are incident to vertices of degree k in G are edges in E. If we collect these edges we get a matching that touches all vertices of degree k in G .

Exercise 9.19. An independent set is a set offertices such that no two are connected by an edge. Let $i(G)$ be the maximum size of all independent sets in a graph G and $\gamma(G)$ be its chromatic number. Show that

$$
i(G) \cdot \gamma(G) \geq n
$$

where n is the number of vertices, δG.
Proof. In every coloring of $\operatorname{with} \not \approx(G)$ colors, the set of vertices colored the same form an independent set. Let the colors used in a minimuncoloring of \mathcal{G} be $1, \gamma(G)$. Let V_{k} be the set of vertices of G colored with color k. We have that $\sum_{k=1}^{\gamma(G)}\left|V_{k}\right| \in n$ whesen isthe nunder of yerticesof G and $|\cdot|$ represents the cardinality of a set. Since each

Exercise 9.20. Show that theredist. graphs $G_{1}=\left(V, E_{1}\right), G_{2}=\left(V, E_{2}\right)$ where $G_{1} \cup G_{2}=\left(V, E_{1} \cup E_{2}\right)=K_{2 k}$ (again, $K_{2 k}$ is the complete gaph on γk vertices), such that $\gamma\left(G_{1}\right)=2$ and $\gamma\left(G_{2}\right)=k$.
Proof. Take k vertices from $K_{2} \mathcal{R}^{2}$ and form a complete bipartite graph $K_{k, k}$ with the other k vertices (this complete bipartite graph has k^{2} edges). We can color $K_{k, k}$ with two colors. The rest of $K_{2 k}$, when we delete the edges of $K_{k, k}$, becomes disconnected and the two connected components of it are two complete graphs K_{k}. We can color them using k colors (use the same k colors to color both of them). We know that $\gamma\left(K_{k}\right)=k$, and therefore our two graph G_{1}, G_{2} are: $G_{1}=K_{k, k}$ and $G_{2}=K_{2 k}-K_{k, k}$.

Earlier in another problem we presented an example, such that equality holds in the equality $\gamma\left(G_{1} \cup G_{2}\right) \leq \gamma\left(G_{1}\right)$. $\gamma\left(G_{2}\right)$.

Exercise 9.21. A path is an alternating sequence of vertices and edges such that no vertex appears twice. Given two vertices $u, v \in V$ of a graph $G=(V, E)$, consider all possible paths from u to v and let $l(u, v)$ be the length of the longest one. Define $l(G)=\max l(u, v)$. Show that in a connected graph $G=(V, E)$, any two paths of length $l(G)$ have a vertex in common.

Proof. Suppose $P_{1}=\left\{u_{1}, \ldots, u_{l}\right\}$ and $P_{2}=\left\{v_{1}, \ldots, v_{l}\right\}$ are two maximum length paths in G that are vertexdisjoint. Any pair of vertices in G have a path between them, so we can find a u_{i} and v_{j} such that the path between them has no intermediate vertices from either P_{1} or P_{2}.

Assume without loss of generality that $i, j \geq l / 2$ (we can always reverse the labelings along the paths to achieve this). Then the walk $u_{1}, u_{2}, \ldots, u_{i}, \ldots, v_{j}, v_{j-1}, \ldots, v_{1}$ is a path and has length at least $l+1$, contradicting our assumption the P_{1} and P_{2} were maximum.

Exercise 9.22. Show that if an undirected graph $G=(V, E)$ (with no self loops or multiple edges) has more than $\frac{1}{2}(n-1)(n-2)$ edges, then it must be connected.

Proof. Assume that G is not connected. We can therefore separate V into two non-trivial partitions V_{1} and V_{2}, where $V=V_{1} \cup V_{2}$ and E contains no edges from $V_{1} \times V_{2}$. The maximum possible number of edges in an vertexgraph is $\frac{n(n-1)}{2}$ (each of n vertices is connected to $n-1$ other vertices, so there are $n(n-1)$ end points and half as many edges). But $\left|V_{1}\right|\left|V_{2}\right|$ of those potential edges cannot appear in G. Since $\left|V_{1}\right|+\left|V_{2}\right|=n$ and both sets are nonempty, that product is at least $n-1$ (the minimum of $x(n-x)$ on the range $1 \leq x<n$). Thus the number of edges in an n vertexunconnected graph is at most

$$
\frac{n(n-1)}{2}-(n-1)=\frac{1}{2}(n-1)(n-2)
$$

Exercise 9.23. How many different (up to rotation) de Bruijn sequences of length 8 are there? Construct a de Bruijn sequence of length 32 (Use Eulerian vale arguments in each case).

Proof. The number of distinct debiuijn sequences of length 8 (excluding those obtainable by rotations) corresponds to the number of closed Euleĝion walks in the four vertexdeBruijn graph. This is seen to be two (11101000 and 11100010), depending on whethercthe loop between the 01 and 10 vertices is taken before or after visiting the 11 vertex. (Note these two sequences arg each. ant er's reverse). Here is the deBruijn graph on 16 vertices. From the

indicated Eulerian tour we can construct the deBruijn sequence 01111100110001001010110111010000.

Exercise 9.24. Show that for every undirected multigraph $G=(V, E)$ there exists a closed walk that covers every edge of the graph exactly twice.

Proof. Take G and create a modified multigraph $G^{\prime}=\left(V, E^{\prime}\right)$ where E^{\prime} is just E with every edge repeated. Clearly every vertex in G^{\prime} has even degree. G^{\prime} therefore has a closed Eulerian walk, which when mapped back to G crosses every edge exactly twice.

Exercise 9.25. Show that binary Gray codes exist for every n (n is the length of a word of the code).

Proof. This is shown by induction on n. The basis where $n=1$ is trivial as 0,1 suffices. Now assume the hypothesis is true for $n=k$. Let $u_{1}, u_{2}, \ldots, u_{2^{k}}$ be a Gray code. Construct the code $0 u_{1}, 0 u_{2}, \ldots, 0 u_{2^{k}}, 1 u_{2^{k}}, 1 u_{2^{k}-1}, \ldots, 1 u_{1}$. This is a Gray code for $n=k+1$ since each pair of adjacent strings differ in only one bit. This is shown by induction on n. The basis where $n=1$ is trivial as 0,1 suffices. Now assume the hypothesis is true for $n=k$. Let $u_{1}, u_{2}, \ldots, u_{2^{k}}$ be a Gray code. Construct the code $0 u_{1}, 0 u_{2}, \ldots, 0 u_{2^{k}}, 1 u_{2^{k}}, 1 u_{2^{k}-1}, \ldots, 1 u_{1}$. This is a Gray code for $n=k+1$ since each pair of adjacent strings differ in only one bit.

Exercise 9.26. Prove the following version of Dirac's theorem. If we have an undirected connected graph $G=(V, E)$ such that for any two non-adjacent vertices u, v we have that $d(u)+d(v) \geq n(d(w)$ is the degree of a vertex w in $G)$, then G must have a Hamiltonian cycle.

Proof. The argument is virtually identical to that used for Dirac's theorem in class. Add additional edges to G until no more can be added without forming a Hamiltonian cycle. Let x and y be two non-adjacent vertices. There must be a Hamiltonian path $x=z_{1} \rightarrow z_{2} \rightarrow \ldots \rightarrow z_{n-1} \rightarrow z_{n}=y$. If for some $2 \leq j \leq n$ we have x adjacent to z_{j} and y adjacent to z_{j-1} then $x=z_{1} \rightarrow z_{2} \rightarrow \ldots \rightarrow z_{j-1} \rightarrow z_{n}=y \rightarrow z_{n-1} \rightarrow \ldots \rightarrow z_{j} \rightarrow z_{1}=x$ is a Hamiltonian cycle. But if there is no such j then the degree of y can be at most $(n-1)-d(x)$ which contradicts the assumption that $d(x)+d(y) \geq n$.

Exercise 9.27. Show that every bipartite graph $G=(X \cup Y, E)$ has a matching that saturates all vertices of maximum degree (in X or Y).

Proof. Let $G=(X \cup Y, E)$ be a bipartite graph, Which has degree $\leq k$. We make G regular of degree k by adding extra edges and possibly extra vertices. Note, that bydoing so, we add no edges incident to vertices that already have degree k. In that way, we get a k-regular graph ${ }^{B} y$ the Corollary of Hall's theorem proven in class (multigraph case), the new graph has a perfect matching. The edges of the perfect matching that are incident to vertices of degree k in G are edges in E. If we collect these edgeeye get a matching that touches all vertices of degree k in G .

Exercise 9.28. Show that if $G \mathbf{S}(V, E)$ is an n vertexgraph with $n=2 r$ for some integer r, and the degree $d(x)>r$ for every vertexx $\in V$, then evex edge E is included in some perfect matching.

Proof. Since the undirgeted gfaph has an en number onertices a perfect matching is feasible. Suppose we want to show that a particular ede say $\{x, y\}$ isun sone partictlar pefect matching M. One edge of this matching will be edge $\{x, y\}$. We rick theother effes astollow?

Each veptex of G eriginelly hadedegree) at leastr + 10mere $n=2 r$. We remove from G the vertices x, y and all edges adjacent to etor y. Ohe resumg glaph G^{\prime} फas $n_{s}-2=2 r-2$ vertices and each vertex in this graph has degree at least $r-1$, simee the degree $\partial \mathfrak{D}_{\text {a }}$ vertex conatected only to either x or y is decreased by 1 while the degree of vertices adjacent to both x and y is decreased by, \&For graph G^{\prime} we have $2 r-2$ vertices and each one has degree at least $r-1$, therefore, from Difac's theorem G^{\prime} has Haritonian cycle. Since the cycle is of even length we get a matching on these $2 r-2$ vertices by picking every othedge of the Hamiltonian cycle. This gives a matching of size $r-1$ which along with $\{x, y\}$ gives a甲érfeganatchig M for G. Since edge $\{x, y\}$ was chosen arbitrarily, we get a proof for our problem.

Exercise 9.29. Suppose $G=(\forall, E)$ is a graph with matchings M and M^{\prime} where $\left|M^{\prime}\right| \geq|M|+k$. In the graph $\left(V,\left(M-M^{\prime}\right) \cup\left(M^{\prime}-M\right)\right)$,
(i) What is a non-trivial lower bound on the number of alternating chains with both end points saturated by M^{\prime} ?
(ii) If M^{\prime} is a maximum matching, what must be true of all the alternating chains?

Proof. Let \triangle denote the symmetric difference of two sets, i.e $M \triangle M^{\prime}=\left(M-M^{\prime}\right) \cup\left(M^{\prime}-M\right)$.
i) Since M^{\prime} has at least k matched edges more than M, and since isolated points, cycles and alternating chains of even length have the same number of matched edges of M and M^{\prime} in $M \triangle M^{\prime}$, then only alternating chains with both end points in either $S(M)$ or $S\left(M^{\prime}\right)$ may contribute one more edge in M and M^{\prime} respectively. Let c and c^{\prime} be the number of such chains respectively $\left(c, c^{\prime} \geq 0\right)$. Since M^{\prime} has at least k edges more than M we must have that $c^{\prime}-c \geq k$ and therefore $c^{\prime} \geq k$.
ii) If M^{\prime} is a maximum matching we can't get a matching of size at least one more than M^{\prime} and so, among the alternating chains in $M \triangle M^{\prime}$ we can't have alternating chains where both end-points are in $S(M)$, since otherwise by flipping the edges of that chain we can get a matching of size one more than M^{\prime}, a contradiction to the maximality of M^{\prime}.

Exercise 9.30. Show that an n vertexgraph with more than $\frac{1}{2}(n-1)(n-2)+2$ edges must have a Hamiltonian cycle.
Proof. We use in this problem the result of that if for all pairs of non-adjacent vertices u, v of G we have $d(u)+d(v) \geq n$ then G must be Hamiltonian. Suppose we have a graph G which has at least $\frac{1}{2}(n-1)(n-2)+2$ vertices. We prove that way.

Assume for contradiction that the graph is not Hamiltonian. Then there must exist a pair of non-adjacent vertices such that $d(u)+d(v)<n$ since, otherwise all pairs of non-adjacent vertices are as in the statement of a prior problem and therefore a Hamiltonian cycle exists, a contradiction to our assumption. We now find an upper bound on the number of edges G might have. The $n-2$ vertices of G other than u, v may be at most connected in a complete graph fashion and among them we might have at most $\frac{1}{2}(n-2)(n-3)$ edges. Vertex u is connected to $d(u)$ of these vertices and v to $d(v)$, since u and v are not connected each other. Therefore, the maximum number of edges in G is

$$
|E| \leq \frac{1}{2}(n-2)(n-3)+d(u)+d(v) \leq \frac{1}{2}(n-2)(n-3)+n-1 \leq \frac{1}{2}(n-1)(n-2)+1
$$

since we assumed that $d(u)+d(v)<n \Rightarrow d(u)+d(v) \leq n-1$. But we have at least $\frac{1}{2}(n-1)(n-2)+2$ edges, a contradiction. Therefore no pair of non-adjacent vertices with $d(u)+d(v)<n$ exists, and the graph has thus a hamiltonian cycle.

Exercise 9.31. Suppose $G=(X \cup \mathcal{Y E})$ is a bipartite graph where for all $x \in X d(x) \geq k$, and for all $y \in Y d(y) \leq 2 k$. Show G has a matching of sizeent least $\frac{|X|}{2}$.

Proof. Take a set A of X dertices There are at Rast $|A| k$ edges leaving A and since every vertexof $R(A)$ must have degree at most $2 k$, wemust hage that $R(A) \mathcal{Y}^{\prime} A \mid / 2$. We now take an extra copy of Y, let it be Y^{\prime}, and we add new edges between vexices in Xeand y^{5} so thathe getween bend Y^{\prime} is an exact copy of G. In this way, for every set A of X we dotble the angeepA ind Y^{\prime} ad thefore $\left.\mid \mathscr{R} A\right)\left|\geq 2 \frac{|A|}{2}=|A|\right.$. Therefore the resulting graph G^{\prime} has a complete matching. Let y^{\prime} be the forme dio Y^{\prime} of vertex of Y (i.e. we connect y^{\prime} to X the same way we connected y to X in origifit graba G. We Dompete matehing of G^{\prime}, let it be M. If both y and y^{\prime} are in $S(M)$ for some vertex y of Y, we deletelfom the dage ind dent te y^{\prime}. If y^{\prime} is in $S(M)$ but not y, let the edge incident to y^{\prime} be $\left(x, y^{\prime}\right)$. Then we delete this dge from M and wadd to edge (x, y). These actions are legal since if $\left(x, y^{\prime}\right)$ is an edge in G^{\prime} so is (x, y). We then repett the above farevery vertexin $Y \cup Y^{\prime}$ and the resulting matching M may be of size at least $|X| / 2$ and this bound \mathbb{P} achisued int initial matching M contains as many pairs of image vertices y and y^{\prime} as possible.

Exercise 9.32. Two Latin squaresare distinct if they differ at any position. Show that the number of distinct $n \times n$ Latin squares is at least $n!(n-1)!\ldots 2$!. (Hint: Prove that a regular degree k bipartite graph has at least k ! different perfect matchings).

Proof. We first show how we can fill a Latin Square of order $n \times n$ by using a bipartite graph representation of the problem. We get a bipartite graph $G=(X \cup Y, E)$ where $|(\mid X)=|(\mid Y)=n$ and let each of the $x_{i} \in X$ corresponds to column i and y_{j} corresponds to number j and we would like to fill legally this Latin Sqaure with numbers 1 thru n. Initially we connect every vertex x_{i} of X to every vertex y_{j} of Y and get a complete bipartite graph, which is regular of degree n. We find a perfect matching in this graph (we know such a matching exists). Let it be M_{1}. If $\left(x_{i}, y_{j}\right)$ is an edge in this matching, then we fill the $i-t h$ column of the first row of the Latin Square with number j. We repeat this for every other matched edge and we therefore at the end of this step have filled the first row of the Latin Square. We delete the matching from the regular degree n graph and thus get a regular degree $n-1$ degree graph and repeat this procedure for the remaining rows.

If a regular k-degree graph has at least k ! perfect matching (we prove that this holds below) then we can choose a matching and fill the first row of a Latin Square in at least n ! possible ways, the second row in $(n-1)$! ways, and so on, so that we finally get the desired lower bound.

We prove now that a regular degree k simple bipartite graph $G(X \cup Y, E)$ has at least k ! perfect matchings. We will actually prove a weaker result. The proof resembles the proof of Hall's theorem. We prove the lower bound using simultaneous induction on k and $|X|$ on the statement 'if every vertex in X of G has degree at least k and G has a perfect matching, then G has at least k ! perfect matchings'.

Suppose that for every set A such that $\emptyset \neq A \neq X$ we have $|R(A)|>|A|$. Pick any vertex in X, say without loss of generality vertex x. Since x has degree k, we have k choices among the edges incident to x, to add to a perfect matching. Let (x, y) be one of the edges. Then we delete from G the x, y vertices and all edges incident to them. The resulting graph is such that for every set B of $X-\{x\}$ we have $|R(B)| \geq|B|$ as in Hall's theorem, i.e. we get a complete matching for this graph and a perfect matching for the original graph which includes edge $\{x, y\}$. Every vertex in $X-\{x\}$ of the resulting graph has degree at least $k-1$ and from the inductive hypothesis has at least $(k-1)$! complete matchings. Each of these matchings combined with one of the k choices of the edge $\{x, y\}$ give a complete matching for G i.e. we get that at least $k(k-1)!=k$! perfect matching exist.

Now if there exists a set A_{0} such that $\left|A_{0}\right|=\left|R\left(A_{0}\right)\right|$, following the arguments in the proof of Hall's theorem we claim that there exists a complete matching between A_{0} and $R\left(A_{0}\right)$ and between $X-A_{0}$ and $Y-R\left(A_{0}\right)$ and these two partial matching give a complete matching for G. From the inductive hypothesis, each vertex in A_{0} has degree k and assuming the bipartite graph is simple (no multiple edges) we get at least k ! complete matchings between A_{0} and $R\left(A_{0}\right)$ and therefore for G.

Exercise 9.33. Show that for every graph ' we have that $\gamma(G) \geq \frac{n^{2}}{n^{2}-2 m}$ where, n, m are the number of vertices and edges of G. You may use, if you wish, Gauchy's inequality

$$
\left.\left(d^{2} C_{4}\right) \ldots+a_{k}^{2}\right)\left(b_{1}^{2}+\ldots+b_{k}^{2}\right) \geq\left(a_{1} b_{1}+\ldots+a_{k} b_{k}\right)^{2} .
$$

Proof. Let $V_{1}, \ldots V_{\gamma(G)}$ be a partition of G 's vertices according to some $\gamma(G)$ coloring of the graph. G can contain no edges from $V_{i} \times V_{i}$ for and of the subsets. Consider the $n \times n$ adjacency matrix for G. There are n^{2} entries, all but $2 m$ of which are 0 (consumer the diagonal entries to be 0 . These 0 entries include all those corresponding to edges between vertices from the sane $V^{\text {tot hus }}$
Cauchy's inequality tellies chasing atulthe bes to bed)

Combining these two relation, we get

$$
n^{2}-2 m \geq \frac{n^{2}}{\gamma(G)}
$$

from which the desired result follows.
Exercise 9.34. Show that the following inequalities hold for a graph G and its complement \bar{G} :

$$
\begin{gathered}
\gamma(G)+\gamma(\bar{G}) \leq n+1 \\
n \leq \gamma(G) \gamma(\bar{G})
\end{gathered}
$$

where n is the number of vertices of G.
Proof. We show that $\gamma(G)+\gamma(\bar{G}) \leq n+1$ by induction on n. A one vertexgraph and its complement both have chromatic number one, so base case is trivial. Now assume the relation holds for all graphs of size $n-1$ and consider an n vertexgraph G. Let x be some arbitrary vertex of G, and let G^{\prime} be the graph obtained by deleting x and its incident edges from G. By induction we know that $\gamma\left(G^{\prime}\right)+\gamma\left(\bar{G}^{\prime}\right) \leq n$. Clearly $\gamma(G) \leq \gamma\left(G^{\prime}\right)+1$ and $\left.\gamma(\overline{(} G)\right) \leq \gamma\left(\bar{G}^{\prime}\right)+1$ as we
can always color x differently from all other vertices in G^{\prime} or \bar{G}^{\prime} to obtain a legal coloring. If one of those inequalities is strict, then we have $\gamma(G)+\gamma(\bar{G}) \leq \gamma\left(G^{\prime}\right)+\gamma\left(\bar{G}^{\prime}\right)+1 \leq n+1$, and the relation holds. Thus the only remaining case is when both $\gamma(G)=\gamma\left(G^{\prime}\right)+1$ and $\gamma(\bar{G})=\gamma\left(\bar{G}^{\prime}\right)+1$. The former implies that the degree $d(x) \geq \gamma\left(G^{\prime}\right)$, since otherwise x cannot be adjacent to all colors in G^{\prime}, and may be colored with one already present. Similarly the latter implies $d(x) \leq(n-1)-\gamma\left(\bar{G}^{\prime}\right)$ as otherwise x would have fewer than $\gamma\left(\bar{G}^{\prime}\right)$ neighbors in \bar{G}^{\prime}. These two inequalities imply

$$
\gamma\left(G^{\prime}\right) \leq(n-1)-\gamma\left(\bar{G}^{\prime}\right)
$$

Combined with the previous inequalities this yields

$$
\gamma(G)+\gamma(\bar{G}) \leq(n-1)+2=n+1
$$

which proves the theorem.
To show $n \leq \gamma(G) \gamma(\bar{G})$, consider any coloring of G with $\gamma(G)$ colors. Clearly some color appears on at least $\frac{n}{\gamma(G)}$ vertices. None of these vertices are adjacent in G, so \bar{G} contains the complete subgraph on these vertices. This implies

$$
\gamma(\bar{G}) \geq \frac{n}{\gamma(G)}
$$

from which the claim immediately follows.
Exercise 9.35. If $G=(X \cup Y, E)$ is a bipartiţ Dddph of degree Δ then for every $p \geq \Delta$ there exist p disjoint matchings $M_{1}, M_{2}, \ldots, M_{p}$ such that $E=M_{1} \cup M_{2} \cup \ldots \cup M_{p}$ and for $1 \leq i \leq p$ we have that:

$$
\left\lfloor\frac{|E|}{p}\right\rfloor \leq\left|M_{i}\right| \leq\left\lceil\frac{|E|}{p}\right\rceil
$$

where $\lfloor x\rfloor$ ($\lceil x\rceil$ respectively) ifte largest (smallest) integer less (greater) than or equal to x.
Proof. We showed in class finat fina bipartite gaph $\chi(G) \leq \Delta$. Thus we can color the edges of G with p colors, and each color class will foom a matching soma possibly empty). Thus there do exist p disjoint matchings whose union is E. To show their sizes cal be batancedot suffees to prove the claim that if $M, N \subseteq E$ are two disjoint matchings with $|M|>\mid N$ then the exisf tisjoigomatahings and with $M^{\prime} \cup N^{\prime}=M \cup N$, but with $\left|M^{\prime}\right|=|M|-1$ and $\left|N^{\prime}\right|=|N|, 1$ So i 1η has two orchore efges than N, dte can decrease the difference, and hence we can take any $M_{1}, \ldots, M_{\text {R }}$ rid cause noyrair differ by mare than one. A

Now let's prove the ctaimo Eachormponent of $=(X \cup Y, M \cup N)$ is either an even cycle alternating in M and N, a path alternating in M aod N, (A) an isodted eftex. If $|M|>|N|$, there must be an alternating path beginning and ending with edgesfrom Swatl edes from M to N and vice versa along that path.
Exercise 9.36. Suppose we wante consuct a solid polyhedron using n pentagons (not necessarily regular), so that exactly three pentagons meet q10a poinit. Por what values of n is this feasible?
Proof. This is an application of EQer's theorem on a closed surface $(f=e-v+2)$. We can think of such a polyhedron as a planar graph where the vertices are the points where three pentagons meet, the edges are the lines between adjacent pentagons, and the faces are the pentagons themselves. Each vertex has exactly three edge endings, so $3 v=2 e$. Each edge borders exactly two faces, so $2 e=5 f$. Substituting into Euler's formula we get

$$
f=\frac{5}{2} f-\frac{2}{3}\left(\frac{5}{2} f\right)+2
$$

Solving this gives $f=12$, so there must be exactly 12 polygons forming the polyhedron (as in for example a regular dodecahedron).

Exercise 9.37. A forest is a graph composed of the union of disjoint trees. Show that an n vertexforest of p trees has $n-p$ edges.

Proof. Let the vertexdisjoint trees be T_{1}, \ldots, T_{p}, with sizes (number of vertices of each tree) $n_{i} i=1, \ldots p$ each, such that $\sum_{i} n_{i}=n$ (because of the vertexdisjointness). Then, the number of edges in the forest of trees is equal to $\sum_{i}\left(n_{i}-1\right)=n-p$.

Exercise 9.38. Given a graph G, the weight of a path is the sum of the weights of edges belonging to that path. Define the MAXIMUM PATH problem as follows: Given a graph G, find a simple path (ie. a path with no cycles) that has maximum weight.
(i) Give an efficient algorithm for the MAXIMUM PATH problem on acyclic graphs.
(ii) It is believed that no efficient algorithm exists for testing whether an arbitrary graph has a Hamiltonian path. Based on this fact show that you don't expect there to be an efficient algorithm that solves the MAXIMUM PATH problem in the general case.

Proof. (i) Apply Floyd's Algorithm to our graph (it doesn't matter if we have negative weights since no problemcausing negative weight cycles exist). Since the graph is acyclic a path between two vertices is maximal and minimal simultaneously, so the shortest path algorithm is a maximum path algorithm as well for acyclic graphs.
(ii) Take an arbitrary graph, put weight 1 on each edge of it, and if a MAXIMUM PATH algorithm for general graphs exists apply this algorithm to this graph. If the graph has a hamiltonian path between two of its vertices then the MAX PATH algorithm will return a path with weight $n-1$ (if MAX PATH gives a path of weight $<n-1$ then no Hamiltonian path exists). Therefore, an efficientallgorithm for the MAX PATH problem for general graphs, will give immediately an efficient algorithm for the HamDonian problem (but we believe no such efficient algorithm exists).

Exercise 9.39. Show, by a slightly more careful analysis than the one given in class, that

$$
r(k, k) \geq \frac{k}{e \sqrt{2}}^{2 \frac{k}{2}}
$$

where $e=2.71 \ldots$..
Proof. The number of $₫$ Rertex (abeledgraphowith a k-clique (which by symmetry is the same as the number of n vertex graphs with a k independent sate is angst \circlearrowright

This comes from the observation that for possible k-clique, there are $\binom{n}{2}-\binom{k}{2}$ ways to complete the graph. To prove a lower bound for $x^{(k, k}, k$ indices $)$ show that for smaller values of n,

If fewer than half the graphs have k-clique, and fewer than half have a k-independent set, then some must have neither.

That relation is equivalent to

$$
\binom{n}{k} 2^{-\binom{k}{2}}<\frac{1}{2},
$$

which is certainly true if

$$
\frac{n^{k}}{k!} 2^{-\binom{k}{2}}<\frac{1}{2}
$$

Substituting for n and expanding k choose 2 , the left hand side becomes

$$
\frac{k^{k} 2^{\frac{k^{2}}{2}}}{e^{k} 2^{\frac{k}{2}} k!} \cdot \frac{2^{\frac{k}{2}}}{2^{\frac{k^{2}}{2}}}=\frac{k^{k}}{e^{k} k!}
$$

By Stirling's formula we know

$$
k!\geq\left(\frac{k}{e}\right)^{k} \sqrt{2 \pi k} e^{\frac{1}{12 k+1}} \geq\left(\frac{k}{e}\right)^{k} \sqrt{2 \pi k}
$$

And so the left hand side is at most $1 / \sqrt{2 \pi k}$, which is indeed less than $\frac{1}{2}$ for $k \geq 1$.
Exercise 9.40. Show that there exists a tournament on n vertices that has no transitive subtournament of size $\lceil 2 \log n+$ 17.

Proof. Let T be the class of all tournaments on n vertices, i.e. $|T|=2\binom{n}{2}$ and let T_{S} be the class of subsets of T which contain a transitive subtournament of size s. Then

$$
T_{s}=\cup_{A \subseteq\{1, \ldots, n\}|A|=s} \cup_{\sigma} \text { an ordering over } A \quad \tau_{A, \sigma}
$$

 out of n points, the second the number of orderings (permutations) on s points (and each of them gives a transitive tournament on s vertices) and the last term is just $\tau_{A, \sigma}$ for fixed A, σ. Then,

$$
\frac{\left|T_{s}\right|}{|T|} \leq\binom{ n}{s} s!2^{-\left(\frac{s}{2}\right)}<\frac{n^{s}}{s!} s!2^{-\left(\frac{s}{2}\right)}=n^{s} 2^{-s(s-1) / 2}
$$

The last term is smaller than 1 if

$$
n^{s} \text { คी }
$$

or equivalently $s \geq\lceil 2 \log n+1\rceil$. Thereforen evén for the smallest possible value of s we can find a tournament with no transitive subtournament of that size.

Exercise 9.41. We give here the definition of the generalized Ramsey number $r_{l}\left(k_{1}, \ldots, k_{l}\right)$ as the smallest value of n so that if we arbitrarily color edges of the complete graph K_{n} with l colors (say $\{1, \ldots, l\}$) then for some index i there exists a complete subgioph ofsize k_{i} whose edges are all colored with color i.

Show that for $\left.r_{l}(3)=(3, \ldots)^{3}\right)\left(\right.$ ie. $\left.k_{i}=y_{i} \in\{1, \ldots, l\}\right)$ we have that:

Proof. We use anduction on l. The fesult fivially कolds dor $l=1$ and for $l=2$ we use the result given in class for $r(k, k)$ in the base case k. Nopsuppose thathold for all values of l up to $l-1$. We are then going to prove that $r_{l}(3) \leq e l!+1$ rake the complete graph onx $+1=\{$ elt $]+1$ vertices. Pick a point x. This points has n edges incident to it. Since
这

We got the third term fro@ the seend 解 because the $l+1$ first terms of the sum are integers and the missing terms, if one uses the remainder R_{l}, hichogives an upper bound on the sum of all terms from the $i=l+1$-st one to infinity) of the Taylor expansion of el! sump up to at most $\frac{e^{\theta}}{l+1}<1,0 \leq \theta \leq 1$. We thus get that among the n edges incident to x there must exist a set of $\lfloor e(l-1)!\rfloor+1$ edges colored the same color, say, without loss of generality color l. Let the other end points of all these edges incident to x form set X. If there exists an edge, among the edges between the points in X, colored l, a triangle colored l is found. Otherwise, all the edges in the subgraph on the points of X are colored with $1, \ldots, l-1$ colors and the size of X is $\lfloor e(l-1)!\rfloor+1$ and therefore from our inductive hypothesis we are done. This gives that indeed $r_{l}(3) \leq\lfloor e l!\rfloor+1$.

Exercise 9.42. Show that there exists a graph that requires at least four colors for a vertex coloring but it does not contain K_{4} as a subgraph.

Proof. In the graph shown below, the loop of length 5 requires 3 colors for any vertex coloring of it since it's of odd length. Therefore the central vertex requires a fourth color since it is connected to every vertex of the loop. By inspection the graph does not contain K_{4} as a subgraph.

Exercise 9.43. Consider arrangements in a line of a collection of r characters where one designated character appears k times, and each of the remaining $r-1$ characters appears once. Assuming $k \leq r$, how many such arrangements are there where no two occurrences of the designated character are consecutive?

Proof. First consider arranging the $r-1$ characters that appear just once. This can be done in $(r-1)$! ways. Now there are r slots (including the beginning and the end) where we can insert instances of the repeated character. We may place one instance in any such slot, but no more than one. Thus the total number of arrangements

$$
(r-1)!\binom{r}{k}
$$

Exercise 9.44. Show that if G is an undirected connected graph with n vertices and m edges, then G has at least $m-n+1$ cycles. (Two cycles are considered distinct if they differ in at least one edge).

Proof. Fix a spanning tree of graph G (such a spanning tree exists since G is connected). Let T be this tree. It has $n-1$ edges, and there are $m-n+1$ edges of G not in T. If we add any edge e among these $m-n+1$ edges to T it introduces a cycle (and for different e we get different cycles). Therefore since we have $m-n+1$ different e edges and each one introduces a different cycle, G has at least $m-n+1$ different cycles.
Exercise 9.45. Suppose an $n \times n$ table has the finss m rows, as well as the first entry in row $m+1$, filled with integers from 1 to n, where no number appears twice im any one row or column. Show that the table can be completed to form a Latin square.

Proof. Consider just the first m rows 0 the table. As we saw in class this can be completed to form a Latin square. Such a Latin square must have somerow from $m+1$ to n that has the same entry in column 1 as row $m+1$ of the table (since each number from 1 to 1 must appear once in column 1). If we switch that row with row $m+1$ in the Latin square, we get one that is a•cempletion of the table. (Another way of solving this is observing that every edge of a regular bipartite graph is ingrudedive some perfect matching).
Exercise 9.46. Givehaprocedure tafind ainimem weight spapming tree in a graph, show how one can instead find a spanning tree the has munceig amonghosespaning trees containing a fixed given forest as a subgraph.
Proof. Let $\sigma=(V, E)$ and sypposs $\mathscr{B}_{1}, \ldots 0^{V} V_{f}$ aré comected components of the forest $F \subseteq E$ (possibly including isolated vert ces) ©ontracte to fom anew gråh G^{\prime} whose vertices are the sets V_{i}, and whose edges are $\left\{\left(V_{i}, V_{j}\right) \mid V_{i} \times\right.$ $\left.V_{j} \cap E \neq \emptyset\right\}$ (ine somquair oferticos in V durd V_{j} are adjacent in G). Let the weight of such edges be the minimum weight of any edges between V_{i} ad V_{j};owsiast run the minimum spanning tree algorithm on G^{\prime} and combine its ouput with the forest to orm a spanning tree G in the obvious manner. That is if the MST includes edge $\left(V_{i}, V_{j}\right)$, the spanning tree for G will ©clude the cheapest edge between a vertexin V_{i} and a vertexin V_{j}.

Clearly what we prodice conains F_{2} a subgraph. And it will be connected (as each component of F is conected by edges from G^{\prime}) and have 0 cyes (as there can only be one path between components of F), and hence be a spanning tree. Furthermore any sparning tree for G containing F can be constructed in this manner from a spanning tree for G^{\prime}, and the cost is just a constant amount more (the weight of F). Thus this spanning tree is minimum.

Exercise 9.47. Give an example of a regular degree three graph that has no perfect matching.
Proof. The graph shown below is a regular degree-3 graph on 16 vertices and does not have a perfect matching. The reason for the latter is quite simple. The graph consists of a central vertex and three symmetric components of 5 vertices each. For a perfect matching to exist, the fifth vertex of one of the 3 components must be matched to the central vertex (while the other four vertices can only be matched to vertices within the component). Then, the fifth vertices of the other two components can't be matched to each other or to any other vertex of the graph i.e no perfect matching exists in G.

Exercise 9.48. Show that there is an ordering of the decimal numbers of length $n(00 \ldots 0-99 \ldots 9)$ where each pair of cyclicly adjacent numbers differs in only one digit.

Proof．This is a slight generalization to（i），which again we show by induction on n ．If the hypothesis is true for $n=k$ let $u_{1}, u_{2}, \ldots, u_{10^{k}}$ be a Gray code．Construct the code that begins $0 u_{1}, 0 u_{2}, \ldots, 0 u_{10^{k}}, 1 u_{10^{k}}, 1 u_{20^{k}-1}, \ldots, 1 u_{1}$ ， continues $2 u_{1}, 2 u_{2}, \ldots, 2 u_{10^{k}}, 3 u_{10^{k}}, 3 u_{2^{10^{k}}-1}, \ldots, 3 u_{1}$ ，then has $4 u_{1}, 4 u_{2}, \ldots, 4 u_{10^{k}}, 5 u_{10^{k}}, 5 u_{2^{10^{k}}-1}, \ldots, 5 u_{1}$ ，and so on up to $8 u_{1}, 8 u_{2}, \ldots, 8 u_{10^{k}}, 9 u_{10^{k}}, 9 u_{2^{10^{k}}-1}, \ldots, 9 u_{1}$ ，This is a Gray code for $n=k+1$ since each pair of adjacent strings differ in only one bit．

Exercise 9．49．Show that all deBruijn graphs have Hamiltonian cycles．A deBruijn graph is defined as $G=\{V, E\}$ where $V=\left\{\alpha_{1} \ldots \alpha_{n} \mid \alpha_{i} \in\{0,1\}\right\}$ and $E=\left\{\left(\alpha_{1} \ldots \alpha_{n}, \alpha_{2} \ldots \alpha_{n+1}\right) \mid \alpha_{i} \in\{0,1\}\right\}$ ．

Proof．Let G_{n} be the de Bruijn graph of 2^{n} vertices where an Eulerian cycl e corresponds to a de Bruijn sequence of all strings in $\{0,1\}^{n+1}$ ．In the special case where $n=1$ this graph clearly has a Hamiltonian cycle $(0 \rightarrow 1 \rightarrow 0)$ ． Otherwise，consider a consider the de Bruijn sequence that includes all strings in $\{0,1\}^{n}$ ．Each substring of n bits from that sequence is a vertexin G_{n} ．Every two adjacent substrings $\alpha_{1} \ldots \alpha_{n}$ and $\alpha_{2} \ldots \alpha_{n+1}$ are vertices that are adjacent in n ．Thus this de Bruijn sequence describes a sequence of edges in G_{n} that is a walk，touches every vertex（since every substring is in the sequence），touches each vertexexactly once（no substring appears more than once），and is closed． This is a Hamiltonian cycle．

Exercise 9．50．Show that every regular，degree 3，Hamiltonian graph has exactly 3 edge－disjoint perfect matchings． A graph is Hamiltonian if it possesses a Hamiltonian cycle．

Proof．Let $G=(V, E)$ be a 3－regular，Hamiltoヘึ⿵冂 graph．Since every vertex has degree 3 and the sum of the degrees of all the vertices is an even number，the number of vertices of the graph must be even．We know the graph has a Hamiltonian cycle，let it be C ．From this flamiltonian cycle，we can get 2 edge disjoint matchings，one by taking every other edge of the cycle（and we saturate every vertex because we have an even number of them），the other by taking the edges that are left on the cycle．By deleting C from G ，we decreased the degree of every vertex by 2 ，i．e．every vertex has degree 1，and this is khe third matching，edge disjoint from any previous one．Since the degree of every vertex is 3 ，we can have at mosh edge disjoint perfect matchings．
Exercise 9．51．A chesseng is on thedrper square of an $8 x 8$ chessboard（shown below），and a Queen is on the lower right square，She Kingwisherto vis the Queen the lower right square，and he can move to any adjacent
 to the Queen？Explaingur answer ingraph theorefise termo．

Proof．Wexan findra solation thethis peolem ifinerexists a hamiltonian path from the upper left corner to the lower right corner of the chessboard？We ger a gkiph $G \mathcal{E}(V, E)$ modelling the problem by representing every square with a vertex and the at mast four possider mone from square with edges to adjacent vertices．From the chessboard，we can see，that a move fromone square to itsadjacent ones flips the color of the square（diagonal moves are not allowed）． If there were to exist a Haniftonian path drom King＇s initial position to the Queen＇s position it should have been of length 63．But after 63 noves（grif oddwomber）the color of King＇s initial square is flipped，i．e．the King must be on a black square（since the color of its initial square was white），but the Queen is sitting on a white square．Therefore it＇s not possible for the King to meet the Queen and visit all the squares of the chessboard exactly once en route to the Queen（when diagonal moves are not allowed）．

Exercise 9．52．Let $G=(V, E)$ be an undirected connected graph such that for every two vertices u, v we have that $d(u)+d(v) \geq n(|V|=n)$ ，where $d(w)$ is the degree of vertex w ．Show that for an even n, G has a perfect matching （i．e．a complete matching that saturates all the vertices of the graph）．

Proof．One must first prove that under the restriction that $d(u)+d(v) \geq n$ ，graph G must have a Hamiltonian cycle． The proof is identical to the Dirac＇s Theorem proof（note that there，we only needed the fact that the sum of the degrees of two non－adjacent vertices is at least n ，and this condition holds for this problem too）．Therefore，G has a Hamiltonian cycle and since it has an even number of vertices，we can find a perfect matching by deleting from the cycle every other edge．What is left is a matching that saturates all the vertices of G ，i．e．a perfect matching（and what has been deleted is a second perfect matching！）．

Exercise 9.53. Let $X=\{1,2, \ldots, n\}$, and let X_{r} denote the set of all subsets of X of cardinality r. Use Hall's Theorem to prove that: a) For $r<n / 2$, there exists a 1-1 function $f_{r}: X_{r} \rightarrow X_{r+1}$, such that $A \subset f_{r}(A)$ for every $A \in X_{r}$. b) For $r>n / 2$, there exists a 1-1 function $g_{r}: X_{r} \rightarrow X_{r-1}$, such that $g_{r}(A) \subset A$ for every $A \in X_{r}$.

Proof. a) We draw a bipartite graph $G=(\mathscr{X} \cup \mathscr{Y}, \mathscr{E})$ with $\mathscr{X}=\mathscr{X}_{\nabla}$ and $\mathscr{Y}=\mathscr{X}_{\nabla+\infty}$. For an $A \in \mathscr{X}$, and $B \in \mathscr{Y}$ we draw an edge from A to B iff $A \subseteq B$. The degree of every such A vertex is $n-r$ (we can increment A to a set of size $r+1$ by filling the extra position in $n-r$ ways) while the degree of every B vertex is $r+1$ (there are $r+1$ ways we can delete an element from a set of size $r+1$ to get a set of size r). We now get a set $S \subseteq \mathscr{X}$. Every element in S (S is a set of sets) is joined to $n-r$ elements in $R(S)$, and every element in $R(S)$ is joined to at most $r+1$ elements is S. Following the proof technique that proved that an r-regular bipartite graph has a perfect matching, we claim that the edges going out of S, which are $|S|(n-r)$ are among the ones going into $R(S)$ and the latter ones are at most $|R(S)|(r+1)$, and we thus get $|S|(n-r) \leq|R(S)|(r+1)$. We also have that $r<n / 2$ (and therefore $(n-r) \leq(r+1)$, which finally shows that $|R(S)| \geq|S|$, i.e. Hall's theorem holds and G has a complete matching that saturates \mathscr{X}. If we map every element $A \in \mathscr{X}$ to its matched element $B \in \mathscr{Y}$, we get the desired 1-1 function f_{r} (every element in \mathscr{X} is mapped to exactly one element in \mathscr{Y} and no two elements in \mathscr{X} are mapped to the same \mathscr{Y} element).
b) Part (b) is a direct consequence of part (a) when we replace each set by its complement with respect to X.

Exercise 9.54. Show that in a bipartite graph $G \notin(X \cup Y, E)(|Y| \geq|X|)$, a necessary and sufficient condition for there to exist a matching that simultaneously samates X and $B \subset Y$ is that:
a) X can be matched into Y, and
b) B can be matched into X.

Proof. One direction is straightforward. If there exists a matching that simultaneously saturates X and B this matching matches X into Y and B is also matched into X. The other direction is interesting.
Let M_{1} be a matching that saturate all the vertices in X, and M_{2} a matching that saturates $B \subset Y$. If M_{1} saturates all vertices in B, i.e. $B \subseteq S\left(\Delta A \cap\right.$, \min we are done, M_{1} is the desired matching. Suppose now that there exists a vertex $v \in B$ that is not satarated $B y$ y M_{1} we wrepeat the procedure to be described below, for all such vertices in B). Our initial candidate for a maching that saturatestboth band Bo M_{1}. We'll modify this matching to get a new one that saturates X, 人ll previously safurated B vertices, pirs v. othen take the longest alternating chain that alternates between edges in $M_{2}-M_{1}$ andedgesin $M_{1} \subset M_{2}$, starting ióm v with an edge from $M_{2}-M_{1}$ (such an edge exists due to the existence of M_{2}). Letw be, otherendpgint of has chain C. Vertex w can't be in X because otherwise we can extend C by pickig the edge i M_{1} that saturates \mathscr{A}, a contradiction to the maximum length of C. It can't also be in B for a similaryreason (we can extend it then thar Ran edge of M_{2}). The only case left is for w to be a point in $Y-B$ (and C is of even Pength then). this we the the the of thain C (so that M_{2} edges become M_{1} ones, and vice versa). In that we wheren the new M_{1} matching, vertex v (a previously unsaturated by M_{1}, B vertex) and drop w off the matching. All other vertices of C are still in $S\left(M_{1}\right)$ but thru different edges. We repeat this procedure for all other vertices in B still consaturated by the new M_{1} matching, and the M_{1} we'll finally get will saturate both X and B.

Exercise 9.55. Show whether the graph $G=(V, E)$ defined as follows is planar.

$$
\begin{aligned}
& V=\left\{x_{0}, \ldots, x_{6}, y_{0}, \ldots, y_{6}\right\} \\
& E=\bigcup_{0 \leq i \leq 6}\left\{\left(x_{i}, x_{i+1 \bmod 7}\right),\left(y_{i}, y_{i+1 \bmod 7}\right),\left(x_{i}, y_{7-2 i \bmod 7}\right)\right\}
\end{aligned}
$$

Proof. This graph G is not planar, as demonstrated by an embedding of $K_{3,3}$ into G.

Exercise 9.56. Suppose the entries in a $p \times q$ rectangle are filled in with integers from 1 to $n(p, q \leq n)$ with no integer appearing more than once in any row or column. Show that this can be extended to an $n \times n$ Latin square if and only if each number appears in the $p \times q$ rectangle at least $p+q-n$ times.

Proof. we used the corollary to Hall's theorem for regular bipartite graphs to show that any legal setting for the first p rows can be extended to complete a Latin square. Thus we need to show that we can complete the remaining $n-q$ columns of the first p rows if and only if each number appears at least $p+q-n$ times in the first q columns of those rows.

Suppose some number k appears fewer than $p+q-n$ times in the first q columns of the first p rows. In the remaining $n-q$ columns there may be at most $n-q$ more occurrences of k (otherwise two would be in the same column). Whatever we do, therefore, k must appear fewer than $(p+q-n)+(n-q)=p$ times in the first p rows, so the rectangle cannot be extended to a Latin square.

Otherwise consider the bipartite graph $G=(X \bigcup Y, E)$ where $X=\{1, \ldots, p\}, Y=\{1, \ldots, n\}$, and $E=\{(i, j) \mid$ the i 'th row of the rectangle does not contain the number $j\}$. Each vertexin X has exactly $n-q$ neighbors. Since every number appears in at least $p+q-n$ rows, every vertexin Y has at most $p-(p+q-n)=n-q$ neighbors. As shown in class we can edge color a bipartite graph of this degree with $n-q$ colors (call the colors $\{1, \ldots, n-q\}$). If edge (i, j) is colored k, we complete the first p rows by placing the number j in the entry at row i and column $q+k$. Note that each vertexin X must have exactly one incident edge from each color class, so this will indeed assign an entry to each remaining square in the first p rows. A number cannot be placed twice in the same column as this would imply it had two incident edges of the same color, nor can a number be placed twice in the same row with a valid coloring.

Exercise 9.57. Let K_{n} denote the n vertexcomplet graph. Show that

and

$$
\chi\left(K_{2 k}\right)=2 k-1
$$

$$
\chi\left(K_{2 k+1}\right)=2 k+1
$$

Proof. (i) We first prove that $\left(K_{2 k}\right)=2 k-1$. We use color 1 to color the edges shown in Figure 1 below, where one of the $2 k$ points is located en thees center of a circle and the other $2 k-1$ are on it. By rotating the edges one step clockwise around the cen@ryoint we get a net of edges and we color them using color 2. We repeat the rotations until we color all the edges with colors front,.. $2 k-k$. Eachoof these rotations uses a different set of edges and all the rotations exhaust abledgese'Frons Ping ibtheorem thiszeathe best possible coloring we can find. (ii) We start

with Figure 2 and rotate its edges around the center of the cycle (no point on the center now), to get all $2 k+1$ possible colorings (note, that for each rotation, one vertex doesn't have an edge incident to it colored with the color used for the edges of this rotation). Now, we only have to prove that this number of colors is minimum, i.e. $\chi\left(K_{2 k+1}\right)=2 k+1$. Using the same argument with that presented in class for K_{5}, if we try to color $K_{2 k+1}$ with only $2 k$ colors, since the total number of edges is $k(2 k+1)$, there must exist $k+1$ edges colored with the same color. This is a contradiction, since it implies a matching of size $k+1$ in a graph with $2 k+1$ vertices.

Exercise 9.58. Choose n points on a circle so that no three chords meet at a point, and draw all possible chords. Use Euler's theorem to determine the number of regions into which the circle is divided by the chords.

Proof. This is an application of Euler's theorem for planar graphs $(f=e-v+2)$. The number of regions of the circle is the number of interior faces of a graph, whose vertices are the points on the circle and the points of intersection inside the circle, and whose edges are the lines between vertices. For each set of four points outside the circle there is an additional point inside the circle where two chords cross. Thus there are n points on the circle and $n(n-1)(n-$ $2)(n-3) / 24$ points inside the circle; so $v=n+n(n-1)(n-2)(n-3) / 24$. Each of the outside points has degree $n+1$ (for a chord going to each other point, and the sides of the circle), and each of the inside points has degree 4 . Thus the total degree is $n(n+1)+n(n-1)(n-2)(n-3) / 6$, and $e=n(n+1) / 2+n(n-1)(n-2)(n-3) / 12$. Now,

$$
\begin{aligned}
f & =\frac{n(n+1)}{2}+\frac{n(n-1)(n-2)(n-3)}{12}-n-\frac{n(n-1)(n-2)(n-3)}{24}+2 \\
& =\frac{n(n-1)}{2}+\frac{n(n-1)(n-2)(n-3)}{24}+2
\end{aligned}
$$

The answer is one less than this (since we do not include the outside face), which is

$$
\frac{n(n-1)}{2}+\frac{n(n-1)(n-2)(n-3)}{24}+1
$$

Exercise 9.59. The Doughnut Problem. Draw a Kdgraph on the surface of a doughnut (also known to mathematicians as a torus).

Proof. I lack the drawing skills to draw ifusing a computer!
Exercise 9.60. The construction of cottage requires the performance of certain tasks. The following table lists the various tasks with their priority rettionships. The last column gives the tasks that are linked to the given task, in the sense that they must be completed before the given task is performed. Two fictitious tasks α (start) and ω (finish), are added. α is linked to A and is linked to ω.

Work starts at time and it required tan and a schedule which minimizes the total duration of the work, i.e. the
 Let t_{i}, T_{i} denote the earlest, lates timeto stakt Yaski己 Thenothe slack, m_{i}, of task i is defined to be the difference between the eardest and the letest ting (i.e, $m_{i}=t_{i}$). The tasks whose slacks are zero are called critical tasks. If

What is the ninimunduration t_{0} alhe peoject. Find the earliest and the latest (if the duration of the project is to be t_{ω}) possible dater of each task of the ghon sqheduling problem by modelling it as a graph. Which of the tasks are critical? How cansyou solve thes seneraf problen, when a task graph, like the one described in the table, is given?

Proof. Let us model the problem as graph. The vertices of the graph will be the tasks of the scheduling problem, and if task i is joined to task (θ that i noust be completed before we perform task j), we draw a directed edge from i to j with weight the duration task . The graph for this problem is given in the Figure below. The graph is obviously acyclic and in general it should beso, otherwise some task will wait itself to be completed before it is performed, an absurdity. Let us call this graph $G=(V, E, D)$, where D is the distance matrix that contains the distances assigned to the edges of G (and its elements are d_{j} distances, the time to complete task j). Note that D will be an one dimensional matrix, since the distance assigned to edge (i, j) depends on i only (the duration of this task) and not on j.
We'll first find t_{i} for all i. Let j runs through all vertices j such that (j, i) is an edge in G. Then, the earliest time t_{i} to start task i is therefore given by

$$
t_{i}=\max _{j,(j, i) \in E}\left(t_{j}+d_{j}\right)
$$

which says that the earliest time to start t_{i} is the maximum among all j, such that j precedes i in G, of t_{j} (the earliest time to start j) plus d_{j} (the duration of task j). This is (if we replace the max by a min) the dynamic programming formula, presented in class, that finds shortest paths from a given vertex (and in our case this vertex will be α) to all the other vertices of an acyclic graph (be careful, the algorithm I presented in section for finding longest paths in undirected acyclic graphs does not work, as it was presented there, it might be the case that we have more than one directed paths from i to j, but no path from j to i exists to give a cycle). Since we have max instead of min, we find
longest paths here, instead of shortest ones. And that's the answer to our problem. Therefore, to find t_{i} for all i we use this formula and get:

$$
t_{\alpha}=0, t_{A}=0, t_{B}=7, t_{D}=7, t_{C}=10, t_{G}=15, t_{E}=15, t_{F}=15, t_{H}=16, t_{J}=19, t_{K}=21, t_{\omega}=22
$$

That way we have also found $t_{\omega}=22$. Now we compute T_{i} for all i for the given duration t_{ω}.
If the duration of the project is given by t_{ω}, then the latest time T_{i} to start task i is given by

$$
T_{i}=\min _{j,(i, j) \in E}\left(T_{j}-d_{i}\right)
$$

with $T_{\omega}=t_{\omega}$. This says that the latest time to start i is the minimum, among all j such that the execution of task j assumes the completion of i, of the difference between T_{j}, the latest time to start j, and the time to complete i. We can thus work backwards, starting from ω, and find T_{i} for all i. We also note that $T_{i}=t_{\omega}-L(i, \omega)$, where $L(i, \omega)$ gives the length of the longest path from i to ω.

$$
T_{\alpha}=0, T_{A}=0, T_{B}=11, T_{D}=7, T_{C}=14, T_{G}=20, T_{E}=19, T_{F}=15, T_{H}=16, T_{J}=19, T_{K}=21, T_{\omega}=22
$$

If we take the difference $T_{i}-t_{i}$ for all i we can find the critical tasks (the ones with slack 0). Hence, the critical tasks are A,D,F,H,J,K.

Exercise 9.61. Construct, for every $k \geq 1$, a graph with a unique perfect matching so that every vertex of this graph is of degree at least k.
Proof. We use an inductive construction to builda a ${ }^{\text {aph }} G_{k}$ with a unique perfect matching, and where every vertexhas degree at least k. To do this we use two copies of G_{k-1} as subgraphs. (Note that for $k=1$ we can form G_{1} simply by joining two points with a single edge). Fgr' larger k, build G_{k} as indicated in the drawing, where the new vertices x and y are connected to all the vertices 오 eparate copies of G_{k-1}. Since G_{k-1} has a perfect matching it must have an even number of vertices. Thus the onky way we can have a perfect matching in G_{k} is to match x with y. The existence and uniqueness of the matching fol $\sigma \mathrm{w}$ from the uniqueness and existence of perfect matchings for G_{k-1}.

Exercise 9.62. Find the minhat number of vertices a graph must have to ensure there are at least two different 3-cliques or at least two differen-independert sets, or a 3-clique and a 3-independent set. Two cliques (resp. independent sets) are diferenthithey dffer bid least one vertex
Proof. Six verticesare necessary and suficient to guarantee aso has two 3-independent sets and/or 3-cliques. It is easy to construct a five rertex Graph ehout this property (e.g. consider a cycle). We now prove that six vertices are sufficient. L\& $\left\{^{2} x_{1}, \ldots, x_{6}\right\}$ dethoseartice As shown in elass there must be at least one 3-clique or 3-independent set. Without loso of gentralic assume that $\left.x_{1}, x_{2} e_{3}\right\}$ form a 3-clique. If there are edges between each pair in $\left\{x_{4}, x_{5}, x_{6}\right\}$ then those vertices forin angther 3-ctique set, and e're done. Otherwise suppose (w.l.o.g.) there is no edge between x_{4} and x_{5}. If any $y<\left\{x_{1}, x_{2}, x_{3}\right\}$ ndjacent to ngither x_{4} nor x_{5}, then $\left\{y, x_{4}, x_{5}\right\}$ is a 3 -independent set, and we are done. Otherwise assume each such is adjacent to α_{4} and/or x_{5}. Then either x_{4} or x_{5} (say the former w.l.o.g.) is adjacent to two vertices in $\left\{x_{1}, x_{2}, x_{3}\right\}$ day x_{2}, x_{2} But then $\left\{x_{1}, x_{2}, x_{4}\right\}$ is a 3-clique.
Exercise 9.63. Show that if colorthe points of the plane with 3 colors, there will be two points, 1 inch apart, with the same color.

Proof. Consider four points as below that are the vertices of two equilateral triangles with one inch sides. If the claim is not true then point y must have the same color as point x (since points u and v must have the other two colors). Now consider rotating this figure around point x. All the points on the circle traced by the path of point y must be assigned the same color. But this circle as radius $\sqrt{3}$, and hence contains points that are an inch apart.
Exercise 9.64. Show that any n vertexgraph G with more than $\frac{n^{2}}{4}$ edges has $\gamma(G) \geq 3$.
Proof. Suppose that $\gamma(G)<3$. Then, $\gamma(G)$ is either 1 (a trivial case that holds for trivial graphs with no edges, but we have at least one edge) or 2. For the latter case, $G=(V, E)$ is bipartite. Let $X \cup Y$ be a bipartition of the vertices in G. The maximum number of edges of G is then $|X||Y|=|X|(n-|X|)$. This quantity is maximized when $|X|=|Y|=n / 2$, and therefore G can have at most $n^{2} / 4$ edges, a contradiction (we have more than this number of edges). This proves that $\gamma(G) \geq 3$.

Exercise 9.65. There are rs couples at a dance. The men are divided into r groups, with s men in each group, according to their ages. The women are divided into r groups, with s women in each group, according to their heights. Show that r couples can be selected such that every age group and height group is represented.

Proof. Consider the standard bipartite graph for the marriage problem where the men are on one side, the women on the other, and there are edges between the two members of a couple. Now condense the women into r super vertices, where each super vertexconsists of the s women of the same height. Do likewise for the men according to age. For each edge in the original graph there is an edge between the two super vertices containing the man and the woman of the original couple. The condensed graph is a regular degree s bipartite graph (as each super vertexhas s edges coming out of it). By the corollary to Hall's theorem it has a perfect matching (actually the condensed version may be a multigraph, but Hall's theorem still applies). The edges of such a perfect matching represent r couples with the desired property that each age and height is represented.

Exercise 9.66. Consider the problem of covering an 8×8 chess board with dominos, where each domino occupies two adjacent squares along the same row or column, and no two dominos overlap. It is possible to completely cover the chess board with 32 dominos. If two diagonally opposite corner squares are removed, prove or disprove that the remaining 62 squares can be covered with 31 dominos.

Proof. This problem is a variation of another similar problem. The two corners that are removed must be of the same color. So, if we remove them (and, say they are white squares) there are left 30 squares of one color (white) and 32 squares of the other color (black). Every doming piece covers, because of the way it is placed on the chessboard, one black and one white square. Since we hatg 32 black squares, there's no way we can cover them with 31 domino pieces.

Exercise 9.67. Prove that in a connected planar graph where every vertex has degree at least three, there exists a region with fewer than six edges in its boundary.

Proof. Assume this is not truege. for some such graph every boundary has at least six edges). We use Euler's theorem $(f=e-v+2)$ to derive acontradiction. Since very vertexhas degree at least three, the total degree in the graph ($2 e$) must be at least $3 v$. Subsituting e_{e} int \dot{f} ler's theorem gives us $f \geq \frac{1}{2} v+2$. Since every face has at least six edges, the total number of fare borders ($2 e$ ance efach edgeorders two faces) must be at least $6 f$. Substituting $e \geq 3 f$ into Euler's theoren givesus $f=f$ - $0+2$, and herne $f \leq 10-1$. Thus we have a contradiction.
Exercise 9.08. Let $G=$ (Le be (uy) bipهutite

(where $d(x)$ is the degree verter in $G_{\delta} \alpha_{G_{i}}(x)$ is the degree of x in G_{i}, and \rfloor and \rceil represent the floor and ceiling functions respectively).

Proof. We draw a new graph G^{\prime} £fom graph G. For every vertex x in the graph we split this vertex into $\left\lceil\frac{d(x)}{k}\right\rceil$ vertices, so that $\left\lfloor\frac{d(x)}{k}\right\rfloor$ of them have degree k and the last one has degree $d(x)-k\left\lfloor\frac{d(x)}{k}\right\rfloor$. Then every edge incident to x, touches now one of the new vertices. Every vertex of this new graph is of degree at most k, and from a very well known Corollary, the edges of this new graph is the union of k matchings (or $\chi\left(G^{\prime}\right)=k$). Now we identify the vertices of G^{\prime} that correspond to the same vertex of G, and then, the k matchings, let them be M_{1}, \ldots, M_{k}, correspond to k subgraphs of G, call them G_{1}, \ldots, G_{k}. Since M_{i} is a matching, there is at most one edge of it incident to any of the $\left\lceil\frac{d(x)}{k}\right\rceil$ vertices of G^{\prime} that correspond to x in G. Therefore $d_{G_{i}}(x) \leq\left\lceil\frac{d(x)}{k}\right\rceil$. On the other hand, there are $\left\lfloor\frac{d(x)}{k}\right\rfloor$ vertices of G^{\prime} corresponding to x of G of degree k. There must be an M_{i} edge saturating each one of these $\left\lfloor\frac{d(x)}{k}\right\rfloor$ vertices, and hence, $d_{G_{i}}(x) \geq\left\lfloor\frac{d(x)}{k}\right\rfloor$. This proves the theorem, and G_{i} are the desired subgraphs.

Exercise 9.69. In how many ways may you line up twenty (distinct) boys and ten (distinct) girls so that no two girls stand next to each other?

Proof. There are 20! ways to permute the boys. However this is done, there are 21 slots between boys where one (but more) girl may be positioned (the front and back count as valid slots. We complete the process by choosing 10 of these slots, and ordering the girls within them. Thus the answer is

$$
\binom{21}{10} 10!20!=\frac{21!20!}{11!}
$$

Exercise 9.70. Using generating functions (and not induction) prove the following equality for all $n \geq 0$, where f_{n} is the n'th Fibonacci number:

$$
f_{0}+f_{1}+f_{2}+\ldots+f_{n}=f_{n+2}-1
$$

(Recall that f_{n} is the coefficient of x^{n} in the generating function $F(x)=\frac{1}{1-x-x^{2}}$).
Proof. Multiplying both sides by x^{n} and summing for $n=0$ to ∞, for the right hand side we get

$$
\sum_{n=0}^{\infty} f_{n+2} x^{n}-\sum_{n=0}^{\infty} x^{n}=\frac{F(x)-x-1}{x^{2}}-\frac{1}{1-x}
$$

$$
\underset{\sim}{2} \cdot \frac{\frac{1}{1-x-x^{2}}-x-1}{x^{2}}-\frac{1}{1-x}
$$

$$
=\frac{1-x+x^{2}+x^{3}-1+x+x^{2}}{x^{2}\left(1-x-x^{2}\right)}-\frac{1}{1-x}
$$

$$
=\frac{2+x}{1-x-x^{2}}-\frac{1}{1-x}
$$

$$
=\frac{(2+x)(1-x)-\left(1-x-x^{2}\right)}{\left(1-x-x^{2}\right)(1-x)}
$$

$$
\frac{F(x)}{1-x}
$$

For the left hand ide weset

Exercise 9.71. Solvethe fotwing aivide conduer recurrence relation exactly for the case where n is a power of two

$$
S(n)=S(n / 2)+3 n, \quad S(1)=1
$$

Proof. Let $n=2^{k}$. Then from $S(2)=S(n / 2)+3 n, S(1)=1$ we get:

$$
\begin{aligned}
S(n)=S\left(2^{k}\right) & =S\left(2^{k-1}\right)+32^{k} \\
& =S\left(2^{k-2}\right)+32^{k-1}+32^{k} \\
& =S\left(2^{k-3}\right)+32^{k-2}+32^{k-1}+32^{k} \\
& =\vdots \\
& =S\left(2^{0}\right)+3\left(2^{1}+2^{2}+\ldots 2^{k}\right) \\
& =1+3\left(2^{1}+\ldots+2^{k}\right) \\
& =1+3 \cdot 2 \cdot\left(2^{k}-1\right)=6 \cdot 2^{k}-5=6 n-5
\end{aligned}
$$

Exercise 9.72. How many of the integers 1,2,..,100, are divisible by at least one of 2, 3, or 7 ? (Show your work, don't use brute force).

Proof. Apply the inclusion/exclusion principle. If S_{n} is the number of integers between 1 and 100 divisible by n, the answer is

$$
S_{2}+S_{3}+S_{7}-S_{6}-S_{14}-S_{21}+S_{42}=50+33+14-16-7-4+2=72
$$

Chapter 10

Probability

10.1 Probability Spaces

Definition 10.1 (Experiment or Trial). An experiment (or trial) is any procedure that can be repeated and generate a well-defined set of outcomes.

Definition 10.2 (Sample Space). The set of Owcomes of an experiment is known as sample space.
Definition 10.3 (Element of Sample Space). An element of the set that is sample space is known as a sample point. That is, an outcome of an experimentislan element of the sample space.

Definition 10.4 (Event). An exer is a set of outcomes that is a subset of the sample space of an experiment.
Definition 10.5 (Mutuallyexclusidevents). Two events A, B are mutually exclusive if and only if $A \cap B=\emptyset$. Three events or more are mutucty exasive beverivo of them is mutually exclusive.
Definition 10.6 (Finite Probability Space). Leds be finite odmple space $S=\left\{s_{1}, \ldots, s_{n}\right\}$. A probability model or finite probability pace is obtaned by bsignivg to eqeh poinh $s_{i} \in S$ a real number p_{i} (or $p(i)$), the probability of s_{i}, that satisfiesthe following wopertier?

- Each pistnonegatue pos 0, arad
- the sum of p_{i} is pnei.e. $D \sum_{i \leq n} p_{1} \oplus p_{2}+\ldots+p_{n}=1$.

Definition 10.7 (Equíprobablespace). Nar a finite probability space S of n sample points, if each sample point has

 the same probability as any otlor onesthe sample space is called equiprobable space.Definition 10.8 (Event probability). The probability of an event A denoted by $P(A)$ is the sum of the probabilities of the points of A.

Definition 10.9 (Event probability properties). The probability function P defined on the class of events of a finite probability space has the following properties.

- For every event A, we have $0 \leq P(A) \leq 1$,
- $P(S)=1$, and
- if events A, B are mutually exclusive $P(A \cup B)=P(A)+P(B)$.

Corollary 10.1. Let A be an event and the probability function P defined on the class of events of a finite probability space. Then $P\left(A^{\complement}\right)=1-P(A)$.

We can provide some more formal definition of a probability space.

Definition 10.10 (Probability Space). A probability space is a triplet (S, Σ, P), where

- S is a sample space that is, a set of outcomes,
- $\Sigma \subseteq 2^{S}$ is a σ-algebra on S, that is a collection of subsets containing S and closed under complement, closed under union (of a countable number of sets), and closed under intersection (of a countable number of sets), and
- P is a countably additive measure on Σ with $P(S)=1$.

The set S is known as the sample space and the elements of S are known as outcomes or elemetary events. For an event $A \in 2^{S}$, we define $P(A)$ the probability of event A. The probability of an event A is the sum of the probabilities of the elementary events of A.

If S is finite, it is a finite probability space. If S is finite and $\Sigma=2^{S}$ the probability measure is determined by its values on elementary events. Thus the probability space assigns through $p: S \rightarrow[0,1]$ a probability $p(s)$ to every element of s of S such that $p(s) \geq 0$, with $\sum_{s \in S} p(s)=1$. Then for an event $A \in 2^{S}$, the probability of the event A is the sum of the probabilities of the elements of S in A i.e. the sum of the probabilities of the elementary events that is $P(A)=\Sigma s \in A p(s)$.
Lemma 10.1. For any collection of events A_{1}

Proof. Consider

$$
\mathcal{P}\left(A_{1} \cup \ldots \cup A_{n}\right) \leq \sum_{i} P\left(A_{i}\right) .
$$

$$
B_{i}=A_{i}-\left(A_{1} \cup \ldots \cup A_{i-1}\right)
$$

Then $\cup_{i} B_{i}=\cup A_{i}$ and $P\left(B_{i}\right) \mathcal{D}\left(A_{i}\right)$ and the events B_{i} are disjoint. By additivity of the probability measure we have

Theorem 10.1 (Propertues ofevents) Concider two events A, B of probability space (S, Σ, P).
Corer P(A)=0,
and for $A \subseteq B$ we have

$$
P(A) \leq P(B) .
$$

Moreover $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.
Example 10.1. For a sample space S, and $s \in S$, we call $\{s\}$ an elementary event. Moreover \emptyset and S are also events. The impossible event or null event is \emptyset. If A, B are events so are $A \cap B$ and $A \cup B$ or A^{\complement}.

Example 10.2. An experiment is performed by throwing (tossing) a coin. The experiment is repeated twice. The combination of the results of two experiments is the experiment in question. The sample space S is $S=\{H H, H T, T H, T T\}$ and indicates the outcomes of the first and second toss of the coin: H indicates heads, T indicates tail as an outcome. $A B$ indicates that A is the outcome of the first experiment, B is the outcome of the second experiment, where A, B is H or T. Event X is $X=\{H H, T T\}$ i.e. even number of H. Event Y is $Y=\{H H, H T, T H\}$ i.e. at least one H.

Example 10.3. An experiment is performed by tossing a coin. The experiment is repeated until an H is encountered. The sample space is infinite. Why? Because $S=\{T, T H, T T H, T T T H, T T T T H, \ldots\}$.

Example 10.4. (The singular form of dice is die.) An experiment is performed by throwing a (pair of) dice and records the number indicated at the top of the dice (opposite to the base that sits on a surface). Each die has six faces with six possible numbers, one on each face of a die. Then sample space has 36 outcomes

$$
S=\{(a, b): 1 \leq a, b \leq 6\}
$$

Example 10.5. Deck of cards. A deck of card consists of 52 cards. There are 4 suits known as clubs(C), diamonds(D), hearts (H), and spades(S). Each suit contains 13 cards numbered 2 through 10, three face cards, jack (J), queen (Q), and king (K), and ace (A). The hearts and diamonds are red and spades and clubs are black.

Example 10.6. A coin is tossed twice. The number of heads is recorded. The sample space is $S=\{0,1,2\}$. The following probability model is assigned $p(0)=1 / 4, p(1)=1 / 2, p(2)=1 / 4$. Event $A=\{1,2\}$ with $p(A)=3 / 4$, and event $B=\{2\}$ with $p(B)=1 / 4$,

Example 10.7. From a deck of cards we select one card c. We define two events A and B as follows.

$$
A=\{c \text { is diamond }\}, \quad B=\{c \text { is a face card }\} .
$$

Compute $P(A), P(B), P(A \cap B)$.
Proof. $P(A)=13 / 52=1 / 4 . P(B)=(3 \sim 14) / 52=3 / 13 . P(A \cap B)=3 / 52$.
Example 10.8. A (pair of) dice istersed. The probability of any point of S is $1 / 36$. The probability that a dice is 5 if the sum is 6 is $2 / 5$. Let B be the $2(y y$ ent the sum is 6 .

$$
B=\left\{\left(1,5^{5}\right),(2,4),(3,3),(4,2),(5,1)\right\}
$$

and A be the event a disce is जhes

We have $P(\mathbb{A} \mathbb{B})=245$. This is beacase $(A \cap B)=2 \notin \delta$. This is because $P(B)=5 / 36$. And $P(A \mid B)=P(A \cap$ B) $/ P(B)$

Example 10.9 (Unitorm distribution): $B(A)=(A) / c(S)$ for all $A \subseteq S$.

10.2 Conditional Probabilities

Theorem 10.2 (Conditional Probability). Let A, B be two events of finite probability space (S, Σ, P) and $P(B)>0$. The probability that an event A occurs conditional on event B had already occurred is known as the conditional probability of A given B and denoted $P(A \mid B)$. It is given by

$$
P(A \mid B)=P(A \cap B) / P(B)
$$

Moreover

$$
P(A \cap B)=P(A \mid B) P(B)
$$

Theorem 10.3 (Generalization of Conditional Probability).

$$
P\left(A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right)=P\left(A_{1}\right) \cdot P\left(A_{2} \mid A_{1}\right) \cdot P\left(A_{3} \mid A_{1} \cap A_{2}\right) \cdot P\left(A_{4} \mid A_{1} \cap A_{2} \cap A_{3}\right) \cdot \ldots \cdot P\left(A_{n} \mid A_{1} \cap A_{2} \cap A_{3} \cap \ldots \cap A_{n-1}\right)
$$

Definition 10.11 (Properties of Independent Events). Let A, B be two events of finite probability space $(S, \Sigma, P) . A$ is independent of B if

$$
\boldsymbol{A} \text { is independent of } \boldsymbol{B} \Leftrightarrow P(A)=P(A \mid B) \text {. }
$$

From $P(A \mid B)=P(A \cap B) / P(B)$ since $P(A \mid B)=P(A)$ we have $P(A)=P(A \cap B) / P(B)$ which implies that $P(A \cap B)=$ $P(A) P(B)$. Moreover $P(B \mid A)=P(B)$.

Definition 10.12 (Independent Repeated Experiments). Let S, P be a finite probability space. A space of n independent trials is space S_{n} consisting of ordered n-tuples of elements of S with the probability of an n-tuple defined to be the product of the probabilities of its components.

$$
P\left(\left(s_{1}, \ldots, s_{n}\right)\right)=P\left(s_{1}\right) \ldots P\left(s_{n}\right)
$$

Definition 10.13 (Bernoulli Trials). An experiment has two outcome. A Bernoulli trial is the independent repetition of this experiment. Independent means the outcome of an experiment is not indepdendent of previous outcomes. One outcome is called a success and the other a failure. Let p be the probability of success and $q=1-p$ be the probability of failure. Let $B(n, p)$ denote a binomial experiment of a fixed number of Bernoulli trials. Then $B(n, p)$ denotes a binomial experiment of n repetition of independent trials with probability of success p.

Theorem 10.4. The probability of k successes in a binomial experiment $B(n, p)$ is denoted by $B(n, p ; k)$ and given by

$$
B(n n, p ; k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Corollary 10.2. The probability of onexor more success is $1-B(n, p ; 0)=1-(1-p)^{n}=1-q^{n}$, where $q=1-p$ is the probability of failure.

Corollary 10.3. We toss a (fatry coin 8 times. Thus $p=q=1 / 2$. The probability of no heads is $1 / 2^{8}=1 / 256$. The probability of at least one herd isisi- $(1-1 / 2)^{8}=1-1 / 256$.

The sample space S_{S} of ancsperiment ondial has outcofmes that might be number or might not be numbers. Think about the experiment of nosing aeorin. Sometimes instad of asing symbolic values or names to an outcome such as H or T we prefer to use oumerie valuessuch as 1 and θ respectively.

10.3 Rapodonivariables

Definition 10.14 (Random Varıable) \mathcal{A} (res) random variable X on a probability space (S, Σ, P) is a function

$$
X: S \rightarrow \mathbb{R}
$$

that is P-measurable, and assignsiumeric values to outcomes of a sample space S. That is for any $r \in \mathbb{R},\{s \in S$: $X(s) \leq a\} \in \Sigma$.)

Theorem 10.5 (Range). The range $R(S, X)$ of random variable X is the set of numeric values assigned to outcomes of a sample space S by random variable X. For function X it is the range $R(S, X)$.

Definition 10.15 (Convention). For a random variable X, when we write $X \in A$ for $A \subseteq \mathbb{R}$, we mean $\{s \in S: X(s) \in A\}$. Then,

$$
P(X \in A)=P(\{s \in S: X(s) \in A\})
$$

Example 10.10. For tossing a pair of dice sample space S has 36 ordered pairs (a, b) as elements where a shows the number (top face) of one die and b shows the number of the other die during a toss.

$$
S=\{(a, b): 1 \leq a, b \leq 6\}
$$

Random variable X is defined as follows

$$
X: S \rightarrow \mathbb{R} \quad \text { where } X(s)=X((a, b))=a+b, \quad s \in S
$$

Thus for an element $s=(a, b)$ of S, random variable X assigns a value to this element that is equal to the sum of the numbers of the faces of the two dice. The range of X is $R(S, X)=\{1,2,3,4,5,6,7,8,9,10,11,12\}$. Random variable Y is defined as follows

$$
Y: S \rightarrow \mathbb{R} \quad \text { where } Y((a, b))=\min (a, b)
$$

Thus for an element $s=(a, b)$ of S, random variable Y assigns a value to this element that is equal to the minimum of the two values of the two faces of the two dice. The range of Y is $R(S, Y)=\{1,2,3,4,5,6\}$.

Definition 10.16 (Sum and Product of a random variables). Let X, Y be two random variables on the same probability space (S, Σ, P). Then $X+Y, X \cdot Y$ and $a \cdot X, a \in \mathbb{R}$ are also random variable and functions on S defined as follows.

$$
\forall s \in S:(X+Y)(s)=X(s)+Y(s), \quad \forall s \in S:(X \cdot Y)(s)=X(s) \cdot Y(s), \quad \forall s \in S, a \in \mathbb{R}:(a \cdot X)(s)=a X(s)
$$

Likewise for any polynomial function $f(x, y, \ldots, z)$ we define $f(X, Y, \ldots, Z)$ to be a function on S defined analogously.

$$
\forall s \in S: f(X, Y, \ldots, Z)(s)=f(X(s), Y(s), \ldots, Z(s))
$$

Definition 10.17 (Expectation or mean of r.v. X). Let X, Y be two random variables on the same probability space (S, Σ, P). Then the mean or expectation of r.v. X is defined as follows.

$$
E[X]=\mu=\sum_{s \in S} X(s) p(s)
$$

Theorem 10.6. If X and are inder pariables for a finite probability space then

Proof. Let $R(S, X)$ add (S, Y) be that set of valuesittaine by X and Y respectively. The by independence we have,

Theorem 10.7. Let X, Y be r.v. and $a, b \in \mathbb{R}$. Then

$$
E[a X+b Y]=a E[X]+b E[Y]
$$

Proof.

$$
E[a X+b Y]=\sum_{s \in S}(a X+b Y)(s) p(s)=a \sum_{s} X(s) p(s)+b \sum_{s} Y(s) p(s)=a E[X]+b E[Y] .
$$

Definition 10.18 (Indicator Random Variable). For an event A we define the indicator random variable I_{A} as follows.

- $I_{A}(s)=1$ if $s \in A$, and
- $I_{A}(s)=0$ if $s \notin A$.

Theorem 10.8. For any event A, we have

$$
E\left[I_{A}\right]=P(A)
$$

Proof.

$$
E\left[I_{A}\right]=\sum_{s \in S} I_{A}(s) p(s)=\sum_{s \in A} I_{A}(s) p(s)+\sum_{s \notin A} I_{A}(s) p(s)=\sum_{s \in A} I_{A}(s) p(s)+\sum_{s \notin A} 0 \cdot p(s)=P(A)
$$

Theorem 10.9. Let $X=I_{A_{1}}+\ldots+I_{A_{n}}$. Then

$$
E[X]=E\left[I_{A_{1}}+\ldots+I_{A_{n}}\right]=\operatorname{sum}_{i} P\left(A_{i}\right)
$$

Example 10.11. The number of fixed points on a random permutation p on $\{1, \ldots, n\}$ is one. We define a random variable A with

$$
A(p)=|\{i: p(i)=i\}|
$$

Then we generate $A_{i}(p)=1$ if $p(i)=i$ and 0 othrexvise. Then $A(p)=\sum_{i} A_{i}(p)$.

$$
\left.\partial \forall A_{i}\right]=P[p(i)=i]=1 / n .
$$

and

$$
E[A]=\sum_{i} E\left[A_{i}\right]=n \cdot 1 / n=1
$$

Example 10.12. A coin is tossotwice. The sample space $S=\{H H, T H, H T, T T\}$. We count the number of heads and this becomes random varia be X. Thus $R(S, X) \overline{\bar{z}}\{0,1,2\}$. The probabilities assigned by function $f\left(x_{i}\right)=P\left(X=x_{i}\right)$ are as follows.

Then the expectation of becomes

(We thus expernalfo大 the tosses to ko H. 人
Definition 10.19 (Indep̌andentsandohip variables). Two real random variable X, Y are independent if we have for every two measurablets $\left.A_{C^{B}} B \in \mathbb{R}\right)^{\top}$

$$
P(X \in A \text { and } Y \in B)=P(X \in A) \cdot P(Y \in B) \text {. }
$$

Example 10.13. From a prior example of dice tossing. Random variable Y is defined as follows

$$
Y: S \rightarrow \mathbb{R} \quad \text { where } Y((a, b))=\min (a, b)
$$

Thus for an element $s=(a, b)$ of S, random variable Y assigns a value to this element that is equal to the minimum of the two values of the two faces of the two dice. The range of Y is $R(S, Y)=\{1,2,3,4,5,6\}$. We can compute

$$
P(Y=1)=11 / 36, P(Y=2)=9 / 36, P(Y=3)=7 / 36, P(Y=4)=5 / 36, P(Y=5)=3 / 36, P(Y=6)=1 / 36
$$

For example, $P(Y=1)$ is derived from the fact that the tosses
$(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(3,1),(4,1),(5,1),(6,1)$ have 1 as the minimum value. Furthermore the following outcomes $(4,4),(4,5),(4,6),(5,4),(6,4)$ have all minimum value equal to 4 , and so on. Thus

$$
\mu=E[Y]=1 \cdot 11 / 36+2 \cdot 9 / 36+3 \cdot 7 / 36+4 \cdot 5 / 36+5 \cdot 3 / 36+6 \cdot 1 / 36=\frac{11+18+21+20+15+6}{36}=2.527
$$

Definition 10.20 (Variance of r.v. X). Let X be a random variable on a probability space S i.e. $(R(X, S ; P=f)$. Let $f\left(x_{i}\right)=P\left(X=x_{i}\right)$ be the distribution of f. Then the variance of r.v. X is defined as follows.

$$
\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]=E\left[(X-E[X])^{2}\right]
$$

Definition 10.21 (Standard deviation of r.v. X). Let X be a random variable on a probability space S i.e. $(R(X, S ; P=$ $f)$. Let $f\left(x_{i}\right)=P\left(X=x_{i}\right)$ be the distribution of f. Then the standard deviation σ_{X} of r.v. X is defined as follows.

$$
\sigma_{X}=\sqrt{\operatorname{Var}(X)}
$$

Sometimes we write σ_{X}^{2} to indicate the variance of X for obvious reasons.
Theorem 10.10 (Markov's inequality). For r.v. X with mean μ that is non negative and every positive $r>0$ we have

$$
P(X \geq a) \leq E[X] / a
$$

Proof. If X is non negative then $X(s) \geq 0$

$$
E[X]=\sum_{X(s)} X(s) p(s)=\sum_{X(s) \geq 0} X(s) p(s) \geq \sum_{X(s) \geq r} X(s) p(s) \geq \sum_{X(s) \geq r} r p(s)=r P(X(s) \geq a)=r P(X \geq a) .
$$

Theorem 10.11 (Tsebyshev's inequalityd for r.v. X with mean μ and standard deviation σ and every positive $r>0$ the probability that X lies in the interve $\alpha \mu-r \sigma, \mu+r \sigma]$ is given by the expression below.

$$
P(|X-\mu| \leq r \sigma) \geq 1-\frac{1}{r^{2}}
$$

Equivalently,

If we repeat experinent talk about $A_{1} A_{2}, \ldots, A_{2}$, whete A_{i} isthe random soriablessociated with the i-the outcome. If the experiments are independent of each othencthen $P\left(A_{i} \Rightarrow, A_{j}=A\right)=P\left(A_{i}=x_{k}\right) P\left(A_{j}=x_{l}\right)$.
Definition 10.22 (Sample Mean, Averagê) Let be a r.v. with mean μ and standard deviation σ. Let an experiment is repeated n time prith nepetitious indenendent of each other. Let X_{i} be the random variable associated with the i-th repetition. Then the man mean orgeverage of X_{1}, \ldots, X_{n} is defined as follows.

$$
\bar{X}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}
$$

The sample mean \bar{X} is also a random variable.
Definition 10.23 (Law of Large Numbers). For any $r>0$ the probablity that the sample mean \bar{X} of n independent experiments has a value in the interval $[\mu-r, \mu+r]$ is to the limit for large n equal to 1 .

$$
\lim _{n \rightarrow \infty} P(|X-\mu| \leq r)=0
$$

10.4 Miscellanea

Fact 10.1. From prior discussion $n!\leq n^{n}$ and $n!\approx(n / e)^{n}$. Moreover

$$
(n / e)^{n} \leq n!\leq e n(n / e)^{n}
$$

Also for $\binom{n}{k}$ we have $\binom{n}{k} \leq n^{k}$ or

$$
(n / k)^{k} \leq\binom{ n}{k} \leq(n e / k)^{k}
$$

For all $k \leq n$ we have

$$
\binom{n}{k} \leq 2^{n}
$$

Furthermore for $\binom{2 n}{n}$ we have

$$
\frac{2^{2 n}}{2 \sqrt{n}} \leq\binom{ 2 n}{n} \leq \frac{2^{2 m}}{\sqrt{2 m}}
$$

Fact 10.2. For all real $x e^{x} \geq 1+x$. Moreover $(1-x)^{n}$ for $x>0$ and small $(1-x)^{n} \leq \exp -n p$. Also $1-x \geq e^{-2 x}$ if $x \leq 1 / 2$. For all $x>1$ we have $1-1 / x<1 / e$.

Theorem 10.12 (Binomial Distribution $B(n, p ; k)$). For the binomial distribution, we have that $P(X=k)=B(n, p ; k)=$ $\binom{n}{k} p^{k} q^{n-k}$, where $q=1-p$. Then

$$
\begin{gathered}
\mu=E[X]=\sum_{k} k P(X=k)=n p \\
\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]=n p q \\
\partial X X)=\sigma_{X}=\sqrt{n p q}
\end{gathered}
$$

10.5 Proof by Probabilistie Arguments

Lemma 10.3 (Birthday Problem). We have m people that have birthdays that take n values, and let for siplicity they are drawn from the set $\{1,2, \ldots x\}$. The probability that all m have different birthdays is

Proof. Let morn whe whe can also use that for $x \leq 1 / 2$ we have $e^{-2 x} \leq 1-x$ or equivalenty

Lemma 10.4 (Coupon Collector). Let $\{1,2, \ldots, n\}$ be a set of n cards (coupons). In a collection of m coupons how large should m be sort that there is at least one instance of each one of the n coupons? We will show that $m=(1+\varepsilon) n \ln n$ for some $\varepsilon>0$.
Proof. For any fixed $i \in\{1,2, \ldots, n\}$, the probability i is not chosen in m choices is given by p_{i}

$$
p_{i}=\left(1-\frac{1}{n}\right)^{m}=\exp \left(-\frac{m}{n}\right)
$$

Then the probability $p_{1} \vee p_{2} \vee p_{3} \vee \ldots \vee p_{n}$ is at most $\sum_{i} p_{i}=n \exp \left(-\frac{m}{n}\right)$. The latter probability for $m=(1+\varepsilon) n \ln n$.

$$
n \exp \left(-\frac{m}{n}\right)=n \exp (-(1+\varepsilon) \ln n)=1 / n^{\varepsilon}
$$

Anothe way to view this problem is by introducing an indicator variable $X_{i}=1$ if coupon i is never drawn and $X_{i}=0$ otherwise. The number of coupons NOT drawn is $X=\sum_{i} X_{i}$. The expected number of coupons NOT drawn is

$$
E[X]=E\left[\sum_{i} X_{i}\right]=\sum_{i} E\left[X_{i}\right]
$$

But $E\left[X_{i}\right]=1 \cdot P\left(X_{i}=1\right)=(1-1 / n)^{m}$. Thus

$$
E[X]=E\left[\sum_{i} X_{i}\right]=\sum_{i} E\left[X_{i}\right]=n(1-1 / n)^{m}
$$

For $m=(1+\varepsilon) n \ln n$ this becomes $E[X]=1 / n^{\varepsilon}$. Therefore if $E[X]<1$ there is a way that all coupons have been drawn.

10.6 Exercises

Lemma 10.5 (Coin Toss again). Toss a coin $n=2 m$ times. What is the probability of exactly $n / 2=m$ heads?
Proof. Let $p_{k}=\binom{n}{k} p^{k}(1-p)^{n-k}$ Assuming the coin is fair $p=q=1-p=1 / 2$ and thus $n=2 m$ and $n / 2=m$, we have

$$
p=\binom{n}{k} p^{k}(1-p)^{n-k}\binom{2 m}{m} p^{m}(1-k)^{2 m-m}=\binom{2 m}{m}(1 / 2)^{m}(1 / 2)^{2 m-m}=\binom{2 m}{m}(1 / 2)^{2 m} \cdot=\binom{n}{n / 2}(1 / 2)^{n} .
$$

Furthermore we use Stirling's formala for $n>10$ i.e. $n!\approx \sqrt{2 \pi n}(n / e)^{n}$

Lemma 10.6 (Randan Graph connectivity). A Atidom \&raph with edge probability p is a graph that is formed by flipping acon with probshity pand degiding tonclute an edge if it comes H and not include edge for a T outcome. Let us assume that we iwsoa friecoing q - $\mathrm{p}^{\circ} \mathrm{S} 1 / 2$. Is the graph connected?
Proof. If the grapris not conneded thex existat least two subgraphs ("components") with no edges from one the other. If one subgrapher has vertiges and the other/others G_{2} has $n-i$ vertices it means the $i(n-i)$ vertices between the two pieces are missing The probabigty that this is the case for one possible partion of i and $n-i$ is $2^{-i(n-i)}$. This is the probability the graph is NOT condected for a given split. For each value of i from 1 to $n / 2$ there are $\binom{n}{i}$ ways to pick the vertices of G_{1} and the rem@ining $n-i$ vertices are of G_{2}. The probability the graph G is not connected is the probability of the union of thoseCevents which is at most the sum of those probabilities. Thus

$$
p \leq \sum_{i=1}^{i=n / 2}\binom{n}{i} 2^{-i(n-i)} \leq \sum_{i=1}^{i=n / 2} n^{i} 2^{-i(n-i)} \leq \sum_{i=1}^{i=n / 2}\left(n 2^{-n+i}\right)^{i} \leq \sum_{i=1}^{i=n / 2}\left(n 2^{-n / 2}\right)^{i} \leq n / 2 \cdot n 2^{-n / 2}=n^{2} / 2^{n / 2}
$$

For $n / 2^{n / 2}<1$ i.e. $n>5$, the sum is a geometric sequence. Being a bit sloppy at the end we realize that $p \rightarrow 0$ as $n \rightarrow \infty$. Thus the graph almost always connected.

Lemma 10.7 (Random Graph connectivity). A random directed graph with edge probability p is a graph that is formed by flipping a coin with probability p and deciding to include an edge in one direction if it comes H and include the edge in the opposite direction for a T outcome. Let us assume that we use a biased coin with $p=a /(n-1)$ and thus $q=1-p$. What is the probability that for vertex i there is some edge directed into node i ?

Proof. Let us call p_{i} this probability. There are $n-1$ other vertices (other than i). If all of them are directed OUT of i this occurs with probability $(1-a /(n-1))^{(n-1)} \approx e^{-a}$. Thus p_{i} is given by the following equation

$$
p_{i}=1-e^{-a}
$$

What is now the probability Q that this is true for EVERY vertex?

$$
Q=\prod_{i} p_{i} \leq\left(1-e^{-a}\right)^{n}
$$

Obviously $Q \rightarrow 0$ as $n \rightarrow \infty$. node?
Lemma 10.8 (Hamiltonian cycles in tournaments). A tournament is a directed graph which has one edge between every pair of vertices in one or the other direction. Some tournament contains $n!/ 2^{n}$ Hamiltonian cycles.

Proof. For a given permutation of the vertices the probability it is a Hamiltonian cycles is $1 / 2^{n}$. There are $n!$ permutations of n vertices, so the expected number of Hamiltonian cycles is $n!/ 2^{n}$.

Lemma 10.9 (Hamiltonian cycles in tournaments). What is the expected number of Hamiltonian cycles in the random graph with edge probability $p=a /(n-1)$?

Proof. Let now i range over the n ! permutations of the n vertices of the graph. Let $X_{i}=1$ if permutation i leads to a hamiltonian cycle, and $X_{i}=0$ otherwise. Then
and

$$
E\left[X_{i}\right]=(a /(n-1))^{n}
$$

$$
E[X]=E\left[\sum_{i} X_{i}\right]=n!(a<(n-1))^{n} \approx(n / e)^{n}(a /(n-1))^{n} \approx(a / e)^{n} 1 /(1-1 / n)^{n} \approx(a / e)^{n} \cdot e \geq(a / e)^{n}
$$

Exercise 10.1. Show that there exists an matrix mands where each row has seven 1 's, but where every $\frac{n}{2} \times \frac{n}{2}$ submatrix α niatrix made thor the intesectionsesubsef $\frac{n}{2}$ of the rows and $\frac{n}{2}$ of the columns, not necessarily consecutive) comains Heastime 1.5
Proof. WQcountethe probability that ${ }^{2} \times \frac{n}{2}$ submatrix contains only 0 entries. We examine the problem for the general case where watlow 1 's a rexs and dherefore the probability we have a 1 in a row is equal to $\frac{k}{n}$. The
 with probability $\left(1-\frac{k}{n}\right)$ andain $\frac{n}{2} \times$ 但 submatrix has $n^{2} / 4$ elements.

The number of $\frac{n}{2} \times \frac{n}{2}$ submatrices equal to $\binom{n}{\frac{n}{2}}^{2}$ since we can choose $\frac{n}{2}$ rows (out of a total of n) in $\binom{n}{\frac{n}{2}}$ ways (the same holds for columnooo).

Therefore, the probability that a $\frac{n}{2} \times \frac{n}{2}$ submatrix contains only 0 elements as entries is bounded above by

$$
\binom{n}{\frac{n}{2}}^{2}\left(1-\frac{k}{n}\right)^{\frac{n^{2}}{4}}
$$

We know employ Stirling's approximation formula. We get an upperbound by ignoring the square root terms.

$$
\begin{equation*}
\binom{n}{\frac{n}{2}}^{2}\left(1-\frac{k}{n}\right)^{\frac{n^{2}}{4}} \approx\left(\frac{\left(\frac{n}{e}\right)^{n}}{\left(\frac{n}{2 e}\right)^{n / 2}\left(\frac{n}{2 e}\right)^{n / 2}}\right)^{2}\left(1-\frac{k}{n}\right)^{\frac{n}{k} \frac{k n}{4}} \leq 4^{n} e^{-\frac{k n}{4}} \tag{10.1}
\end{equation*}
$$

since we know that

$$
\left(1-\frac{k}{n}\right)^{\frac{n}{k}} \leq e^{-1}
$$

From the equation above we get that

$$
4^{n} e^{-\frac{k n}{4}}=\left(\frac{4}{e^{k / 4}}\right)^{n}
$$

For $k \geq 6$ (and therefore for $\mathrm{k}=7$) the base $\frac{4}{e^{k / 4}}$ is less than 1 and therefore equation (2) goes asymptotically to 0 when n goes to infinity. This means that the probability that a submatrix contains only 0 elements is small and therefore the probability that all submatrices contain at least one 1 is sufficiently large ie. such a matrix exists.

Exercise 10.2. Show that for sufficiently large n, there exists an $n \times n$ matrix of 0 's and 1 's where each pair of rows differs in at least $\frac{49 n}{100}$ positions.

Proof. The number of possible $n \times n$ matrices is $2^{n^{2}}$. We examine the complement of the problem ie we would like to have, for sufficiently large n, that the number of matrices with a pair of rows (at least) that differ in less than $\frac{49 n}{100}$ positions is too small (in our discussion below we would ignore constant ± 1 differences in positions of the two rows). We now estimate the number of matrices that have a pair of rows with at most $\frac{49 n}{100}$ differing positions (if we wanted to be correct this should be $\frac{49 n}{100}-1$ differing positions, but as we said we ignore such constants by overestimating).

An overestimate on the number of such matrices is the following

$$
\binom{n}{2} \sum_{i=0}^{\frac{49 n}{100}}\binom{n}{i} 2^{i} 2^{n-i} \quad 2^{n^{2}-2 n}
$$

The first term gives the choices of 2 rows out of n. The last term gives the number of ways of filling the other $n-2$ rows of the matrix. We now explainthe terms in the sum. The first term gives the number of ways of selecting i differing positions, the second term gees the number of ways of filling these positions. Note, that if we fix these i positions in the first row, we have the same positions in the second row fixed too (a 0 in one of these i positions in the first row is a 1 in the corresponding position in the second row and similarly for a 1 in the first row in one of these positions). The third term coots the number of ways of filling the $n-i$ identical positions (since they must be the same in the two chosen rows 5 . 5 .

Now we divide this expression by ${ }^{2}$ to find the probability that we have such a situation. Note that the sum is a geometric series and therefore the dominating ton is $\frac{49 n}{100}$, Sisince $2^{i} \cdot 2^{n-i}=2^{n}$ we can move 2^{n} out of the sum, which is at mo

which is

$$
\frac{\binom{n}{2}\binom{n}{\frac{49 n}{100}}}{2^{n-1}}
$$

For the $\binom{n}{\frac{49 n}{100}}$ we use Stirling's approximation formula which finally yields (after upperbounding the square root that appears in the denominator) the following expression

$$
\frac{\binom{n}{2} 2^{\alpha n}}{2^{n-1}}
$$

where $a=-\frac{49}{100} \log \frac{49}{100}-\frac{51}{100} \log \frac{51}{100}$. All logarithms are base 2 . The term $2^{\alpha n}$ is the result of writing as powers of 2 the terms $(49 / 100)^{49 / 100 n},(51 / 100)^{51 / 100 n}$ that appear in the approximation of the $\binom{n}{\frac{49 n}{100}}$ term $\left(\right.$ since $\left.b^{b n}=2^{b \log b \cdot n}\right)$.

Finally, we get that the ratio of "bad" matrices over the total number of $0-1$ matrices is equal to

$$
\frac{n^{2}}{2^{(1-\alpha) n-1}}
$$

The nominator and denominator in the above term become equal for $n \approx 116660$ and therefore for n sufficiently large (say $n \geq 150000$, where this ratio is equal to 0.002) we have that the probability of having a "bad" matrix goes to 0 , therefore the result we want to prove holds with high probability. The result, generally holds when instead of $\frac{49}{100}$ we have $\frac{1}{2}-\varepsilon$ for ε sufficiently small and positive.

Exercise 10.3. Alice and Bob have each received a sealed envelope and an assurance that each contains some money and that one contains exactly twice as much as the other. They are given the option of making the following agreement: they both open their envelopes and whoever has the more money gives it to the other person.

Alice convinces herself that taking up this option is advantageous to her by the following argument: Assume her envelope contains x amount of money. Then Bob's envelope contains either $2 x$ or $x / 2$, each possibility being with probability one half. Hence Alice's expected gain in taking up the option is

$$
\frac{1}{2} \cdot 2 x-\frac{1}{2} \cdot x=x / 2>0
$$

Since she has a positive expected gain it is worth her while to play the game. By an analogous argument Bob also concludes that taking up the option gives him ankpected gain. Surely this is a contradiction.

Identify the fallacy in the previous paragre?
Proof. Alice and Bob are mistaken in assuming that the probabilities that the other envelope contains $2 x$ and $x / 2$ are both one half. That depends on the distibution of how the envelopes were originally filled, which is unknown and by no means necessarily uniform. So for different values of x, the probability that x is the larger of the two amounts is likely to vary, in which case this expected value calculation is not correct.

Exercise 10.4. Show that foin Sofficiently large n, a random $n \times n$ bipartite graph where each possible edge is present with probability .5 is veryikely tiave a perfecmatching. (Hint: recall Hall's theorem to decide whether a bipartite graph has a perfect marchingls

Hall's theorentstates xat a bipartitegraph has a perfect matering unless there is a subset of vertices A on the left such that $|A|>(A) y$ ane shedr shoue that the probabilityothat any A has $|R(A)| \leq|A|-1$ is small. For a particular $A,\left|R(A) \downarrow A^{\prime}\right|$ only if there are O least $D^{-} \mid A N+1$ yefices on the right to which there are no edges from A. The chance that hishappensegr some A is dess than the osam of the chances it happens for any particular A. Thus

$$
\begin{aligned}
\operatorname{Pr}(\text { there }
\end{aligned}
$$

Thus for sufficiently large n, the chance that a random $n \times n$ bipartite graph does not have a perfect macthing is very small.

Proof.
Exercise 10.5. Planet CS has an n-day year. Among a population of k people of this planet find the expected number of triples of these people who have the same birthday. How large should k be for the expected value to be at least 1?
Proof. The number of triples of people is $\binom{k}{3}$ and the persons in a triple have all the same birthday with probability $\frac{1}{n^{2}}$. Therefore the expected number of triples of people having the same birthday is $\binom{k}{3} \frac{1}{n^{2}}$. This value is 1 when $k \approx c n^{2 / 3}$ for a constant c.

Exercise 10.6. If we throw n balls into n bins, what is,
a) the expected number of empty bins?
b) the expected number of bins with exactly one ball?
c) the expected number of bins with exactly two balls?

Proof. For all the parts below, let X be a random variable that takes values 1 or 0 depending on whether a bin is empty (for part (a)), contains exactly one ball (for part (b)), or exactly two balls (for part (c)). Then let Y be a random variable that counts the number of empty bins for part (a), or the balls with exactly one/two ball(s) for parts (b) and (c) respectively. It is clear that $E(Y)=n E(X)$.
a) Let's consider one bin and call it for convenience only, bin 1 . The probability that a ball falls in it is $1 / n$ (and therefore the probability that a ball does not fall in it is $1-1 / n$). The probability that none of the n balls falls into this bin is thus $(1-1 / n)^{n}$. Then for the X variable we det that $E(X)=(1-1 / n)^{n}$. Summing for the n bins we get that Y is such that: $E(Y)=n(1-1 / n)^{n} \leq n / e$.
b) Again, for bin 1, we find the probability that exactly one ball falls into that bin. Among n balls, the probability that exactly one falls into bin 1 is equax to $\binom{n}{1}(1 / n)(1-1 / n)^{n-1}=(1-1 / n)^{n-1}$. As in part (a), we get $E(X)=1 \cdot \operatorname{Pr}(X=$ $1)+0 \cdot \operatorname{Pr}(X=0)=(1-1 / n)^{n-1}$, and therefore for Y (that gives the number of bins with exactly one ball) we find that $E(Y)=n(1-1 / n)^{n-1}=\frac{n^{2}}{n-1} \times\left(C^{-1} 1 / n\right)^{n} \leq \frac{n^{2}}{e(n-1)}$.
c) As in parts (a), (b), the probaditity that bin 1 has exactly two balls is now: $\left(_{n}^{n} \begin{array}{l}n \\ 2\end{array}(n)^{2}(1-1 / n)^{n-2}\right.$, and therefore the X (the random variable that take vatues 1,0 depending on whether a given bin has exactly two ball or not) has expectation $E(X)=\binom{n}{2}(1 / n)^{2}(1-1 / n)^{n-2}$. Then for © , we that (T) $=n E(X)=n \frac{n(n-1)}{2} \frac{1}{n^{2}}\left(\frac{(1-1 / n)^{n}}{(1-1 / n)^{2}} \leq \frac{n^{2}}{2 e(n-1)}\right.$.
Exercise 10.7. Wkat is thexpectad valuof theterrinant takes value 0 or indepodentlevith probabilly a has The Rermanent of a matrix $A=\left[a_{i j}\right]$ is defined to be equal to:

Proof. We examine the ease where n, sincathe $n=1$ is trivial (expectation $1 / 2$). Every $a_{i j}$ element takes equiprobably only two values. त्र he followingtrivialy holds. $\prod_{i=1}^{n} a_{i \sigma(i)}=1$ if and only if $a_{i \sigma(i)}=1 \quad \forall i$. The probability that all $a_{i \sigma(i)}=1, \forall i$ is just $2-$ and the resultholds for all permutations σ. Then:

$$
\begin{equation*}
E\left(\prod_{i=1}^{n} a_{i \sigma(i)} 1 \cdot \operatorname{Pr}\left(\prod_{i=1}^{n} a_{i \sigma(i)}=1\right)+0 \cdot \operatorname{Pr}\left(\prod_{i=1}^{n} a_{i \sigma(i)}=0\right)=1 \cdot 2^{-n}=2^{-n}\right. \tag{10.2}
\end{equation*}
$$

We first find the expected value of the permanent. We have that:

$$
E(\operatorname{per}(A))=E\left(\sum_{\text {all permutations } \sigma \text { on }\{1,2, \ldots, n\}} \prod_{i=1}^{n} a_{i \sigma(i)}\right)=\sum_{\text {all } \sigma \text { on }\{1,2, \ldots, n\}} E\left(\prod_{i=1}^{n} a_{i \sigma(i)}\right)
$$

since the expectation of the sum is equal to the sum of the expectations. The variable $\prod_{i=1}^{n} a_{i \sigma(i)}$ is equal to 1 iff $\forall i a_{i \sigma(i)}=1$, that is with probability $\frac{1}{2^{n}}$. Otherwise, it is 0 , and therfore, $\frac{1}{2^{n}}$ is also the expectation of $\prod_{i=1}^{n} a_{i \sigma(i)}$ for each of the $n!$ distinct permutations σ). Thus we get,

$$
E(\operatorname{per}(A))=\sum_{\sigma \text { on }\{1,2, \ldots, n\}} 2^{-n}=n!\cdot 2^{-n}
$$

The computation of the determinant is very similar, useing the same observation as above. We need only to note that half the permutations are odd (and thus of sign 1) and half even (and of sign 0). (The definition of an odd or an even permutation can be found in the textbook.) Then $(-1)^{\operatorname{sign}(\sigma)}$ is half of the times 1 and the other half -1 .

$$
\left.E(\operatorname{det}(A))=\sum_{\sigma \text { on }\{1,2, \ldots, n\}}(-1)^{\operatorname{sign}(\sigma)} E\left(\prod_{i=1}^{n} a_{i \sigma(i)}\right)\right)=\sum_{\sigma \text { on }\{1,2, \ldots, n\}}(-1)^{\operatorname{sign}(\sigma)} 2^{-n}=2^{-n} 0=0
$$

We got the first equality by using the formula for the expectation of the sum of random variables, and the observation that the value of the product does not depend on the permutation chosen but only on the values of the $a_{i j}$. The second equality is due to (1), and the third comes from the fact that $n!/ 2$ permutations are even and contribute each one of them an 1 , while $n!/ 2$ are odd and contribute -1 . Another way to solve this problem is expansion by minors.
Extra Problem In a random bipartite graph (we have two sets of n vertices, the left and the right one, and a vertex of the left set is connected to a vertex of the right set with probability p, independently of the other choices), we show that the expected number of perfect matchings is $p^{n} n$!. The number of perfect matching is just the permanent of a matrix with entries $a_{i j}$ that take values 1 or 0 with probabilities p and $1-p$ respectively (and a value of 1 indicates an edge from vertex i of the left set to vertex j of the right one). A permutation is just an $1-1$ function on $\{1,2, \ldots, n\}$. Each permutation gives a perfect matching, and a given permutation appears with probability p^{n} (since an edge from vertex i of the left set to $\sigma(i)$ of the right set, for a permutation σ, appears with probability p). We have n ! permutations, therefore the expected number of perfect matchings is just $n!p^{n}$. Take $p=1 / 2$ and you have another solution for the permanent part of the problem.
Exercise 10.8. Let $G(n, p), 0 \leq p \leq 1$, be an Undirected graph on n labeled vertices, where each edge e (among the $n(n-1) / 2$ possible edges on n vertices) is included in the graph with edge probability p, independently of any other edge. If $p=\frac{(1+\varepsilon) \log n}{n}$ where $\varepsilon>0$ (therggarithms here are natural ones), show that with high probability (ie. with probability tending to 1 when $n \rightarrow \infty),(n, p)$ has no vertex of degree less than 11 .
Proof. The probability that a given vertex has degree exactly k is equal to $\binom{n-1}{k} p^{k}(1-p)^{n-1-k}$. Summing for all values of k from 0 to 10 we get the probability that a vertex has degree less than 11. If we multiply by n we get an upper bound on the probability that some verite x has degree less than 11. It suffices to prove that the latter expression (call it P) is upper bounded by a function $\varepsilon($ such fat $\varepsilon(n) \rightarrow 0$ gs $n \rightarrow \infty$. This can be proven as follows. We use $p=(1+\varepsilon) \log n / n$, $\varepsilon>0$, and thus $(1-2) \leq e^{-} \frac{n}{2}=\frac{1}{1-2}$, whin $1 /\left(\frac{1}{\varepsilon}-p\right) \& 2$. Weals use $\binom{n-1}{k} \leq n^{k}$.

where the last sub, wasobounded boveby 1 it mes dts largest term. Note, that no matter how bad i overestimated, I got the desiredresuk
Exercise 10.9. Let $r \in B\left(C_{3}, k\right)$ be thesmalleq number of vertices so that no matter how the edges of K_{r} are colored using k colors, K_{r} has a monochromatic all edges are of the same color) C_{3} (a cycle of length 3) as a subgraph. Show, by using construct wine rather thangerobabilistic arguments, that:

$$
2^{k} \leq R\left(C_{3}, k\right) \leq 3 \cdot k!
$$

Proof. a) We first prove the lower bound through the use of induction (over k)! We are going to prove that $R\left(C_{3}, k\right)>$ 2^{k}. For $k=1$ the result is trivially true $\left(R\left(C_{3}, 1\right)=3\right)$. Suppose it is true for all values up to k. We are going to prove the bound for $k+1$, namely that $R\left(C_{3}, k\right) \geq 2^{k+1}$. Since we assume the result true for k, we pick two copies of the complete graph on 2^{k} vertices. We can color the first copy with k colors without a monochromatic triangle from the inductive hypothesis, and similarly the second copy using the same k colors. Then we can color the edges that go from the first copy of $K_{2^{k}}$ to the second one with a new, $k+1$-st color. Since no triangle exists in any of the two copies for the first k colors then we can't have a triangle of the $k+1$-st color (this would require an edge of $k+1$-st color in a single copy of $K_{2^{k}}$) and thus, we get that the complete graph on $K^{2^{k+1}}$ is free of monochromatic triangles. We now prove the upper bound.
b) (Exercise : Show that this bound can be as small as ak! +1.) We prove that $R\left(C_{3}, k\right) \leq 3 k$! by induction. It is trivially true that $R\left(C_{3}, 1\right) \leq 3$. Assume it is true for all colors less than or equal to $k-1$. We will prove the claim for k
colors (and let us use colors $1, \ldots, k$). Let us pick a complete graph on $3 k$! vertices. Color its edges in some way. Pick an arbitrary vertex and let's call it v. Let S_{i} be the vertices w that are connected to v thru an edge of color i. We have k colors and $3 k!-1$ vertices adjacent to v. Then there must exist a set S_{j} for some color j of size at least $3(k-1)$! (because if all sets had sizes at most $3(k-1)!-1$, then we would have had at most $3 k!-k$ vertices adjacent to v, but for $k>1$, we have $3 k!-1$ of them). If in S_{j} we can find two vertices u, w connected by an edge of color j, then we are done, a monochromatic triangle is (v, u, w). Otherwise no edge of color j connects any two vertices in set S_{j}, i.e. the edges of this set utilize the other $k-1$ colors only and the size of set S_{j} is at least $3(k-1)$!. We apply the inductive hypothesis on this set and we can find a monochromatic triangle in S_{j}. This completes the induction.

Theorem 10.13. For any $k>4$, show $R(k, k) \geq 2^{k / 2}$.
Proof. Let $n=R(k, k)<2^{k / 2}$.
We (uniformly at random) color the edges of K_{n} with red or blue color. Edges are colored independently of each other $P($ red $)=P($ blue $)=p=1 / 2=q=1-p$. Think of flipping a coin for every edge and if it comes H we interpret it as red and we interpret T for blue. Or we interpret H for an edge to include and likewise a T for an edge not to include

For every fixed set of k vertices, the probability that they form a clique (are all red) is $p=2^{-\binom{k}{2}}$.
Likewise for every fixed set of k vertices, the probability that they form an independent set (are all blue) is also $p=2^{-\binom{k}{2} \text {. }}$

There are $\binom{n}{k} k$-sets of vertices that can'give rise to a clique or an independent set. If we use Lemma 10.1 the probability of a union of events is at mosi their sum of probabilities. Thus

For $k>4$ the probability is less than one. Thus there are graphs that contain neither a k-clique or k-independent set. This implies $R(k, k)>2^{k / 2}$.

Exercise 10.10. Prove that there is a constant $c>0$ such that for all $k, r(3, k) \geq \frac{c k}{\ln k}$. Find a similar lower bound for $r(4, k)$. (Hint: Use a random graph argument with edge probability p appropriately chosen.)

Proof. The stated bound for $R(3, k)$ is trivial since $n \leq k$. But to find the bound for $R(4, k)$ we will use a probabilistic argument that we present first for the $R(3, k)$ case.

We shall prove a lower bound for $R(3, k)$, by showing that for lesser n, the chance a random graph with edge probability p has either a 3 -clique or k-independent set is less than 1 . Such a result (for any value of p) means there must exist some graph that has neither. This probability is bounded above by

$$
\binom{n}{3} p^{3}+\binom{n}{k}(1-p)^{\binom{k}{2}} \leq \frac{n^{3}}{6} p^{3}+n^{k}(1-p)^{\frac{k^{2}}{4}}
$$

If we pick $p=n^{-1}$, then the first term becomes $1 / 6$, and we need only prove that the second is less than $5 / 6$. To do this observe that each each of the following relations implies the one above it.

$$
\begin{aligned}
n^{k}\left(1-\frac{1}{n}\right)^{\frac{k^{2}}{4}} & \leq \frac{5}{6} \\
n^{k}\left(1-\frac{1}{n}\right)^{\frac{k^{2} n}{4 n}} & \leq \frac{5}{6} \\
n^{k} e^{-\frac{k^{2}}{4 n}} & \leq \frac{5}{6} \\
k \ln n+\ln \frac{6}{5} & \leq \frac{k^{2}}{4 n} \\
\ln n & \leq \frac{k}{n} \\
\ln c+\ln k-\ln \ln k & \leq \frac{\ln k}{c}
\end{aligned}
$$

which is certainly true for $c=\frac{1}{2}$.
For $R(4, k)$ we get the simior expression of

To do this we can let $\left.n=\frac{c k}{\ln k}\right)^{\frac{3}{2}}($ (with 0.5 works), thus improving our bound to be non-trivial.

Exercise 10.11. (Van der Waerden's conjecture) Show that if $n<\sqrt{k} 2^{\frac{k}{2}}$ then for some coloring of the integers $\{1,2, \ldots, n\}$ with two colors, neither color contains an arithmetic progression of length k.

Proof. Observe that for a random coloring the probability that any particular arithmetic progression is monochromatic is $2^{-(k-1)}$ (once the first element is assigned a color, the remaining $k-1$ elements must be given the same one). If N is the number of such arithmetic progressions, and $N<2^{k-1}$, the claim must be true since that implies an upper bound on the probability that a random coloring makes some progression monochromatic is less than one, which means there is some chance a random coloring makes no such progression monochromatic, which means there must be some particular coloring that fails.

To calculate the number of progressions we count the number of possible starting positions for each possible size for the gap between elements (i). This gap must be less than $n /(k-1)$ as otherwise the first and last elements would
be separated by n or more places.

$$
\begin{aligned}
N & \leq \sum_{i=1}^{\frac{n}{k-1}}(n-i(k-1)) \\
& =\frac{n^{2}}{k-1}-(k-1) \sum_{i=1}^{\frac{n}{k-1}} i \\
& =\frac{n^{2}}{k-1}-(k-1) \frac{\frac{n}{k-1} \frac{n+k-1}{k-1}}{2} \\
& =\frac{n^{2}}{k-1}-n \frac{n+k-1}{2(k-1)} \\
& =\frac{n^{2}}{k-1}-\frac{n^{2}}{2(k-1)}-\frac{n}{2} \\
& =\frac{n^{2}}{2(k-1)}-\frac{n}{2} \\
& <\frac{k 2^{k}}{2(k-1)}-\frac{n}{2}
\end{aligned}
$$

The bound given is based on using 20 for the probability a progression is monochromatic, and bounding the number of progressions by $(n / k) n$.

Exercise 10.12. For m, r, n positiveintegers the set $\{1, \ldots, m\}$ has property $B(r, n)$ if for some collection of r subsets of size n of $\{1, \ldots, m\}$ any 2-chring of $\{1, \ldots, m\}$ results in some member of the collection being monochromatic. Find a lower bound on r suchivat $\{=, \ldots, m\}$ has property $B(r, n)$.
Proof. The chance for afandopecoloding that particular set of size n is monochromatic is $2^{-(n-1)}$. If we have r such sets, the chance that there exists one githemethat is
 means there is some patticulat cologitg for whichit has 0^{\prime} monochromatic elements. So $\{1, \ldots, m\}$ cannot have property $B\left(\frac{x}{m}\right)$ unless $r x^{n-1}$
 $n(n-1) / 2$ edges n vexices inclinded in graph with edge probability p independent of any other edge. If $p=\frac{1}{2}$ show that:
a) With high probabitity (i.e with Probalility tending to 1 as $n \rightarrow \infty$) the maximum size of an independent set in $G\left(n, \frac{1}{2}\right)$ is no more than $(9+\varepsilon)$ og n, forany $\varepsilon>0$.
b) Deduce then, that for someconstornt $c>0$, with probability tending to 1 as $n \rightarrow \infty$,

$$
\frac{c n}{\log n} \leq \gamma(G)
$$

where $\gamma(G)$ is the chromatic number of G.
Proof. The probability that an n vertexgraph with edge probability $\frac{1}{2}$ has a k independent set is at most

$$
\binom{n}{k} 2^{-\binom{k}{2}} \leq n^{k} 2^{-\frac{k^{2}}{4}}
$$

For $k=(4+\varepsilon) \lg n$, this means the chance there is an independent set larger than that is no more than

$$
\begin{aligned}
\left(n 2^{-\frac{k}{4}}\right)^{k} & \leq\left(n n^{-1-\frac{\varepsilon}{4}}\right)^{k} \\
& =n^{-\varepsilon k}
\end{aligned}
$$

Which converges to 0 for all $\varepsilon>0$.
For part b), simply recall that the vertices of any color class in G must be an independent set. As no color is used more times than the size of the largest independent set, the fact that with high probability no independent set is larger than $5 \lg n$ implies that with high probability $\gamma(G) \geq \frac{n}{5 \lg n}$.

Exercise 10.14. Show that any bipartite graph $G(X \cup Y, E)(|X|=|Y|=n)$ with edge probability $p=\frac{1}{2}$ has a perfect matching with high probability (i.e. with probability tending to 1 as $n \rightarrow \infty$).

Proof. Hall's theorem states that a bipartite graph has a perfect matching unless there is a subset of vertices A on the left such that $|A|>|R(A)|$. We shall show that the probability that any A has $|R(A)| \leq|A|-1$ is small. For a particular $A,|R(A)|<|A|$ only if there are at least $n-|A|+1$ vertices on the right to which there are no edges from A. The chance that this happens for some A is less than the sum of the chances it happens for any particular A. Thus

$$
\begin{aligned}
& \operatorname{Pr}(\text { there is no p.m. }) \leq \sum_{i=1}^{n}\binom{n}{i}\binom{n}{n-i+1}(0.5)^{i(n-i+1)} \\
&=\sum_{i=1}^{n / 2}\binom{n}{i}\binom{n}{n-i+1}(0.5)^{i(n-i+1)} \sum_{i=n / 2+1}^{n}\binom{n}{i}\binom{n}{n-i+1}(0.5)^{i(n-i+1)} \\
&<\sum_{i=1}^{n / 2} n^{i} n^{i}(0.5)^{i(\lambda+i+1)}+\sum_{i=n / 2+1}^{n} n^{n-i} n^{n-i+1}(0.5)^{i(n-i+1)} \\
&\left.=\sum_{i=1}^{n / 2} 2^{n-i+1}\right)^{i}+\sum_{i=n / 2+1}^{n}\left(\frac{n^{2}}{2^{i}}\right)^{n-i+1} \\
& \sum_{n / 2}^{n}\left(\frac{n^{2}}{2^{n / 2}}\right)^{i}+\sum_{i=n / 2+1}^{n}\left(\frac{n^{2}}{2^{n / 2}}\right)^{n-i+1}
\end{aligned}
$$

Thus for sufficiently arge 10 the chance thata random $n \otimes n$ bidertite graph does not have a perfect matching is very small.
Exercise 1095. Fg. an untirecte DConnected goph Ge (V, E), let d (i, j) be the shortest path (for graphs with no weights, the lemg the betneen vertex i alvextes. Thg diameter ($\operatorname{diam}(G)$) of G is defined to be the maximum among all the shortestpath betwes any two vernos ing i.e.

Show that for an appropriarop aljo graphs have diameter 2 with high probability (i.e. with probability tending to 1 as $n \rightarrow \infty$).

Proof. A graph has diameter 2 if between any two distinct points there exist either an edge or a path of length 2, therefore for the second case, for every two points x, z there exists a point y connected to both x, z. For $G_{n, p}$ (we'll fix p at the end of our discussion) graph y is connected to both x, z with probability p^{2}. We examine the complement of the problem, namely we'll try to find the probability (an upper bound) that there exists a set of two points not connected by a path of length 1 or 2 . This is at most

$$
\binom{n}{2}(1-p)\left(1-p^{2}\right)^{(n-2)} \leq \frac{n^{2}}{2} e^{-p^{2}(n-2)}
$$

since, we can choose two points x, z in $\binom{n}{2}$ ways and no other point y (among the other $n-2$ points) is in the path between x, z with probability $(1-p)^{(n-2)}$. Therefore the above expression is an upper bound on the probability that there exists two points not connected by a path of length 2 (note that we ignore the case that the graph has diameter 1
which occurs with probability $p^{O\left(n^{2}\right)}$ since this term is finally absorbed by the term shown above). Let $p=\sqrt{\frac{(2+\varepsilon) \log n}{n}}$. Then the above expression is bounded above by

$$
\frac{1}{n^{\varepsilon}} \rightarrow 0 \text { as } n \rightarrow \infty
$$

and therefore the probability that the graph is of diameter 2 tends to 1 for large n.

Exercise 10.16. We may view a tournament T_{n} on n vertices as a tournament on n players, where an edge exists between vertex i and vertex j in T_{n}, if player i beats (or outranks) player j. A tournament T_{n} has property S_{k} if for every k players x_{1}, \ldots, x_{k} there is some other player y who beats all of them. Show that for every k, there is a finite T_{n} with property S_{k}. Find the smallest possible value of n you can, in terms of k, so that a tournament on at least so many vertices, has property S_{k}.

Proof. We use a probabilistic argument to show that for n sufficiently large, the probability a random tournament does not have property S_{k} is less than 1 . This probability is at most

$$
\binom{n}{k} \operatorname{Pr}\left(\text { a particular } x_{1}, \ldots \times x_{k} \text { are not all beaten by some vertexy }\right)
$$

For any set of k vertices, the probability spher other particular vertex"beats" them all is 2^{-k}. So the chance it does not beat them all is $1-2^{-k}$, and the chance that none of the other vertices beat the entire set of k is $\left(1-2^{-k}\right)^{n-k}$. Thus the probability that a random tournament døes not have property S_{k} is at most
 achieved by picking $n k^{2} 2^{k} c^{2}$
 have so that it has an-noisbchque or a $k=$ olsy-jeltependent set. A k-noisy-clique is defined to be what we get from a k-clique if we delete $\frac{1}{10} k^{2}$ edges k-ngivy-inctpendent set is a set of k vertices joined by $\frac{1}{10} k^{2}$ edges (or if we delete so many edges, wheme multyple edges are allowed, then we get a k-independent set). Show that $N R(k, k) \geq 2^{\varepsilon k}$, for some properly chosen ε.

Proof. To find a lower bound for $\mathcal{N} R(k, k)$ we show that for sufficiently small n, the probability that a random n vertexgraph has either a k-noisyindependent set or a k-noisy clique is less than one. This means some graph must have neither. For a random n vertexgraph G,

$$
\begin{aligned}
\operatorname{Pr}(G \text { has a } k \text {-noisy clique }) & \leq\binom{ n}{k} \operatorname{Pr}(\text { A particular set of } k \text { vertices is a noisy clique }) \\
& \leq\binom{ n}{k}\binom{\binom{k}{2}}{k^{2} / 10} 2^{-\left(\binom{k}{2}-k^{2} / 10\right)} \\
& \leq\binom{ n}{k}\binom{k^{2} / 2}{k^{2} / 10} 2^{-\left(\frac{k(k-1)}{2}-\frac{k^{2}}{10}\right)} \\
& \leq n^{k}\binom{k^{2} / 2}{k^{2} / 10} 2^{-.4 k^{2}+k / 2}
\end{aligned}
$$

To bound this, observe the following (the second step uses a crude form of Stirling's approximation that $\left.n!\geq(n / e)^{n}\right)$.

$$
\begin{aligned}
\binom{k^{2} / 2}{k^{2} / 10} & \leq \frac{\left(k^{2} / 2\right)^{k^{2} / 10}}{\left(k^{2} / 10\right)!} \\
& \leq \frac{\left(k^{2} / 2\right)^{k^{2} / 10}}{\left(k^{2} / 10 e\right)^{k^{2} / 10}} \\
& =(5 e)^{k^{2} / 10}
\end{aligned}
$$

Using this result and substituting $2^{\varepsilon k}$ for n we get the upper bound

$$
\operatorname{Pr}(G \text { has a } k \text {-noisy clique }) \leq 2^{k^{2} \varepsilon}(5 e)^{k^{2} / 10} 2^{-.4 k^{2}+k / 2}
$$

Since this bound also applies for a k-noisy independent set, it suffices to chose ε such that this quantity is less than $1 / 2$. I.e. we must have

$$
2^{k^{2}(\varepsilon-.4)} 2^{\left(k^{2} / 10\right) \lg 5 e} 2^{k / 2}<\frac{1}{2}
$$

This is true as long as $\varepsilon \leq .4-\frac{1}{k^{2}}-\frac{1}{2 k}-\frac{\lg 5 e}{10} \approx .0235-\frac{1}{k^{2}}-\frac{1}{2 k}$. As k gets large, chosing $\varepsilon=.02$ suffices. (One could get a better bound by more careful approximation $)($
Exercise 10.18. Let $G_{n, p}$ be a undirected ranabm graph on n vertices generated by independently including each edge with probability p. What is the expectedntmber of (exactly) ten vertexcycles if $p=\frac{2}{n}$? How does this expectation grow with n (as n goes to ∞)?
Proof. We first find the number ofcycles we can form with k fixed objects (we will fix k to be 10 at the end). There are k ! permutations among k objeats and $k!/ k=(k-1)$! cyclic permutations among them (snce any cyclic permutation gives rise to k ordinary permutations) and these cyclic permutations define $(k-1)!/ 2$ unique cycles (since a cyclic permutation and its reverse definethe same cycle, e.g. $1 \rightarrow 2 \rightarrow 3 \rightarrow 1 \equiv 3 \rightarrow 2 \rightarrow 1 \rightarrow 3$). We can choose k among n vertices in $\binom{n}{k}$ ways. Prom as eycliefermitation we get a cycle in a graph if all the k edges implied by the cyclic permutation apper and this occuts with probability p_{Q}^{k}. For $\% 10$ we have $\binom{n}{10}(9!/ 2)$ distinct cycles of length 10 and each of then appeass with erobabitity $p^{1,}$. Therefore the Expected number of cycles of length 10 is:

where we substitutect $p=1$
so we have

probability p.
i) What is the expected number of perfect matchings?
ii) For what value of p is this approximately 1?
iii) For the value of p from $i i$), show that the probability that the graph has a perfect matching is exponentially small. (Hint: Consider the probability that there is an isolated vertex).

Proof. i) This part has been solved in problem Set 6 (extra problem). Once again, every perfect matching in a bipartite graph $G=(X \cup Y, E)$ with $X=\left\{x_{1}, \ldots, x_{n}\right\}, Y=\left\{y_{1}, \ldots, y_{n}\right\}$, corresponds to a permutation of the elements of X onto the elements of Y. We have n ! permutations (and each mapping of an element of X to an element of Y corresponds to an edge of a perfect matching) and each one of them has probability p^{n} to appear, and therefore the expected number of perfect matchings is $n!p^{n}$.
ii) $n!p^{n}=1$ gives $p \approx e / n$ (if we use Stirling's aprroximation for the factorial).
iii) A given vertex of X is isolated with probability $(1-p)^{n}=(1-e / n)^{n} \approx e^{-e}$. The probability that a vertex is not isolated is $\left(1-e^{-e}\right)$. The probability that all vertices of X are not isolated is $\left(1-e^{-e}\right)^{n}$ (since all these probabilities are independent of each other). The probability that there exists a perfect matching that saturates X is at most the probability that all vertices of X are not isolated, and therefore this probability is at most $\left(1-e^{-e}\right)^{n}$ which is exponentially small($1-e^{-e}<1$ and therefore the $\left(1-e^{-e}\right)^{n} \rightarrow 0$ exponentially fast).

Part II

Chapter 11

Bits and Bytes

11.1 The SI system and prefixes

The International System of Units (ISU or SI) is the most widely used system of measurement. The SI (Systeme Internationale) define prefixes (or prefices) for units of measurement that are multiple or submultiples of 10 .

Thus the unit of time is the second and the onit symbol for a second is s. If we write ms or $\mu \mathrm{s}$ or ns The m the μ and n prefix is for a submultiple. An m indicates 10^{-3} thus $1 m s=10^{-3} s$, an μ indicates 10^{-6} thus $1 \mu s=10^{-6} s$, and an n indicates 10^{-9} thus $1 n s=10^{-9} s$. Weread $m s, \mu s, n s$ as millisecond, microsecond and nanosecond respectively.

The International Electrotechnical \varnothing mmission introduced the prefices $\mathrm{Ki}, \mathrm{Mi}, \mathrm{Gi}, \mathrm{Ti}, \mathrm{Pi}$, Ei etc to indicate powers of 2 . Thus if one uses the SESystem's prefixes the prefix multiplier is a power of 10 ; if one uses an IEC prefx, the prefix multiplie should be interpreted as a power of 2 . Any other interpretation is wrong.

Figure 11.1: Powers of two

Figure 11.2: SI system prefixes

Prefix	Name	Multiplier
Ki	kibi or kilobinary	2^{10}
Mi	mebi or megabinary	2^{20}
Gi	gibi or gigabinary	2^{30}
Ti	tebi or terabinary	2^{40}
Pi	pebi or petabinary	2^{50}
Ei	exbi or petabinary	2^{60}

Figure 11.3: IEC binary prefixes

11.1.1 Bit and bit

Remark 11.1 (Joke: 'Bits and bytes' capitalization). The capitalization in the section header is English grammar imposed and intended as an unintentional joke! Read through the end of this section in order to get it!
Definition 11.1 (Bit). The word bit is an acronym derived from binary digit and it is the minimal amount of digital information. The correct notation for a bit is a fully spelled lower-case bit.

A bit can exist in one of two states: 1 and 0 , or High and Low, or Up and Down, or True and False, or T and F, or t and f.

Remark 11.2 (Lower case b is nonsense). A lower-case b should never denote a bit! Several publications mistakenly do so, however!

The notation 9 b should be considered nonsense.
Remark 11.3 (Plural unit). If we want to write down in English 9 binary digits we write down 9bit. Not 9bits. Units have no plural.

For a transfer rate we then write $9.2 \mathrm{bit} / \mathrm{s}$.
Consider a writing of 2 ms . Is it 2 meters (plural) or 2 milli-seconds or the correct 2 milli-second?

11.1.2 Byte can bite

Definition 11.2 (Byte). A byte is the minimal amount of binary information that can be stored into the memory of a computer and it is denoted by a capital case \mathbf{B}.

Definition 11.3 (Word). Word is a fixed size piece of data handled by a microprocessor. The number of bit or sometimes equivalently the number of bytes in a word is an important characteristic of the microprocessor's architecture.

Etymologically, a byte is the smallest amount of data a computer could bite out of its memory! We cannot store in memory a single bit; we must utilize ay byte thus wasting 7 binary digits. Nowadays, $\mathbf{1 B}$ is equivalent to 8 bit. Sometimes a byte is also called an octet, A 32-bit architecture has word size 32 bit.

Definition 11.4 (Memory size). Memory size is usually expressed in bytes or its multiples.
We never talk of 8,000bit meinory aye prefer to write 1,000B rather than 1,000byte, or 1,000Byte.

Prefix

Figure 11.4 YEC aggregates of ©yte

Name Multiplier
1 short $\quad 2 \mathrm{~B}=16$ bit
1 word $\quad 4 \mathrm{~B}=32$ bit
1 double word $8 B=64$ bit
Figure 11.5: Other aggregates of a byte

Remark 11.4 (Confusing Netation: How many bytes in 1 kB or 1 MB or 1 GB of RAM or Disk?). In SI, 1 kB implies $1,000 B$; likewise $1 M B$ is $000,000 B$ and $1 G B$ is $1,000,000,000 B$. When we refer to memory (eg. RAM i.e. Random Access Memory or mai\& memory), companies such as Microsoft or Intel mean that 1 kB is $1,024 B$, that 1MB is $1,048,576 B$ and $1 G B$ is 2^{30} B. To add to this confusion, hard disk drive manufacturers in warranties, define a 1 kB , $1 M B$, and $1 G B$ as in $\mathrm{SI}\left(1000 \mathrm{~B}, 10^{6} \mathrm{~B}\right.$ and $10^{9} \mathrm{~B}$ respectively).

Exercise 11.1 (Is 500GB equal to 453GB or 453GiB?). A hard-disk drive (say, Seagate) with $500 G B$ on its packaging, will offer you a theoretical $500,000,000,000 \mathrm{~B}$. However this is unformatted capacity; the real capacity after formatting would be $2-3 \%$ less, say 487,460,958,208B. Yet an operating system such as Microsoft Windows 7 will report this latter number as $453 G B$. Microsoft would divide the 487,460,958,208 number with $1024 * 1024 * 1024$ which is $453.93 G i B$ i.e Microsoft's 453GB.

Conclusion: Stick to $\mathrm{KiB}, \mathrm{MiB}, \mathrm{GiB}$ and avoid $\mathrm{kB}, \mathrm{MB}, \mathrm{GB}$ or other variations.

11.2 Frequency and the Time domain

Definition 11.5 (Time). The unit of time is the second and its unit is s . Thus 1 second is written 1 s in the SI system; if you see a writing of 1 sec such a writing is not SI compliant.

Submultiples are $1 \mathrm{~ms}, 1 \mu \mathrm{~s}, 1 \mathrm{~ns}, 1 \mathrm{ps}$ which are $10^{-3}, 10^{-6}, 10^{-9}, 10^{-12}$ respectively of a second, and are pronounced millisecond, microsecond, nanosecond, and picosecond respectively. Note that a millisecond has two ells.

Definition 11.6 (Frequency). Frequency is the number of times a (periodic) event is repeated in the unit of time. The unit of frequency is cycle per second or cycle/s or just $\mathbf{H z}$. The symbol for the unit of frequency is the Hertz, i.e. $\mathbf{1 H z}=1 \mathrm{cycle} / \mathrm{s}$.

Then $1 \mathrm{kHz}, 1 \mathrm{MHz}, 1 \mathrm{GHz}$, and 1 THz are $1000,10^{6}, 10^{9}, 10^{12}$ cycle/s or Hz. Note that in all cases the H of a Hertz is CAPITAL CASE, never lower-case. The z is lower case everywhere.

Definition 11.7 (Time vs Frequency of a (periodic) Event). The relationship between time (t) and frequency (f) is inversely proportional. If an event has frequency f, the period of the event t (in s) is given by

$$
\downarrow \cdot f \cdot t=1 s
$$

Thus 5 Hz , means that there are 5 cycles ip aecond and thus the period of a cycle is one-fifth of a second. In other words an event that has frequency $f=5 H$ zoccurs five times in a second. The period of the event t is thus related to f with $f \cdot t=1 s$ which implies $\mathrm{t}=1 / 5 \mathrm{~s}=0.2 \%$ and thus the period of the event is $0.2 s$.

Computer or microprocessor speed used to be denoted in MHz and nowadays in GHz. This is because synchronization of microprocessor operation is being done by an external clock that is ticking periodically (a tick is equivalent to a change from 0 to 1 or the θ her way around or equivalent to a high voltage to lower voltage transition or the other way around). The number ticks in a secondedetermines the frequency of the clock attached to a microprocessor. Long time ago that frequncy was related to the speed of the microprocessor: how many instructions could be executed within one second The period of the clochdeternined theamoug time a microprocessor instruction could take for its complete execution. This a pitcropgessoratache to a dock with frequency $f=1 \mathrm{MHz}$ could execute $1,000,000$ instructions persecond In other wotyts theperiod of an fistruction was $t=10^{-6} s=1 \mu s$ using $f t=1 \mathrm{~s}$. Within that period of one microsecond me morecessorgCU) add read from memory (main memory) and execute any instruction defined for thaCPU CP Winstrucion thats started its execution in a clock tick would complete its execution by the next cloek tira

Nowadays things arg more 6 mpligated. Reading from memory takes around 80ns. Yet clock frequencies are at $f=1 \mathrm{GHz}$ which meanss the pơmod ofan instruction is $t=1 \mathrm{~ns}$. The only instructions that can execute within that period are simple instructions that ndo requiefinteraction with the main memory. In fact a simple read from main memory requires 80 instructions wortho CPG time! An Intel 80486DX microprocessor of the early 1990 s rated at 25 MHz , had a clock that used to tick $25,00 \otimes, 000$ times in a second. An elementary instruction was to be executed between two consecutive ticks, starting with the first tick, and the result associated with the instruction was also available by the next (second) tick. The period of the clock was defined as the interval between two consecutive ticks, a cycle. One instruction had thus a period or execution time of roughly $1 / 25,000,000=40 \mu s$ for a CPU utilizing a 25 MHz clock. A modern era CPU rated at 2 GHz allows (elementary) instructions to be completed in $1 / 2,000,000,000=0.5 \mathrm{~ns}$. In modern CPUs several instructions are complex; it is impossible for them to complete their execution in one cycle. Consider a MOVE instruction that moves a block of memory from some source address to some destination address. And the block size is not 1B but several hundreds or thousands or millions of bytes. And note that in the 1990s and also in the 2010s retrieving one byte of main memory still takes $60-80 \mathrm{~ns}$. Thus for a 2 GHz CPU this would require 120-160 cycles.

Definition 11.8 (A nanosecond is (roughly) one foot!). In one nanosecond, light (in vacuum) can travel a distance that is approximately (equal to) l foot. Thus 1 foot is analogous to ''1nanosecond''.

11.3 Data types

Definition 11.9 (Data type.). In a programming language, every variable has a data-type, which is the set of values the variable takes.

The value of a variable can change; the value of a constant cannot change. Moreover, the data-type of a variable defines the operations that are allowable on the variable. There are built-in (or primitive or elementary) data types and also composite data types. The primitive data types of programming language $\mathrm{C}++$ include char, int, double. The composite data types can be built on top of the primitive ones and include aggregations such as arrays, or methods that allow for composition such as structures and classes struct, class , int []). The whole set of data types and the mechanisms that allow for their aggregation define the data model of $\mathrm{C}++. \mathrm{C}++$ is a stronly-typed language. When we write int x we define variable x to be of an integer data type. Some languages such as Python are weaklytyped languages. The data type of a variable depends on its value. Thus $\mathrm{x}=10$ in one line makes x to be of an integer data-type but $\mathrm{x}=$ ' ab ' in the next line makes it to be a string.

Exercise 11.2. What are the primitive data types of $C, C++$, or Java?
What are the composite data types of C, C++, or Java?

Definition 11.10 (Primitive data-types. Composite data-types.). Computers and computer languages have built-in (also called primitive or elementary) data-tyResfor integers of finite precision. These primitive integer data-types can represent integers with 8 -, 16-, 32- or (in sowe cases) 64-bit or more. An integer data-type of much higher precision is only available not as a primitive data-t(xerbut as a composite data-type through aggregation and composition and built on top of primitive data-types. Thus a composite data-type is built on top of primitive data types. Composite data types include arrays, structures, classes such as struct, class , int [].

Definition 11.11 (Java's integer jenmitive data dypes). Java's (primitive) (signed) integer data types include byte, short, int, and long.

- In java a byte is ansebit sighted no complementintegervidhose range is $-2^{7} \ldots 2^{7}-1$.
- In javenanortisa 16-bit sighed twgicompkement itteger whose range is $-2^{15} \ldots 2^{15}-1$.
- In java an int is acs-hitsigned aido' gonplemaent integer whose range is $-2^{31} \ldots 2^{31}-1$.

The default value of aryariabe for bote, short, int is 0, and for long it is a 0 L .
Definition 11.12 (Java's other primitined data types). Java's other data types include float, double, boolean, and char.
- In java a float is a 32-bit LEEE 754 floating-point number.
- In java a double is a 64-bit IEEE 754 floating-point number.
- In java an boolean has only two possible values: true and false.
- In java a char is a 16-bit Unicode character.

The default value of a variable for float, double, boolean, and char is $0.0 \mathrm{f}, 0.0 \mathrm{~d}$, false and ' $\backslash u 0000$ ' i.e U+0000.
Definition 11.13 (Definition of a variable). When we define a variable we announce its name and its data type (declatration) and we also allocate space for it.

Definition 11.14 (Declaration of a variable). When we declare a variable we announce its name and its data type only.

A variable in a given scope can be defined only once. It can be declared multiple times. (And its definition also serves as the first declaration.)

Definition 11.15 (Strongly-typed languages). In a stronly typed language we define variables before we use them. The data type of a varibale cannot change after definition.

Definition 11.16 (Weakly-typed languages). In a weakly typed language we use variables with out defining them. The value assigned to a variable determines its data type. The data type of a variable can change during the course of a program's execution.
$\mathrm{C}++$ is a stronly-typed language. And so are other compiled languages such as C and Java. When we write int x we define variable x to be of an integer data type (and allocate space for it).

The whole set of data types and the mechanisms that allow for their aggregation define the data model of C++.
Some languages such as Python are weakly-typed languages. The data type of a variable depends on its value. Thus $\mathrm{x}=10$ in one Python line makes x to be of an integer data-type, but an $\mathrm{x}=$ ' ab ' in the following line makes it to be a string value!

```
Weakly Typed Language such as MATLAB
x=int8(10); % x is integer (data type)
x=10.12; % x is real number (data type)
x='abcd'; % x is a string of 4 characters (data tppe)
Strongly Typed Language such as C, C++, or Jaya 
int x ; % x is a 32-bit (4B) integer
x=10; x=2; % ok
x=10.10; % Error or unexpected behavior:Vright hand-side not an integer.
```


11.3.1 Compositions

Exercise 11.3 (Composition A\&rrays.vs Vectors). One way to build a composite datatype is through an aggregation called an array: an arrant' a sequence of objects of (usually) the same datatype. (If the objects can have different data types we might usethe test vector instead.) Thus us can view memory as an array of bytes. But if those bytes are grouped undera.givalata-tye, the sequence of elements od the same datatype represented by the sequence of those bytes, becomes known asex armor rathe than plain, vector).

Definition 11.17 (Data Model) he data modes an abstraction that describes and defines how data are represented and used.

The data model offered by aprogtaming language such as C++ includes characters, integers of different sizes, and floating-point numbers diffegnt sizes BUT ALSO METHODS (eg. arrays, classes, structures) that allow for their aggregation and compgom (eg templates). Note that the int datatype of C++ differs from the integer abstraction as we use it in mathematics; the latter is of unlimited precision.

Exercise 11.4. What is the data model of C, C++, or Java. Do they differ from each other? The whole set of data types and the mechanisms that allow for the aggregation of them define the data model of each programming language.

11.3.3 Abstract Data Types (ADT)

Definition 11.18 (Abstract Data Type (ADT)). An abstract data type (ADT) is a mathematical model and a collection of operations defined on that model.

Example 11.1 (Dictionary ADT). In a Dictionary ADT the data model consists of words (strings of characters) and a collection of operations such as Insert, Search (Lookup) and Delete.

A Dictionary is an asbtract data type consisting of a collection of words on which a set of operations are defined such as Insert, Delete, Search.

A Priority Queue is another ADT consisting of a collection of elements each of which has a priority and other additional information associated with it. A set of operations defined for a priority queue are Insert and ExtractHigh. Operation ExtractHigh finds and removes the element with the highest priority. Whether priority 1 is high or low this is not a detail that needs to be addressed explicitly at this level. Insert inserts an element into a priority queue; this includes not just the priority of the element but also all other relevant and auxiliary information.

More often than not we will be inserting only priority values and ignoring other auxiliary info.

ADT	Data	Operations Dictionary words w (strings of characters)
Insert(D,w)		
PriorityQueue	Search(D,w) (Lookup(D,w)) Delete(D,w)	
PQ	HighPriority is MaxValue priority \rangle or	Insert(PQ,e)
ExtractMax (PQ)		
PriorityQueue	$\mathrm{e}=\langle$ info, priority \rangle	Insert(PQ,e)
PQ	HighPriority is MinValue	ExtractMin (PQ)

In computing a FIFO (First-In Firsto-Out) quequ is an ADT that supports the two of the three fundamental operations (Insert, Delete) such that the item Deleted is the first Insert'ed.

Likewise a LIFO (Last-In First-Out) \&queue is an ADT that supports the two of the three fundamental operations (Insert, Delete) such that the item Deletad is the last Insert'ed.

There are efficient implementations of FIFO and LIFO using a Queue and a Stack. But both a FIFO and LIFO queue can be realized abstractly interm of a PriorityQueue ADT. We call this a reduction. This requires that we extend the data model of a FIFQ or LIFO queue: an item of FIFO or LIFO becomes an element such that element = < item, priority > Andemenfontains the key value of a FIFO but also a priority which is a timestamp obtained at Insert'ion time (Enquege). FoOFIFQhigh prority means older (smaller) timestamp. For LIFO high priority means newer (larger) timestap HighPrioify is the element insésted first i.e. the one with the oldest (smallest) timestamp. Likewise for LIFの.
 known as Postrand Stach nespectiyely.)

11.4 Data Structures

Definition 11.19 (Data-structures.). A data structure is a representation of the mathematical model underlying an ADT, and thus is a systematic way of organizing and accessing data.

If we try to represent an ADT in terms of the data-types and operations of a programming language we use data-structures which are collections of variables of different data-types connected in various ways. In essence, a data-structure is a systematic way of organizing and accessing data in a computer.

Thus the realization or representation of the data part (model) of an ADT is a data structure.
For the Dictionary ADT its data (words) can utilize a variety of data structures such as Array, Linked List, Binary Search Tree, Hash Table.

Does it matter what data structure we use? Yes, it matters if efficiency, economy of space and easiness of programming are important. As running/execution time is paramount in some applications, we would like to access/retrieve/store data as fast as possible. For the Dictionary ADT previously defined, we might we might use arrays, sorted arrays, linked lists, binary search trees, balanced binary search trees, or hash tables to represent the data model of the ADT known as Disctionary. The semantics of the operations remain the same the realization of the operations and their efficiency depends on the choice of the appropriate or not data structure.

11.5 Algorithms

We call algorithms the computational methods that we use to operate on a data structure. That is, the operations of an ADT are realized by respective algorithms. An operation is a computational problem with input (given) and output (expected). An algorithm is the computational method that realizes the input output relationship of the computational problem defined by the corresponding operation of an ADT.

Remark 11.5 (Recipe vs Algorithm). How you cook or you brew coffee is a (cooking) recipe. An algorithm is associated with a computational problem.

11.5.1 Computational Problems

Definition 11.20 (Computational Problem.). A (computational) problem defines an input-output relationship. A computational problem has an input (e.g. a set of values) and an output (e.g. a set of values) and describes how the output can be derived from the input.

Definition 11.21 (Decision Problem.). A Decision Problem is a computational problem where the output is one bit for YES or NO (less frequently, TRUE or FALSE).

Definition 11.22 (Optimization Problem.). A Oxtimization Problem is a computational problem where the output generates a solution for the problem.

```
    COMPUTATIONAL PROBLEM
Input : A collection (set, sequence) fo, 1 or more input values.
Output: A collection (set, sequencen of output values derived from the
    input values.
```

 COMPUTATIONAL DECISION PROBAEM
 Input : A collection (set; Squence) of 0,1 or more input values.
Output: A YES or a NO ((OF equidivalently 1 fgr YES, 0 for NO) depending
on a property establi $h e d$ bo the input values.

Problem 11.1 (Addition ofbounded-size ©n-negative integers foptimization Problem)).

Problem 11.2 (Nerficatorn of aditionel integers (Decision Problem)).
Input. Three non-negative ixtegers c, a, b where ers up to $(n+1)$-bit and a, b are n-bit.
Output. A YES ora NOdependiog on inthex M1S EQUAL to $a+b$.
Definition 11.23 (Informal aQorithn千̂defintion). An algorithm is a "method" that transforms an input into an output, i.e. it realizes the input-ouput reations rip of a computational problem.

We avoided intentionally the usof the word "recipe"!!
We call algorithms the realization of the operations that we use to operate on a data structure. An ADT has data (model) and operations. The data are realized through a data structure. The operations that operate on those data are defined as computational problems. The realization of those operations on the choice of a data structure give rise to an algorithm (or corresponding algorithms).

Definition 11.24 (Algorithm). An algorithm for a computational problem is its realization by a well-defined sequence of computational steps that performs a task by generating the set of output values of a computational problem from the set of input values of that same computational problem according to the specification of the computational problem.

There are (potentially) several algorithms for the same computational problem! Think of the computational problem of sorting: there are several algorithms that realize it with names such InsertionSort, BubbleSort, QuickSort, MergeSort etc. The definition of Sorting as a computational problems makes it an optimization problem.

Definition 11.25 (Problem size). The problem size of a computational problem is the most important parameter identifiable (directly or indirectly) in the problem description (in the input, output or both) of a computational problem.

We use that parameter to parameterize the computational performance of an algorithm for the computational problem.

For the addition problem as previously defined that parameter is n. If we decide to measure the performance of the metric "running time" or "space requirements" and use a symbol or function T in the former case or S in the latter case to express those requirements, n would be the indeterminate of a function $T(n)$ or $S(n)$.

Definition 11.26 (Input size). Technically it is the amount of space used for the input of the Computational Problem. Technically size must be expressed in byte (unit of measure). In reality input size and problem size are being used interchangeably. Even if this is not technically correct!

Definition 11.27 (Output size). Technically it is the amount of space used for the output of the Computational Problem.

For the Computational Problem of Addition, problem size is indisputably n.
Input size is a surprising $2 n+\lceil\lg (n+1)\rceil$. The correct answer should also include the unit of size and for that problem we should write $2 n+\lceil\lg (n+1)\rceil$ bit. The first term $2 n$ unsurprisingly accounts for the number of bit of a and b. The second term accounts for the number of oft of integer n, the problem size! Output size is n bit.

There is also something trickier. We assúme that "integer" means an "unsigned integer". Otherwise we need to start thinking about the representation 2 Positive integers vs negative integers and whether n includes a sign bit or not.

We slightly modify the definitionfor integer addition as follows.
Addition of integers Modified
Input : Two integers a, b.
Output: Integer c such that $c={ }^{\circ}{ }^{+b^{\circ}}$
This is a very trick and incempletedefinition. We are at a lossof finding problem size anymore.
The number arbit of infeger $a f$ now $\operatorname{Pg}(a * r) 7$.
The number \&f bitafinteger \bar{B} is no $\lceil\lg (\theta+12 \lambda$

If you did notetrink gethose complation tirnk twice and spend more time defining completely and correctly the computation ppoblem betore stanthinkiag of argorithmic solutions to realize it!
Definition 11.28 (Modefof Contutation). Acomputational problem and thus its algorithmic solution refer or reference a model of computation

The are three models of conथputationt that we usually encounter. One is the Bit model where operations and problem sizes are expressed in Bit. Addition was thus defined in the Bit model. The other is the Word Model (we avoid a Byte Model) of computation. In suchea model an integer can fit into one word and thus the addition of two integers takes one operation!

Definition 11.29 (RAM model of computation). In a Random-Access Machine (RAM) model of computation, instructions are executed one after the other in unit time. Each memory cell is wide enough to accommodate a word (a key for sorting, an integer for arithmetic problems, an item, a floating-point number etc) The computation model is as simplistic and optimistic (in resource usage) as possible. The intent is to show that if an algorithm uses A computation resources under the RAM it would also require at least A under more realistic models.

Definition 11.30 (Bit Model of Computation). A model were Bit operations are used. A bit version of the RAM model.
Definition 11.31 (Word Model of Computation). A RAM model. A model were Word operations are used. (An integer or other data type can fit into a word.)

Definition 11.32 (Straight Line Program Model of Computation). The SLP model is a Word Model with essentially the absence of for-loop, while-loop conditional statements, even arbitrary function invocation.

A model were Word operations are used. (An integer or other data type can fit into a word.)
The SLP model (Straight Line Program) is an instance of the Word model if we exclude for-loop, while-loop conditional statements, even arbitrary function invocation. We only have statements. Thus the very primitely defined in the (unrestricted) Word Model computational problem RaiseTo4thPower (x) accepts a a for-loop solution in that model, such a solution is unacceptable under the SLP model. The latter approach is also more computationally efficient!

```
    RaiseTo4thPower
Input : x
Output: x**4
```

```
Solution for Word Model
    RaiseTo4thPower(x)
    result = 1;
    for(i=1;i<=4;i++)
        result = result * x
    return(result);
```

```
Solution for SLP model
    RaiseTo4thPower(x)
    result = x;
    result = result * result;
    result = result * result;
    return(result);
```


11.5.2 Sorting

A sorted sequence is an increasing sequence or non-decreasing sequence or monotonically-increasing sequence such as $\langle 1,2,3,3,4\rangle$.

A reverse-sorted sequence is decreasing / non-increasing / monotonically-decreasing sequence such as $\langle 4,3,3,2,1\rangle$.
The elements of a sequencere"comparable" ie. a "total oder" is defined on them in the sense that the elements have the reflexive, antissymério and transitive properties. Thus $a \leq a, a \leq b$ and $b \leq a$ imply $a=b, a \leq b$ and $b \leq c$ implies $a \leq c$, and totality is also placable ie $\leq b$ or $b \leq a$.
Definition 11.33 (Sorting Pedblem, Problem. Key Sorting.
Input. A sequence of n gimparabte ken $\left(a_{1}\right.$, $(2) \cdots$,

(The output is

If the output is explicitly defined to bo $a_{j_{n}} \geq a_{j_{n-1}} \geq \ldots \geq a_{j_{1}}$, we call such an output a reverse-sorted sequence.
Problem Size for Sorting. It is clearly n the number of input keys which is the length of the array (apparently named a) that contains them. Whereas for addition n was the number of bit in the Bit Model, in this problem n is the number of keys (words) in the implied Word Model.

Example 11.2. For an input such as $\left\langle a_{1}=10, a_{2}=2, a_{3}=1, a_{4}=5\right\rangle$ an algorithm for sorting would generate an output that looks like $\left\langle a_{3}=1, a_{2}=2, a_{4}=5, a_{1}=10\right\rangle$. The input keys are $\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle$ i.e. input indexes are $\langle 1,2,3,4\rangle$. The output is $\langle 3,2,4,1\rangle$ since a_{3} is 1 and appear first in the output, and so on and, a_{1} is 10 and it appears first in the input.

Definition 11.34 (Sorting Algorithm). An algorithm is a sorting algorithm if and only if it sorts correctly all n ! permutations of n keys for all permissible (possible) values of n. A permissible value is determined by the available computational resources (eg memory).

A first solution to the problem of sorting.

```
NaiveSort(A,B,n) // Also known as StupidSort or ExhaustiveSearchSort
for(i=1 ; i <= n! ; i++ )
    B = < generate next permutation of the n input keys of A>
    If B is a sorted sequence return(B);
.}
```

We describe an algorithm solution that looks like a procedural (aka imperative) language such as Pascal, C, C++, or Java but we are not concerned with its syntax, variable declarations or definitions and other minute details. We also use free-form English to describe more complex interactions. For example we say 'generate next permutation' instead of describing how to generate it! If we have introduced an algorithm, for example QuickSort for sorting arrays or sequences of keys, we might invoke it in pseudocode without further details by issuing say a function call to QuickSort (B, m) to sort an array B of m keys with the implication being that at the completion of the function call, all elements are sorted in B, even if originally B was not sorted.

We are liberal with the boundaries of an array if it fits our purposes (i.e it makes exposition of an algorithm simpler). Therefore we may declare an array of n elements more often as $\mathrm{A}[1 \ldots \mathrm{n}]$ but occasionally as $\mathrm{A}[0 . . \mathrm{n}-1]$. Why ? It causes confusion to say the fifth element of an array is $A[4]$ rather than the more natural and less confusing $A[5]$. We do not bother about error-checking. So if we are to design an algorithm for adding two non-negative integers, we do not bother checking for negative-numbers or real numbers or complex numbers or strings. We assume that the input is correctly formed.

Our intent is to introduce concepts around algorithms, and the ideas behind them. We do not want to spend too much time on implementation issues and divertourselves from the important design and analysis issues. Normally, it would be easy for a competent programmer topurn the pseudocode into actual code.

We will intentionally leave a semicolon missing at the end of line 2 . Furthermore, no variables would be properly defined. And Python-like indentation be used more often than adding well-balanced braces in statements!

11.5.3 Algorithm Resources

Computational resources expended atiring the execution of an algorithm are in the form of cpu-cycles used (or wasted) and amount of memory बivize for expended h Performance measures established to describe the performance of an algorithm can associate with them atiectly Th other words TIME And SPACE are of paramount importance. In more complex problens other derformince masures such 2 is throuthput, latency, communication bandwidth, logic gates, efficiency or speedup(n)ght aks be degned and use WitbIIME we mean how long an algorithm runs to completion with SPAC Arow much mernory/space the algofithm uses.

We then fina roblechosize ado expess therse performance measures as a function of problem size for the model in question. The mode of conputatien used for Sok ing is the RAM (Word) model. Problem size is n.

How do we mesure pace adimg We do not measure space in bytes (or megabytes).
Rather in words onit mutbples ofthe size of the elementary data type used (eg key, number). And for the time being forget nanoseconds or featoseceds. It he best of cases it would be "operations" in general (mixing up additions, assignments, read/write operaions) if we can be more discriminating, we would identify the most fundamental operation (eg comparison of Keys \&Raddition of numbers) and express time in terms of those fundamental operations! This means what we measure astime and space for example is not a precise measure. If we count number of keys instead of bytes, we need to know how many bytes we use to store a key to be precise. Likewise if the cost of an addition is one operation, to get nanoseconds we need to know clock-cycles and other properties of a CPU on which execution is to take place. This is impossible to do in a generic fashion. Thus for such an analysis we do not aim for precision. Just for good enough accuracy!

Thus multiplicative constants and low-order terms becomes less important. And when we compare algorithms make sure that operations that are compared are the same. For example if an algorithm uses $3 n-2$ multiplications and another one uses $4 n$ additions, which of the two is faster?

In the remainder we will be examining time and space resources thus functions $T(n)$ and $S(n)$ will summarize resource expenditure.

With functions $T(n)$ and $S(n)$ low-order term details are not important. Some of those details are hidden in the units (eg keys vs bytes, operations vs nanoseconds). But how do we remember all the constants if we need to write a
$S(n)=2 n+3$ or $S(n)=2 n$?
The easiest thing to remember is to say that " $S(n)$ is linear to n ". We would denote this as $S(n)=\Theta(n)$. Or if $S(n) \leq 3 n$ to say that " $S(n)$ is upper bounded by a linear function to n " we would denote it by writing $S(n)=O(n)$. An $S(n) \geq n$ to say that " $S(n)$ is lower bounded by a linear function to n " would become $S(n)=\Omega(n)$. The symbols are known as Theta, Big-Oh and Big-Omega respectively. A $\Theta(1)$ means a constant!

Consider two algorithms one that requires n^{2} operations and one that requires $n \lg n$ operations to sort n keys Here, $\lg n=\log _{2} n$ is the base two logarithm of n. Consider a machine that executes $10,000,000$ such operations per second with a millisecond precision clock. The two algorithms solve instances of various sizes n in the following time.

n	$=2$	$10^{\wedge} 3$	$10^{\wedge} 6$	$10^{\wedge} 9$
Alg A: $\mathrm{n}^{\wedge} 2$	$=<0.001 \mathrm{sec}$	0.1 sec	1 day	300 years
Alg B: n lgn	$=<0.001 \mathrm{sec}$	0.001 sec	2 sec	1 hour

By comparing n^{2} and $n \lg n$ we draw the conclusion that for small values the performance of the two algorithms is indistinguishable. For large values it is not. In our example comparison was easy; there were no low-order terms nor multiplicative constannt involved.

Consider for example the case where one algorithms requires n^{2} operations and the other $20 n \lg n+1000 n+10^{9}$. Things become more complicated calculator-wise.

To establish asymptotic performance and comparison we only need to now what happens as $n \Rightarrow \infty$. For this we just need to $\lim _{n \Rightarrow \infty} n^{2} / n \lg n$. It is not difficult to find that the limit is infinity and thus the n^{2} algorithm is too costly operation-wise (slower) than the $n \lg n$ algorithm. Ad the same applies to n^{2} and $20 n \lg n+1000 n+10^{9}$.

11.5.4 NaiveSort Performance 1 leasure: Permutations

The "code" NaiveSort has a semicolor missing. It is not code, it is pseudocode.
Sorting is the computation problem solved by NaiveSort. There are multiple algorithms that solve this Problem.
NaiveSort (or ExhaustiveSర fot that describes more faithfully its behavior) is a non efficient proposal for a sorting algorithm. MergeSort and Hecapsort-are more efficient time-wise but the former is not efficient space-wise (for the implementation that we will propse).

Other approaches include Θ Add-Eren Trassposition sor, BubbdeSort, InsertionSort, SelectionSort, QuickSort.
All such algonith perform kecompafisonsand syaps (exghanges). There are some other sorting algorithms that do not compare key yaloes bulinspeckey vgrtes. They are heferred to as distribution-based sorting algorithms and they includecountSort, RatixSortOThe term BuketSorerefers to a solution similar to CountSort: BucketSort uses LinkedLists but GountSofuses ankays Our tex申oog uses the term BucketSort differently though to define a separate and different sposting phoblem.

The 'See beforey you leap' is applicabre. Readt the Problem Definition not the name of the (sorting) algorithm.
Best Case. The answer is, found after gererating 1 permutation.
Worst Case. The answeris fount after generating all n ! permutations.
Average Case. The Aumber pernhtations generated on the average is $(n!+1) / 2$. Why ? We might get the answer after generating 1 permation, or 2 permutations, or $\ldots i \ldots$ permuations, or n ! permutations. The average over all these possibilities is

$$
\frac{1+2+\ldots+n!}{n!}=\frac{n!(n!+1) / 2}{n!}=\frac{n!+1}{2}
$$

11.5.5 NaiveSort Performance Measure: Comparisons

What is the time to completion for NaiveSort? How do we measure time of pseudocode? Time analysis even of actual code is tedious. We identify the most important operation and express time in terms of or in connection with it. For a sorting problem such as NaiveSort the most important operation is comparison of keys.

```
NaiveSort(A,B,n)
for(i=1 ; i <= n! ; i++ )
    B = < generate next permutation of the n input keys of A>
    If B is a sorted sequence
```

```
    (i.e. B[1] <= B[2] <= ... <= B[n]) return(B);
4. }
```

In Line 3 of NaiveSort we check whether B is a sorted sequence or not by performing anywhere between 1 and n comparisons. If number of comparisons is 1 , this is because we realize B is not a sorted sequence. Likewise for other values less than $n-1$. If number of comparisons is $n-1$ we either conclude B is sorted by verifying $B[n-1] \leq B[n]$ in the last $n-1$-st comparison, or it is the last two keys that are out of order i.e. $B[n-1]>B[n]$ for this given permutation available in B. Thus we have further complications in developing a running time scenario based on comparisons!
Best Case. One permutation generated and it is sorted; $n-1$ comparisons performed to verify B is sorted.
Worst Case. All n ! permutations generated. It is quite a leap of faith to say that in each permutation we need to perform $n-1$ comparisons to realize that it is not sorted. It might or might not be the case. Try it with 4 or 5 keys! But in the worst scenarion we have to deal with $n!\times(n-1)$ comparisons.
Conclusion. The number of comparisons determines the running time $T(n)$, with n the problem size. We might use $C(n)$ for number of comparisons to write $C(n) \leq n!\times(n-1)$. Yet later on we shall write

$$
T(n)=O(n!\times n)=O(n!\cdot n)
$$

The latter expression for $T(n)$ is an asymptotic expression for the running time -1 is thrown out of $n-1$. Whether we use $n-1$ or n does not make a (asymptotic) difference; both n and $n-1$ are linear functions. Low-order terms such as -1 do not change that. Neither does a multiplicative constant if there was one such as $2 n-1$.

Is $i \leq n$ a comparison? The answer is NO. Conpparisons as defined are key comparisons. Variables i and n are not keys but integers. In reality a compiler will contpute in the accumulator of the CPU a $i-n$ and will immediately know whether the result is equal to zero or othernise $<$ or $>$ and all of its variations!

11.6 Main Memory

Consider the main memory of cocomputer. The main memory is a sequence of BYTE. A BYTE is a sequence of eight binary digit. A binary digitis shotened into the acronym bit (the first two letters of binary and the last letter of digit). It is a binary digit because it hojes oneef twiv yalues: 0 and 1.

The main memory can we denoted by Or Wh 4 and this abseacted by an array (say M).
 byte are accrsible and individualloidentisuble is mainytemory.
Definition 11.30 (Addres of abyte of main Premory). Every byte of main memory has an ID associated with it. The ID is known as the ddressof the obyte. Nee sayrat a byte has an address i or that the contents of main memory at address i is that byte. ${ }^{\circ}$
Definition 11.37 (Addresshas andffet âded index). The address of a byte in main memory is also called an offset and for the array abstraction of morn merary, it is also known as an index. (An offset is relating to a base i.e. starting address and that is address Off mane memory.)

The first address of main memory is address (index) 0 . Thus the $(i+1)$-st byte of main memory is at address i. $M[i]$ refers to the byte stored at address i, or at offset i from the address 0 of the first byte. Moreover i is the index of the array element $M[i]$.

Example 11.3 (Main Memory as an array of byte). The main memory can be abstracted as an array of BYTE. Thus the name M the name, referring to main memory, becomes an array of elements of the same data type. The data type of a BYTE of main memory is byte. In java we would write

$$
\text { byte }[] M=\text { newbyte }[2 * * 30] ;
$$

to represent an array of $2^{30} B=1 G i B$.
The length of the array M is 2^{30} (implying elements). The size of the array M is in express in units of memory size and the fundamental unit of memory size is the byte, i.e. a B. Thus memory size is $2^{30} B$ which is 1 GiB .

There is a difference between length and size for an array. If the length of the array is 5 it means it has 5 elements. The size of the array is the length multiplied by the size in B of an element of the array. The latter is dependent on the data type of an elements (and of the array). For an array of 5 int the length is 5 and size is $5 * \operatorname{sizeof}$ (int) $=5 * 4=20 B$, but for an array of 5 double the length is still 5 but size is $5 * \operatorname{sizeof}($ double $)=5 * 8=40 \mathrm{~B}$.

Thus length is unitless but size must have a unit following the magnitude.
Example 11.4 (Index, Address, Offset of MM or M). One can use interchangeably the names address and offset and also index. The latter however is specific to the array representation of M. The former two are agnostic to the array representation of M.

Example 11.5. Suppose we consider the byte at offset 16. The byte at offset 16, or address 16, or of index 16 with respect to M, is M[16]. It is NOT the sixteenth byte of memory: it is in fact the seventeenth.

Example 11.6 (Endianness). We store a 32-bit integer in memory. A 32-bit integer utilizes $4 B$ since $4 B * 8 b i t / B=32$. Let those four byte be the ones at addresses 16,17,18, and 19. What byte (address of) does contain the left-most bit and what byte does contain the right-most bit? The left-most bit of an integer is the sign bit, indicating positiveness (bit is set to zero) or not (bit is set to one).

The answer depends on who is reading this memory. In practice it depends on the microprocessor architecture that does the actual reading. An Intel microprocessor interprets those 4 byte differently than a Motorola or ARM microprocessor. An Intel architecture is called aritile Endian one, as opposed to a Big Endian architecture.

Example 11.7 (Little Endian). In a Little Erddian architecture (Intel CPUs) (the byte at) address 16 stores the 8 rightmost bit, address 17 stores the next 8 rightmost bit, and etc the address 19 stores the 8 leftmost bit of the 32 -bit integer.

Chapter 12

Number Systems

12.1 Radix for Base

When one writes down number 13, implicit in this writing is that the number is an integer number base-10. By tradition integer numbers and numbers in general are in base-10 that utilizes ten digits to describe them (i.e. write them down). These ten digits are $0,1,2,3,4,5,6,7,8,9$.

Definition 12.1 (Radix is base). The base df'the representation of a number (integer) is formally known as the radix. Integer numbers or numbers in generah be written down in a variety of radixes (the plural of radix).

The representation might changebut the magnitude of the number does not change. The magnitude is the number of units in a number.

Definition 12.2 (Magnitude) The nignitude of en (integer) number x is the number of the units it contains. We denote the magnitude of x with
Example 12.1. Thus for the radix) 10 ixeger 9, ohe n\#mber of onits of 9 is nine! For the radix-2 integer 1001, the
 that radix-10integer Ohas eradix-8representation 1001 She number of units of radix-8 integer 11 is also nine!

Less formathy we usetheverm binaty instead ofradix-2.
The most popularadix radio 10 ied based 0 . We will call it denary but not decimal in the remainder (the den of denary is from ten.) σ^{\downarrow}

Note 12.1 (Caution!). Avsid the of term decimal to refer to a radix-10 or base-10 integer expressed in denary notation. The term decimal impues a dectmal point i.e. we imply a real number expressed in denary notation such as 13.0 or 13.31 !

In computing everything is binary so the default radix is radix-2 (binary). However in radix- 2 integers have lots of digits and are quite long.

We thus prefer to group groups of binary digits. If we group three binary digits, we generate numbers in radix- 2^{3} i.e. radix-8 (octal). If we group four binary digits, we generate numbers in radix-2 ${ }^{4}$ i.e. radix-16 (hexedecimal).

Definition 12.3 (Table of integers). A table of some integers in binary, octal, hexadecimal and denary is shown below.

Binary	Denary	Hexadecimal	Octal	Binary (4-bit)	Shorthand
0	0	0	0	0000	Oo before an octal
1	1	1	1	0001	Ox before a hexadecimal
10	2	2	2	0010	or
11	3	3	3	0011	OX before a HEXADECIMAL
100	4	4	4	0100	Ob before a binary
101	5	5	5	0101	O17 indicates Oo17
110	6	6	6	0110	Rarely, a leading zero
111	7	7	7	0111	is to mean Oo
1000	8	8	10	1000	
1001	9	9	11	1001	Examples
1010	10	A	12	1010	Oo17
1011	11	B	13	1011	Oxfa or OXFA
1100	12	C	15	1100	Ob1010
1101	13	D	16	1110	O17
1110	14	E	17	1111	Avoid it!
1111	15	F			

Definition 12.4 (Radix-10 or Base-10: denary notation). A number written down in radix-10, also known colloquially as base-10, is expressed in denary notatiogby utilizing the ten digits 0 through 9 to write it. One can explicitly indicate the radix by writing the radix in the fym of a subscript next to the number.

Example 12.2 (A denary integer). Fornokly we should read 13 as "base- 10 integer 13" or "radix-10 integer 13 ". To indicate the radix explicitly we may write 13_{10}; then we can skip the "base-10 integer" or "radix-10 integer" wording. In all three cases thirteen is expresed in denary notation. The left-most non-zero digit is the most-significant digit (msd), the right-most digit is least-significant digit (lsd). Thus for integer 13 in radix-10, the 1 is the mostsignificant digit and the 3 is itheoleast-significant digit.
Definition 12.5 (Little endianixepresentationn). We would denote a natural number in the form $a=a_{n-1} a_{n-2} \ldots a_{0}$, where a_{0}, the lsd, is the lowe indered dignd and , themsd ine highest indexed digit.
Definition 12.6(Big endian represedfation). We inould dagt denote a natural number in the form $a=a_{0} a_{1} \ldots a_{n-1}$,

12.2 Denary

Definition 12.7 (Denary natural numbers in fixed-width). An n-digit radix-10 natural integer number a is denoted as $a=a_{n-1} a_{n-2} \ldots a_{0}$, where $a_{i} \in\{0, \ldots, 9\}$ for all $0 \leq i<n$. The most-significant digit is a_{n-1} and the least-significant digit is a_{0}. The magnitude of the number is

$$
|a|=\sum_{i=0}^{i=n-1} a_{i} \cdot 10^{i}
$$

The value of a is its magnitude i.e. $a=|a|$.
The definition can easily extend to integer numbers in general.
Definition 12.8 (Denary integer numbers in fixed-width). An n-digit radix-10 natural integer number a is denoted as $a=s a_{n-1} a_{n-2} \ldots a_{0}$, where $a_{i} \in\{0, \ldots, 9\}$ for all $0 \leq i<n$, and s is + or empty to indicate a positive integer, empty for zero, or - to indicate a negative integer. The most-significant digit is a_{n-1} and the least-significant digit is a_{0}, and s is the sign. The magnitude of the number is

$$
|a|=\sum_{i=0}^{i=n-1} a_{i} \cdot 10^{i}
$$

The value of a is $a=(-1) \cdot|a|$ if the sign of a is, or its magnitude $a=|a|$ if the sign of a is + or empty. Sometimes we introduce the sgn(a) function where $\operatorname{sgn}(a)=+1$ for $a \geq 0$ and $\operatorname{sgn}(a)=-1$ for $a<0$.

The remainder of this discussion is for natural numbers rather than integer numbers.
Exercise 12.1 (Units of radix-10 integer). For $a=a_{n-1} a_{n-2} \ldots a_{0}, a_{i} \in\{0, \ldots, 9\}$ for all $0 \leq i<n$, the digit a_{i} indicates the number of times the corresponding multiplier 10^{i} is going to be used to derive the magnitude of the radix-10 integer i.e. its number of units.

For the example aboyeat is nutatber pf hits, a_{1} is the number of tens of units, a_{2} is the number of hundreds of units, a_{3} is the number of thotsands of unitreontributing fo, the geagnitude of a.
Method 12.1 (Finding the magitude or rade-10 ieger, For $a=123456_{10}$ we have, 6 units, 5 tens, 4 hundreds, 3 thousands and so dr. Te derive ifsmagntude, twe wrine all powers of 10 right to left from most to least significant digit over the number, mbiply thecorsespondin digit and power and add up the results.

Exercise 12.2 (Leading zeroes vs Trailing zeroes). Leading zeroes do not change the outcome. So 123456 and 00123456 are the same number; the two leading zeroes have no effect. Trailing zeroes are important, 123456 and 12345600 are two different numbers. The latter can be derived from the former by multiplying with 10^{2} i.e. 10 raised to the number of added trailing zeroes to derive the latter number from the former. This is also the case for 12300 and 1230000.

Example 12.3. 101 or 101_{10} indicates a denary i.e. radix-10 integer by default. We read 101_{10} as 'one hundred and one (units)' or 'one hunder one' or 'denary one hundred (and) one (units)' or 'one hundred (and) one (units) denary'.

12.3 Binary Numbers

Definition 12.9 (Binary notation of a natural number). A natural number a is denoted in radix-2 as the n-digit or n-bit sequence $\operatorname{bin}(a)=a_{n-1} a_{n-2} \ldots a_{0}$, where $a_{i} \in\{0,1\}$ for all $0 \leq i<n$. For bin (a) in binary notation its magnitude and value a is

$$
a=|a|=\sum_{i=0}^{i=n-1} a_{i} \cdot 2^{i}
$$

(Implicit in this definition is the lack of leading zeroes, that is $a_{n-1} \neq 0$. The definition stands however in general even in the presence of leading zeroes.)

Definition $12.10(\mathbf{b i n}(\mathbf{a}, \mathbf{n}))$. We shall use the notation $\mathbf{b i n}(\mathbf{a}, \mathbf{n})$ to denote the n-bit notation of denary a in binary. (Leading zeroes are used to pad the result to n bit.) Note that $\mathbf{b i n}(\mathbf{a})$ uses the minimal number of digits and thus it is equivalent to $\mathbf{b i n}(\mathbf{a}, \mathbf{0})$.

Example $12.4(\operatorname{bin}(\mathrm{a}, \mathrm{n}))$. In all cases, unless otherwise specified, a is the number of units. Thus bin(2,8$)=00000010$ and $\operatorname{bin}(0,4)=0000$. But note that $\operatorname{bin}(2,1)=10$. Thus if n is smaller than the minimal number of digits to represent (the natural number) a, then n is ignored.

Example 12.5. 101_{2} indicates a binary i.e. radix-2 integer by default. We might also write bin $(a)=101$ or rarely $0 b 101$. We read 101_{2} as 'binary one zero one' or ©ne zero one binary' but never 'one hundred one' and never 'one hundred and one (units)'. And by the way an, that is $\operatorname{bin}(5)=101$, that is 101_{2} is $1 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}=5$ i.e. denary five.
(When we write a binary number, we usQ minimal representation absent of leading zeroes unless we are told to write the number in a fixed and given number' of bit or digit.)

12.3.1 Convert Binaryghto Denary

This is straightforward. Infollows trom the defaition.
Method 12.2 (Convert binary inte denacy). Fing the natnithe or value x of the 5 -bit binary number $(n=5)$ with
 reach the leftmost birMultigly the erower coth cosponing bit and add all partial products.

Thus $x=|x|=25$.
A partial product is either zero or the power of two!

12.3.2 Properties of binary numbers

Fact 12.1 (Number of bits for natural $x>0$). The number m of bit (no leading zeroes) of bin(x) of a natural number $x>0$ is given by $m=\lfloor\lg x\rfloor+1=\lceil\lg (x+1)\rceil$.

Example 12.6. Thus for 1 we need 1 bit, for 2 i.e. 10_{2} we need two, for 4 i.e. 100_{2} we need three and for 7 i.e. 111_{2} we also need three.

Proof. We have that any natural number x can be bracketed between two consecutive integer powers of 2 . That is for x, there exists an integer $m>0$ such that $2^{m-1} \leq x \leq 2^{m}-1$. All those integers such as x in that range have m bit in
their binary representation $\operatorname{bin}(x)$. Natural numbers $0 \leq y<2^{m-1}$ need $m-1$ or fewer bits in $\operatorname{bin}(y)$. They can also be shown in m-bit by using a number of leading zeroes as shown in Example 12.7.

The range of x with leading (leftmost) bit one is $2^{m-1} \leq x \leq 2^{m}-1$ can be rewritten as $2^{m-1} \leq x<2^{m}$. Taking logarithms base two we have $m-1 \leq \lg x<m$.

$$
\begin{aligned}
2^{m-1} & \leq x & & \leq 2^{m}-1 \\
2^{m-1} & \leq x & & <2^{m} \\
m-1 & \leq \lg (x) & & <m . \\
m-1 & \leq\lfloor\lg (x)\rfloor \leq \lg (x) & & <m .
\end{aligned}
$$

Since $\lfloor\lg (x)\rfloor \leq \lg (x)$ and by the last inequality above less than m, we have that consecutive integers $m-1$ and m are the only two integers surrounding $\lg (x)$. If $\lfloor\lg (x)\rfloor \leq \lg (x)$ cannot be m it should be $m-1$ i.e. $m-1=\lfloor\lg x\rfloor$ implying $m=\lfloor\lg x\rfloor+1$.

Similarly,

$$
\begin{array}{rlrl}
2^{m-1} & \leq x & & \leq 2^{m}-1 \\
2^{m-1}+1 & \leq(x+1) & & \leq 2^{m} \\
2^{m-1} & <(x+1) \\
m-1 & <\lg (x+)^{2} & & \leq 2^{m} \\
m-1 & <\lg (x+1) \leq\lceil\lg (x+1)\rceil & & \leq m . \\
& & \leq m .
\end{array}
$$

Since $\lceil\lg (x+1)\rceil>m-1$ and $\lceil\lg (x+1)\rceil \leq m$, there can be only one possibility that $\lceil\lg (x+1)\rceil=m$.

Example 12.7 (Fixed-widthis Minimal-width2 \circlearrowright

Exercise 12.3 (m bit for a naturanumber). What is the range of natural numbers that can be represented with m bit starting from zero? What is the smallest and largest natural number with m bit? How many natural numbers in total with m bit?

Proof. The answer is 2^{m}. The range is $0 \ldots 2^{m}-1$, with 0 being the smallest and $2^{m}-1$ the largest.
Exercise 12.4 (m ones). The value x of m-bit natural number $\operatorname{bin}(x)=\underbrace{1 \ldots 1}_{m \text { ones }}$ is $x=2^{m}-1$.
Exercise 12.5 (One followed by $m-1$ zeroes). The value x of m-bit natural number bin $(x)=1 \underbrace{0 \ldots 0}_{m-1 \text { zeroes }}$ is $x=2^{m-1}$.

12.4 Octal Numbers

Definition 12.11 (Octal notation of a natural number). A natural number a is denoted in radix- 8 as the n-digit sequence oct $(a)=a_{n-1} a_{n-2} \ldots a_{0}$, where $a_{i} \in\{0,1,2,3,4,5,6,7\}$ for all $0 \leq i<n$. For oct (a) in octal notation its magnitude and value a is

$$
a=|a|=\sum_{i=0}^{i=n-1} a_{i} \cdot 8^{i}
$$

Definition $12.12(\boldsymbol{o c t}(\mathbf{x}, \mathbf{n}))$. We shall use the notation $\boldsymbol{\operatorname { o c t }}(\mathbf{x}, \mathbf{n})$ to denote the n-digit notation of denary x in octal representation. (Leading zeroes are used to pad the result to n digit octal.)

Thus $\operatorname{oct}(2,5)=00002$ and $\operatorname{oct}(8,2)=\operatorname{oct}(8,1)=10$. Thus if n is smaller than the minimal number of digits to represent the natural number x, then n is ignored, and so was in $\operatorname{oct}(8,1)$.

Example 12.8. 101_{8} indicates an octal i.e. radix- 8 integer by default. We might also write oct $(a)=101$ or $0 o 101$ and rarely and dangerously 0101. (In fact this author never uses the latter writing.) We read 101_{8} as 'octal one zero one' or 'one zero one octal' but never 'one hundred one' or 'one hundred and one (units)'. And by the way $a=65$, that is oct $(65)=101$, since 101_{8} is $1 \cdot 8^{2}+0 \cdot 8^{1}+1 \cdot 8^{0}=65$ i.e. denary sixty-five.
(When we write an octal number, we use a minimal representation absent of leading zeroes unless we are told to write the number in a fixed and given number of digits.) λ

12.4.1 Convert Octal into Denary

This is straightforward. It follows from definition.
Method 12.3 (Convert octal intodenary). Find the magnitude or value x of the 5-digit octal number ($n=5$) with $\operatorname{oct}(x)=11001$. Generates ald, ${ }^{2}$ wers of 8 starting with 8^{0} on top of the right-most digit of the octal number until we reach the left-most digit. Mylliply- the-power with corresponding digit and add all partial products.

12.5 Hexadecimal Numbers

Definition 12.13 (Hexadecimal notation of a natural number). A natural number a is denoted in radix-16 as the n-character sequence hex $(a)=a_{n-1} a_{n-2} \ldots a_{0}$, where $a_{i} \in\{0,1,2,3,4,5,6,7,8,9, a, b, c, d, e, f\}$ for all $0 \leq i<n$, or equivalently $a_{i} \in\{0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F\}$ for all $0 \leq i<n$. (One might use hex(a) for the former and $H E X(a)$ for the latter usage.) For hex (a) or $\operatorname{HEX}(a)$ in hexadecimal notation its magnitude a is

$$
a=|a|=\sum_{i=0}^{i=n-1} A_{i} \cdot 16^{i}
$$

where $A_{i}=a_{i}$ if $a_{i} \in\{0,1,2,3,4,5,6,7,8,9\}, A_{i}=10$ if $a_{i}=a$ or $a_{i}=A, A_{i}=11$ if $a_{i}=b$ or $a_{i}=B, A_{i}=12$ if $a_{i}=c$ or $a_{i}=C, A_{i}=13$ if $a_{i}=d$ or $a_{i}=D, A_{i}=14$ if $a_{i}=e$ or $a_{i}=E, A_{i}=15$ if $a_{i}=f$ or $a_{i}=F$.

Definition 12.14 (hex(x,n) or HEX($\mathbf{x , n})$). We shall use the notation $\mathbf{h e x}(\mathbf{x}, \mathbf{n})$ or $\mathbf{H E X}(\mathbf{x}, \mathbf{n})$ to denote the n hexadecimaldigit notation of denary x in hexadecimal representation. (Leading zeroes are used to pad the result to n digit hexadecimal.)

Thus hex $(10,2)=0 \mathrm{a}, \operatorname{HEX}(10,2)=0 \mathrm{~A}$ and $\operatorname{HEX}(16,1)=10$. Thus if n is smaller than the minimal number of digits to represent the natural number x, then n is ignored, and so was in $\operatorname{HEX}(16,1)$.
Example 12.9. 101_{16} indicates a hexadecimala.e. radix-16 integer by default. We might also write hex $(a)=101$ or $\operatorname{HEX}(a)=101$ or $0 x 101$ or $0 X 101$. We vead 101_{16} as 'hex one zero one' or 'one zero one hexadecimal' or 'hexadecimal one zero one' or 'one zero phe'hex', but never 'one hundred one' or 'one hundred and one (units)'. And by the way $a=257$, that is oct $(257)=$ Nol, since 101_{16} is $1 \cdot 16^{2}+0 \cdot 16^{1}+1 \cdot 16^{0}=257$ i.e. denary two-hundred fifty seven. For $1 F_{16}$ we prefer to use $0 X 1 F$ br $\operatorname{HEX}(a)=1 F$. Otherwise we could use $0 x 1 f$ or hex $(a)=1 f$. In this latter case $a=31$.

12.5.1 Convert Hexadeciinal into Denary

This is straightforward. Pt follfows from the definition.
Method 12.4 Convert hexadecimal into denary). Åd thepragnitude or value x of the 5-digit hexadecimal number $(n=5)$ with hex $(x)=100$ Geneates aby powexsof 16 larting with 16^{0} on top of the right-most digit of the octal
 Before you do, the multiofecation, if adto itsettr, convert it into the corresponding ordinal value between 10 and 15.

Thus $x=|x|=69633$.
Method 12.5 (Convert hexadecimal into denary). Find the magnitude or value x of the 3-digit hexadecimal number $(n=3)$ with $H E X(x)=A 0 B$.
$16^{2}+16^{1}+16^{0}$
$\cdot+0 \quad B(11)=$
$A(10)+0$
$2560+0+11=2571$

Thus $x=|x|=2571$.

12.6 Conversions from one radix into another one

Exercise 12.6. 101 is radix-10, radix-2, radix-8, radix-16 representation of 101, 5, 65, 257 respectively.
Exercise 12.7. 81 cannot be in radix-2, radix-8 because it uses an 8 (radix-10 and radix-16 are only possibilities.)
Exercise 12.8. $A B$ cannot be in radix-10, radix-2, radix-8, because digits A, B can only exist in radix-16.
An integer of an arbitrary radix can be converted into denary either by following the definition or use a left to right or right to left scan of the digits of the integer.

12.6.1 Convert Arbitrary Radix- b natural number into Radix-10

We can convert a radix-b natural number into radix-10 either left-to-right or right-to-left. The method below is left-toright.

Method 12.6 (Radix-b to Radix-10: left to right). We can convert a radix-b natural number into radix-10 either left-to-right or right-to-left. The example below is left-to-right for $b=2$.

12.6.2 Convert Radix \mathcal{Z}^{\prime} (binary anto Radix 88 (octal)

Method 12.7 (Radix-2 fordixd: Croupsof 3 bia For hetural number a for which bin (a) is available, its octal notation canpe derived eqsily by gouping bits gro at of three right to left and converting the three-bit binary of a groubinto theteorresonding ctat igit using the Yable of Fact 12.3. (The leftmost group might have its binary digits padded whent zeexes to tove the bits)

Example 12.110.

 '011'111'111 Meating zeepes left group: Step 2

12.6.3 Convert Radix-2 (Binary) into Radix-16 (hexadecimal)

Method 12.8 (Radix-2 to Radix-16: Groups of 4 bit). For natural number a for which bin(a) is available, its hexadecimal notation can be derived easily by grouping bits into groups of four right to left and converting the fourbit binary of a group into the corresponding hexadecimal digit using the Table of Fact 12.3. (The leftmost group might have its binary digits padded with leading zeroes to have four bits.)
Example 112.11.
: Group into groups of 4 bits : Step 1.
F F : Convert quadruplets into hex : Step 3 [Use also Table of Fact 6.1]
OXFF : Output using $A-F$: Step 4
or
Oxff : Output using a-f : Step 4

12.6.4 Convert Radix-10 natural number into Radix-2

Method 12.9 (Radix-10 to Radix-2: Right to Left).
Input : Denary (radix-10) natural number a.
Output: Binary representation bin(a) of a. (Right to left.)

Step 1. Set $X=a$. Bit sequence will be generated right-to-left, least-to-most significant.
Step 2. If X is even, generate a 0 , set $X=X / 2$, and Go to Step 4; otherwise (X odd) go to Step 3.
Step 3. If X is odd, generate a 1 and set $X=(X-1) / 2$. Go to Step 4.
Step 4. If X is 0 go to Step 5, else go to Step 2 and repeat.
Step 5. Output the result (write it down properly).

12.6.5 Convert Radix-10 natural number into Radix-2

Method 12.10 (Radix-10 to Radix-2: Left to Right).

Input : Denary (radix-10) natural number a.
Output: Binary representation of $\operatorname{bin}(a)$ of a. (Left to right.)
Step 1. Starting with 1 , compute by doubling $2^{0}, 2^{1}, \ldots, 2^{m}$ the largest $2^{m} \leq a$. Set $X=a$. $P=2^{m}$.
Step 2. If X is equal to 0 Go to Step 5else continue to Step 3.
Step 3. If $X \leq P$ output ' 1 ', set X - \quad, $P, P=P / 2$. Go to Step 2.
Step 4. If $X>P$ output ' 0 ', set $R=P / 2$. Go to Step 2.
Step 5. Done.

12.6.6 Convert Radiy-10 jinto Radix-b

Theorem 12.1 (kepresentationof natural numbersior radix-b). The representation of natural number a in radix- b
 number of digits in, the repzesentatron. Rgdix-b indlso 1

Example 12.12. order to couvert dendy integer 140 into a radix-2 (aka binary) integer we can perform repeated division

Proof.

$$
\begin{aligned}
140 & =2 \cdot 70+0 \\
70 & =2 \cdot 35+0 \\
35 & =2 \cdot 17+1 \\
17 & =2 \cdot 8+1 \\
8 & =2 \cdot 4+0 \\
4 & =2 \cdot 2+0 \\
2 & =2 \cdot 1+0 \\
1 & =2 \cdot 0+1
\end{aligned}
$$

Reading the remainders bottom to top and writing them left to write we claim that $140=(10001100)_{2}$. It is not difficult to confirm this.

12.7 Signed Integers

As we mentioned earlier in the previous section, a byte or a collection of bytes (e.g. a word) can be viewed as the binary representation of a natural number or an ASCII symbol, or a Unicode Standard symbol, or UTF-8 or UTF-16 that encodes Unicode symbols. (And ASCII symbols are part of Unicode as well.)

Of interest in this section is the representation of not just natural numbers (positive or non-negative integer numbers) but of integer numbers in general: positive, negative, or zero. We call the latter signed integers to stress that they include all three groups.
Fixed-width. We describe some fixed width methods that represent signed integers with one, two, or four bytes: they can be extended to any fixed number of bytes, e.g. eight.

Definition 12.15 (N byte signed integers). If we were given N bytes i.e. $8 N$ binary digits the number of positive, negative and zero values that can be represented is an even number and equal to $2^{8 N}$. If the number of positive integer values that can be represented is p, the number of negative values is n and there is a single zero, then $n+p+1=2^{8 N}$ implies that $n+p$ must be an odd number: we cannot represent the same number of positive and negative values, unless we have more than one representation of zero.

Exercise 12.9 ($N=1: 8$-bit representation). If we use $1 B$, which is 8 bit, to represent a natural number (i.e. unsigned integer), we can represent with that byte $2^{8}=256$ consecutive numbers from 0 to 255 .
If we try to represent an integer (i.e. signed integex we need to think about the representation of the sign (positive or negative in one bit) and the representation itself we attempt to represent in binary $2^{7}=2^{8} / 2=128$ negative values, the remaining values must represent the zexo and no more that 127 positive values.

```
8-bit unsigned A<L integers from 0 to 255
8-bit signed (two's complement) At integers from -128 to \(-1,0,1\) to 127
```

We present three representations of signed integers: signed mantissa, one's complement, and two's complement. All three of them use the leftorst bit as a sign bit indicator: one indicates a negative number and a zero a positive number.
 tion, the leftmost bit a sigebit. The mostrignifeant bifof thg humber is the one to the right of the sign bit i.e. the second from leftrit e^{0}

12.8 Unsigned Integers

Definition 12.16 (n-bit unsigned integer). An n-bit unsigned integer N has

- (i) no sign bit
- (ii) all n bits represent the magnitude of the integer that is $|N|$.
2^{n} positive values and zero can be represented. The range of integers is $0,1, \ldots, 2^{n}-1$, that is $0 \leq N<2^{n}$ or $|N|<2^{n}$.

Fact 12.2 (Multiplication by a power of two). If n-bit integer N is multiplied by 2^{k} for some integer $k>1$, then the result $M=N \times 2^{k}$ has $(n+k)$ bits. The binary representation of M is N shifted left k bit positions (and filling them with zeroes). In other words, the binary representation of M is the concatenation of the binary representation of N with a bit sequence of k zero bits.

Exercise 12.10. Let $N=5$ whose binary representation in $n=3$ is 101. The $M=N \times 2^{5}=5 \times 32=160$. Its binary representation is the concatenation of N 's $\mathbf{1 0 1}$ and the five zeroes implied by 2^{5} i.e. $\mathbf{0 0 0 0 0}$. The result is $\mathbf{1 0 1 0 0 0 0 0}$ as needed. Note that $2^{5}=32$ has binary representation $\mathbf{1 0 0 0 0 0}$ i.e. a one followed by five zeroes.

Fact 12.3 (Integer division by a power 6fino). If n-bit integer N is divided by 2^{k} for some integer $k>1$, then the result $M=\left\lfloor N / 2^{k}\right\rfloor$ has $(n-k)$ bits. Tnesinary representation of M is the binary representation of N after shifting N to the right k bit positions and discarding the k bits past the righmostbit position, or in other words by isolating the $n-k$ bits of N.

Exercise 12.11. Let $N=160$ whe binary reasentation in $n=8$ is 10100000. Then $M=\left\lfloor N / 2^{6}\right\rfloor=\lfloor 160 \times 64\rfloor=2$. If $N \mathbf{1 0 1 0 0 0 0 0}$ is shitted righiod posidions 100000 gets discardedfand we are left with $\mathbf{1 0}$. Equivalently the $n-k=$ $8-6=2$ leftmost it. position aregextractea. In ner case we alo left with $\mathbf{1 0}$ which is 2 in radix-10, as needed.

12.9 Signed Mantissa

Definition 12.17 (n-bit Signed Mantissa). An n-bit integer N in signed mantissa representation has

- (i) a sign bit that is its leftmost bit, and
- (ii) the remaining $n-1$ bits represent the magnitude of the integer that is $|N|$.
2^{n-1} positive and as many negative integer numbers can be represented including zeroes (a positive and a negative one). The range of integers is $-2^{n-1}+1, \ldots,-1,-0,+0,+1, \ldots,+2^{n-1}-1$, that is, $-2^{n-1}<N<2^{n-1}$ or $|N|<2^{n-1}$.

Exercise 12.12 (8-bit Signed Mantissa). In 8-bit signed mantissa, the leftmost bit is the sign and the remaining 7 bits the magnitude of the signed integer. Thus $2^{8}=256$ integer values can be represented, 128 positive and 128 negative. One of those positive and one of those negative values is +0 and -0 shown below.

For the +43 and -43 represenation, the leftmost of the 8 bits is the sign and varies. The remaining 7 righmost bits is the magnitude: $|-43|-43 \mid=43$ and both signed integers have the same magnitude. If we convert the 8-bit sequence from radix-2 to rodix-1, 印e get 43 fo +43 obviously, but 171 for -43 's binary representation. Note that $171=128+43$ and 128 cound for sigin it contribution.

Thus if N is arositiventegerflumber that is $>$ and sughthat $N<2^{n-1}$ the signed mantissa representation of N is the same as he 8 bounsigaed integer bindry remesentation of N : the two representation are identical for positive numbers.

For -N a negative abmber the sighed martissacrepresentation of $-N$ is the same as the 8 -bit unsigned integer binary represeptation of $128+N=2+N O$

12.10 One's Complement

Definition 12.18 (n-bit One's complement). An n-bit integer N in one's complement representation has

- (i) a sign bit that is its leftmost bit, and
- (ii) the remaining $n-1$ bits represent the magnitude of integer $N>=0$ or its complement otherwise.
2^{n-1} positive and as many negative integer numbers can be represented including zeroes (a positive and a negative one). The range of integers is $-2^{n-1}+1, \ldots,-1,-0,+0,+1, \ldots,+2^{n-1}-1$, that is, $-2^{n-1}<N<2^{n-1}$ or $|N|<2^{n-1}$.

Signed mantissa and one's complement represent differently the negative integers including the negative zero.
Exercise 12.13 (8-bit One's complement). In 8-bit one's complement, the leftmost bit is the sign and the remaining 7 bits the magnitude of the signed integer or the complement of the magnitude. By complement we mean flipping ones into zeroes and zeroes into ones. Thus $2^{8}=256$ integer values can be represented, 128 positive and 128 negative. One of those positive and one of those negative values is +0 and -0 shown below. The positive zero, as before is represented as $\mathbf{0 0 0 0 0 0 0 0}$. The negative zero is 11111111. This is because in the bit sequence the sign bit is 1 indicating a negative number is represented. In order to retrieve the magnitude of this number, we first extract the 7 righmost bits 1111111 and then we flip them and hey become 0000000. Thus the negative number represented has magnitude 0 and this is -0 .

12.11 Two's Complement

Definition 12.19 (n-bit Two's complement). An n-bit integer N in two's complement representation has

- (i) a sign bit that is its leftmost bit, and
- (ii) If $N=0$ its representations is n zero bits.
- (iii) If $2^{n-1}>N>0$ the binary representation of N is the same as the unsigned (and also the one's complement) representation of N.
- (v) If $-2^{n-1} \leq N<0$ the binary represenation of N is derived by writing down the unsigned bit representation of $|N|$ in n bits, flipping all n bits and adding one to the result.
$2^{n-1}-1$ positive and 2^{n-1} negative integer numbers can be represented including one zero (a 0 -bit sequence). The range of integers is $-2^{n-1}, \ldots,-1,0,+1, \ldots,+2^{n-1}-1$, that is, $-2^{n-1} \leq N<2^{n-1}$.

Exercise 12.14 (8-bit Two's complement). In 8-bit Two's complement, the leftmost bit is the sign and the remaining 7 bits can be used to determine the magnitude of the integer. Thus $2^{8}=256$ integer values can be represented, 127 positive and 128 negative; a zero which is an 8reball zero sequence has the same sign bit as the positive numbers. The zero is represented as $\mathbf{0 0 0 0 0 0 0 0}$.

From radix-10 to two's complement. If we start with a negative integer say -128 we find its two's complement representation as follows. Its magnitude is $|-128|=128$. We write down the magnitude in 8 -bit as 10000000 . We first flip the bits to get 01111111 and then add one to the result to get 10000000 . This is the two's complement of -128 , also shown above. For -43 we start with its magnitude $|-43|=43$ in 8 -bit binary i.e. 00101011 . We then flip it to get 11010100 and add one to the result to get 11010101 . The latter's is two's complement of -43 .

From two's complement to radix-10. Given the two's complement representation of an integer say in 8-bit we can retrieve the value of the integer as follows. Let the 8 -bit two's complement be 11111111 . The leftmost bit is the sign bit and it is one. This means we have a negative integer. We first flip all the bits to get 00000000 and then add one to the result. We get 00000001 . This is the magnitude of the negative integer in unsigned representation, which is one. Thus 11111111 is the binary representation of -1 .

For the two's complement bit sequence 10000000 we note that it represents a negative number, after flipping we get 01111111 and adding one we get 10000000 . The latter in unsigned representation is a 128 . This means that the original 10000000 is -128 .

For the two's complement bit sequence 10000001 we note that it represents a negative number, after flipping we get 01111110 and adding one we get 01111111 . The latter in unsigned representation is a 127 . This means that the original 10000001 is -127 .

Method. Thus the same method works both ways: for a negative number (either because it has a - in its radix-10 representation or a sign bit of 1 in its two's complement representation) flip and add one to the result.

12.12 Fixed-point real numbers

Fact 12.4 (n-bit fixed-point real numbers). One easy way to deal with real numbers is to assume that n_{i} of the n bits represent the integer part of the real number and n_{d} of the n bits represent the decimal part of it, where $n_{i}+n_{d}=n$.

Exercise 12.15 (8-bit fixed-point real number).
The 8-bit binary sequence represents a fixed-point real number R with $n_{i}=n_{d}=4$. The decimal point is implied after the first four leftmost bit positions and thus the integer part of R is in binary the four leftmost bits i.e. 0001 or in radix-10, $R_{i}=0 \times 2^{3}+0 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=1$. For the decimal part we first isolate the bit sequence to the right of decimal point $\mathbf{1 1 0 0}$ and then convert it to radix-10 according to $R_{d}=1 \times 2^{-1}+1 \times 2^{-2}+0 \times 2^{-3}+0 \times 2^{-4}=0.75$. Thus $R=R_{i}+R_{d}=1.00+0.75=1.75$.

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
\hline
\end{array}
$$ $\} n$-bit fixed point with $n_{i}=4$

If we have $n_{i}=5$ and $n_{d}=3$, the same bit sequence implies a decimal point after the first five leftmost bit positions and thus the integer part of R is in binary the five leftmost bits i.e. $\mathbf{0 0 0 1 1}$ or in radix-10, $R_{i}=0 \times 2^{4}+0 \times 2^{3}+0 \times 2^{2}+$ $1 \times 2^{1}+1 \times 2^{0}=3$. For the decimal part we first isolate the bit sequence to the right of decimal point $\mathbf{1 0 0}$ and then convert it to radix-10 according to $R_{d}=1 \times 2^{-1}+0 \times 2^{-2}+0 \times 2^{-3}=0.50$. Thus $R=R_{i}+R_{d}=3.00+0.50=3.50$.

$$
\left.\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
\hline
\end{array}\right\} n \text {-bit fixed po<int with } n_{i}=5
$$

12.13 Floating-Point real numbers

Definition 12.20 (Normalized real numbers). A normalized real number has a bit that is one to the immediate left of the decimal point or has only one bit on the left of the decimal point.

Fact 12.5 (Division by a power of two). If n-bit real number N is divided by 2^{k} for some integer $k>1$, then the result $M=N / 2^{k}$ has $(n-k)$ integer bits and k additional decimal bits. The binary representation of M is the binary representation of N after shifting N to the right k bit positions.

Exercise 12.16. Real number 100. is not normalized (first part of the definition). There is a period to the right of the second zero bit. Because of this, on the left of the decimal point there is a zero. Moreover there are three bits to the left of the decimal point.

Exercise 12.17. Let $N=160$ whose binary representation in $n=8$ is 10100000. Then $M=N / 2^{6}=160 \times 64=2.50$. If $N \mathbf{1 0 1 0 0 0 0 0}$ or 1010000. is shifted right 6 positions and we are left with $\mathbf{1 0 . 1 0 0 0 0}$ in binary. (The implied decimal points is beteen the second and third leftmost bit, if.the real number is viewed as fixed-point.) Viewing the result in fixed point it gives $1 \times 2^{1}+0 \times 2^{0}+1 \times 2^{-1}=5$ as needed.

Exercise 12.18 (Normalizing a real or inger number). Real number $\mathbf{N}=100$. is not normalized. However $M=N / 2^{2}$ is normalized. In other words, $N=M \times 2^{2}$. Given that $M=1.00$ or just 1 ., the N can be rewritten as $N=1.0 \times 2^{2}$. We have normalized N. It consists $\$$ an integer part $\mathbf{1}$ that is on the left of the decimal point, a mantissa $\mathbf{. 0}$ that is on the right of the decimal point, an exponent 2 (not the base).

Exercise 12.19 (Normatintioñesolved). Renumber $\mathbf{N}=101$. is not normalized according to the refined definition requiring only one bit on theleft of the deimalooint. fowever $M=N / 2^{2}$ is normalized, or $N=M \times 2^{2}$. Then $N=1.01 \times 2^{2}$. The integenpartisi, the nantiss is oftand thexponent is 2.
Theorem 122-(Properties freal numbersand inters) eet a, b, c be integer or real numbers. The following properties are true. er as is fisjunctive, ngtexclusive.)

Definition 12.21 (IEEE 754-1985 Standard). Real numbers in floating-point are represented using the IEEE 754-1985 standard. Be reminded that in IEEE 754-1985 neither addition nor multiplication are associative operations. Thus it is possible that $(a+b)+c \neq a+(b+c)$. Thus errors can accumulate when we add.

12.13.1 IEEE-754: Single Precision

Definition 12.22 (Normalized real numbers: Mantissa, Exponent, Significand). A (fully) normalized real number R is (or can be converted into) the binary notation form $R= \pm \times 1 . x x x x \times 2^{y y y y}=s \times 1 . X \times 2^{Y}$, the positive or negative sign becomes a 0 or 1 bit, the part $1 . \mathrm{xxxx}$ or $1 . \mathrm{X}$ is known as the significand (D) of which the integer part is one, and the rest, known as the fraction or mantissa, is xxxx or X as shown. The yyyy or Y is the exponent. The significand D is a small real number between 1 and 2 (i.e. normalized).

Definition 12.23.
$\left.\begin{array}{|l|l|l|}\hline S: I & \text { E:(exponent }): 8 & F:(\text { Mantissa }): 23 \\ \}\end{array}\right\}$ SP: 32-bit

Fact 12.6 (IEEE-754 Single Precision(SP)). In IEEE-754, single precision floating-point numbers are derived from a normalized input of the form $R=s \times 1 . X \times 2^{Y}$, where, s is the sign, $a \pm 1$, the significand $D=1 . X$ is between 1.0 and 2.0, and the exponent Y is an integer. The resulting IEEE-754 notation also has three given parts, a sign bit S, an exponent E and a mantissa F also known as fraction, and an implied part known as the bias B.

- \mathbf{S} is the the leftmost bit with 0 indicating non-negative and 1 indicating non-positive
- \mathbf{E} is the 8-bit exponent,
- \mathbf{F} is the 23-bit fraction, (fraction withonfinteger part),
- \mathbf{B} is the bias (and set $B=127$).

There are two zeroes in the represeñation: an all-zero E and F has sign the sign of the sign bit S. Exponents that are all-0 and all-1 are reserved the quadraplet (S, E, F, B) determines the quintuplet $(S, E, F, B, D=1+F)$. The floating-point number represeered by (S, E, F, B, D) is

The relative precis
Exercise 12,20tSmailest Sp (absohte) vakue). Simalleste $=1$ and then $E-B=1-127=-126$. The smallest

Exercise 12.2 (Largetst SB (absolute) vane . Letgest E in binary is 1111110 and thus $E=254$. Then $E-B=$ $254-127=127$. The kargest numbers are then $\pm 20,2^{127}$
Exercise 12.22 (Radix-10to Spl Let R - 0.875 with the fractional part being .111. Then $R=(-1)^{1} \times 1.11 \times 2^{-1}$. We obviously have $S=1$, thatractignt $\mathbf{F}=\mathbf{1 1 0} \ldots \mathbf{0}$. We also have $E=-1+B=-1+127=126$. The exponent E in 8-bit binary is $\mathbf{E}=\mathbf{0 1 1 1 1 1 1 0}$.
$S \quad E \quad F$
$10111111010000000000000000000000=1 / 01111110 / 10000000000000000000000$

$$
\begin{array}{|l|}
31 & 30 & 29 & 28 & 27 & 26 & 25 & 24 & 23 & 22 & 21 & 20 & 19 & 18 & 17 & 16 & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline \boldsymbol{l} & 0 & l & I & I & l & l & l & 0 & l & l & 0 \\
\hline
\end{array}
$$

12.13.2 IEEE-754: Double Precision

Definition 12.24.

$\left.\begin{array}{|l|l|l|}\hline S: 1 & \text { Exponent:11 } & \text { Mantissa:52 } \\ \hline\end{array}\right\}$ DP: 64-bit

Fact 12.7 (IEEE-754 Double Precision(DP)). In IEEE-754, double precision floating-point numbers are derived from a normalized input of the form $R=s \times 1 . X \times 2^{Y}$, where s is the sign, $a \pm 1$, the significand $D=1 . X$ is always between 1.0 and 2.0, and the exponent Y is an integer. The IEEE-754 DP has three given parts, a sign bit S, an exponent E and a mantissa F also known as fraction, and an implied part known as the bias B.

- \mathbf{S} is the leftmost bit with 0 indicating non-negative and 1 indicating non-positive,
- \mathbf{E} is the 11-bit exponent,
- \mathbf{F} is the 52-bit fraction, (fraction without integer part),
- \mathbf{B} is the bias (and set $B=1023$).

There are two zeroes in the representation: an all-zero E and F has sign the sign of the sign bit S. Exponents that are all-0 and all-1 are reserved. The quadraplet $\{S, E, F, B)$ determines the quintuplet $(S, E, F, B, D=1+F)$. The floating-point number represented by (S, E, F, B, O) is

$$
R=\left(1-2 S \times(1+F) \times 2^{E-B}=(1-2 S) \times D \times 2^{E-B}\right.
$$

The relative precision in DP with a 51 -bit fraction is roughly 2^{-52}, thus $52 \log _{10}(2) \approx 13$ decimal digits of precision.
Exercise 12.23 (Smallest DP fraction $F=\mathbf{a l l}-\mathbf{0}$, and the $10 F_{.}, \bar{\xi}(1+F)=1.0$. The smallest (absolute value) numbers are then $\pm 1.0 \times 2^{-1022}$.
Exercise 12.24 (Largestip (absolute) ©alue ${ }^{2}$ argest E in binary is 111111111110 and thus $E=$ 2046. Then $E-B=$ $2046-1023=1023$. The lafiest faction $=$ alk 1 , and theng. $F=(1+F) \approx 2.0$. The largest numbers are then $\pm 2.0 \times 2^{1023}$.
 We obviousy hae $=1$ the fraction $\mathbf{A}=110 \ldots 0$ SWe also have $E=-1+B=-1+1023=1022$. The exponent E in 11-bit binary in $\mathbf{E}=0111 \mathrm{M111110}$.

Exercise 12.26. What number is the 32-bit real number in IEEE-754 110000001010 . . . 0 ? Since the sign bit is $S=1$ we know the number is negative. The following 8 bits are the exponent $E 10000001$ i.e. they represent $E+B=129$. Then the exponent is $E=129-127=2$. The fractional part is $F=010 \ldots 0$ and thus $D=1.010 \ldots 0$. Converting D into denary we get $d=1+1 / 4=1.25$. Thus the number represented is $(1-2 S) \times 1.25 \times 2^{2}=-5.0$

Exercise 12.27 (Patriot missile bug). Then represent $1 / 10$ in SP. The one-tenth representation caused problems in the 1991 Patriot missile defense system that failed to intercept a Scud missile in the first Iraq war resulting to 28 fatalities.

Fact 12.8 (Smallest real greater than one). The first single precision number greater than 1 is $1+2^{-23}$ in SP. The first double precision number greater than 1 is $1+2^{-52}$ in $D P$.

Note 12.2 (Same algebraic expression, two results). The evaluation of an algebraic expression when commutative, distributive and associative cancellation laws have been applied can yield at most two resulting values; if two values are resulted one must be a NaN. Thus $2 /(1+1 / x)$ for $x=\infty$ is a 2 , but $2 x /(x+1)$ is a NaN.

12.13.3 IEEE-754: Double Extended Precision

Definition 12.25 (Double Extended Precision).
In Double Extended Precision the exponent E is at least 15-bit, and fraction F is at least 64-bit. At least 10B are used for a long double.
$\left.\begin{array}{|c|c|c|}\hline S: 1 & \text { Exponent:15 Mantissa:64 }\end{array}\right\}$ Double Extended Precision: 80-bit

12.14 ASCII, Unicode, UTF-8, UTF-16

Sequences of bits (or bytes) can be viewed as an unsigned integer (positive or non-negative integer), or signed integer (positive or negative or zero), or a real number (fixed-point or floating-point). They can also be viewed as the representation of a symbol (also known as 'character') in a string. A symbol (character) can be a letter in a language (eg. English, Greek, Central European, Chinese, etc), a digit, a punctuation mark or any other special (auxiliary) symbol. For example, the byte in Example 12.28 and also in Example 12.29 could represent natural number 65 in 8-bit and 16-bit binary notation. It is also the ASCII (American Standard Code for Information Interchange) representation of the letter A in English in Example 12.28 and the Unicode representation of the same letter A.

Exercise 12.28.

7	6	5	4	3	2	1	0
0	1	0	0	0	0	0	1

\} ASCII for A

Exercise 12.29.

$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline\end{array}\right\}$ Unicode for A

Exercise 12.30.

7	6	5	4	3	2	1	0
0	0	1	1	0	0	0	1

Exercise 12.31.

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	1

Fact 12.9 (ASCIDX An engish lefter or adigiter a puntuationonark, or any other auxiliary symbol is represented in ASCII as a thit hitequence androred a siogle bie, The corresponding numeric value is known as the
 symbols.
Exercise 12.32 (ASEII andthe fist charaoter of the alphabet). The ASCII representation of the upper-case english letter A is 100000. The byte vien contaningits shown in Example 12.28. The ordinal value of that byte, viewed as an unsigned integer, 95 .
Exercise 12.33 (ASCII and the digit ofe). The ASCII representation of the symbol that is numeric digit one (1) is 0110001. The byte view costaining it is shown in Example 12.30. The ordinal value of that byte, viewed as an unsigned integer, is 49. Natural number one (1) represented as a numerical value has the 8 -bit representations shown in Example 12.31. Thus symbol 1 has a different ordinal value than the magnitude of the binary representation of natural number one.

Fact 12.10 (Table of ASCII characters). The table below contains the ASCII representation of all 128 ASCII symbols arranged in 8 rows ($0-7$ in octal or hexadecimal) of 16 columns ($0-F$ in hexadecimal). The ASCII code (ordinal value) for a character in hexadecimal notation can be retrieved by concatenating the row index (code) with the column index code.

For example A is in row 4 and column 1 i.e. its hexadecimal code is $0 x 41$. Converting radix-16 into radix-10 we get 65 the ordinal value for A. Its row index 4 in 4-bit binary is 0100 and 1 in 4-bit binary is 0001 . Thus the code for A is 01000001 which is 65 in decimal or 0 x 41 in hexadecimal. Rows 0 and 1 contain Control Characters represented by the corresponding mnemonic code/symbol. Code 32 or 0×20 is the space symbol (empty field).

Fact 12.11 (Unicode Standard). The Unicode Standard uses two or more bytes to represent one symbol (character). Ordinal values in Unicode are known as code-points. The characters from U+0000 to U+FFFF form the Unicode Standard basic multilingual plane (BMP). Characters with code-points higher than U+FFFF are called supplementary characters. The Unicode character for an ASCII character remains the same if one adds extra zeroes (padding). Thus the Unicode representation for an ASCII character is a zero-bit byte followed by a byte of the ASCII representation.

Example 12.29 shows the Unicode representation of letter A. The first byte is a zero-bit byte followed essentially by the ASCII byte for A. Likewise, symbol DEL which is $0 x 7 \mathrm{~F}$ in ASCII has Unicode representation (code) 0x007F. We also write this as U+007F.

Fact 12.12 (Java char). In Java the char data type has size 2B; java uses UTF-16 representation. It can only reprent and represents the Unicode Standard basic multilingual plane (BMP) that is the characters from U+0000 to U+FFFF. Its minimum code-point is ' $\backslash u 0000$ ' (or $\mathrm{U}+0000$) and its maximum code-point is ' $\backslash u F F F F$ ' (or U+FFFF).
There are several encoding to represent Unicode symbols. One of them is UTF-8 where symbols are encoded using 1 to 6 bytes. The UTF-8 representation of an ASCII symbol is the ASCII representation of that symbol for compatibility reasons and also for space efficiency. Another one is UTF-16 employed by Java.

Fact 12.13 (UTF-8). UTF-8 encodes characters in 1 to 6 bytes.

- ASCII symbols with ordinal values $0-127$ are also Unicode symbols $\mathrm{U}+0000$ to $\mathrm{U}+007 \mathrm{~F}$ and are represented in UTF-8 encoded as byte $0 x 00$ to 0x7F; the ceven least-significant bits of a byte is the ASCII code for the symbol with the most-siginificant bit being a zexQ
- Unicode symbols with ordinal valnesslarger than U+007F use two or more bytes each of which has the most significant bit set to 1 .
- The first byte of a non-ASCIL \&adracter is one of $110 \mathrm{xxxxx}, 1110 \mathrm{xxxx}, 11110 \mathrm{xxx}, 111110 \mathrm{xx}, 1111110 \mathrm{x}$ and it indicates how manyytes there are altogether or the number of 1 s following the first 1 and before the first 0 indicates the numbered bytes in the rest of the sequence. All remaining bytes other than the first start with 10yyyyyy.
Exercise 12.34 (UTF-8 ASAT, Unisode). ASCII gisd UTFEs encoding look the same.
- No ASCIF

NUL=null	BS=Backspace	DLE=Datalink escape CAN=cancel
SOH=start of heading	TAB=horizontal tab	DC1=Device control 1 EM=endofmedium
STX=start of text	LF=linefeed/newline	DC2 SUB=substitute
ETX=end of text	$\mathrm{VT}=$ vertical TAB	DC3 ESC=escape
EOT=end of transmission	$\mathrm{FF}=$ form feed/newpage	DC4 FS=fileseparator
ENQ=enquiry	$\mathrm{CR}=$ carriage return	NAK=negative ACK GS=groupseparator
ACK=acknowledge	SO=shift out	SYN=synchronous idle RS=recrdsepa.
BEL=bell	SI=shift in	ETB=endOFtransblock US=unitsepar.

Part III

Chapter 13

Operating Systems

13.1 Operating System Page Tables

In operating systems, sometimes we need to do bit manipulations or extraction of information.
Logical Address $L \in\{0, \ldots, n-1\}$. A logiod address L (sometimes is known as a linear address or a virtual address) refers to memory in general and canbeconsidered to be a natural number (unsigned integer) in the range $0 \ldots n-1$. The size of memory addressed is then n. In practice n is a power of two.

Number of bit of logical address: (Ty t). This means that all memory addresses from 0 through $n-1$ can be represented with the same fixed number of bit (binary digit) needed for the representation of the largest integer in the range, $n-1$. By way of Fact 12.1 this is $\lg n$ if we substitute $a=n-1$ in Fact 12.1, and given that n is (assumed to be) a power of two no ceilings or floers are needed.

Page size s. In operating stems a flat logical address space of n bytes is split into pages of equal size. The size of a page (pagesize) is s and s is anda power of dwo.

Offset $T \in\left\{0, \ldots s \mathcal{O}^{2}\right\}$. Every bye of hage is addressable by an index or address T that is known as an offset. Offsets therefore are inthe fage $0.15-b$ and thas we aged $\lg _{8}$ bit to describe a fixed width offset.

Number of pages of ogicataddress space: G n/s. Thas an n byte address space can be split into $G=n / s$ pages, each of pize s byes.

Divisionsinvolving powers: flift-right oparations. The fact that both n and s are powers of two helps a lot. Division (as in n) is equt (thequotiet is ineger and remainder is zero). Moreover we can avoid division since both n and s are potiers of two by subtracting the expenents of n and s if expressed as powers of two. Thus dividing 256 by 8 the regular wequires a dirisiopout diweling 2^{8} with 2^{3} requires a subtraction between the exponents 8 and 3 i.e. $8-3=5$. The ratt is $5^{3}=8^{5}$ i.e. 38 . In fact we can avoid even that subtraction if we maintain the original numbers and the results ind binafe 256 minimal binary representation (no leading zeroes) is 100000000 and 8 is 1000. Division of $256=2^{8}$ by $=2^{3}{ }^{2}$ equivalent to shifting the binary representation of 256 three positions to the right (i.e. we shift the Dividend 25 Qthree positions to the right, with three being the exponent of the divisor with the result being the quotient i.e. a 100000 which is binary for 32 .)

Convert a logical address to a page number and an offset: $L=(P, T)$. A logical memory address L in the range 0 to $n-1$ can be expressed then as a page number P and offset T within a page: $L=(P, T)$. If the number of pages is G then P varies from 0 to $G-1$. If page size is s bytes, T varies from 0 to $s-1$.

Logical address L gets mapped to pair (P, T) of a page number P, and an offset T, where $0 \leq L<n, 0 \leq P<n / s$, and $0 \leq T<s$.

There is an easy way to obtain P and T from $L: P=\operatorname{floor}(L / s), T=L \bmod s$. Function mod is denoted in $\mathrm{C} / \mathrm{C}++$ by the $\%$ sign to denote the integer remainder when dividing the left hand side with the right hand side. The left-hand size (L) is the dividend, and the right-hand side (s) is the divisor of the division. The quotient is P (the page number) and the remainder of the division is T (the offset).

13.1.1 From L to (P, T) using divisions

Definition 13.1 (Convert a logical address to a page number with offset: $\mathbf{L}=(\mathbf{P}, \mathbf{T})$). A memory space of n bytes, supports a paging system of page size s bytes. A logical (virtual) address L in that memory space can be mapped into a page number P and offset T within that page: $L=(P, T)$. The mapping is as follows:

$$
(n, s): \quad L=(P, T) \quad \Rightarrow \quad P=\text { floor }(L / s), \quad T=L \bmod s, \quad 0 \leq L<n, \quad 0 \leq P<n / s, 0 \leq T<s
$$

In $C / C++$ floor is integer division and mod is denoted \%. Thus another way to write it is to say

$$
(n, s): \quad L=(P, T) \quad \Rightarrow \quad P=(L / s), \quad T=L \% s, \quad 0 \leq L<n, \quad 0 \leq P<n / s, \quad 0 \leq T<s
$$

Definition 13.2 (Convert a page number withoffset (\mathbf{P}, \mathbf{T}) into a logical address L.). Moreover, given (P, T) we can recover L if we know the page size s. From (P, T) to L.

$$
(n, s): \quad(P, T)=L \circlearrowright \quad L=P \times s+T, \quad 0 \leq L<n, 0 \leq P<n / s, 0 \leq T<s
$$

Exercise 13.1. (To make initiatculations easy, we drop the power of two requirement.) If we have a memory of size $n=100,000 B$ and a paged orfanization with page size $s=5,000 B$, then we can view memory as a collection of 20 pages $(n / s=100000 / 5000$-20 each of size $5000 B$. Thus an $L=23456$ gets mapped to $P=23456 / 50000=4$, and $T=23456 \% 5090$ 3456. Therefore $\mathcal{F}(P, T)$ is $23456=(4,3456)$. Moreover we can retrieve L from (P, T) : $L=P \times s+T$. Therefore $23456=4 \times 5000+3455$.

13.1.2 From L to (P, F) using biomanipulations

In binary, mostinformation about s and G, x / s cas be retrieved from the bit sequence representing L.
Definition 13.3 (\mathbf{L} and $\langle\mathbf{P}, \mathbf{T}$) bithonaniputation). We view a logical address L as the concatenation of a page
 it to denote a sequence). ${ }^{+}$

Exercise 13.2. Suppose that $n=256$. Then $\lg n=8$ and we use 8 -bit addresses. Suppose that $s=8$. Then $\lg s=3$. In this case $G=n / s=32=2^{5}$ i.e. $0 \leq P<2^{5}=G$. Thus we need $\lg G=\lg 32=5$ bit for the page number P. Moreover since $s=8$, we have that $0 \leq T<2^{3}=s$. Thus we need $\lg s=\lg 8=3$ bit for the offset T.

Example 13.1. An 8-bit logical address L in paging with page size $s=8$, is thus the concatenation of a 5-bit page number P and a 3-bit offset T. Thus $L=(P, T)$ becomes $L=\langle P, T\rangle$, where \rangle is the concatenation operator.

L: 8-bit Logical Address

Exercise 13.3. An 8 -bit logical address L with $\operatorname{bin}(L)=01011001$ is given in paging with page size $s=8$.

The logical address is the binary 01011001 which is $L=89$ in denary. Since $s=8$, and $\lg s=3$, the three rightmost bit of L is an offset and the remaining $8-3$ is a page number. The page number P is the binary 01011, the left-most five bit of L. In denary, this is 11 . Thus $P=11$. The offset T is the binary 001, the right-most three bit of L. In denary, this is 1 . Thus offset $T=1$. We could have done divisions and then $(P, T)=(L / s, L \% s)=(89 / 8,89 \% 8)=(11,1)$. Moreover $L=P \times s+T=11 \times 8+1=89$.

13.2 Hard-Disk Drives (HDD)

- Platter (or just disk) It is a circular disk. It consists of two surfaces also known as sides: up and down. Both sides (surfaces) can be read/written into. Thus every side of every platter has an associated mechanism known as head to facilitate the reading/writing of information on it. All platters rotate in unison. Usually, one platter or one side of one platter is for control purposes and unused by the user. The remaining ones are utilized for data preservation.
- Arm and Heads The Arm contains the disk controller. Attached to the arm are the heads. The number of heads is equal to the number of platters times two. Heads move in unison assisted by the arm. Arms/Head move parallel to surface of platters. If you view a platter as a circular surface the arm and its attached heads moves from the outside periphery to the inside or from the inside to the ouside periphery of a (the) platter(s). Note that only ONE head is active for read and write even though all of them might be over a platter area.
- Track It is a concentric circular band (region) on a platter's surface or side. Tracks might be numbered from the outside periphery to the inside or the other way around for ease of reference. The density of tracks is expressed in KTPI (thousands of tracks per inch)
- Cylinder All tracks of the same radius from the center of a platter, over all sides of all platters form a cylinder. The number of tracks (over a plattex).).is thus equal to the number of cylinders (of the HDD).
- Sector A sector is a piece of a track at a given arc range. Every track has the same fixed number of sectors as any other track even if tracks on theotutside are longer than tracks on othe inside. Thus if tracks have 60 sectors, the first track is between degree Qand 6, the next one between 6 and 12 and so on. A head reads or writes a sector worth of data.
- Cluster a set of consective sectors of a track form a cluster.
- Spindle Speed ${ }^{\circ} y^{\circ}$ Rotation Patters (disks) rotate very fast. The spindle speed of a drive is the rotational speedatirs platers. e

13.2.1 HDD Operation

The hard disk controller receives a request for I/O to be performed on a particular sector number. The data received by the disk controller are then mapped to a platter number, side of a platter (up or down), track within a platter, and sector within a track.

13.2.2 Seek

The controller moves the arm and its heads horizontally and parallel to the surface of the platters to identify the correct track. There is some initial delay due to controller overhead, then the arm/heads move, and then the arm/heads brake before they settle over a given track. (Think of it as initial delay, acceleration, steady move, and braking and settling.)

Seek Time is the time for arm/heads to move to the right track from their current position. Seek time depends on the initial position (starting track of the heads) and the final/settline position of the heads (destination/target track). This time includes settling time (braking time) and might or might not include controller overhead.

Maximum Seek Time is defined as the time to move the arm/heads to the most inside track from the most outside track or the other way around.

In the 1950 s and 1960 s maximum seek time was 600 ms . In the 1970 s it went down to 25 ms . First PC-based HDD in the 1980 s has maximum seek time around 120 ms and nowadays this is around $20-30 \mathrm{~ms}$ for laptop or desktop drives and $10-12 \mathrm{~ms}$ for server drives.

The Average Seek Time is a better measure of performance. The average seek time is defined as one-third of max seek time. A proof is to be shown later. (Thinf of it that you figure seek time for every possible initial position and every possible ending position of the heads. The average seek time for a typical HDD is $8-9 \mathrm{~ms}$ for a read and $9-10 \mathrm{~ms}$ for a write operation. Server HDD mighthave average seek time as low as 4 ms .

A Track-to-Track Seek Time refers to the time it takes for heads to move minimally by one track. Most of this time is settling time and possibly controller overhead if it is not accounted separately. Typical Track-to-Track seek time is 1 to 1.2 ms .

Controller Overhead is tess theyr 2 ms for typical drives.

After settling the hearsare-ore thetapproprete track. At this point the controller activates one head for the relevant platter and the relevat surfacer up er lowndnvolyed in tife I/O. One and only one head is active in the remainder.

13.2.3 Rotational Delay or batency

The active Readreatits fothe aporoprizete secter to appear under or over the head. (A surface/side can be under a head if it is an up strface it cande over the hear if jielis a down surface.) This is because the platers (i.e. disks) rotate at spindle speed atse knowh as enational speed that varies from 3600RPM to 5400RPM (laptop drives) to 7200RPM (some desktop and reautar sefer drixes). The unit RPM refers to Rotations/Revolutions Per Minute.

Rotational delay or LatenceTimg e efers to the time it takes for the appropriate sector be under or over the relevant head positioned underor over the active head. A 7200RPM drive completes one rotation in approximately 8.33 ms .

$$
\frac{\text { Time }}{\text { Rotation }}=\frac{\mathbf{1 m n}}{\mathbf{7 2 0 0}}=\frac{\mathbf{6 0 s}}{\mathbf{7 2 0 0}}=\frac{\mathbf{6 0}, 000 \mathrm{~ms}}{\mathbf{7 2 0 0 R}}=8.33 \mathrm{~ms} / \text { Rotation }=8.33 \mathrm{~ms} / R \quad \mathbf{R}=\text { Rotation }
$$

Because a head might just have missed a specific sector or might just catch a specific sector of a track a more relevant measure of rotational delay is Average Latency or Average Rotational delay.

Average Latency Time or Average Rotational Delay is defined to be one-half of the rotational delay. Thus for a 7200 RPM disk this is $(1 / 2) \times 8.33=4.17 \mathrm{~ms} / \mathrm{R}$.

13.2.4 Transfer Time

The active head has made contact with the appropriate sector. Data get transferred from the sector (read operation) or transferred into the sector (write operation).

Sector size is 512B. Modern hard disk drives support 4KiB (4096B) sectors. In the latter case the term logical sector size is defined as 512B and the term physical sector size is defined as 4 KiB (4096B).

Transfer data speed for modern HDD is expressed in bytes/s or multiples of bytes/s. Rarely in bits/s. Beware of dubious multiples of bytes such KB and MB and their definitions. Typical data transfer speed rates are in the aread of $200,000 \mathrm{KiB} / \mathrm{s}$.

Transfer time is the time it takes for the head to transfer data to/from the disk.
This time is quite straightforward to figure out if the operation involves one sector (of one track of one cylinder of one side of one platter). Multi-sector I/O on different tracks are more complicated to analyze. In most cases when the transfer involves more that sector size worth of data, we ignore additional access, latency costs.

13.2.5 More on Sectors

A sector of a track stores not only data but also additional information. Some of it relates to the data directly: it is error correcting information in the form of error correcting codes (ECC) that can be used to retrieve or recover information from minor accidents (eg scratches). Additional information is available to prepare the head to read information or synchronize with the sector underneath or over it.

Therefore, a 512B sector is preceded by 15B of gap, sync, and sector address data, followed by 50B of ECC (Error Correcting Code) data (40 10-bit).Therefore a head effectively reads $15+512+50=577 \mathrm{~B}$ when it reads a (logical) sector. In other words $512 / 577=88 \%$ of the sector data read is sector data for the application.

For a 4096B sector, things change slightly affep the sector: the 15B of gap, sync and sector address data still appear before the 4096B sector data. They are followef by 100B of ECC (80 10-bit).

13.2.6 An Example: HDD around 2019

A modern 7200RPM server hard dLisk drive with capacity (10TB or 10TiB?) usually has 7 platters (disks) with 14 heads. One of the 14 sides is ised for controlling the disk, the remaining 13 sides for data storage. Data density nowadays is approximately \hat{N}. 5 TB B per platter or equivalently 0.75 TiB per side. (Logical) sector size is defined as 512B, and thus a (Physig8) sector sizejis definet as $4 \mathrm{KiB}(4096 \mathrm{~B})$ as already mentioned. A physical sector emulates 8 logical sector $(8 \times 5$ 亿 $2=40965$ Averge seek ime is $8-9 \mathrm{nts}$ depeding on whether a read or write is performed, wih
 a 7200 RPM HPX. Conicoller overneadis no kore ehan 2 As . HO transfer rate is approximately $200,000 \mathrm{KiB} / \mathrm{s}$.

Step 1. The time to read one logical sector (512B) is the sum of disk access time plus transfer time.
Step 2. Disk access time includes controller overhead, average seek time and average rotational delay / average latency. Contoller overhead is about 2 ms , average seek time is roughly 8 ms , and average rotational dealy is 4.17 ms . The total disk access time is 14.17 ms .

Step 3. Transfer rate is $200,000 \mathrm{KiB} / \mathrm{s}$. Thus the transfer time for a 512 B sector is negligible at 0.002 ms .
Step 4. Thus the time to read one logical sector (512B) is 14.17 ms .

Effective Transfer Rate is determined by actual byte transferred in the unit of time. If we use the time to read one logical sector, we have 512B transferred in 14.17 ms , which gives an effective transfer rate of

$$
\frac{512 B}{14.17 \mathrm{~ms}}=\frac{512 B}{14.17 \times 10^{-3} \mathrm{~s}}=36132 \mathrm{~B} / \mathrm{s} \approx 35 \mathrm{KiB} / \mathrm{s}
$$

13.2.7 Average Seek Timefs Maximum Seek Time

Fact 13.1. Assume a Han-Dish riva (HDD of an arm/heads movement, expressedin nurvoer qf track is N, when the heads move from track 0 to track N or the other way around, The a wege seck time, exprensed in numberobtracks, is

$$
\frac{N}{3}+\frac{1}{3}-\frac{1}{3(N+1)} \rightarrow \frac{N}{3}+\frac{1}{3}
$$

Proof. If the arm/heads move from track i to track j, the distance in track covered is $|i-j|$. Thus the average seek time A, in terms of number of tracks, is the average over all initial and over all final positions of the arm/heads. The number of choices for i is $N+1$ (i.e. 0 through N) and likewise for j. Therefore Therefore

$$
\begin{equation*}
A=\frac{\sum_{i=0}^{N} \sum_{j=0}^{N}|i-j|}{(N+1)^{2}}=\frac{1}{(N+1)^{2}} \cdot \sum_{i=0}^{N} \sum_{j=0}^{N}|i-j|=\frac{1}{(N+1)^{2}} \cdot S \tag{13.1}
\end{equation*}
$$

We compute next the sum S.

$$
\begin{align*}
S & =\sum_{i=0}^{N} \sum_{j=0}^{N}|i-j| \tag{13.2}\\
& =\sum_{i=0}^{N}\left[\sum_{j=0}^{i}|i-j|+\sum_{j=i+1}^{N}|i-j|\right] \tag{13.3}\\
& =\sum_{i=0}^{N}\left[\sum_{j=0}^{i}(i-j)+\sum_{j=i+1}^{N}(j-i)\right] \tag{13.4}\\
& =\sum_{i=0}^{N}\left[\sum_{j=0}^{i} i-\sum_{j=0}^{i} j+\sum_{j=i+1}^{N} j-\sum_{j=i+1}^{N} i\right] \tag{13.5}\\
& =\sum_{i=0}^{N}\left[i(i+1)-i(i+1) / 2+\sum_{j=0}^{N} j-\sum_{j=0}^{i} j-i(N-i)\right] \tag{13.6}\\
& =\sum_{i=0}^{N}[i(i+1)-i(i+1) / 2+N(N+1) / 2-i(i+1) / 2-i(N-i)] \tag{13.7}\\
& =\sum_{i=0}^{N}[N(N+1) / \mathbb{R} i(N-i)] \tag{13.8}\\
& =\sum_{i=0}^{N} N\left(\mathbb{N}(\mathbb{1}) / 2-N \cdot \sum_{i=0}^{N} i+\sum_{i=0}^{N} i^{2}\right. \tag{13.9}\\
& =\mathrm{C}^{N(N+1)^{2} / 2-N^{2}(N+1) / 2+N(N+1)(2 N+1) / 6} \tag{13.10}
\end{align*}
$$

After some minor calculatigis twe obtain the following

Therefore from Equation 13.11 wff its final dreivation, by replacing S into Equation 13.1 we obtain the following.

$$
\begin{align*}
A & =\frac{1}{(N+1)^{2}} \cdot S=\frac{1}{(N+1)^{2}} \cdot \frac{N(N+1)(N+2)}{3}=\frac{N}{3}+\frac{N}{3(N+1)}=\frac{N}{3}+\frac{N+1-1}{3(N+1)} \tag{13.16}\\
& =\frac{N}{3}+\frac{1}{3}-\frac{1}{3(N+1)} \tag{13.17}
\end{align*}
$$

Chapter 14

Architecture

14.1 Computer Architectures: von-Neumann and Harvard

In the early years of computing it was not clear what was the most appropriate computer organization. Thus two arcitectural models were prevalent at that time ofthe late 1940s and earlye 1950s.

14.1.1 Von-Neuman model of computation

Definition 14.1 (Von-Neumann model! Program and Data in Same Memory). Under Von-Neumann architectural model, a central processing unit, \$so known as the CPU, is responsible for computations. A CPU has access to a program that is being executegand the data that it modifies. The program that is being executed and its relevant data both reside in the same menuep usucgly called main memory.

Thus main memory Gtoresbjeth pegram ind data, at every cycle the CPU retrieves from memory either program (in the form of an instruction) or pata, perms computation and then writes back into memory data that were computed at therEPU byone ofyts unitath a cerrent arprior © cle.

14.1.2 Haryard model of condputation s

The Harvard model of computation archiceture as influenced by (or implemented into) the Harvard Mark IV computer for USAF (1952) y alsofevalent in the early days of computing.
Definition 14.2 (Harvardmodel: Proggram and Data in Different Memories). In the Harvard architectural model, programs and data are storesepacetely into two different memories and the CPU maintains distinct access paths to obtain pieces of a program or itssociated data.

In that model, a concurrent access of a piece of a program and its associated data is possible. This way in one cycle an instruction and its relevant data can both and simultaneously reach the CPU as they utilize different data paths.

Definition 14.3 (Hybrid Architectures). The concepts of pipelining, instruction and data-level caches can be considered Harvard-architecture intrusions into von-Neumann models.

Most modern microprocessor architectures are using them.
For example Intel in designin the Level-1 cache of a microprocessor is following the Harvard architectural approach. There is an Level-1 data cache, and a separate Level-1 instruction (program) cache. Yet for a Level-2 or Level-3 and for a short period of time a Level-4 cache Intel prefers the traditional von-Neumann approach of a unified memory cache that stores programs (instruction) and data in the same space.

Note that in main memory we store instructions (programs) and data in the same memory but different areas. Thus one area is for instructions (also known as code or text area), another for initialized data, another for read-only data, another for heap-based data, and another for stack-based data.

14.1.3 CPU, Microprocessor, Chip and Die

Definition 14.4 (CPU vs Microprocessor). CPU is an acronym for Central Processing Unit. A microprocessor is a CPU accommodate in a single microchip.

Decades ago all the units that formed the CPU required multiple cabinets, rooms or building. When all this functionality was accommodated by a single microchip, it became known as the microprocessor. The number of transistors in modern processor architectures can range from about a billion to 5 billion or more (Intel Xeon E5, Intel Xeon Phi, Oracle/Sun Sparc M7).

Definition 14.5 (Chip, Die, socket). A chip is the package containing one or more dies (actual silicon IC) that are mounted and connected on a processor carrier that is known as a socket, and possibly covered with epoxy inside a plastic or ceramic housing with gold plated connectors.

A die contains or might contain multiple cores, a next level of cache memory adjacent to the cores (eg. L3), graphics, memory, and I/O controllers.

14.1.4 More than one execution units

Definition 14.6 (Multicomputer). Anyulticomputer is a computer system consisting of more than one computers.
In a multicomputer the conaputers that form it might be connected with a specialized communication network. This system might be knowinisa distributed computer system or cluster computer.
Definition 14.7 (Multipocessieq. A Dultineéessor is a computer consisting of more than one microprocessors (CPUs).

We can have mutticompurer consisting aimulitipeocessons. An SMP (Symmetric Multi-Processor) is a computer where each pecessor is identical and inteconangatile in \&unctionality with every other processor. They all share the 2 same memory thatis also known as shated menrory s

The microprocess δ of theqecentor notso receft past can be described as uni-processor or single core processors or simply unicore they have opexection unitewith sometimes its own Level-1 cache and Level-2 cache.

In the past 20 years uni-processor performance has barely improved. The limitations of CPU clock speeds (around $2-3 \mathrm{GHz}$), power consưmption, and heating ssues have significantly impacted the improvement in performance by just increasing the CPU clockspeed An aiterative that has been pursued is the increase of the number of "processors" on a processor die (computer chio). Eactsuch "processor" is called a core. Thus in order to increase performance, instead or relying to increasing the clock 9 peed of a single processor, we utilize multiple cores that work at the same clock speed (boost speed), or in several instances at a lower (clock) speeds (regular speed) indepdently or not depending on the application in hand.

Definition 14.8 (Multi-core processor). A multi-core processor is a processor with more than one execution units.
Thus a processor that has in it more than one "processors" (execution units) is a multi-core processor. A multicore is another way to refer to a multi-core processor. So is a multiple-core processor.

Definition 14.9 (Many-core processor). A many-core processor is a multi-core processor where the number of execution units is much larger than regular multi-core processors and some times their functionality is simpler.

One can consider a GPU (Graphic Processing Unit) which is a form of a vector processor to be a many-core processor.

Definition 14.10 (Vector processor). A vector processor is a CPU that utilizes instructions that operate efficiently on large vectors, that is large one-dimensional arrays.

We can view regular processors as scalar processor operation in SISD (Single-instruction Single-data) mode. Vector processors operate in SIMD (Single-instruction Multiple-data) mode.

Fact 14.1 (GPU). A GPU (Graphics Processing Unit) is used primarily for graphics processing.
CUDA (Compute Unified Device Architecture) is an application programming interface (API) and programming model created by NVIDIA (TM). It allows CUDA-enabled GPU units to be used for General Purpose processing, sequential or massively parallel. Such GPUs are also known as GPGPU (General Purpose GPU) when provided with API (Application Programming Interface) for general purpose work.

A GPU processor (e.g. GK110) contains a small number (up to 16 or so) of Streaming Multiprocessors (SM, SMX, or SMM). Each streaming multiprocessor has a number of 32-bit cores supporting single-precision floatingpoint operations and a number of 64-bit cores supporting double-precisions operations. Other cores support other operations (eg. transendental functions). Thus the effective "core count" is in the thousands.

Example 14.1 (Dual-core and Quad-core). Dual-core or Quad-core refer to systems with specifically 2 or 4 cores.
The number of cores in a multi-core processor is usually (2019) less than 30 (eg Intel's generic Xeon processors) with Intel's now retired Xeon Phi reaching 57-72 cores. Intel's Phi processor is attached to the CPU and work in 'parallel' with the CPU or independetly of it. IDsuch a case a many-core processor system is called a coprocessor.

14.2 Memory Hierarchies

A CPU rated at 2 GHz can execute 2 G or 4 G operations per second or roughly two-four operations per nanosecond, or roughly one operation every. $085-0.5 \mathrm{~ns}$. A CPU can fetch one word from maim memory ("RAM") every 80-100ns. Thus there is a differential ${ }^{2}$ performance between memory and CPU. To alleviate such problems, multiple memory hierarchies are inserted betweenolie CRU (fasqand Main Memory (slow): the closer the memory to the CPU is the faster it is (low accest times) 5 hit alspe costiner it becones andethe scarcier/less of it also is. A cache is a very fast memory. Its phystalal proximity to the GPU (or Core) determineoits level. Thus we have L1 (closest to the CPU, in fact "inside" the EPU' $\mathbb{C} 2$, L3R and k 4 caches. Whereas L_{2} 2 and L3 are "static RAM/ SRAM", L4 can be "dynamic RAM / DRAM" (same compositio@as theonain AMM memory) attached to a graphics unit (GPU) on the CPU die (Intel Iris).
Definition 14.11 Eevel. Cache. A Level-1 dethe is memory faster than main memory that is traditionally on-die (same chip) within thêep gad excifive to core, and operates at the speed of the CPU.

Performance may deteriorater it is bared by multiple cores. It operates at the speed of the CPU. Level-1 caches for Intel architectures are tradionalty Harvard-hybrid architectures. There is an instruction (i.e. program) cache, and a separate data-cache. Its size isarery limited to few tens of kilobytes per core (eg. 32 KiB). In Intel architectures there is a separate L1 Data cache (L1D) and a L1 Instruction cache (L1I) each one of them 32 KiB for a total of 64 KiB . Originally each cache was 8 KiB . They might be implemented using SDRAM (3 GHz typical speed) and latency to L1D is 4 cycles in the best of cases (typical $0.5-2 \mathrm{~ns}$ range for accessing an L1 cache) and 32-64B/cycle can be transferred (for a cumulative bandwidth over all cores as high as $2000 \mathrm{~GB} / \mathrm{s}$). Note that if L1D data is to be copied to other cores this might take 40-64 cycles.

Definition 14.12 (Level-2 cache). A Level-2 cache is memory faster than main memory that is traditionally outside of the CPU chip and exclusive to a core or shared by two cores.

Since roughly the early 90 s several microprocessors have become available utilizing secondary level-2 caches. In the early years those level-2 caches were available on the motherboard or on a chip next to the CPU core (the microprocessor core along with the level-2 cache memory were sometimes referred to as the microprocessor slot or
socket). Several more recent microprocessors have level-2 caches on-die as well. In early designs with no L3 cache, L2 was large in size (several Megabytes) and shared by several cores. L2 caches are usually coherent; changes in one are reflected in the other ones.

An L2 cache is usually larger than L1 and in Intel architectures 256 KiB or larger and exclusive to a core. They are referred to as "static RAM". Its size is small because a larger L3 cache is shared among the cores of a processor. An L2 cache can be inclusive (older Intel architectures such as Intel's Nehalem) or exclusive (AMD Barcelona) or neither inclusive nor exclusive (Intel Haswell). Inclusive means that the same data will be in L1, L2, and L3. Exclusive means that if data is in L2, it can't be in L1 and L3. Then if it is needed in L1, a cache "line" of L1 will be swapped with the cache line of L2 containing it, so that exclusivity can be maintained: this is a disadvantage of exclusive caches. Inclusive caches contain fewer data because of replication. In order to remove a cache line in inclusive caches we need only check the highest level cache (say L3). For exclusive caches all (possibly three) levels need to be checked in turn. Eviction from one requires eviction from the other caches in inclusive caches. In some architectures (Intel Phi), in the absence of an L3 cache, the L2 caches are connected in a ring configuration thus serving the purpose of an L3. The latency of an L2 cache is approximately 12-16 cycles (3-7ns), and up to 64B/cycle can be transferred (for a cumulative bandwidth over all cores as high as $1000-1500 \mathrm{~GB} / \mathrm{s}$). Note that if L2 data is to be copied to other cores this might take 40-64 cycles.

Level-3 caches are not unheard of nowadays in multiple-core systems/architectures. They contain data and program and typical sizes are in the $16-32 \mathrm{MiB}$ range. They are available on the motherboard or microprocessor socket. They are shared by all cores. In Intel's Haswell architscture, there is 2.5 MiB of L 3 cache per core (and it is write-back for all three levels and also inclusive). In Inters Nehalem architecture L3 contained all the data of L1 and L2 (i.e. $(64+256) * 4 \mathrm{KiB}$ in L 3 are redundantly avaifale in L 1 and L 2$)$. Thus a cache miss on L 3 implies a cache miss on L1 and L2 over all cores! It is also called LICC (Last Level Cache) in the absence of an L4 of course. It is also exclusive or somewhat exclusive cache (AMD Barcelona/Shanghai, Intel Haswell). An L3 is a victim cache. Data evicted from the L1 cache can be spilled over to tie L2 cache (victim's cache). Likewise data evicted from L2 can be spilled over to the L3 cache. Thus either L2 or L 3 can satisfy an L1 hit (or an access to the main memory is required otherwise). In AMD Barcelona and Shangh rí architectures L3 is a victim's cache; if data is evicted from L1 and L2 then and only then will it go to L3. Then 3 behavies as in inglusive cache: if L3 has a copy of the data it means 2 or more cores need it. Otherwise only coreneedsthe data and L3 might send it to the L1 of the single core that might ask for it and thus L3 has more room for L2, afictions Thedatencyof an J 3 cache varies from 25 to 64 cycles and as much as 128-256cycles deperoding on whebber a datum is Shareder notay cores or modified and 16-32B/cycle. The bandwidth of L3 can be assarg

Definition 14.13 (Lever 30 cathe A Afvel-3 enche is memory faster than main memory that is traditionally outside of the CPU chip and id pool fastinemorshary all the cores of multi-core processor system.

Definition 14.14 (Level-ache Lede 4 cache is memory embedded in to the Graphics Processing Unit of an Intel CPU and served as a next-lenecacheror the Level-3 cache.

It is (was) available in some architecture (Intel Haswell) as auxiliary graphics memory on a discrete die. It runs to 128 MiB in size, with peak throughput of $108 \mathrm{GiB} / \mathrm{sec}$ (half of it for read, half for write). It is a victim cache for L 3 and not inclusive of the core caches (L1, L2). It has three times the bandwidth of main memory and roughly one tenth its memory consumption. A memory request to L 3 is realized in parallel with a request to L 4 .

Definition 14.15 (Main memory). The primary memory of a computer is main memory.

It still remains relatively slow of $60-110 \mathrm{~ns}$ speed. Latency is $32-128$ cycles ($60-110 \mathrm{~ns}$) and bandwidth $20-128 \mathrm{~GB} / \mathrm{s}$ (DDR3 is $32 \mathrm{GiB} / \mathrm{sec}$). It is available on the motherboard and in relatively close proximity to the CPU. Typical machines have $4-512 \mathrm{GiB}$ of memory nowadays. It is sometimes referred to as "RAM". As noted earlier, random access memory refers to the fact that there is no difference in speed when accessing the first or the billionth byte of this memory. The cost is uniformly the same.

Definition 14.16 (Linearity of computer memory). Memory is a linear vector. A memory is an array of bytes, i.e. a sequence of bytes. In memory M, the first byte is the one stored at $M[0]$, the second one at $M[1]$ and so on. A byte is also a sequence of 8 binary digits (bit).

Definition 14.17 (Endianess). Endianness is the order the CPU writes the bytes of a word in main memory or reads them from main memory.

A CPU can be Big Endian or Little Endian. Intel CPUs are little endian and PowerPC CPUs are big endian. If we plan to store the 16-bit (i.e. 2B) integer 0101010111110000 in memory locations 10 and 11, how do we do it? Left-part first or right-part first (in memory location 10)? This is what we call byte-order and we have big-endian and little-endian. The latter is being used by Intel and the former in powerPC architectures.

	BigEndian
10: 01010101	LittleEndian(Intel architecture)
11: 11110000	1110000
01010101	

Definition 14.18 (Multi-cores and Memory.). A multi-core system usually employs more than a two level cache memory.

To support a multi-core or many-core architecture, traditional L1 and L2 memory hierarchies (aka cache memory) are not enough. They are usually local tora processor or a single core. A higher memory hierarchy is needed to allow cores to share memory "locally". An $\sqrt{3}$ cache has been available to support multi-core and more recently (around 2015) L4 caches have started appearing in roles similar to L3 but for specific (graphics-related) purposes. When the number of cores increases beyond 20, we talk about many-core architectures (such as Intel's Phi). Such architectures sacrifice the L3 for more contol logic (processors). To allow inter-core communication the L2 caches are linked together to form a sort of shayed cathe.

Part IV

Chapter 15

Introductory Number Theory

15.1 Divisibility and Compositeness

Definition 15.1 (Divisibility). For $a, b \in \mathbb{Z}$, we say that a divides b, or b is divided $\mathbf{b y} a$, and we write $a \mid b$, if and only if there exists an integer $q \in \mathbb{Z}$ such that $b=a q$. \searrow.
For a, b as in the definition, integer b is a multiple of a and consequently a is a divisor or factor of b. We say a does not divide b if there is no such $q \in \mathbb{Z}$ such thắt $b=a q$. We then write $a \nmid b$.
Definition 15.2 (Odd, Even). An integer n is even if it is a multiple of two. Otherwise it is an odd integer.
Example 15.1. Every integer a is a-divisor of 0.0 is a divisor of itself and only itself.
Proof. Since $0=a \cdot 0$ the frist Alain follows: a is a divisor of 0 . Since $0=0 \cdot q$, integer 0 is a divisor of 0 . There is no way for any $d \neq 0$ to have $=.0$ Thus 0 cancet be the divisor of any $d \neq 0$. Thus 0 only divides 0 ; moreover, 0 is a multiple of every integer?
Example 15.2. Both 5 a
Proof. It is $5=5 \cdot 1$ and $5(-5)$. Replacina by for every integer a, both $\pm a$ and ± 1 are divisors of a. Thus integer 5 has fowrdivisos $+1,2,45,85$. Aidtso socdoes -5 . And in fact any $b \neq 0,1,-1$ has four divisors. 0 has an infinite number of divisors (infacts fts setndivisors is \mathbb{Z}). Only $+1,-1$ have two divisors each (including the other one of the pair). Fis the positive unitand - Dhe negative unit and collectively are known as the units.
Example 15.3. If $a \mid$ bthen. $\theta\left|b, e^{\text {dy }}-k{ }^{\prime} a\right|-b$.
Proof. If $b=a q$ then $b=(-a)-q)$ and $-b=a(-q)$ and $-b=a(-q)$.
Theorem 15.1 (Properties of divisibility). If $a, b, c, d, k, m \in \mathbb{Z}$, then
(a) $1 \mid$ n. $a \mid 0$ and $0 \mid 0$. Moreover, $0 \mid a \Rightarrow a=0$.
(b1) $a \mid a$ and of course $\pm a \mid \pm a$.
(b2) $a \mid b$ and $b|c \Rightarrow a| c$.
(c1) If a|b then for every $k \in \mathbb{Z}, a \mid k b$.
(c2) If $a \mid b$ then for every $k \in \mathbb{Z}, k a \mid k b$.
(d1) if $a \mid b$ and $a \mid c$ then $a \mid b+c$.
(d2) if $a \mid b$ and $a \mid c$ then $a \mid b-c$.
(d3) if $a \mid b$ and $a \mid c$ then $a \mid k b \pm m c$.
(fl) if $a \mid b$ and $b \neq 0$ then $|a| \leq|b|$.
(f2) if $a \mid b$ and $a, b>0$ then $a \leq b$.
(f3) if $a \mid b$ and $b \mid$ a then $|a|=|b|$ or equivalently
(g) if $k a \mid k b$ and $k \neq 0$ then $a \mid b$.

Proof.
(a) $n=1 \cdot n$ implies $1 \mid n .0=a \cdot 0$ implies $a \mid 0.0=0 \cdot 0$ implies $0 \mid 0$, and $a=0 \cdot q$ implies $a=0$ concludes the case.
(bl) $a=a \cdot 1$ implies $a \mid a$. Moreover $-a=a \cdot(-1)$ concludes the case.
(b2) If $a \mid b$, then $b=a q$, for some $q \in \mathbb{Z}$. If $b \mid c$, then $c=b r$, for some $r \in \mathbb{Z}$. This implies $c=b \cdot r=(a \cdot q) \cdot r=a \cdot(q r)$ ie. $a \mid c$.
(cl) If $a \mid b$, then $b=a q$, for some $q \in \mathbb{Z}$. Then $k b=k a q=a(k q)$ i.e. $a \mid k b$.
(c2) If $a \mid b$, then $b=a q$, for some $q \in \mathbb{Z}$. Then $k b=k a q=(k a) q$ i.e. $k a \mid k b$.
(di) If $a \mid b$, then $b=a q$, for some $q \in \mathbb{Z}$. If $a \mid c$, then $c=a r$, for some $r \in \mathbb{Z}$. Then $b+c=a(q+r)$ implies $a \mid b+c$.
(d2) Moreover for the a, b, c of (di) we have $b-c \mid=a(q-r)$ implies $a \mid b-c$.
(d3) Furthermore for the a, b, c of (di) we have $b a \pm m c=a(k q \pm m r)$ implies $a \mid k b \pm m c$.
(fl) If $a \mid b$ then $b=a q$. Then $|b|=|a q|=|a\rangle$. $|q|$. If $b \neq 0$ then $|b|>0$. (Absolute values are positive or zero.) This implies that $|a|>0$ and $|q|>0$. The latter is equivalent to $|q| \geq 1$. Then $|b|=|a| \cdot|q| \geq|a| \cdot 1 \geq|a|$. Equivalently $|a| \leq|b|$.
(f2) If all of a, b are positive we can drop the absolute values from (fl) concluding $a \leq b$.
(fl) From (fl) we have $|a| \leq|b|$. 1 l $b \mid a$ we can likewise conclude that $|b| \leq|a|$ thus deriving $|a|=|b|$.
(g) if $k a \mid k b$ and $k \neq 0$ then $k b-(k a) q$. For nonzero k dividing both sides we have $b=a \cdot q$ and thus $a \mid b$.

Theorem 15.2 (Uniqueness). Fevers $a \in \mathbb{Z}^{*}, \mathbb{Z}$, if $a \mid b$, there is a unique integer $q \in \mathbb{Z}$ such that $b=a q$.
 such that $b=a$ and $q q_{1}$. Then $b_{0} a q-a q_{1}$ indies $a\left(q_{1}\right)=0$. Since $a \neq 0$, it must be $q-q_{1}=0$. Then $q=q_{1}$ but this Contradicts to the existence eff $q_{1} \neq \rho^{\circ}$

15.2 Primes

In the following definition 1 and -1 are considered prime numbers.
Definition 15.3 (Prime (units are primes)). An integer $p \in \mathbb{Z}^{*}$ is a prime (number) if and only if its only divisors are the units and p, and $-p$.

Based on the definition 1 and -1 have two divisors each. Any other prime p, where $p \neq 1$ has four divisors each. This is summarized below. Under this definition the units (1 and -1) are not considered prime (numbers).

Definition 15.4 (Prime (units are not primes)). An integer $p \in \mathbb{Z}^{*}$ is a prime (number) if and only if $p \neq \pm 1$ and its only divisors are the units and p, and $-p$ (i.e. four integers for an integer $p \neq 0,-1,+1)$).

If negative numbers cause problems let us simplify the definition of a prime number.
Definition 15.5 (Prime). An integer $p \in \mathbb{Z}_{+}^{*}$ is a prime (number) if and only if $p \neq 1$ and its only positive divisors are 1 and p.

Definition 15.6 (Composite). An integer $n \in \mathbb{Z}^{*}$ that is not a unit, it is either a prime or a composite (integer) number. For a composite n, n is a multiple of an integer that is neither a unit nor n :

Lemma 15.1 (Composite). An integer $\mathbb{Z}_{+}{ }^{*}$ is composite if and only if it has a factor a such that $1<a<n$. (Then there is another factor b such that $1 \checkmark b<n$, and $b=n / a$.)

Proof. If n is composite, then A is a multiple of integer a that is neither 1 nor n. Then there exist q such that $n=a q$ for some integer q. If a is nether 1 nor n then $1<a<n$. (We also used (f2) from Theorem 15.1.) Since $n=a q, q$ is also positive. Since $a>12=q \otimes q$ implieg $a<n$. And since a is not n then q cannot be 1 .
Lemma 15.2 (Conposite Qith assime fctor) An inderer n with $n>1$ has a prime factor p i.e. $p \mid n$.

Let A be the set of infegers that hate noprime faetor (divisor). Assume A is not empty. By the Well Ordered Set Principle (W.O.S.P) set A has a minimumford letiene m.

As $m \in A$, then m is prime (i.e, and a conmposite integer number). Then $m=b q$ with $1<b<m$ and $1<q<m$. Since b is a factor of mand bis smakter than m, b cannot be a member of A and thus it must be prime or have a prime divisor. The $p \mid b$ and sinceg $\mid m$ nave n that violates the definition of A.

Thus A must be empty and h he theorem is proven.
Lemma 15.3 (A factor less than \sqrt{n} for n). For a composite integer $n>1$ one of its prime divisors is less than or equal to \sqrt{n}.

Proof. By Theorem $15.2 n=p q$ where p is a prime factor. If $p \leq \sqrt{n}$ we are done. Otherwise $p>\sqrt{n}$. Then q must be $q \leq \sqrt{n}$, since otherwise $p>\sqrt{n}$ and $q \gg \sqrt{n}$ would lead to $p q>n$ i.e. $n>n$ an impossibily. Now if $q \leq \sqrt{n}$ indeed and q is prime we are done. Otherwise q is composite and by Theorem 15.2 it has a prime composite $r r<q<\sqrt{n}$. If r divides q and since q divides n we also have that $r \mid n$. We have just found a prime divisor of n, less than or equal to \sqrt{n} and this is r !

Definition 15.7 (1 is a unit). 1 is neither a prime number nor a composite number. It is a unit.
Lemma 15.4 (A theorem by Euclid). There are infinitely many prime numbers.

Proof. If there are only finite prime numbers and let them ALL be p_{1}, \ldots, p_{m}, where $p_{1}=2$. Then form integer $n=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{m}+1$. There are two possibilities for n : (a) it is a prime number, (b) it is not a prime number.
Case 1. If n is a prime number Then $n=2 \cdot \ldots \cdot p_{i} \cdot \ldots \cdot p_{m}+1 \gg 2 p_{i}+1>p_{i}$ given that all $p_{i}>1$. We have just found one more prime number beyond the m ones that were declared ALL that there are: a contradiction.
Case 2. If n is a composite number, let p be a prime factor of n, i.e. $p \mid n$ with $p>1$. Such a p exists by the previous Lemma (composite with a prime factor). This p cannot be one of the $m p_{1}, \ldots, p_{m}$. Why ? if p was say $p=p_{i}$ then $p \mid p_{i}$ implies by Theorem $15.1(\mathrm{c} 1, \mathrm{~d} 3)$ that $p \mid p_{1} \cdot p_{2} \cdot \ldots \cdot p_{m}$. Since $p \mid n$ and $n=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{m}+1$ the p divides their difference i.e. $p \mid 1$ by Theorem 15.1 (d2). This means p is one by Theorem 15.1 (f2). But one is a unit not a prime number (and also $p>1$).

15.3 Division

Theorem 15.3 (Division). For $a \in \mathbb{Z}$ and $b \in \mathbb{Z}^{*}$ there exist unique integers $q \in \mathbb{Z}$ and $r \in \mathbb{Z}$ such that

$$
a=b q+r \quad \text { and } \quad 0 \leq r<|b| .
$$

Proof.
Case $1(a \geq 0, b>0)$. Let A be the set of all non-negative integers $a-b i$, where i is such that $a-b i \geq 0$. For $i=0, a$ belongs to A, and thus A is not empty. By the Well-ordered set principle A has a minimum and let it be r. Since r is in A, we have $r \geq 0$ and $r=a-b i$ for some integer i. All it remains to show is that $r<|b|=b$. Say that $r \geq b$ instead. Then $r-b \geq 0$. Moreover

$$
r-b=(a-b i)-b=a-b(i+1)
$$

Thus $r-b \geq 0$ and is of the form $a-b i^{\prime}$, with $i^{\prime}=i+1$. Thus it belongs to A. Moreover $r-b$ is less than $r, r-b<r$ since b is positive. We have found an element smaller than the minimum element of A. This contradicts to the choice of r as being the minimum; we reached contradiction because we assume $r \geq b$. Thus $r<b$. This thus establishes that $0 \leq r<b$.

We have yet to prove the pair (q, r) is unique. Let is not be and let another pair be $\left(q^{\prime}, r^{\prime}\right)$. Then $a=b q+r=b q^{\prime}+r^{\prime}$ where $0 \leq r, r^{\prime}<b$.

This gives $b\left(q-q^{\prime}\right)=r^{\prime}-r$, and $\left|b\left(q-q^{\prime}\right)\right|=\left|r^{\prime}-r\right|$. Adding $0 \leq r$ and $r^{\prime}<b$ we get $r^{\prime}<r+b$ or equivalently $r^{\prime}-r<b$. Thus $\left|b\left(q-q^{\prime}\right)\right|<b$. As $b>0$ we na re $\left|q-q^{\prime}\right|<1$. This can only be possible, since q, q^{\prime} are integer if $q=q^{\prime}$. This means that $r=r^{\prime}$. This show theranqueness of the pair (q, r).
Case $2(a<0, b>0)$. Similarly as before 4 is not empty because $a-b i \geq 0$ contains at least one element $a-b a \geq 0$, and the rest of the discussion is similanfocase 1 .
Case $3(a \in \mathbb{Z}, b<0)$. Then $|b| \mathcal{Q}$, and of course $|b|=-b$. By way of cases 1 and 2 for a and $|b|$ we have that $a=|b| q+r$, where $0 \leq r$. This is equivalent to $a=(-b) q+r$, where $0 \leq r<|b|$. This is equivalent to $a=b(-q)+r$, where $0 \leq r<0 \mid$. The claim is satisfied for case 3 as well.

For a pair $(a, b \neq 0)$ there is andine pair $(q \sqrt{2})$ with $a=b q+r$ and $0 \leq r<|b|$.
Theorem 15.4 (Division Results e^{2} For b as in division $(b \neq \theta)$, we have
(i) if $d \mid a$ pond $d \mid b$ then $d k s$
(ii)
ii) if $d \mid r$ and 4 b the nd $a \cdot 0^{8}$ ad

Proof. (i) If $d \mid a$, then $a p q$ thus $x a-b$ thus leading (given that $a=b q+r$) to $d \mid r$.
(ii) If $d|r, d| b$ the $A \mid{ }_{2} e q$ and thus $d \mid k q+r$ mich leads to $d \mid a$.

Theorem 15.5 (Remainder division by b). For $a, A \in \mathbb{Z}$, with $b \mid a$ and $b \mid A$. The remainders of those two divisions are the same if and only if $a-A$ if multiple of b.
Proof. \Rightarrow. If $a=b q+r$ and $A=b Q+R$, and we are given $r=R$, the $a-A=b q+r-q Q-r=b(q-Q)$. Since $q-Q \in \mathbb{Z}$, we conclude that $b \mid a-A$.
\Leftarrow. Say that $b \mid a-A$. Then let $a=b q+r$ and $A=b Q+R$, where $0 \leq r, R<|b|$. We have $a-A=b(q-Q)+(r-R)$. Since obviously $b \mid b(q-Q)$ and also by assumption $b \mid a-A$ we conclude that $b \mid(a-A)-b(q-Q)$ ie. $b \mid r-R$ and also $|b| \mid r-R$. This would imply that $|b| \leq|r-R|$ or $|r-R|=0$. But $r, R<|b|$ which means that $r-R$ or $|r-R|$ are such that $|r-R|<|b|$. Thus the former $|b| \leq|r-R|$ is false because otherwise $|b| \leq|r-R|$ and $|r-R|<|b|$ lead by transitivity to the nonsense $|b|<|b|$. We must have $|r-R|=0$ which implies $r=R$ since $R, r \geq 0$.

Another way to prove \Leftarrow it is directly as follows. Say that $b \mid a-A$, i.e. $a-A=b m$ for some $m \in \mathbb{Z}$. Then let $a=$ $b q+r$ and $A=b Q+R$, where $0 \leq r, R<|b|$. From the former $a-A=b m$ and $A=b Q+R$ we have $a-(b Q+R)=b m$ implying $a=b(m+Q)+R$. This latter equality implies $q=m+Q$ and $r=R$ as R is such that $0 \leq R<|b|)$. Result is proven.

15.4 Greatest Common Divisor

Lemma 15.5. Integer d is such that $d \mid n$ if and only if the remainder of the division of n by d is 0 .
Proof.
Only-if. If d is such that $d \mid n$ this means $n=q d$ i.e. $n=q d+0$. Given the uniqueness of q, r from Theorem 15.3 we conclude $q=q$ and $r=0$.

If. If d is such that $n=d \cdot q+r$ with $r=0$, then $n=d \cdot q$ which implies $d \mid n$.
Definition 15.8 (Greatest Common Divisor). For integers $a, b \in \mathbb{Z}, \operatorname{gcd}(a, b)$ is the greatest common divisor of a and b if and only if $\operatorname{gcd}(a, b) \mid a$ and $\operatorname{gcd}(a, b) \mid b$ and every other divisor c of a, b is such that $c \leq \operatorname{gcd}(a, b)$. Thus
(i) $\operatorname{gcd}(a, b) \mid a$ and $\operatorname{gcd}(a, b) \mid b$,
(ii) $c \mid a$ and $c \mid b \Rightarrow c \leq \operatorname{gcd}(a, b)$.

Moreover, $\operatorname{gcd}(a, b) \leq|a|$ and $\operatorname{gcd}(a, b) \leq|b|$.
Example 15.4. (a) The greatest common divisor of 1 and n is 1.
(b) If $a \mid b$ then $G C D(a, b)=b$.
(c) $\operatorname{GCD}(5,15)=5 . \operatorname{GCD}(30,105)=15$.
(d) The common divisors of 30 and 105 are $\{1,3,1,15$,$\} . If we include negative numbers then it is \{ \pm 1, \pm 3, \pm 5, \pm 15$,$\} ,$ twice as many.

Note that if $c \mid a$ then by Theorem $15(\mathcal{b})$ we have $|c| \leq|a|$. Likewise if $c \mid b$ we have $|c| \leq|b|$. Combining the two we have $|c| \leq \max (|a|,|b|)$. Thus the set of common divisors of a, b is finite. A finite set of integers always has a maximum, and thus there is a uniguest largest integer $d>0$ such that $d \mid a$ and $d \mid b$. We call d the greatest common divisor of a, b and denote it bygd (a, b) thus $d=\operatorname{gcd}(a, b)$.

Note 15.1. The $\operatorname{gcd}(0,0)$ ishot defired as the seteof common divisors is an infinite set and does not have a maximum. In the remainder when $\mathfrak{B O}(a$, , is considered we would assume that $a \neq 0$ or $b \neq 0$ (or both). Thus it cannot be that both a and b are zer

Definition 15.9
Fact 15.1 (SimplégCD Sacts). L\&t $a, \frac{6}{} \mathbb{Z}$ no Doth zero. Then
(i) $\operatorname{gcd}(a, b)>0$ ard alsog
(ii) $\operatorname{gcd}(a, b)=\operatorname{gcd}|a|,|b| \mid$
(iii) $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, @)$.
(iv) $\operatorname{gcd}(a, 1)=1$.
(v) $\operatorname{gcd}(a, 0)=|a|$ for all $a \neq 0$.
(vi) $\operatorname{gcd}(a, b)=|a|$ if and only if $a \mid b$.

Proof.
(i) Obviously. $\operatorname{gcd}(a, b)$ is the maximum of the common divisors of a and b i.e. the maximum elements of $S(a) \cap S(b)$. One positive element of this set of common divisors is 1 and thus $\operatorname{gcd}(a, b) \geq 1$ in addition to $\operatorname{gcd}(a, b)>0$.
(ii) Since $S(a)=S(|a|)$ and $S(b)=S(|b|)$ we have that $S(a) \cap S(b)=S(|a|) \cap S(|b|)$. Thus $\operatorname{gcd}(a, b)$ is equal to $\operatorname{gcd}(|a|,|b|)$ since the set of common divisors are equal to each other.
(iii) It is a consequence of the fact that $S(a) \cap S(b)=S(b) \cap S(a)$.
(iv) Since $1 \mid a$ trivially, and the largest divisor of 1 is 1 itself the result follows. (Note that $S(1)=\{-1,+1\}$.)
(v) $S(a) \cap S(0)=S(a) \cap \mathbb{Z}=S(a)$. The result follows as the largest element of $S(a)$ is $|a|$.
(vi) \Rightarrow. If $\operatorname{gcd}(a, b)=|a|$ then $|a| \mid a$ and $|a| \mid b$. For the latter there exist q such that $b=q|a|$. If a is non-negative, the $b=q a$ as well. If a is negative $b=q(-a)=(-q) a$. The former concludes $a \mid b$ and so does the latter.
\Leftarrow. If $a \mid b$ then $-a \mid b$ and thus $|a| \mid b$. Since trivially $a \mid a$ we conclude that $-a \mid a$ and thus $|a| \mid a$. Then $|a| \mid \operatorname{gcd}(a, b)$. This by Theorem $15.1(\mathrm{v})$ implies $|a| \leq \operatorname{gcd}(a, b)$ (the gcd is always positive thus no absolute value sign around it is needed). By definition $\operatorname{gcd}(a, b) \mid a$ and thus $\operatorname{gcd}(a, b) \mid-a$. Thus $|\operatorname{gcd}(a, b)| \leq|a|$. Combining $|\operatorname{gcd}(a, b)| \leq|a|$ and $|a| \leq \operatorname{gcd}(a, b)$ the result follows.

Theorem 15.6. If $x, y \in \mathbb{Z}$, then

$$
\operatorname{gcd}(x, y)=\operatorname{gcd}(x, x q+y), \quad \operatorname{gcd}(x, x q+y)=\operatorname{gcd}(x, y)
$$

for all integers $q \in \mathbb{Z}$.
Proof. Let $d=\operatorname{gcd}(x, y)$. Let $d_{1}=\operatorname{gcd}(x, x q+y)$. If $d \mid x$ and $d \mid y$ by the gcd definition, we have $d \mid x q$ and $d \mid y$. Thus $d \mid x q+y$ in addition to $d \mid x$. Thus d is a common divisor fo $x q+y$ and x. Thus $d \leq d_{1}=\operatorname{gcd}(x, x q+y)$. For $d_{1}=$ $\operatorname{gcd}(x, x q+y)$ we have $d_{1} \mid x$ and $d_{1} \mid x q+y$. From the former, we conclude that $d_{1} \mid x q$; combining it with the latter we have $d_{1} \mid x q+y-x q$ i.e. $d_{1} \mid y$. Thus $d_{1} \mid x$ and $d_{1} \mid y$ and therefore d_{1} is a common divisor of x, y. Thus $d_{1} \leq d=\operatorname{gcd}(x, y)$.

By way of $d_{1} \leq d$ and $d \leq d_{1}$ we conclude $d=d_{1}$.
From Theorem 15.3 in order to compute the $\operatorname{gcd}(a, b)$ we formulate the divsion operation.

$$
a=b q+r
$$

where $0 \leq r<|a|$. Then by way of Theoreth 15.6

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a)=\operatorname{gcd}(b, b q+r)^{T h .15 .6}=\operatorname{ccd}^{=}(b, r)
$$

Note 15.2. If $a=b$ then $\operatorname{gcd}(b)=a=b$. Thus in general we need to compute $\operatorname{gcd}(a, b)$ for $a>b$ or $b>a$.
Note 15.3. If we assume withouthoss of generality, that $a>b$, if $b=0 \operatorname{gcd}(a, b)=a$. Thus in general we need to compute $\operatorname{gcd}(a, b)$ for $a Q$ a and $b \neq 0$

At a minimumn $4 a \mid+1,0 \neq 0$ ie we gan't determine the gedef two numbers that are both 0 . The set of common divisors is then andhas no maximune GCDis alsaxnowar as Euclid's algorithm.

Theorem 15.7 (ECD: EQ we have $\operatorname{gcd}(a, b) \operatorname{Acd}(b, k)$. Mogedver soce rist the remainder of the division of a by b we have $0 \leq r<|b|$. If the remainder is not we continuex divisyon uको a remainder is drawn that is 0 . The last non-zero remainder is the $g c d$ i.e. $\operatorname{gcd}(a, b)=$

$$
\begin{aligned}
& a=b q+r \quad \sigma^{\circ} \quad \operatorname{gcd}(a, b)=\operatorname{gcd}(b, r) \\
& b=r q_{1}+r_{1} \quad 0 \quad \operatorname{gcd}(b, r)=\operatorname{gcd}\left(r, r_{1}\right) \\
& r=r_{1} q_{2}+r_{2} \quad \subset \quad 0 \leq r_{2}<r_{1} \quad \operatorname{gcd}\left(r, r_{1}\right)=\operatorname{gcd}\left(r_{1}, r_{2}\right) \\
& r_{k-2}=r_{k-1} q_{k}+r_{k} \quad 0 \leq r_{k}<r_{k-1} \\
& r_{k-1}=r_{k} q_{k+1}+0 \\
& \operatorname{gcd}\left(r_{k-2}, r_{k-1}\right)=\operatorname{gcd}\left(r_{k-1}, r_{k}\right) \\
& \operatorname{gcd}\left(r_{k-1}, r_{k}\right)=\operatorname{gcd}\left(r_{k}, 0\right)=r_{k}
\end{aligned}
$$

Note that $a>b$ and $|b|>r>r_{1}>r_{2}>\ldots>r_{k-1}>r_{k}$.
Proof. It is obvious from the statement that

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)=\operatorname{gcd}\left(r, r_{1}\right)=\operatorname{gcd}\left(r_{1}, r_{2}\right)=\ldots=\operatorname{gcd}\left(r_{i-1}, r_{i}\right)=\ldots=\operatorname{gcd}\left(r_{k-1}, r_{k}\right)=\operatorname{gcd}\left(r_{k}, 0\right)=r_{k}
$$

That is, the last, non-zero remainder, is the gcd. Moreover the sequence of remainders purely decreases i.e. $|b|>r>$ $r_{1}>r_{2}>\ldots>r_{k-1}>r_{k}$. Thus after a finite number of no more than b steps r_{k} will be determined.

Another way to prove this Theorem 15.7 is the following direct method.
Proof. Starting from the bottom $r_{k} \mid r_{k-1}$. Then from the penultimate equation we have r_{k} dividing both itself and r_{k-1} and thus $r_{k} \mid r_{k-1} q_{k}+r_{k}$. Thus $r_{k} \mid r_{k-2}$. Working likewise we show that r_{k} divides r and b of the first equation and thus also divides a. Thus r_{k} divides both a, b. Pick an arbitrary integer d dividing a and b. Working downwards we show that d divides r_{k} as well. Thus $d \leq r_{k}$. That is r_{k} is the gcd of a, b as any common divisor of a, b is at most r_{k}.

The worst-case (i.e. longest) division is for two consecutive Fibonacci numbers $F_{n}=F_{n-1}+F_{n-2}, n>1$, with $F_{0}=0$ and $F_{1}=1$ generate a quotient of 1 every iteration! For F_{n} the number of divisions is $n-2$ as the last division is $F_{2}=F_{1}+F_{0}=F_{1}+0$. The n-th Fibonacci number exceeds ϕ^{n-2}.

Corollary 15.1. For $a, b<N$ the number of divisions in Euclid's Algorithm will be less than $\lg N / \lg \phi \approx 1.48 \lg N$.
Proof. We can do a bit better by bounding the number of divisions in terms of b only. In the worst case, for an n step division $a \geq F_{n+2}$ and $b \geq F_{n+1}$. But $F_{n+1} \geq \phi^{n-1}$. Thus $n-1 \leq \lg b / \lg \phi . \lg \phi \approx 0.687$ and thus $n-1 \leq 1.471 \lg b$ i.e. $n \leq 1.471 \lg N+1$.

Theorem 15.8 (GCD-Divided). If $d=\operatorname{gcd}(a, b)$ then $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$.
Proof. If $d=\operatorname{gcd}(a, b)$ then by Theorem 15.7 wernate that $d=r_{k}$. By the last equation of gcd 's we have $\operatorname{gcd}\left(r_{k-1}, r_{k}\right)=$ $r_{k}=d$. Given that d divides itself $\left(r_{k}=d\right)$ also have that $d \mid r_{k-1}$. From the prior expression, now that we have $d \mid r_{k}$ and $d \mid r_{k-1}$ using $\operatorname{gcd}\left(r_{k-2}, r_{k-1}\right)=\operatorname{gd}\left(r_{k-1}, r_{k}\right)=r_{k}=d$ we have that $d \mid r_{k-2}$ as well. Continuing likewise we have $d \mid r_{2}$ and $d \mid r_{1}$. Likewise from (h) third equation of Theorem 15.7 we have $d \mid r$ and from the second $d \mid b$. Concluding from the first (division) equation we have $d \mid a$. We can thus divide by d all equations. This shows that $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=\frac{d}{d}=1$ as all remainderswill be divided by $d=r_{k}$ as well.

Theorem 15.9 (Extendegfabelet $b \in$ R

Moreover, dib the smallest positive ioteger hat casibe wetten as a linear combination of a, b.
Proof. Considere
Note that for $u=a, v=a \cdot a \cdot b \cdot b \underset{0}{ } 0$ sine $|a|+|b| \neq 0$. Set A has thus at least one element and it is not empty. Thus from the well-ordered set princaple there must exist a minimum element for A and let it be d^{\prime}. Since $d^{\prime} \in A$ there exist x, y such that

$$
a x+b y=d^{\prime}
$$

Show d^{\prime} is a divisor of a. We first show that $d^{\prime} \mid a$. Let us form the division operation for the two integers i.e.

$$
a=d^{\prime} q^{\prime}+r^{\prime}
$$

where $0 \leq r^{\prime}<d^{\prime}$. Then we have that

$$
r^{\prime}=a-d^{\prime} q^{\prime}=a-(a x+b y) q^{\prime}=a \cdot\left(1-x q^{\prime}\right)+b \cdot\left(-y q^{\prime}\right)
$$

Note that because of the division of a by d^{\prime} we know that $0 \leq r^{p}$ rime.
Case $0<r^{\prime}$. If $r^{\prime}>0$ then it is a member of A since $r^{\prime}=a \cdot\left(1-x q^{\prime}\right)+b \cdot\left(-y q^{\prime}\right)$. But this cannot happen since $r^{\prime}<d^{\prime}$ and d^{\prime} is the minimum element of A. It would imply the existence of an element of A (i.e. r^{\prime}) smaller than the minimum element of A (i.e. d^{\prime})!
Case $0=r^{\prime}$. The only other possibility is that $r^{\prime}=0$. But then, $a=d^{\prime} q^{\prime}+r^{\prime}$ implies $a=d^{\prime} q^{\prime}$ i.e. d^{\prime} is a divisort of a.

Show d^{\prime} is a divisor of b. Similar to the case of a.
Thus d^{\prime} divides a and b and is a common divisor of a, b. It should be that $d^{\prime} \leq d$ since d is the gcd of a and b and is the greatest common divisor of a, b. If g is another common divisor of a and b we conclude from $a x+b y=d^{\prime}$ that $g \mid a x+b y$ i.e. $g \mid d^{\prime}$. Thus $g \leq d^{\prime}$. Thus any common divisor of a, b such as g is no more than d^{\prime}. Such a common divisor also includes the gcd of a and b and thus $d \leq d^{\prime}$. This along with the $d^{\prime} \leq d$ shows that $d=d^{\prime}$. (We also proved that every common divisor of a, b also divided the gcd of a, b.)

In conclusion

$$
d=\operatorname{gcd}(a, b)=d^{\prime}=a x+b y
$$

Corollary 15.2. If $d=\operatorname{gcd}(a, b)$ then $S(a) \cap S(b)=S(d)$. (In other words, $m \mid a$ and $m|b \Longleftrightarrow m| d$.)
Proof. Every common divisor of a and b is a divisor of $d=\operatorname{gcd}(a, b)$ since $d=d^{\prime}=a x+b y$ derived and used in Theorem 15.9. That is $S(a) \cap S(b) \subseteq S(d)$.

Moreover for $t \in S(d)$ then $t \mid d$ and since $d \mid a$ and $d \mid b$ by transitivity we have $t \mid a$ and $t \mid b$. The former show that $t \in S(a)$ and the latter that $t \in S(b)$. Both of them show that $t \in S(a) \cap S(b)$. Thus $S(d) \subseteq S(a) \cap S(b)$.
Corollary 15.3. Let $a, b \in \mathbb{Z},|a|+|b| \neq 0$. Let $m \in \mathbb{Z}_{+}^{*}$. Then

$$
\operatorname{gcd}(巾 x, m b)=m \operatorname{gcd}(a, b)
$$

Proof. Let $d=\operatorname{gcd}(a, b)$. Since $d \mid a$ we have $a=d q$ and thus $m a=(m d) q$. Thus $m d \mid m a$. Likewise $m d \mid m b$. Thus $m d \leq \operatorname{gcd}(m b, m a)$.

Since $m \mid m a$ and $m \mid m b$ we have $m \uparrow \operatorname{gcd}(m a, m b)$. Thus $\operatorname{gcd}(m a, m b)=m q$ for some q. Moreover gcd $m a, m b \mid m a$ implies $m q \mid m a$ i.e $q \mid a$. Likewise $q \mid \%$. Thus $q \mid d$ i.e. $q \leq d$. We conclude that $\operatorname{gcd}(m a, m b)=m q \leq m d$. From $m d \leq \operatorname{gcd}(m b, m a)$ previously and $\operatorname{gcd}(m a, m b)=m q \leq m d$ the corollary follows.

Theorem 15.10. For tho $a, b \in \mathbb{Z}$, eve hajirgcd $(a, b, c)=\operatorname{gcd}((a, b), c)=\operatorname{gcd}(d, c)$, where $d=\operatorname{gcd}(a, b)$.

Theorem 15.11 \&or p of rimeand $a \mathbb{Z}^{*}$, DOESNOT DIVIDE a if and only if $\operatorname{gcd}(a, p)=1$.
 a. The only possible diousors are +1 anfe -1 . तुus $S(a) \cap S(p)=\{+1,-1\}$. Thus the gcd is 1 , and thus $\operatorname{gcd}(a, p)=1$ as needed.

If $\operatorname{gcd}(a, p)=1$, therpp capest divido a. This is because if $p \mid a$ since obviously $p \mid p$ we would have from a prior property that $p \mid \operatorname{gcd}(a, p)$ andern fact $\operatorname{gcd}(a, p)=|p|$). For this to happen p should be -1 or +1 . But p is prime and this can't happen.

Theorem 15.12. For $a, b, m \in \mathbb{Z}^{*}$ and $\operatorname{gcd}(a, b)=1$ and $a \mid$ bm then $a \mid m$.
Proof. Since $\operatorname{gcd}(a, b)=1$ we have $1=a x+b y$ for some x, y. Multiplying by m we get $m=a x m+b m y$. Obviously $a \mid a x m$. Since $a \mid m$ we have $a \mid b m y$ as well. Thus $a \mid a x m+b m y$ i.e. $a \mid m$.

Theorem 15.13. For $a, b \in \mathbb{Z}^{*}$ and prime p is such that $p \mid a b$, then p divides either a or b.
Proof. Say p does not divide a. By a prior theorem since p is prime this means $\operatorname{gcd}(p, a)=\operatorname{gcd}(a, p)=1$. Since $p \mid a b$ by the previous theorem we have $p \mid b$.

Theorem 15.14. If $\operatorname{gcd}(a, b)=1$ and $a \mid c$ and $b \mid c$ then $a b \mid c$.
Proof. If $\operatorname{gcd}(a, b)=1$ we have $1=a x+b y$. Then $c=a c x+b c y$. We have $a \mid c$ i.e. $c=a q$. Then $c b=a b q$ and thus $b c y=a b(q y)$. The latter implies $a b \mid b c y$.

We also have $b \mid c$ i.e. $c=b r$. Then $a c=a b r$. Thus $a c x=a b(r x)$. The latter implies $a b \mid a c x$.
Thus $a b \mid b c y$ and $a b \mid a c x$ imply $a b \mid a c x+b c y$. Therefore $a b \mid c$.
Method 15.1 (GCD algorithm). (a) If $a>0$, we have $\operatorname{gcd}(a, 0)=0$.
(b) If $a>0$, we have $\operatorname{gcd}(a, a)=a$.
(c) If $0<a<b$ swap the rolses of a, b.
(d) If $a>b>0$ then $a=b q+r$ and by Theorem 15.7 we have $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$. Since r is the remainder $r<|b|$ and we can continue likewise with the roles of (a, b) played by (b, r). Let $r>r_{1}>\ldots>r_{k}>0$ be the sequence of remainders generated until remainder $r_{k+1}=0$. We also have $a>b>r>r_{1}>\ldots>r_{k}>0$. We know we are to reach a remainder 0 since the sequence above is decreasing and a and also b finite.

Example 15.5 (GCD Example). Calculate $\operatorname{gcd}(280,105)$.
Proof.

$$
\begin{array}{lll}
\operatorname{gcd}(105,280) & =\operatorname{gcd}(280,105) & \\
\operatorname{gcd}(280,105) & =\operatorname{gcd}(105,70) & 280=105 \cdot 3+70 \\
\operatorname{gcd}(105,70) & = & \operatorname{gcd}(70,35) \\
\operatorname{gcd}(70,35) & \operatorname{gcd}(35,0) & 105=70 \cdot 1+35 \\
\operatorname{gcd}(35,0) & =0 &
\end{array}
$$

Therefore $\operatorname{gcd}(105,280)=35$.
Example 15.6 (GCD Example). Express $\operatorname{gcd}(105,280)$ as a linear combination of 105, 280.
Proof.

Definition 15.10. Fowtwo intors at $\mathfrak{z e} \operatorname{gcd}(a, b)=1$ the two integers a and b are called relatively prime.

15.5 Least Common Multiplier

For $a, b \in \mathbb{N}$ we denote by $\operatorname{lcm}(a, b)$ the least common multiplier of a and b. For $a, b \in \mathbb{Z}$ only the positive multipliers are considered.

Moreover $\operatorname{lcm}(m a, m b)=m \operatorname{lcm}(a, b)$.

Theorem 15.15. Let $a, b \in \mathbb{N}$. If $\operatorname{gcd}(a, b)=1$ then $\operatorname{lcm}(a, b)=a b$.
Proof. Let $m=\operatorname{lcm}(a, b)$. Since $\operatorname{gcd}(a, b)=1$ we have $1=a x+b y$. Then $m=a x m+b y m$. Since $a \mid m$ and $b \mid m$. Then $m=a p$ and $m=b q$. Moreover substituting to the previous equation we have $m=a x(b q)+b y(a p)=a b(x q)+a b(y p)=$ $a b(x q+y p)$. Thus $a b \mid m$. This implie $a b \leq m$. Moreover m is the least common multiple of a, b. One such multiple is $a b$. Thus $a b \geq m$. The $a b \leq m$ and the just shown $a b \geq m$ implies $m=a b$.

Theorem 15.16. Let $a, b \in \mathbb{N}$. Then $\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a b$.
Proof. Let $d=\operatorname{gcd}(a, b)$. Let $a_{1}=a / d$ and $b_{1}=b / d$. Then $\operatorname{gcd}(a / d, b / d)=\operatorname{gcd}\left(a_{1}, b_{1}\right)=1$. From the previous theorem we have $\operatorname{lcm}\left(a_{1}, b_{1}\right)=\operatorname{lcm}(a / d, b / d)=a b / d^{2}$.

If $T(a)$ is the set of (positive) multiples of a then $T(a)=T(-a)=T(|a|)$. Moreover $T(a) \cap T(b)=T(|a|) \cap T(|b|)$. Therefore $\operatorname{lcm}(a, b)=\operatorname{lcm}(|a|,|b|)$.
Corollary 15.4. For $a, b \in \mathbb{Z}^{*}$ if $a \mid b$, ther $\mathrm{cm}(a, b)=b$.
Proof. If $a \mid b$, then any element $t \in \mathcal{E}(b)$ is $t \geq b$. Moreover b or $|b|$ is in $T(a)$. The result follows.

15.6 Diophantine Equations

Theorem 15.17. Let $a, b \in \mathbb{Z}^{*}$. The linear Diophnatine equation

$$
a x+b y=c
$$

has integer solution x, y if and only if $d \mid c$, where $d=\operatorname{gcd}(a, b)$. If a particular solution $\left(x_{0}, y_{0}\right)$ exists, then there are infinitely many solution of the form

$$
x=x_{0}+\frac{m b}{d}, \quad y=y_{0}-\frac{m a}{d}
$$

where $m \in m b Z$.
Proof. By way of Theorem 15.9 there exist x, y such that

$$
\begin{equation*}
a x+b y=d \tag{15.1}
\end{equation*}
$$

where $d=\operatorname{gcd}(a, b)$. Since $d \mid c$ there exists a q such that $c=d q$. Multiplying by q Equation 15.1 we get

$$
\begin{equation*}
a(x q)+b(y q)=d q=c \tag{15.2}
\end{equation*}
$$

Thus a solution has been found through Theorem 15.9 as $x_{0}=x q$ and $y_{0}=y q$. Let $\left(x_{0}, y_{0}\right)$ be a solution pair. Suppose there is another solution pair (x, y). Then

$$
\begin{equation*}
\text { (C) } a x_{0}+b y_{0}=c \quad, \quad a x+b y=c \tag{15.3}
\end{equation*}
$$

Subtracting one from the other get

$$
\begin{equation*}
\left.y_{0}-x\right)+b(y-y)=0 \Rightarrow a\left(x_{0}-x\right)=b\left(y-y_{0}\right) . \tag{15.4}
\end{equation*}
$$

For $d=\operatorname{gcd}(a, b), a_{1} \in a / d_{6} b_{1}, d$ are botheinteges More eyer $\operatorname{gcd}\left(a_{1}, b_{1}\right)=1$ from a prior result. Dividing by d equation 15.4 we have

Since $\operatorname{gcd}\left(a_{1}, b\right) \sum_{1}$, since $a_{2} a_{1}\left(x_{0} \sigma_{x}\right)$ it means $a_{1} \mid b_{1}\left(y-y_{0}\right)$. Being relatively prime a_{1}, b_{1} this is equivalent to $a_{1} \mid y-y_{0}$. Likewise y_{1} - vo From lather weabain that there exists, m such that

From the first implication above we also obtain that

$$
x-x_{0}=m b_{1} \quad, \quad a_{1}\left(x_{0}-x\right)=b_{1}\left(y-y_{0}\right) \Rightarrow-m a_{1} b_{1}=b_{1}\left(y-y_{0}\right) \Rightarrow y=y_{0}-m \frac{a}{d} .
$$

The result thus follows.
Corollary 15.5. If $\operatorname{gcd}(a, b, c)=1$ and $\operatorname{gcd}(a, b)=d>1$ then Equation 15.17 has no solution.
Proof. Say that Equation 15.17 has an integer solution (x, y) i.e. $a x+b y=c$. Since $d=\operatorname{gcd}(a, b)$ it means $d \mid a$ and $d \mid b$. Then $d \mid a x+b y$ i.e. $d \mid c$. If d is a common divisor of a, b, c it means $d \mid 1$. Then it can only be $d=1$. This contradicts the fact $d>1$. Thus Equation 15.17 cannot have any solution.

Corollary 15.6. If $\operatorname{gcd}(a, b)=1$ then Equation 15.17 has one solution.

Example 15.7. Show $\operatorname{gcd}(1024,640)=128$ we have
Proof.

$$
\begin{aligned}
1024 & =640 \cdot 1+384 \\
640 & =384 \cdot 1+256 \\
384 & =256 \cdot 1+128 \\
256 & =128 \cdot 2+0
\end{aligned}
$$

Obviously $\operatorname{gcd}(1024,640)=128$, the last non zero remainder. Reversing the order of the equation we have.

$$
\begin{aligned}
128 & =384+256 \cdot(-1) \\
& =384+(640+384 \cdot(-1)) \cdot(-1) \\
& =640 \cdot(-1)+384 \cdot(2) \\
& =640 \cdot(-1)+(1024+640 \cdot(-1)) \cdot 2 \\
& =640 \cdot(-3)+1024 \cdot 2
\end{aligned}
$$

Therefore $\operatorname{gcd}(1024,640)=128=1024 \cdot 2+640 \cdot(-3)$.
Example 15.8. Find the solutions, if any, of 1024x+640y $=256$.
Proof. By the previous example $\operatorname{gcd}(1024,640)=d=128$. It is $128 \mid 256$. Thus one solution of the Diophantine is $x_{0}=2 \cdot(256 / 128)=4$ and $y_{0}=(-3) \cdot(256 / 128)=-6$.

Other solutions are

$$
x^{x-2} 4+m(640 / 128)=4+5 m \quad, \quad y=-6-8 m
$$

A simple calculation confirnaside latter solutions

The prevers method oulinedon Cor冈ary $d=\operatorname{gcd}(a, b)$ stactwithos

The first column are the the gividenal and Divisor (b) of the division operation. Eventually through repeated division with remainder (the previoustertical operations become horizontal) will generate a matrix such as the one below. Its first row entries containg the $\operatorname{gcd}(a, b)$ and x, y.

$$
\left[\begin{array}{c|cc}
\operatorname{gcd}(a, b) & x & y \\
0 & ? & ?
\end{array}\right]
$$

Example 15.9. Show this for $a=1024, b=640$ and division

$$
\begin{aligned}
1024 & =640 \cdot 1+384 \\
640 & =384 \cdot 1+256 \\
384 & =256 \cdot 1+128 \\
256 & =128 \cdot 2+0
\end{aligned}
$$

Proof.

$$
\begin{aligned}
{\left[\begin{array}{r|ll}
1024 & 1 & 0 \\
640 & 0 & 1
\end{array}\right] } & \rightarrow\left[\begin{array}{r|rr}
384 & 1 & -1 \\
640 & 0 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{r|rr}
384 & 1 & -1 \\
256 & -1 & 2
\end{array}\right] \\
& \rightarrow\left[\begin{array}{r|rr}
128 & 2 & -3 \\
256 & -1 & 2
\end{array}\right] \\
& \rightarrow\left[\begin{array}{r|rr}
128 & 2 & -3 \\
0 & -5 & -8
\end{array}\right]
\end{aligned}
$$

In the first transition, we subtract the seconatrow from the first per the first division. In the second transition, we subtract the first row from the second perdie'second division. In the third transition, we subtract the second row from the first per the third division. In the fouth transition, we subtract twice the first row from the second per the fourth division. (It is twice because the quotient in this case is a 2.)

There is yet another matrix form representation of the Extended-Euclid's algorithms (i.e. Extended GCD). For this in Theorem 15.7 we rewrite the fist line as in $\approx=b q+r=b q_{0}+r_{0}$, and the second line $b=r q_{1}+r_{1}=r_{0} q_{1}+r_{1}$. The remaining lines remam thes same The poduct of $k+2$ matrices can be computed as a 2×2 matrix with entries $x_{1}, \ldots x_{4}$.

$$
\begin{aligned}
1
\end{aligned}
$$

Example 15.10. Show this for $a=1024, b=640$ and division

$$
\begin{aligned}
1024 & =640 \cdot 1+384 \\
640 & =384 \cdot 1+256 \\
384 & =256 \cdot 1+128 \\
256 & =128 \cdot 2+0
\end{aligned}
$$

Proof.
$\left[\begin{array}{c}r_{k} \\ 0\end{array}\right]=\left[\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right]^{-1} \times\left[\begin{array}{l}a \\ b\end{array}\right], \quad\left[\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right] \times\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right] \times\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right] \times\left[\begin{array}{ll}2 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}8 & 3 \\ 5 & 2\end{array}\right]$
Then,

$$
\left[\begin{array}{r}
r_{k} \\
0
\end{array}\right]=\left[\begin{array}{ll}
8 & 3 \\
5 & 2
\end{array}\right]^{-1} \times\left[\begin{array}{r}
1024 \\
640
\end{array}\right]=\left[\begin{array}{rr}
2 & -3 \\
-5 & 8
\end{array}\right] \times\left[\begin{array}{r}
1024 \\
640
\end{array}\right]
$$

We just need to find the top element of the vector i.e. its r_{k} values. Obviously $r_{k}=128=1024 \cdot 2+640 \cdot(-3)$. At the same time $(x, y)=(2,-3)$ as well.

Theorem 15.18. For $a, p \in \mathbb{Z}^{*}$ such thatggd $(a, p)=1$, there is a unique x such that $a a^{\prime} \equiv 1(\bmod p)$.
Proof. Since $\operatorname{gcd}(a, p)=1$ we have by Theorem 15.7 that there exists x, y such that $a x+p y=1=\operatorname{gcd}(a, p)$. Furthermore $-p y=a x-1$. Since $p \mid p y$ we have $p \mid a x-1$. Thus $a x \equiv 1(\bmod p)$. Consider $a^{\prime}=x(\bmod p)$. It is still $a a^{\prime} \equiv$ $(\bmod p)$. Furthermore any diver of a^{\prime} and m must also divide 1, i.e. $\operatorname{gcd}\left(a^{\prime}, p\right)=1$.

15.7 Prime Numbers and Factorization

The definition of a prime number and a composite number was given through Definition 15.5 and Definition 15.6. In short a positive (or negative) number other than the units) that has two positive factors, itself and +1 , is called a prime. If it is not a prime, it is called a composite.

The next two theorems are repetitions.

Theorem 15.19. Every integer $n>1$ is divisible by at least one prime factor.
Proof. Let Q be the set of natural integer numbers greater than one, that have no prime factors. We shall show that $Q=\emptyset$.

Say Q is not empty. Then there is a minimum element say $m \in Q$. Since $m \mid m$, and m has no prime factors, m cannot be a prime number. Thus m is composite and let $m=q r$, where $1<q, r<m$. Since either q or r is $<m$, and m is the smallest element of Q it means $q \notin Q$. By definition q has a prime factor p ie. $p \mid q$ and $q \mid m$. By transitivity $p \mid m$. The latter contradicts the fact that m being in Q it should not have prime factors (such as p). Thus S has no minimum element m and thus it is empty!

Theorem 15.20. Every integer $n>1$ is either, prime or there exists a prime number $p \leq \sqrt{n}$ such that $p \mid n$.
Proof. If n is prime, we are done.
If n is not a prime there exist a, b such that $n=a b$. Let $1<a \leq b<n$. If $a>\sqrt{n}$ then $b \geq a>\sqrt{n}$ and therefore $n=a b>\sqrt{n} \cdot \sqrt{n}=n$, which is impossible. It follows that $1<a \leq \sqrt{n}$. Thus a has a prime factor p by Theorem 15.19 and $p \leq a$. Since $p \mid a$ and $a \mid n$. conclude that $p \mid n$, with $p \leq a \leq \sqrt{n}$.

Lemma 15.6. For a brine number p ii $p \mid p$ then $p \mid p_{1}$ fr $p \mid p_{2}$ This can be generalized for $p \mid p_{1} p_{2} p_{3} \ldots$.
Proof. If $p \mid p_{1} p$ driven that p isprimedts onlcopitiedivisos are 1, p. If $p \nmid p 1$, then $\operatorname{gcd}\left(p, p_{1}\right)=1$. Thus from a prior result $p h p$. By nductiontwe con prove, its generalization.

Theorem 15.21 (Fundamental $\mathrm{F}_{\mathrm{c}} \mathrm{O}$ $p_{1}<\ldots<p_{k}$ and natural inters a, an 0 such that

$$
n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}}
$$

Proof. If n is prime this is true easily. Let n be a composite natural number. Then by Theorem 15.19 it has a prime factor and let its smallest one be q_{1} i.e.

$$
n=q_{1} \cdot a_{1} \quad, \text { with } a_{1}<n
$$

If a_{1} is prime we have decomposed n into two prime numbers. If a_{1} is composite and by Theorem 15.19 it has a prime factor and let its smallest one be q_{2} i.e.

$$
\begin{aligned}
& a_{1}=q_{2} \cdot a_{2} \quad, \text { with } a_{2}<a_{1} \\
& n=q_{1} a_{1}=q_{1}\left(q_{2} a_{2}\right)=q_{1} q_{2} a_{2}
\end{aligned}
$$

If a_{2} is composite we repeat this until he hit a $a_{k-1}=q_{k}$. That way

$$
n=q_{1} q_{2} \ldots q_{k-1} q_{k}
$$

Let us assume that there is another factorization of n

$$
n=r_{1} r_{2} \ldots r_{t-1} r_{t}
$$

The we have

$$
q_{1} q_{2} \ldots q_{k-1} q_{k}=r_{1} r_{2} \ldots r_{t-1} r_{t}
$$

r_{1} divides the right hand side. It also divides the left-hand side. By Lemma 15.6 one of q_{i} divided by r_{1}, ie. $r_{1} \mid q_{i}$. Because all of r_{1}, q_{i} are prime numbers this can only mean $r_{1}=q_{i}$ for some i. The smallest r_{i} is r_{1}. The smallest q_{i} is q_{1}. Thus $r_{1}=q_{1}$. Because primes are $\neq 0$, we can factor out r_{1}.

$$
q_{2} \ldots q_{k-1} q_{k}=r_{2} \ldots r_{t-1} r_{t}
$$

Continuing likewise if without loss of generality $k<t$ we will eventually have

$$
1=r_{k+1} \ldots r_{t-1} r_{t}
$$

Prime numbers are >1. Their product cannot be equal to 1 . Thus this can only mean that $k=t$ as well.

Theorem 15.22 (GCD-UF). If

$$
a=p_{1}^{a_{1}} h_{2}^{a_{2}} \cdot p_{k}^{a_{k}}, \quad b=p_{1}^{b_{1}} p_{2}^{b_{2}} \ldots p_{k}^{b_{k}}, \quad a_{k}, b_{k} \geq 0
$$

in order to find $d=\operatorname{gcd}(a, b)$ we have

$$
d=p_{d}(a, b)=p_{1}^{c_{1}} p_{2}^{c_{2}} \ldots p_{k}^{c_{k}}=p_{1}^{\min \left(a_{1}, b_{1}\right)} p_{2}^{\min \left(a_{2}, b_{2}\right)} \ldots p_{k}^{\min \left(a_{k}, b_{k}\right)}
$$

where $c_{i}=\min \left(a_{i}, b_{i}\right) \geq$,
Proof. We shall shorthat $D p_{1}^{c_{1}} p_{2} \cdots$ satisfy the GeD properties. Because $c_{i} \leq a_{i}$ for all i, we conclude $D \mid a$. Because $c_{i} \leq b_{i}$ for all hove ceheluded D. b. Let g be any gammon divisor of a and b. If g divides a, then Then
 equivalent C fatso haying $g \div D$. Titis any common divisor g of a, b is $g \leq D$. This means D is $d=\operatorname{gcd}(a, b)$.

Theorem 15.23 (Infinitely Many Primes). There are infinitely many prime numbers distinct from each other.
Proof. Suppose that there are finitely maytime numbers ie.

$$
p_{1}<p_{2}<\ldots<p_{n}
$$

that is n distinct prime numbers exist. Then form the product $N=p_{1} p 2 \ldots p_{n}+1$. Since $N>1$ by Theorem 15.19 there is at least one prime p dividing N. This p cannot be any of the $p_{1} \ldots p_{n}$. Why ? Say $p=p_{i}$ for some i. Then $p \mid N$ and $p \mid p_{1} \ldots p_{n}$ which would imply $p \mid N-p 1 \ldots p_{n}$. The latter implies $p \mid 1$ ie. $p \leq 1$ but given p is a prime number we must have $p>1$. A contradiction. Thus p is a prime number other than the ones of the finite group p_{1}, \ldots, p_{n}.

Definition 15.11. Let $\pi(n)$ be the number of prime numbers less than or equal to n. Then $\pi(n) \rightarrow \infty$ as $n \rightarrow \infty$.

Theorem 15.24 (Prime Number Theorem). Let $\pi(n)$ be the number of prime numbers less than or equal to n. It is $\pi(n) \approx n / \ln n$.

15.8 Modular Arithmetic

Definition 15.12. Let $n \in \mathbb{Z}_{+}^{*}$. For $a, b \in \mathbb{Z}$ we say $a \equiv b(\bmod n)$ if $n /(a-b)$.
We can read this expression by saying that " a is congruent to b modulo n ". Then the "difference of a and b is a multiple of n " or " n divides the difference of a and b ".

Note that several times the \equiv is replaced by $=$ and the parentheses around the mod are dropped.

Theorem $15.25($ Properties of $(\bmod))$. The $(\bmod n)$ operation has the following properties. We assume n is an integer $n>1$.

1. Reflexive $a \equiv a(\bmod n)$.
2. Symmetric $a \equiv b(\bmod n) \Longleftrightarrow b \equiv a(\bmod n)$.
3. Transitive If $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$, then $a \equiv c(\bmod n)$.
4. Translation If $a \equiv b(\bmod n)$ then for any integer c, then $a+c \equiv b+c(\bmod n)$.
5. Scaling If $a \equiv b(\bmod n)$ then for any integer c, then $a \cdot c \equiv b \cdot c(\bmod n)$.
6. Additivity If $a_{1} \equiv b_{1}(\bmod n)$ and $a_{2} \equiv(\bmod n)$, then $a_{1}+a_{2} \equiv b_{1}+b_{2}(\bmod n)$.
7. Subtractivity If $a_{1} \equiv b_{1}(\bmod n) A n d_{1}^{\prime} a_{2} \equiv b_{2}(\bmod n)$, then $a_{1}-a_{2} \equiv b_{1}-b_{2}(\bmod n)$.
8. Multiplicativity If $a_{1} \equiv b_{1}(\bmod n)$ and $a_{2} \equiv b_{2}(\bmod n)$, then $a_{1} \cdot a_{2} \equiv b_{1} \cdot b_{2}(\bmod n)$.
9. Exponentiativity If $a \equiv b(\bmod n)$ then for any integer $c>0$, then $a^{c} \equiv b^{c}(\bmod n)$.

Proof. For $n \mid a-a$ i.e. $n \mid 00$ viousty: If $n \mid a-b$ then $n \mid b-a$ obviously. If $n \mid a-b$ and $n \mid b-c$ we have respectively $a-b=k n$ and $b-c=m$ Addiin thetwo together we get $a-c=(k+m) n$ i.e. $n \mid a-c$ i.e. $a \equiv c(\bmod n)$.

The $(a+c)-(b(c)=a s \leftrightarrows b$ praves praperty $4, c a-\delta b=c(a-b)$ proves property 5 . The proof of 6 is similar to that of 3. The proof of 7 inimilaet that of 3 orb excent that quesubtract.

If $a_{1}-b_{1}=n$ and $\alpha_{2}-b_{2}$ emn, then $a_{1} a_{2}=\left(k_{n}+b_{1}\right)\left(m n+b_{2}\right)=b_{1} b_{2}+\left(k m n+k b_{2}+b_{1} m\right) n$, and thus $n \mid a_{1} a_{2}-$ $b_{1} b_{2}$.
 $a^{c}=(b+k n)^{c} b^{c}+$ on forsome integer 10 The efsult then follows.

Theorem 15.26 (Mod-dixision) let n \mathbb{Z}_{+}^{*} and $n>1$ and let $a \in \mathbb{Z}$. Then there exists a unique integer $0 \leq r<n$ such that

$$
a \equiv r \quad(\bmod n)
$$

Proof. If $n \neq 0$ and $a \in \mathbb{Z}$ division (Theorem 15.3) implies that there are unique q, r such that $a=n q+r$, with $0 \leq r<|n|$. If in addition n is positive (e.g. $n>1$), then $0 \leq r<n$.

Example 15.11. Find $3^{49}(\bmod 19)$.
Proof. Repeated squares can help avoiding doing 49 multiplications. The binary representation of 49 is $49=(110001)_{2}$. Or in other words $49=2^{5}+2^{4}+2^{0}$. Then $3^{49}=3^{32} \times 3^{16} \times 3^{1}=3^{2^{5}} \times 3^{2^{4}} \times 3^{2^{0}}$.

$$
\begin{aligned}
3^{1} & \equiv 3 \quad(\bmod 19) \\
3^{2} & \equiv 9 \quad(\bmod 19) \\
3^{4} & \equiv 81 \equiv 5 \quad(\bmod 19) \\
3^{8} & \equiv 25 \equiv 6 \quad(\bmod 19) \\
3^{16} & \equiv 36 \equiv 17 \quad(\bmod 19) \\
3^{32} & \equiv 289 \equiv 4 \quad(\bmod 19)
\end{aligned}
$$

Note that $3^{16} \equiv 36 \equiv 17 \equiv-2(\bmod 19)$. Then $3^{32} \equiv 4(\bmod 19)$ does not need to deal with a $17^{2}=289$!
We then combine the powers of 2 in the exponent of three as dictacted by the binary representation of 49 . That is $3^{49} \equiv 3^{1}(\bmod 19) \cdot 3^{16}(\bmod 19) \cdot 3^{32}(\bmod 19) \equiv 3 \cdot 17 \cdot 4 \equiv 13 \cdot 4 \equiv 14(\bmod 19)$

However, a nice trick might have worked better if a 1 or -1 was encountered earlier.

$(0)_{n},(1)_{n}, \ldots,(n-1)_{n}$ are the nequivance modulo n. Every integer a belongs to one of those classes depending on its remainder aft $\widehat{\bar{a}}$ division withon.

Example 15.12. The set of all

$$
(0)_{3}=\{\ldots,-3,0,+3,+6, \ldots\},
$$

then

$$
(1)_{3}=\{\ldots,-2,1,+4,+7, \ldots\},
$$

and finally,

$$
(2)_{3}=\{\ldots,-1,2,+5,+8, \ldots\} .
$$

Integers 5 and 8 belong to $(2)_{3}$ because the remainder of the integer division of 5 by 3 is a 2 . And so is the remainder of the division of 8 by 3 .

Definition 15.14. Let Z_{n} be the set of equivalence classes of integers modulo n. That is,

$$
Z_{n}=\left\{(0)_{n},(1)_{n}, \ldots,(n-1)_{n}\right\}
$$

If $a \in(k)_{n}$ then $a=n q+k$ i.e. $a \equiv k(\bmod n)$. If $b \in(m)_{n}$ then $b=n r+m$ i.e. $b \equiv m(\bmod n)$. Then $(a+b) \in(k+m)_{n}$. Naturally $(k+m)_{n}$ is $((k+m)(\bmod n))_{n}$. Moreover $(a b) \in(k m)_{n}$. We can then define operations on the elements of Z_{n} as follows.

1. Addition. $(k)_{n}+(m)_{n}=(k+m)_{n}$.
2. Multiplication. $(k)_{n}(m)_{n}=(k m)_{n}$.

Arithmetic on equivalence classes is known as modular arithmetic.

Definition 15.15. In the remainder of this chapter, arithmetic involving $(k)_{n}$ will not utilize this notation but simply state $k(\bmod n)$ and not $(k)_{n}$ any more. The to be used notation would allow for a k out of the $0 \ldots n-1$ bounds. Thus we won't use the correct $(5)_{7}+(3)_{7}=(1)_{7}$ Instead we will write $5+3 \equiv 1(\bmod 7)$.

x

Division. Operation $(\bmod n)$ was used' in the context of modular addition, subtraction and multiplication. We were silent about division. This is becass the following example.

Theorem 15.27 (Cancellation Law. If $a c \equiv b c(\bmod n)$, and $\operatorname{gcd}(n, c)=1$ then $a \equiv b(\bmod n)$.
Proof. It is $a c+q n=b c+r n$ i.e. $a c-b c=s n$ for $s=r-q$ for some integer r, q. Thus $n \mid a c-b c$ or $n \mid(a-b) c$. Since $\operatorname{gcd}(n, c)=1$, we have that $n \mid a-b$. This implies $a \equiv b(\bmod n)$.

Theorem 15.28 (Modular Linear Equation). The modular equation

$$
a x \equiv b \quad(\bmod n)
$$

has a solution if and only if $\operatorname{gcd}(a, n) \mid b$.
Proof. From $a x \equiv b(\bmod n)$ we have that $a x-b=k n$ i.e. $a x+k n=b$. The solution of this Diophantine equation exists for $\operatorname{gcd}(a, n) \mid b$.

Theorem 15.29. The modular equation

$$
a x \equiv 1 \quad(\bmod n)
$$

has a solution if and only if $\operatorname{gcd}(a, n)=1$.
Proof. The $\operatorname{gcd}(a, n) \mid b$ of the previous theorem for $b=1$ becomes $\operatorname{gcd}(a, n) \mid 1$. Thus $\operatorname{gcd}(a, n) \leq 1$. The gcd is always a positive integer i.e. $\operatorname{gcd}(a, n) \geq 1$. Thus $\operatorname{gcd}(a, n)=1$ as needed.

Theorem 15.30. The modular equation, for prime p,

$$
a x \equiv 1 \quad(\bmod p)
$$

has a solution for x if $p \nmid a$.
Proof. By the previous theorem for a solution to exists $\operatorname{gcd}(a, p)=1$. Since p is a prime its only positive divisors are 1 and p. Given that p cannot divide a, we have that the $\operatorname{gcd}(a, p)=1$. The result follows.

Equivalently, it can be stated as follows.

Theorem 15.31. If p is a prime number, the modular equation, for prime p and $p \nmid a$, then there exists an x such that $1 \leq x \leq p-1$ such that the modular equation, $\downarrow \cdot$

$$
a x \equiv 1 \quad(\bmod p)
$$

has a solution for x. The x is sometimedenoted as the inverse of a modulo p i.e. a^{-1}. The a is called a unit modulo p, as it has an inverse. An a that is notqunit is called a zero divisor modulo p.

Definition 15.16. The a such $a \cdot a^{-1} \equiv 1(\bmod p)$ is called a unit modulo n, as it has an inverse.
Definition 15.17. The gepech that the racs doet exist an a^{-1} such that $a \cdot a^{-1} \equiv 1(\bmod p)$ is called a zero divisor modulo p.

(a) a is a zeralivisork moden),
(b) a has no inne (mod ns
(c) there exists a $s \in Z$ suchthat of A and $\mathrm{as} \equiv 0(\bmod n)$.

Proof. Statements (a) an Φ (b) agetrue and equivalent by the prior definition and introduction of unit and zero divisor.
Suppose that (b) is true aded a has no inverse. By Theorem $15.29 \operatorname{gcd}(a, n)>1$. Let $\operatorname{gcd}(a, n)=d>1$. The $a=d r$ and $n=d s$ for some integer $r, s \subset$ For $1 \ll z<n$ we have $z \not \equiv(\bmod n)$. Furthermore, $a s=(d r) s=(d s) r=n r \equiv 0$ $(\bmod n)$. Statement (c) follows from Statement (b).

Suppose that statement (c) is true. There there exists an $s \in Z$ such that $n \nmid a$ and $a s \equiv 0(\bmod n)$. We are going to prove a has no inverse. Let us assume that a has an inverse, then $a a^{-1} \equiv 1(\bmod n)$, and then

$$
0 \equiv a s \equiv a s a^{-1} \equiv\left(a a^{-1}\right) s \equiv s \quad(\bmod n)
$$

The latter implies that $n \mid s$ that contradicts the assumption that $n \nmid s$! Thus a has no inverse and statement (b) is true coming from (c). Thus statements (b) and (c) are equivalent.

Theorem 15.33. For prime $p, a b \equiv 0(\bmod p)$ implies either $a \equiv 0(\bmod p)$ or $b \equiv 0(\bmod p)$. Thus for a prime p there no zero divisors other than $0(\bmod p)$.

15.9 Chinese Remainder Theorem

Example 15.13. A farmer has some pounds sugar. If the farmer puts them into bags of 11 pounds the farmer can fit enough full bags but then is left with 2 spare pounds. If the farmer uses 20 pound bags then is also left with 1 spare pound. How many pounds of sugar does the farmer have?

Say the farmer has 321 pounds of sugar. This amount needs 2911 -pound bags and there 2 spare pounds. If the farmer uses 20-pound bags the farmer can fill 16 bags and is left with 1 pound. Is it a solution.

Example 15.14. What if the farmer has 101 pounds of sugar? $101=11 \cdot 9+2=5 \cdot 20+1$.
The only solution in $0 \ldots 219$ seems to be 101 . But beyond that range, another solution is $101+220,100+2 \cdot 220$, and so on.

Theorem 15.34 (Chinese Remainder Theorem). Let n_{1}, \ldots, n_{k} are pairwise prime numbers i.e. $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ for $i \neq j$. Let $a_{1}, \ldots, a_{k} \in \mathbb{Z}$. There is a unique $A\left(\bmod n_{1} \ldots n_{k}\right)$ such that it satisfies all of the modular equation below.

Proof. Let N_{j}, for $j=1, \ldots, k$ contain) all n_{i} except n_{j}. That is

$$
N_{j}=n_{1} \ldots n_{j-1} n_{j+1} \ldots n_{k}
$$

We have $n_{i} \mid N_{j}$ for all i 大 . We fave that $\left.\operatorname{gec} \operatorname{cin}_{j}, n_{j}\right)=1$. This is because $\operatorname{gcd}\left(n_{j}, n_{i}\right)=1$ for all $i \neq j$ as they are

Consider n_{j} and N_{i} It is $n_{i} \dagger N_{j}$, all $i{ }^{\prime}$. Thas all the term $a_{j} N_{j} x_{j}$ are multiples of n_{i} for $j \neq i$. For the term $a_{i} N_{i} x_{i}$ this is note the case $\operatorname{sog}\left(n_{i} N_{i}\right)=$ But he have that $N_{i} x_{i} \equiv 1\left(\bmod n_{i}\right)$. Thus $a_{i} N_{i} x_{i} \equiv a_{i}\left(\bmod n_{i}\right)$. The second equivalence below follows,

$$
A \equiv a_{1} \cdots+a_{0}+\ldots+a_{i} \cdot N_{i} \cdot x_{i}+\ldots+a_{k} \cdot 0 \quad\left(\bmod n_{i}\right) \equiv a_{i} \quad\left(\bmod n_{i}\right)
$$

This is true for all i and this

$$
\forall 1 \leq i \leq k: \quad A \equiv a_{i} \quad\left(\bmod n_{i}\right)
$$

Say that there is another solution a i.e. $a \equiv A \equiv a_{i}\left(\bmod n_{i}\right)$ or all i. This would mean that $n_{i} \mid A-a$. Since n_{i} are pairwise prime by Theorem 15.14 we have

$$
n_{1} n_{2} \ldots n_{k} \mid A-a
$$

This means $A-a \equiv\left(\bmod n_{1} n_{2} \ldots n_{k}\right)$.

Example 15.15. Find all integers A such that

$$
\begin{aligned}
A & \equiv 1 \\
A & (\bmod 2) \\
A & \equiv 3 \\
A & (\bmod 3) \\
& \equiv \bmod 5)
\end{aligned}
$$

Proof. Let $n_{1}=2, n_{2}=3, n_{3}=5$.
Then $N_{1}=3 \cdot 5=15, N_{2}=2 \cdot 5=10, N_{3}=2 \cdot 3=6$.

$$
\begin{aligned}
& N_{1} x_{1} \equiv 1 \quad(\bmod n)_{1} \Rightarrow 15 x_{1} \equiv 1 \quad(\bmod 2) \Rightarrow x_{1}=1 \\
& N_{2} x_{3} \equiv 1 \quad(\bmod n)_{2} \Rightarrow 10 x_{2} \equiv 1 \quad(\bmod 3) \Rightarrow x_{2}=1 \\
& N_{3} x_{4} \equiv 1 \quad(\bmod n)_{3} \Rightarrow 6 x_{3} \equiv 1 \quad(\bmod 5) \Rightarrow x_{3}=1
\end{aligned}
$$

Then $n_{1} n_{2} n_{3}=2 \cdot 3 \cdot 5=30$,

$$
A=a_{1} N_{1} x_{1}+a_{2} N_{2} x_{2}+a_{3} N_{3} x_{3}=1 \cdot n 5\left(x_{1}+2 \cdot 10 \cdot 1+3 \cdot 6 \cdot 1=15+20+18 \quad(\bmod 3) 0=23\right.
$$

Thus one solution is 23 . Another $23+30$, another $23+60$, and so on.
Corollary 15.7. Let $n_{1}, n_{2}>1$ be integers and let $a_{1}, a_{2} \in Z$. Let $d=\operatorname{gcd}\left(n_{1}, n_{2}\right)$. If $d \mid a_{1}-a_{2}$ then the equations

$$
\begin{aligned}
A & \equiv a_{1} \quad(\bmod n)_{1} \\
A & \equiv a_{2} \quad(\bmod n)_{2}
\end{aligned}
$$

have a unique solutionA (mod lcan (n, (n). If $b / a_{1}-\infty$ thend equations have no solution.
 where $p \equiv a_{1} \cdots+a_{n}$ (moa2). The evendarity ${ }^{\text {bit }} e(a)$ os obtained by adding the bits of a and returning the value of the sum modula
Example 15.17. A R X -digit $\mathrm{S} B N$ (onternational Standard Book Number) code $a=\left(a_{1} \ldots a_{10}\right.$ where a_{10} is a check digit. The check digits is mod 4; andrepresents a 10. The check digit computation involved is

$$
10 a_{1}+9 a_{2} a_{3}+7 a_{4}+6 a_{5}+5 a_{6}+4 a_{7}+3 a_{8}+2 a_{9}+a_{10} \quad(\bmod 1) 1
$$

If the checkdigit a_{10} is valid this sum is equal to $0(\bmod 1) 0$. The weights can be an increasing left-to-right sequence as well.

$$
a_{1}+2 a_{2}+3 a_{3}+4 a_{4}+5 a_{5}+6 a_{6}+7 a_{7}+8 a_{8}+9 a_{9}+10 a_{10} \quad(\bmod 1) 1
$$

For a 13-digit ISBN $\left(a_{1} \ldots a_{12} a_{13}\right)$ a check digits is computed for $a_{1} \ldots a_{12}$ where the weights are alternating 1 and $3 s$.

$$
a_{1}+3 a_{2}+a_{3}+3 a_{4}+a_{5}+3 a_{6}+a_{7}+3 a_{8}+a_{9}+3 a_{10}+a_{11}+3 a_{12}
$$

The sum $(\bmod 1) 0$ determines the check-digit after subtracting it from 10.

Chapter 16

Intermediate Number Theory

16.1 Fermat's (Little) Theorem

As of now we have established that for a prime number p, all integers a with $1 \leq a \leq p-1$ are units that is, the modular equations $a x \equiv 1(\bmod p)$ has a solution for x. $\downarrow \cdot$

Theorem 16.1 (Fermat (Little) Theorem久 If p is a prime, $a \in \mathbb{Z}$ and $p \nmid a$, then $a^{p-1} \equiv 1(\bmod p)$.
Proof. Consider $a, 2 a, 3 a, \ldots(p-1 d a)(\bmod p)$. Since $p \nmid a$, all these values are non-zero and distinct mod p. This is because if $i a \equiv j a(\bmod p)$, because $p \nmid a$ it should be $p \mid i-j$. This means $p \leq|i-j|$. But both i, j are such that $0 \leq|i-j| \leq p-1$ and thus $p o n-1$ which is impossible! The $p-1$ values $a, 2 a, \ldots(p-1) a(\bmod p)$ can only be the only $p-1$ available (nidd p 跃. $1,2,3, \ldots p-1$ (possibly) rearranged. Then taking their product one way or the other,

Since p is reativety primevo $1,2 \mathcal{Q}, \ldots p-1)$ it is ars to $(p-1)$!. Thus $\left(a^{p-1}-1\right)(p-1)!\equiv 0(\bmod p)$. Thus it must be $a^{p-1}=0,0$ or equivalenty $a^{p-p} 1(\bmod p)$ as needed.

A direct consequene the followiog Cordlary.
Corollary 16.1. For $a \in \mathbb{\mathbb { Q }}$, wenteve a° Oa $(\bmod p)$.
Given from Fermat's Last Theorem that $a^{p-1} \equiv a^{p-2} a$ we conclude the following.
Corollary 16.2. For $a \in \mathbb{Z}$ such that $p \nmid a$, we have $a^{-1} \equiv a^{p-2}(\bmod p)$.
Example 16.1. Consider the integers $(\bmod 8)$. We have $3^{2} \equiv 1(\bmod 8)$. We also have $5^{2} \equiv 1(\bmod 8)$. There are two square roots of $1(\bmod 8)$. Can you find others $($ e.g. 1,7$)$? Moreover $4 \equiv-4(\bmod 8)$.

We can generalize the last observation as follows.
Example 16.2. $a \equiv-a(\bmod n)$ is equivalent to $2 a \equiv 0(\bmod n)$. If $n=2 a$ this is trivially true. If n is odd, then $\operatorname{gcd}(2, n)=1$ and thus $n \mid a$. In the latter case $a \equiv 0(\bmod n)$.

Theorem 16.2. If p is an odd prime $(p \neq 2)$ and $p \nmid$ a then the equation

$$
x^{2} \equiv a \quad(\bmod p)
$$

has either exactly two distinct roots or no roots at all.
Proof. If there are roots to the modular equation the proof is complete. Otherwise let z be a solution i.e. $z^{2} \equiv a$ $(\bmod p)$. Since $-z$ is such that $(-z)^{2} \equiv z^{2} \equiv a(\bmod p)$, then $-z$ is also a solution. Is it $z \equiv-z(\bmod p)$? This is so if p is an even number as it was shown prior to the statement of Theorem 16.2. It is also possible that p is odd but then it must divide a. However the preconditions of the theorem disallow the former (even number cannot be the case as p is an odd prime) and the latter (even number and $p \mid a$ is not possible, since p is odd and $p \nmid a$).

Therefore there two distinct solutions $z,-z(\bmod p)$ if one of them $(\operatorname{say} z)$ exists. Does there exist a third (or fourth etc) solution? Let us call it w. Then $w^{2} \equiv z^{2} \equiv a(\bmod p)$. This implies $w^{2}-z^{2} \equiv 0(\bmod p)$. Then $(w-z)(w+z) \equiv 0$ $(\bmod p)$. Then $p \mid w-z$ or $p \mid w+z$. In other words $w \equiv z$ or $w \equiv-z$. There are two and only two solutions then. No third or more!

Theorem 16.3. If p is prime, show that $(p-1)!\equiv-1(\bmod p)$.
Proof. The list of Theorem 16.1 is $\{1,2, \ldots p-1\rangle$ No number is divisible by p and thus it has an inverse ($\bmod p$). It is not possible that x is its own inverse $x^{-1}(\bmod p)$ unless $x=1$ or $x \equiv p-1 \equiv-1(\bmod p)$ from Theorem 16.2. Thus for the remaining values $x \in\{2, \ldots, p \div \geq\}$, we must have $x \not \equiv x^{-1}(\bmod p)$. Every pair cancels each other i.e. $x \cdot x^{-1} \equiv 1(\bmod p)$. Thus

$$
2 \cdot 3 \cdot 4 \ldots(p-2) \equiv 1 \quad(\bmod p)
$$

Restoring the missing 1 and $p-1$ have

$$
\cdot 3 \cdot 4 \ldots(p-2) \cdot(p-1) \equiv p-1 \equiv-1 \quad(\bmod p)
$$

16.2 Euk's theorem aind zo jo a°

The units mode are ay those integerl a thatheyduave an inverse $a^{-1}(\bmod p)$. An integer $1 \leq a<p$ is a unit if $\operatorname{gcd}(a, p)=1$.
Definition 16.1 (Set of obrit $\left.\mathbb{Z}_{4}\right)$. \mathbb{Z}_{n}, 10 is n is the set of units $(\bmod n)$, that is the integers between 1 and $n-1$ that are relatively prime to 10^{2}
Example 16.3 $\left(\mathbb{Z}_{3,4}, \ldots\right)$. Tharefore 豖 $^{\underline{o}}\{1,2,3\} ; \mathbb{Z}_{4}=\{1,3\}$, and $\mathbb{Z}_{5}=\{1,2,3,4$,$\} and finally \mathbb{Z}_{6}=\{1,5\}$.

Theorem 16.4. For $a, b \in \mathbb{Z}_{n}$ we have that $a b \in \mathbb{Z}_{n}$ and also $a^{-1} \in \mathbb{Z}_{n}$.
Proof. Starting with the last result if $a \in \mathbb{Z}_{n}$ it means that $a a^{-1} \equiv 1(\bmod n)$. Moreover $a^{-1} a^{-1^{-1}} \equiv 1(\bmod n)$. Thus $a^{-1} \in \mathbb{Z}_{n}$. For a, b let their inverse be a^{-1}, b^{-1} respectively. Consider $(a b)$. Since

$$
(a b)\left(b^{-1} a^{-1}\right) \equiv a \cdot 1 \cdot a^{-1} \equiv 1 \quad(\bmod n)
$$

it shows that $a b \in \mathbb{Z}_{n}$.
Euler's totient function $\phi(n)$ denotes the cardinality of \mathbb{Z}_{n} that is $\phi(n)=\left|\mathbb{Z}_{n}\right|$, that is the number of units (mod $\left.n\right)$. Euler's theorem is an extension of Fermat's Little Theorem where the restriction of n being a prime number has been relaxed.

Theorem 16.5 (Euler's Theorem). For $a \in Z, a>1$, if $\operatorname{gcd}(a, n)=1$ then $a^{\phi(n)} \equiv 1(\bmod n)$.
Proof. Let

$$
a_{1}, \ldots a_{\phi(n)} \quad(\bmod n)
$$

be the list of units. Multiply each one of the elements with a, where $\operatorname{gcd}(a, n)=1$. Since it is so $a x \equiv 1(\bmod n)$. More over a_{i} are units thus $a_{i} x_{i} \equiv 1(\bmod n)$ as well. The $a a_{i}$ are such that $\left(a a_{i}\right)\left(x x_{i}\right) \equiv(a x)\left(a_{i} x_{i}\right) \equiv 1(\bmod n)$. That is all $a a_{i}$ are units.

$$
a a_{1}, a a_{2}, \ldots, a a_{\phi(n)} \quad(\bmod n)
$$

Moreover $a a_{i} \not \equiv a a_{j}(\bmod n)$. This is because if $a a_{i} \equiv a a_{j}(\bmod n)$ would implicate $x a a_{i} \equiv x a a_{j}(\bmod n)$ i.e. $a_{i} \equiv a_{j}$ $(\bmod n)$. If all of them are in the integer interval $[1, n-1]$, then this implie $a_{i}=a_{j}$, i.e. $i=j$. That is the two lists above are the same up to a reordering of the same elements. Thus

$$
a a_{1} a a_{2}, \ldots, a a_{\phi(n)} \equiv a_{1} \ldots a_{\phi(n)} \quad(\bmod n)
$$

This means

$$
a^{\phi(n)} a_{1} a_{2} \ldots a_{\phi(n)} \equiv a_{1} a_{2} \ldots a_{\phi(n)} \quad(\bmod n)
$$

Using cancellation (or multiplication with $a_{1}^{-1} a_{2}^{-1} \ldots$) we once more conclude that $a^{\phi(n)} \equiv 1(\bmod n)$.
Corollary 16.3. If p is prime $\phi(p)=p-1$ and $\mathbb{Z}_{p}=\{1, \ldots, p-1\}$ and Euler's Theorem becomes Fermat's theorem.
Corollary 16.4. For $p^{k}, k>1$, the number of uxits is p^{k} minus the multiples of p which is p^{k-1}. Thus $\left|\mathbb{Z}_{p^{k}}\right|=$

Example-Proposition 16.4. Let $m, n>1$ be integer. The following two statements are equivalent.

- a is a unit $(\bmod m n)$.
- a is a unit $(\bmod m)$ and a is $¢$ unit $(\bmod n)$.

Proof. $(i) \Rightarrow(i i)$. If a is a unit $(\bmod m n)$ then it means $\operatorname{gcd}(a, m n)=1$. We claim that this implies that $\operatorname{gcd}(a, m)=$ $\operatorname{gcd}(a, n)=1$. If this was not so sind say $\operatorname{gcd}(a, m)=d>1$, then d becomes a common divisor of a and m (and consequently of of $m n$ asell), This wim impy $\operatorname{gcd}(a, m n)>1$, a contradiction to $\operatorname{gcd}(a, m n)=1$.
$(i i) \Rightarrow(i)$. If $\operatorname{gcd}(a, m)=\operatorname{cod}(a \sqrt{2})=1$ dten $\operatorname{ged}(a, m i x)=1$ well. If the latter was not so $\operatorname{gcd}(a, m n)=d>1$. There is a primed actor por d ie' $p \mid d$. Fhen p pa andthus p om. The latter implies $p \mid m$ or $p \mid n$. One or the other

The resulthen followss

Proof. If a is a unit (nod mit meains gcc $a, m n$) $=1$. Using a Chinese remainder theorem-based method consider function g defined on $\mathbb{Z}_{m n} \rightarrow \mathbb{Z}_{m} \not \mathbb{Z}_{n}$,

$$
g(A)=(A \quad(\bmod m), A \quad(\bmod n))
$$

we will show that g is a one-to-øfe and onto bijection. Note that if A is a unit $(\bmod m n)$ then by Proposition 16.4 it is a unit $(\bmod m)$ and a unit $(\bmod n)$. Consider $G\left(A_{1}\right)=G\left(A_{2}\right)$. Then $A_{1} \equiv A_{2}(\bmod m)$ and $A_{1} \equiv A_{2}(\bmod n)$. Thus $m \mid A_{1}-A_{2}$ and $n \mid A_{1}-A_{2}$. If $\operatorname{gcd}(m, n)=1$ as it is, then $m n \mid A_{1}-A_{2}$ as well implying $A_{1} \equiv A_{2}(\bmod m n)$. Say A_{1} is a unit $(\bmod m)$ and A_{2} a unit $(\bmod n)$. Then from $\operatorname{gcd}(m, n)=1$ and say Corollary 15.7 there is a unique A $(\bmod m n)$ such that $A \equiv A_{1}(\bmod m)$ and $A \equiv A_{2}(\bmod n)$. Thys $g(A)=\left(A_{1}, A_{2}\right)=(A(\bmod m), A(\bmod n))$. Thus the two sets $\mathbb{Z}_{m n}$ and $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ have the same number of elements thus $\phi(m n)=\phi(m) \phi(n)$.

Corollary 16.5. If $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}}$, then $\phi(n)=n\left(1-1 / p_{1}\right) \ldots\left(n-1 / p_{k}\right)$.
Proof. By way of Theorem 16.6, $\phi(n)=\phi\left(p_{1}^{a_{1}}\right) \ldots \phi\left(p_{k}^{a_{k}}\right)$. Furthermore, from Corollary 16.4 we have

$$
\phi(n)=\phi\left(p_{1}^{a_{1}}\right) \ldots \phi\left(p_{k}^{a_{k}}\right)=p_{1}^{a_{1}}-p_{1}^{a_{1}-1} \ldots p_{k}^{a_{k}}-p_{k}^{a_{k}-1}=n\left(1-1 / p_{1}\right) \ldots\left(1-1 / p_{k}\right)
$$

Corollary 16.6. For $n \in \mathbb{Z}_{+}^{*}$ we have $\sum_{d \mid n} \phi(d)=n$.
From Euler's formula we have $a \in \mathbb{Z}_{n}$ we have $a^{\phi(n)} \equiv 1(\bmod n)$. Is it possible that $a^{k} \equiv 1(\bmod n)$ for smaller $k<\phi(n)$? We have already mentioned that $(-1)^{2} \equiv(n-1)^{2} \equiv 1(\bmod n)$.

Definition $16.2(\operatorname{Order}(\bmod n))$. For $a \in \mathbb{Z}_{n}$ we define the order $\operatorname{ord}_{n}(a)$ to be the smallest positive integer k such that $a^{k} \equiv 1(\bmod n)$.

Theorem 16.7. Let $k=\operatorname{ord}_{n}(a)$. For all m we have $a^{m} \equiv 1(\bmod n)$ if and only if $k \mid m$.
Proof. If $k \mid m$ we have $m=k s$ for some integer s. Then

$$
a^{m} \equiv\left(a^{k}\right)^{s} \equiv 1 \quad(\bmod n)
$$

For the other way if $a^{m} \equiv 1(\bmod n)$, Let $m=k q+r$, where $0 \leq r<k$. Since $a^{k} \equiv 1(\bmod n)$ and thus $\left(a^{k}\right)^{q} \equiv 1$ $(\bmod n)$ and also $a^{m} \equiv 1(\bmod n)$, we have

$$
1 \equiv a^{m} \equiv a^{k q+r} \equiv\left(a^{k}\right)^{q} \cdot a^{r} \equiv a^{r} \quad(\bmod n)
$$

For a^{r} to be $\equiv 1(\bmod n)$ given that $0<r<k$ is mpossible since k is the smallest index for which this is true. The only possibility is that $r=0$ and the result follळWs.
Corollary 16.7. Let $k=\operatorname{ord}_{n}(a)$ be as deffinéd above. Then $a^{\phi(n)} \equiv 1(\bmod n)$ implies that $k \mid \phi(n)$.
Corollary 16.8. Let $k=\operatorname{ord}_{p}(a)$, wherep is a prime. Then $a^{\phi(p)} \equiv 1(\bmod p)$ implies that $k \mid p-1$.
Definition 16.3. A unit $g(\bmod n)$ is a primitive root if its order is $\phi(n)$. Thus a unit $g(\bmod n)$ is a primitive root if it generates all \mathbb{Z}_{n}. That is $\mathbb{Z}_{n} \mathcal{W}\left\{1, g, g^{2}, \ldots, g^{\phi(n)-1}\right\}$. This implies that $\operatorname{ord}_{n}(g)=\phi(n)$. Moreover \mathbb{Z}_{n} is cyclic and g is its generator.
Example 16.5. (Notetret 3^{2} inpliese3 (ind 7).) For $4=7$ we have

Thus $g=3$ Ta primitive reot.

Proof. Let $d=\operatorname{gcd}\left(m, k\right.$ and let $q=0$ and $\left(a^{m} \&\right.$. We need to show that $q=k$ if and only if $d=1$.
Let $q=k$. We withownt $d=\sim$. Let $d^{\prime}>1$. Then $k=d x$ and $m=d y$, for some integer x, y. Note that $x<k$ and $y<m$. Then we have

$$
2^{2} d^{d^{n} x} \equiv a^{m x} \equiv a^{d y x} \equiv\left(a^{k}\right)^{y} \equiv 1 \quad(\bmod p)
$$

Thus order q of a^{m} is x. Since $x \mathcal{F}^{q}=q$ the element a^{m} has "order" k less than its order k. Impossible. Thus it should be $x=k$ which implies $d=1$. Result shown.

If $d=1$ we show that $q=k$. Since $q=\operatorname{ord}_{n}\left(a^{m}\right)$ we have

$$
a^{m q} \equiv\left(a^{m}\right)^{q} \equiv 1 \quad(\bmod p)
$$

This means that $k \mid m q$ from Theorem 16.6. Since $d=\operatorname{gcd}(k, m)=1$, we have $k \mid q$. Thus $k \leq q$. We also have

$$
\left(a^{m}\right)^{k} \equiv\left(a^{k}\right)^{m} \equiv 1 \quad(\bmod p)
$$

Thus $q \mid k$ i.e. $q \leq k$. Combining the latter with a previous $k \leq q$ the result follows.
Corollary 16.9. If \mathbb{Z}_{n} has a primitive root g, then all the primitive roots of \mathbb{Z}_{n} are those g^{q} such that $\operatorname{gcd}(q, \phi(n))=1$. In particular, there are $\phi(\phi(n))$ primitive roots $(\bmod n)$.

Proof. If g is a primitive root the $\operatorname{ord}_{n}(g)=\phi(n)$. By Proposition 16.6
$\operatorname{ord}_{n}\left(g^{k}\right)=\phi(n)$ if and only if $\operatorname{gcd}(k, \phi(n))=1$. The number of values k such that this is true is $\phi(\phi(n))$. All element of \mathbb{Z}_{n} are of the form g^{i} and will thus be found this way.

Corollary 16.10. Let $\operatorname{ord}_{n}(a)=k$ and $\operatorname{ord}_{n}(b)=l$. If $\operatorname{gcd}(k, l)=1$ then $\operatorname{ord}_{n}(a b)=k l$.
Proof. Let $\operatorname{ord}_{n}(a b)=m$. Then

$$
(a b)^{k l} \equiv\left(a^{k}\right)^{l}\left(b^{l}\right)^{k} \equiv 1 \quad(\bmod n)
$$

Therefore $m \mid k l$. Moreover

$$
1 \equiv\left((a b)^{m}\right)^{k}=\left(a^{k}\right)^{m}\left(b^{k m}\right) \equiv b^{k m} \quad(\bmod n)
$$

This means $l \mid k m$. Since $\operatorname{gcd}(k, l)=1$ we have $l \mid m$. Likewise, $k \mid m$. Since $\operatorname{gcd}(k, l)=1$ we have $k l \mid m$. This implies $k l \leq m$. But since m is the order of $a b$ we must also have, by the first derivation above, $k l \geq m$. Thus $k l=m$.

Example-Proposition 16.7. If $x^{p-1}-1=f(x) g(x)$ and $\operatorname{deg}(f)=k$ and $\operatorname{deg}(g)=l$ then $f(x)$ has k distinct root $(\bmod p)$ and $g(x)$ has l.

Proof. Note that $p-1=k+l$. If t is a root of $x^{p-1}-1$ then $f(t) g(t) \equiv 0(\bmod p)$. Thus either $f(t)$ or $g(t)$ is $\equiv 0$ $(\bmod p)$. If one has fewer than the alotted roots then the other has more than the alotted thus if f has $<k$ then g has $>l$.

From Fermat's Little Theorem we know that $-1 \equiv 0(\bmod p)$ has at least $p-1$ distinct solutions $(\bmod p)$. This $p-1$ solutions are $1,2, \ldots p-1$ as $p \nmid i$ where $1 \leq i<p$.

Theorem 16.8. If p is prime, then \mathbb{Z} has a primitive root.
Proof. If $p=2$, then 1 is primfye. Suppose $p>2$ is an odd prime. Let $p-1$ has a prime factorization

The first factor hastexact $p_{1}^{a_{1}}$ eots fedrwing the discussion prior to the statement of this Theorem. If q is a root of
 cannot have order less that $p_{1}^{a_{1}}$ Recauseinen ahthose roots would also be roots of ($x^{p_{1} a_{1}-1}-1$). The a polynomial of degree $1 / p_{1}$ of the oitinal isfoingro have the same number of roots with it, impossible. Thus at least one of the roots is of order $p_{1}^{a_{1}}$. Letit be Reqeating this argument for every i and p_{i} there exists a d_{i} of order $p_{i}^{a_{i}}$. Then by Corollary 16.10 for $d_{1} \ldots d d_{\text {we }}$ have that this element has order $p_{1}^{a_{1}} \ldots p_{k}^{a_{k}}$, and thus $d_{1} \ldots d_{k}$ is a primitive root $(\bmod p)$.

Theorem 16.9. Suppose that $\phi(p)=p-1=p_{1}^{a_{1}} \ldots p_{k}^{a_{k}}$ are prime factors $p_{1}<\ldots<p_{k}$ with $a_{i}>0$. Then g is a primititve root $(\bmod p)$ if and only if $g^{\frac{p-1}{p_{i}}} \not \equiv 1(\bmod p)$ for every p_{i}.

Example 16.8. If $p=7$, then $p-1=6=2 \cdot 3$.
Proof. To check that 2 is a primitive root $(\bmod 7)$ we check whether $2^{(6 / 2)} \equiv 1(\bmod 7)$. Given that $2^{3} \equiv 1(\bmod 7)$, this is confirmed.

Theorem 16.10. If p is a prime number >2 (i.e. odd) then $\mathbb{Z}_{p^{2}}$ has a primitive root.
Proof. Let g be a primitive root $(\bmod p)$. Since g is primitive we have $g^{p-1} \equiv 1(\bmod p)$. Let $k=\operatorname{ord}_{p^{2}}(g)$. Since $g^{k} \equiv 1\left(\bmod p^{2}\right)$ we also have $g^{k} \equiv 1(\bmod p)$. Since g is primitive $(\bmod p)$, and $\phi(p)=p-1$ we also have that $p-1 \mid k$. Thus $k=(p-1) r$.

Moreover $k \mid \phi\left(p^{2}\right)\left(\right.$ since $\left.k=\operatorname{ord}_{p^{2}}(g)\right)$ i.e. $k \mid p(p-1)$. That is $p(p-1)=(p-1) r s$. This means $r \mid p$. Since p is prime this means $r=1$ or $r=p$.

If $r=p, k=(p-1) r=p(p-1)$, then $\operatorname{ord}_{p^{2}}(g)=k=p(p-1)=\phi\left(p^{2}\right)$. This means g is a primitive root $(\bmod p)^{2}$.

If $r=1, k=(p-1) r=(p-1)$, then $\operatorname{ord}_{p^{2}}(g)=k=p-1$ and this means $g^{p-1} \equiv 1\left(\bmod p^{2}\right)$.
Consider $g_{1}=g+p . g_{1}$ is also a primitive root $(\bmod p)$. This is because

$$
g_{1}^{p-1} \equiv(g+p)^{p-1} \equiv g^{p-1}+\lambda p \equiv 1+0 \equiv 1 \quad(\bmod p)
$$

implies $g_{1}^{p-1} \equiv 1(\bmod p)$. Similarly as before $\operatorname{ord}_{p^{2}} g_{1}=r_{1}(p-1)$ where r_{1} is either 1 or p. Consider that $g^{p-1} \equiv 1$ $\left(\bmod p^{2}\right)$ implies that

$$
g_{1}^{p-1} \equiv(g+p)^{p-1} \equiv g^{p-1}+p(p-1) g^{p-2}+t p^{2} g^{p-3} \equiv g^{p-1}-p g^{p-2}+\left(t+g^{p-2}\right) p^{2} \equiv 1-p g^{p-2} \quad\left(\bmod p^{2}\right)
$$

If $r_{1}=1$ then $\operatorname{ord}_{p^{2}}\left(g_{1}\right)=(p-1) r_{1}=1$, and tha ${ }^{\circ}$

$$
g_{1}^{p-1} \equiv 1-p g^{p-2} \quad(\bmod p)^{2}
$$

which implies $p g^{p-2} \equiv 0(\bmod p)^{2}$ i.e. $p \mid g$ i.e. $p \leq g$. This contradicts the fact that g chosen as primitive root $(\bmod p)$ implies $g<p$. That is it can't be that $r_{1}=1$.

Thus $r_{1}=p$ and ord $p_{p^{2}}\left(g_{0}\right) \delta(p-1) r_{1}=p(p-1)=\phi\left(p^{2}\right)$, and thus g_{1} is primitive root $\left(\bmod p^{2}\right)$.
To conclude if $r=p$ then is is $\quad\left(\bmod p^{2}\right)$. If $r=1$ then $g_{1}=g+p$ implies that g_{1} is a primitive root $\left(\bmod p^{2}\right)$. One waror the 0 ther there is aprimitive root in \mathbb{Z}_{p}^{2}.
 (integer).

Proof. Form 2 , 4 it is easy to verify that and 4 are primitive root respectively. For $n=2 p^{e}$ a case analysis of the proof for $n=p$ vould complege thisproof

Thus we prove for $12=p^{e}$ and $e \operatorname{add}$, thereexists g a primitive root $\left(\bmod p^{e}\right)$
We start that there exists a α that is primiteve root $\left(\bmod p^{2}\right)$ from Theorem 16.10. Also, from the proof of that theorem g is a primitive root mod 8 .

We shall prove by indiction g is mitive root $\bmod p, p^{2}, \ldots, p^{e}$ for some $e \geq 2$, then g is a primitive root $\left(\bmod p^{e+1}\right)$.

The line of arguments is that of the proof of Theorem 16.10.
Let $k=\operatorname{ord}_{p^{e+1}}(g)$ i.e. $g^{k} \equiv \mathrm{\Psi}\left(\bmod p^{e+1}\right)$ which implies $k \mid \phi\left(p^{e+1}\right)$ i.e. $k \mid p^{e}(p-1)$ i.e. Then $g^{k} \equiv 1\left(\bmod p^{e}\right)$, i.e. $\phi\left(p^{e}\right) \mid k$ i.e. $p^{e-1}(p-1) \mid k$.

Then $p^{e-1}(p-1) \mid k$ and $k \mid p^{e}(p-1)$ implye $p^{e}(p-1)=k s=p^{e-1}(p-1) r s$ i.e. $p=r s$. Thus $r \mid p$ But then $r=1$ or $r=p$ since p is prime.

If $r=1$ then $k=p^{e-1}(p-1) r=p^{e-1}(p-1$ and

$$
g^{p^{e-1}(p-1)} \equiv g^{p^{e}} g^{-p^{e-1}} \equiv 1 \quad\left(\bmod p^{e+1}\right)
$$

By Euler's Theorem (and the inductive hypothesis) $g^{p^{e-2}(p-1)} \equiv 1\left(\bmod p^{e-1}\right)$. This implies that $g^{p^{e-2}(p-1)}=1+$ $t p^{e-1}$. From a prior derivation we have

$$
1 \equiv g^{p^{e-1}(p-1)} \equiv\left(g^{p^{e-2}(p-1)}\right)^{p} \equiv\left(1+t p^{e-1}\right)^{p} \equiv 1+t p^{e} \quad\left(\bmod p^{e+1}\right)
$$

This implies that $t p^{e} \equiv 0\left(\bmod p^{e+1}\right)$ or equivalently $p \mid t$. This implies that there exists a q such that $t=p q$.
From $t=p q$ and $g^{p^{e-2}(p-1)}=1+t p^{e-1}$ we have

$$
g^{p^{e-2}(p-1)} \equiv\left(1+t p^{e-1}\right) \equiv\left(1+q p^{e}\right) \equiv 1 \quad\left(\bmod p^{e}\right)
$$

But if this is the case and given $p^{e-2}(p-1)<\phi\left(p^{e}\right)=p^{e-1}(p-1)$ then g cannot be a primitive root $\left(\bmod p^{e}\right)$.
Thus $r \neq 1$. Then $r=p$. But then $k=p^{e-1}(p-1) r=p^{e}(p-1)$ implies that g is a primitive root $\left(\bmod p^{e+1}\right)$ as needed.

16.3 Quadratic Residues

If you recall from a prior section, a unit of \mathbb{Z}_{n} is an element that has an inverse. A unit $a \in \mathbb{Z}_{n}$ is a quadratic residue (or just q.r.) if and only if there exists an x such that $x^{2} \equiv a(\bmod n)$. If it is not a quadratic reside it is called quadratic non-residue (or just q.nr).

Example 16.9. For \mathbb{Z}_{7} we have that the inverses of $1,2,3,4,5,6$ are respectively $1,4,5,2,3,6$. Thus all those elements are units. Moreover $1^{2}, 2^{2}, 3^{2}, 4^{2}, 5^{2}, 6^{2}(\bmod 7)$ are respectively $1,4,2,2,4,1(\bmod 7)$. Thus $1,2,4$ are quadratic residues, 3,5,6 are quadratic non-residues and 0 is not a unit (as it does not have an inverse).

Theorem 16.12. If p is an odd prime then $\left(p^{-1} 1\right) / 2$ of the units $(\bmod p)$ are quadratic residues, $(p-1) / 2$ are quadratic non-residues and there is nothing 1 eft unaccounted for.
Proof. Consider $\pm 1, \pm 2, \ldots, \pm(p-1) / 2$ and take the square of those elements. These elements account for all the units $(\bmod p)$. If $b^{2} \equiv a(\bmod p) C$ then $(-b)^{2} \equiv a(\bmod p)$ as well. The $(p-1) / 2$ distinct values (of the squares) are the quadratic residues. Everkbing else is a quadratic non-residue or 0.

Theorem 16.13. If gis Prinithe ro (mady the g^{k} is a quadratic residue if k is even.
Proof. The $g^{2}, g^{4} 5^{6} ; \ldots x^{6}$ arethe $\left(8^{-1}\right) / 2$ quadratic resiaues of Theorem 16.12.
Definition 104 (Legendrestmboll The Legendrsymbs $\left(\frac{a}{p}\right)$ is defined to be 1 if a is a quadratic residue ($\bmod p$) and -1 if it is andratson-residug. 1 is eif $p \mid a$. SThere is no fraction; it is part of the definition, the horizontal line.]

$$
\text { (Wilson's.Theorem). Andeger } p \text { is prime if and only if }(p-1)!\equiv-1(\bmod p) \text {. }
$$

Proof. If p is not prime then $\theta^{\circ}=r$ nnd $r, s<p$. The term $(p-1)$! includes all integers $<p$ and thus r and s. This implies that $(p-1)!\equiv 0\left(\bmod p \nmid\right.$ Fhere is one exception that $p=q^{2}$. For to have q appearing in the product twice it would mean that q and $2 q$ are part of the product, ie $2 q \leq p-1$. For this to be the case we need $p \geq 4$. Thus we verify by hand exhaustively that for $p=2,3$ the Thoerem is true.

If p is a prime number, then $1,2, \ldots, p-1$ has a inverse, and 1 and $p-1$ are their own inverses. Thus all the other integers inverse in pairs. Thus $(p-1)!\equiv(p-1) \cdot(p-2) \cdot \ldots \cdot 2 \cdot 1 \equiv(p-1) \cdot 1 \equiv-1(\bmod p)$.

Theorem 16.15 (Euler's identity). Let p be an odd prime. For every $a \in \mathbb{Z}$

$$
\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \quad(\bmod p)
$$

If $\left(\frac{a}{p}\right)=1$, then a is a quadratic residue $(\bmod p)$, and if $\left(\frac{a}{p}\right)=-1$, then a is a quadratic non-residue $(\bmod p)$.

Proof. Let a be a quadratic residue i.e. $b^{2} \equiv a(\bmod p)$ for some integer b. Then $b, a<p$ and thus $p \nmid a$. By Theorem 16.1 we have that

$$
a^{(p-1) / 2} \equiv\left(b^{2}\right)^{(p-1) / 2} \equiv b^{p-1} \equiv 1 \quad(\bmod p)
$$

Let a be a quadratic non-residue. For every $b=1,2, \ldots, p-1$ the congruence $b x \equiv a(\bmod p)$ is such that $\operatorname{gcd}(b, p)=1$ and thus the congruence has a unique solution in $1,2, \ldots, p-1$. Since a is quadratic non-residue we can't have $x=b$ since then $b \cdot b \equiv a(\bmod p)$. Thus the integers $1,2, \ldots, p-1$ can be broken into pairs whose products are all equal to a. There are $(p-1) / 2$ such pairs. Then $(p-1)!\equiv a^{(p-1) / 2}(\bmod p)$. The latter is -1 by Wilson't theorem.

Corollary 16.11. If p is prime then -1 is a quadratic residue $(\bmod p)$ if and only if $p \equiv 1(\bmod 4)$.
Proof. If $p=4 k+1$ then by Euler's identity, $(-1)^{(p-1) / 2} \equiv a^{2 k} \equiv 1(\bmod p)$. Thus -1 is a q.r. For a $p=4 k+3$ we conclude -1 is a q.nr. Alternatively $(p-1) / 2$ must be even.

Theorem 16.16 (Legendre symbol properties). Let p be an odd prime. For all $a, b \in \mathbb{Z}_{p}$ we have
(a) If $a \equiv b(\bmod p)$ then $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$.
(b) $\left(\frac{a^{2}}{p}\right)=1$.
(c) $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$.
(d) $\left(\frac{-1}{p}\right)=1$ for $p \equiv 1(\bmod 4) \operatorname{andt}\left(\frac{-1}{p}\right)=-1$ for $p \equiv 3(\bmod 4)$.

Proof. (d) Was proven in the prexious Corollary.
(c) $\left(\frac{a b}{p}\right) \equiv(a b)^{(p-1) / 2}=\left(\frac{b}{p}\right)$.
(b) a^{2} is such that $\left(a^{2}+1\right)=1$ obviondy. Moseover $\left(a^{2}\right)^{(p-1) / 2} \equiv 1(\bmod p)$ by Fermat's Little Theorem.
(a) It is immediate.
 q be the numben \&f'valuesof $M(a)$ thaRare greater them $p / 2$. Then

The original set of vades of $\{4 a)$ canbe reduced to belong to an interval $(-p / 2, p / 2)$. Then the number q of values greater than $p / 2$ becomesequal to the number of negative values. For \mathbb{Z}_{7}, all the multiples of 2 are $\{2,4,6,1,3,5\}$ and $M(2)=\{2,4,6\}$. If we multipt the first three multiples of the former or all the elements of the latter, we get $2^{3} \cdot 3$!. Using the equivalent form of utifizing negatives, we get $\{2,-3,-1,1,3,-2\}$ or $M(2)=\{2,-3,-1\}$. Notice that each one of $1, \ldots,(p-1) / 2$ appears once in its positive or negative form among the first $(p-1) / 2$ numbers and once in the next batch of numbers. If we multiply the first three multiples, we get $(-1)^{2} \cdot 3!$. Thus $2^{3} \equiv(-1)^{2}(\bmod 7)$. The 2^{3} (Euler's identity) is an indicate of the quadratic residuosity of 2 . If can find this by counting the negatives in the first 3 multiples of 2.

Proof. If two multiples of a say $i a$ and $j a$ are congruent $(\bmod p)$ i.e. $i a \equiv j a(\bmod p)$ then $i \equiv j(\bmod p)$. Likewise if $i a \equiv-j a(\bmod p)$ then $i \equiv-j(\bmod p)$. Thus the absolute values of the multiples should be distinct. That is $|a|,|2 a|, \ldots,|(p-1) / 2 a|$ are distinct. Multiplying the multiples the first way we get $a^{(p-1) / 2}((p-1) / 2)!$. Multiplying them together the other way we get $(-1)^{q}((p-1) / 2)$!. Equating the two we get $a^{(p-1) / 2} \equiv(-1)^{q}(\bmod p)$, i.e. $\left(\frac{a}{p}\right)=(-1)^{q}$.

Theorem 16.18. If p is an odd prime then

$$
\left(\frac{2}{p}\right)=1 \text { if } p \equiv \pm 1 \quad(\bmod 8), \quad\left(\frac{2}{p}\right)=-1 \text { if } p \equiv \pm 3 \quad(\bmod 8)
$$

Proof. Let $a=2$ and consider $M(2)$. There are $(p-1) / 2$ multiples and $\lfloor(p-1) / 4\rfloor$ are less than $p / 2$ and thus $(p-1) / 2-\lfloor(p-1) / 4\rfloor$ are greater than $p / 2$ or negative.

If $p \equiv 1(\bmod 8)$ i.e. $p=8 k+1$ the $(p-1) / 2=4 k$. Then $0<2 i \leq(p-1) / 2$ if and only if $0<2 i \leq 4 k$ i.e. $0<i \leq 2 k$. Then $q=2 k$. So $\left(\frac{2}{p}\right)=(-1)^{2 k}=1$.

Other cases are proven similarly.
Example 16.10. Consider $a=2$ and $p=11$. The term $\left\lfloor\frac{i a}{p}\right\rfloor$ is the quotient of the division of multiples of 2 with p. For $p=11,(p-1) / 2=5$ and thus the multiples of $21 \cdot 2,2 \cdot 2,3 \cdot 2,4 \cdot 2,5 \cdot 2$ have. The remainders that are larger than $p / 2$ are written in a special way.

If we add up these equations we have

$$
\begin{aligned}
& 1 \cdot 2=0 \cdot 11+2 \\
& 2 \cdot 2=0 \cdot 11+4 \\
& 3 \cdot 2=0 \cdot 11+(11-5) \\
& 4 \cdot 2=0 \cdot 11+(11-3) \\
& 5 \cdot 2 \times 0 \cdot 11+(11-1)
\end{aligned}
$$

$$
(1+2+3+4+5) \cdot 2 \bigcirc(0+0+0+0+0) \cdot 11+(2+4-5-3-1)+3 \cdot 11
$$

If we take $(\bmod 2)$ both sides me have noting $11 \equiv 1(\bmod 2)$ and $2 \equiv 0(\bmod 2)$,

$$
(1+3+5-2-4)=3(\bmod 2)
$$

and the right hand sise if the aumbex of mutiplesthat are)negative or equivalently greater than p/2 (so that Gauss's Lemma becomes 《pplicab(e).

Theorem 16.19 (Etsensteप Theofem). Wp is a odd prime and a is odd, then

Proof. For each $i=1,2, \ldots,(d) \rho_{2}$ whave $i a=q_{i} p+r_{i}$, where $q_{i}=\lfloor i a\rfloor p$ and $0 \leq r_{i}<p$. If $r_{i}>p / w$ we write or define $s_{i}=r_{i}-p$, else $s_{i}=$ By Gauss's Lema the number of remainders greater that $p / 2$ is $q=\left(\frac{a}{p}\right)$. So we can write $r_{1}+\ldots+r_{i}=s_{1}+\ldots+s_{i} \mathbb{C}\left(\frac{a}{p}\right)$ for every i. Adding up all contributions we have

$$
a(1+2+\ldots+(p-1) / 2)=p\left(\left\lfloor\frac{1 a}{p}\right\rfloor+\ldots+\left\lfloor\frac{(p-1) a / 2}{p}\right\rfloor\right)+\left(s_{1}+\ldots+s_{(p-1) / 2}\right)+p\left(\frac{a}{p}\right)
$$

The $s_{1}, \ldots, s_{(p-1) / 2}$ are the $1, \ldots,(p-1) / 2$. Thus $s_{1}+\ldots+s_{(p-1) / 2}+p\left(\frac{a}{p}\right) \equiv 1+2+\ldots+(p-1) / 2(\bmod 2)$. Taking $(\bmod 2)$ the previous equality and using he result above and also noting that both a, p are odd (and thus $a \equiv 1$ $(\bmod 2)$, and $\left.p\left(\frac{a}{p}\right) \equiv\left(\frac{a}{p}\right)(\bmod 2)\right)$ we have

$$
\left(\frac{a}{p}\right)=\sum_{i=1}^{(p-1) / 2}\left\lfloor\frac{i a}{p}\right\rfloor
$$

The following conjectured by Euler was proven by Gauss.

Theorem 16.20 (Law of Quadratic Reciprocity). Let p, q be odd primes. Let $p \neq q>0$. Then
(a) If $p \equiv q \equiv 3(\bmod 4)$ then $\left(\frac{p}{q}\right)=-\left(\frac{q}{p}\right)$.
(b) For all other cases $\left(\frac{p}{q}\right)=\left(\frac{q}{p}\right)$.

Equivalently, if either p or q is of the form $4 k+1$ then $\left(\frac{p}{q}\right)=\left(\frac{q}{p}\right)$, otherwise $\left(\frac{p}{q}\right)=-\left(\frac{q}{p}\right)$. Moreover,

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}}
$$

The sum of the Eisenstein Theorem has a nice geometric interpretation. It is the number of lattice points under the line $y=\frac{a}{p} x$ that over the x axis (i.e. positive coordinates) between $x=0$ and $x=p / 2$.

Proof. Let p, q be odd primes. Let $r=\sum_{i=1}^{(p-1) / 2} h_{p}$ be the number of lattice points below $y=\frac{q}{p} x$ and over the x axis and between $x=0$ and $x=p / 2$. Similarly Let $y=\sum_{i=1}^{(q-1) / 2}\left\lfloor\frac{i p}{q}\right\rfloor$ be the number of lattice points below $x=\frac{p}{q} y$ and over the y axis and between $y=0$ and $y=q / 2$ The line $y=\frac{q}{p} x$ and $x=\frac{p}{q} x$ are the same. None of the two set of points are double counted as they lie on differentareas of the dividing line. No point lines on the line as then $x q=p y$ and thus x is a multiple of p and y a multiple \circ 唈 9 .

The number of points are alkinside the rectangle defined by $x=p / 2$ and $y=q / 2$ and the two axes. The total number of points is $(p-1) / 26 q-1) / 2$. Thus $r+s=(p-1) / 2 \cdot(q-1) / 2$. By Eisenstein's Theorem $\left(\frac{p}{q}\right)=(-1)^{r}$ and $\left(\frac{q}{q}\right)=(-1)^{s}$. Thu

Note that in $\frac{a}{2}$ the denominator is pome. The numerator does not need to be. In that case we can factor it to its prime factors. Since 434 ned 13 verwhe that $\left(\frac{43}{13}\right)=\left(\frac{4}{13}\right)=\left(\frac{2}{13}\right) \cdot\left(\frac{2}{13}\right)$. By Theorem 16.18 since $13 \equiv-3$ $(\bmod 8)$ we have $\left(\frac{2}{p}\right)=9$ butathis is irelevant since we have a product of two identical terms. This $\left(\frac{43}{13}\right)=1$. Moreover $\left(\frac{13}{43}\right)=-\left(\frac{43}{13}\right)=$

One can show that $\left(\frac{3}{p}\right)=1$ ifand only if $p=12 k \pm 1$. $\left(\frac{3}{p}\right)=\left(\frac{p}{3}\right)$ if $p=4 k+1$ and $\left(\frac{3}{p}\right)=-\left(\frac{p}{3}\right)$ if $p=4 k+3$. (Note that $3=4 k+3$ as well!) The only quadratic residue of 3 is 1 so $\left(\frac{p}{3}\right)=1$ if $p=3 k+1$. Thus $\left(\frac{3}{p}\right)=1$ if $p \equiv 1$ $(\bmod 4)$ and $p \equiv 1(\bmod 3)$ i.e. $p \equiv 1(\bmod 12)$. Also if $p \equiv 1(\bmod 4)$ and $p \equiv 2(\bmod 3)$ i.e. $p \equiv-1(\bmod 12)$.

Let the n-th Fermat number $F_{n}=2^{2^{n}}+1$. The F_{n} is prime if and only if $3^{\left(F_{n}-1\right) / 2} \equiv-1\left(\bmod F_{n}\right)$.
If F_{n} is prime, then the formula above tell us whether 3 is a q.r $\left(\bmod F_{n}\right)$. We know from above that F_{n} needs to be $12 k \pm 1$. But all fermat number other that F_{0} are $12 k+5$. This is so because $2^{2^{1}}+1=4+1=5$ and $2^{2^{n}} \equiv\left(2^{2^{n-1}}\right)^{2} \equiv$ $4^{2} \equiv 4(\bmod 12)$. So we must have $3^{\left(F_{n}-1\right) / 2} \equiv-1\left(\bmod F_{n}\right)$.

On the other hand if $3^{\left(F_{n}-1\right) / 2} \equiv-1\left(\bmod F_{n}\right)$ it means $3^{\left(F_{n}-1\right)} \equiv 1\left(\bmod F_{n}\right)$ so ord $F_{n}(3)$ must divide $F_{n}-1=2^{2^{n}}$. The latter expression's divisors are powers of 2 . Since $3^{\left(F_{n}-1\right) / 2} \equiv-1\left(\bmod F_{n}\right)$ we have $3^{k} \not \equiv 1\left(\bmod F_{n}\right)$ for any divisor k of $F_{n}-1$. Thus the order of 3 is $F_{n}-1$. Since this order is a divisort of $\phi\left(F_{n}\right)$ we have $\phi\left(F_{n}\right)=F_{n}-1$ i.e. F_{n} must be a prime

Definition 16.5 (Jacobi symbol). If the denominator of the Legendre symbol's definition is not a prime, we can define for arbitrary positive integer n with factorization $p_{1}^{a_{1}} \ldots p_{k}^{a_{k}}$ that the Jacobi symbol is defined as follows.

$$
\left(\frac{a}{n}\right)=\left(\left(\frac{a}{p_{1}}\right)\right)^{a_{1}} \ldots\left(\left(\frac{a}{p_{k}}\right)\right)^{a_{k}}
$$

Theorem 16.21. Suppose that p, q are such that $\operatorname{gcd}(p, q)=1$. a is a q.r $(\bmod p q)$ if and only if a is a q.r. $(\bmod p)$ and a is a q.r. $\quad(\bmod q)$.
Proof. If a is a quadratic residue $(\bmod p q)$ then there exists a $b \in \mathbb{Z}$ such that $b^{2} \equiv a(\bmod p q)$. That is $p q \mid b^{2}-a$. Then $p \mid b^{2}-a$ and $q \mid b^{2}-a$ given that $\operatorname{gcd}(p, q)=1$. The result confirms a is a q.r. $(\bmod p)$ and a is a q.r. $(\bmod q)$.

For the other direction. Let a is a q.r. $(\bmod p)$ and a is a q.r. $(\bmod q)$. Then $c^{2} \equiv a(\bmod p)$ i.e. $a \equiv c^{2}$ $(\bmod p)$ and $d^{2} \equiv a(\bmod q)$ i.e. $a \equiv d^{2}(\bmod q)$ respectively. Since $\operatorname{gcd}(p, q)=1$, there is an $A(\bmod p q)$ by Theorem 15.34 such that $A \equiv c(\bmod p)$ and $A \equiv d(\bmod q)$. From the latter we have $A^{2} \equiv c^{2} \equiv a(\bmod p)$ and $A^{2} \equiv d^{2} \equiv a(\bmod q)$. The $p \mid A^{2}-a$ and $q \mid A^{2}-a$. Since $\operatorname{gcd}(p, q)=1, p q \mid A^{2}-a$ i.e. $A^{2} \equiv a(\bmod p q)$. This implies that a is a q.r $(\bmod p q)$.

Theorem 16.22. a is a q.r $(\bmod p)^{k}$ for $k \geq$ fond only if a is a q.r. $(\bmod p)$, where p is an odd prime and $a<p$ (or in general $p \nmid a$).
Proof. If a is a q.r. $(\bmod p)^{k}$, then $b^{2}{ }^{2}\left(\bmod p^{k}\right)$. That is $p^{k} \mid b^{2}-a$. Then $p \mid b^{2}-a$ and the result follows for the forward directition (i.e. a is a q.r (mod p) as well).

For the converse, let $b^{2} \equiv a(\bmod p)$. The proof resembles prior proof of Theorem 16.12 and is by induction on k. Let a be a q.r $\left(\bmod p^{k}\right)$ for. \boldsymbol{N}^{1}. We shall show that a is a q.r. $\left(\bmod p^{k+1}\right)$. For the induction assumption he have $b^{2} \equiv a\left(\bmod p^{k}\right)$ i.e. $b^{2}-p^{k}$, for some integer r. Let $c=b+d p^{k}$, where c, d are yet to be determined in full.

For $c^{2}-a \equiv 0$ had $\left.p^{k}-b\right)$ weed $p(k+2 b$ (in otherewords $(2 b) d \equiv-r(\bmod p)$. Since p is an odd prime $b<p$ and $\operatorname{gcd}(2 b, p)=1$, theredis a søtution for d of me notular equation $(2 b) d \equiv-r(\bmod p)$. Thus $c^{2}-a \equiv 0\left(\bmod p^{k+1}\right)$ as needed and thistcompretes theinductive step.

In conclusion if p is primeand \mathfrak{q} isa q.r $(\bmod p)$. Let $b^{2} \equiv a\left(\bmod p^{k}\right)$ or $r=\left(b^{2}-a\right) / p^{k}$. The $c=b+d p^{k}$ is such that $c^{2} \equiv a\left(\bmod p^{2}\right)$ ifand only if c is defined as follows. Let $t \equiv(2 b)^{-1}(\bmod p)$ and thus $d \equiv-r t$ $(\bmod p)$. We have from above $c+d p^{k}=b-\frac{b^{2}-a}{p^{k}} p^{k} t$, and thus $c^{2} \equiv\left(b-t\left(b^{2}-a\right)\right)^{2} \equiv a\left(\bmod p^{k+1}\right)$.
Example 16.11. For $p=5$ find the square root of $11\left(\bmod 5^{3}\right)$.
Proof. Let $p=5$. Then $11 \equiv 1(\bmod 5)$ is obviously a q.r. $(\bmod 5)$. Then 11 is also a q.r $\bmod , 5^{2}, 5^{3}$ and so on.
In order to determine $c^{2} \equiv 11\left(\bmod 5^{2}\right)$, we start with the $(1)^{2} \equiv 11 \equiv 1(\bmod 5)$. Thus $b=1$ Then we compute $t \equiv(2 b)^{-1} \equiv 2^{-1}(\bmod 5)$. Thus $t=3$. It then follows $c=b-t\left(b^{2}-a\right)=1-3\left(1^{2}-11\right) \equiv 6\left(\bmod 5^{2}\right)$. Thus $6^{2} \equiv 11\left(\bmod 5^{2}\right)$ which is obviously true.

In order to determine $c^{2} \equiv 11\left(\bmod 5^{3}\right)$, we start with the $(6)^{2} \equiv 11\left(\bmod 5^{2}\right)$. Thus $b=6$ Then we compute $t \equiv(2 b)^{-1} \equiv(12)^{-1}(\bmod 5)$. Thus t remains a $t=3$. It then follows $c=b-t\left(b^{2}-a\right)=6-3\left(6^{2}-11\right) \equiv-69 \equiv 56$ $\left(\bmod 5^{3}\right)$. Thus $(56)^{2} \equiv 11\left(\bmod 5^{3}\right)$ which is obviously true.

Theorem 16.23. For q.r. $(\bmod 2)^{k}, k \geq 3$, a is a q.r $(\bmod 2)^{k}$ if a is odd and $a \equiv 1(\bmod 8)$.
Proof. Say a is a q.r $\left(\bmod 2^{k}\right), k \geq 3$. Then $8 \mid 2^{k}$, then $b^{2} \equiv a\left(\bmod 2^{k}\right)$ implies $b^{2} \equiv a(\bmod 8)$. For a to be a q.r. it should be $a \equiv 1(\bmod 8)$. For the converse let a be a q.r $\bmod 2^{k}$ for some $k \geq 3$. Then $b^{2} \equiv a\left(\bmod 2^{k}\right)$. If $a \equiv b^{2}\left(\bmod 2^{k+1}\right)$ then a is also a q.r $\left(\bmod 2^{k+1}\right)$. If $a \not \equiv b^{2}\left(\bmod 2^{k+1}\right)$ then $b^{2}-a=2^{k} r$ for some integer r. Let $c=b+r 2^{k-1}$. We have note that $k \geq 3$ implies $2 k-2 \geq k+1$. Also b is odd i.e. $1+b$ is even.

$$
\begin{aligned}
c^{2}-a & \equiv\left(b^{2}-a\right)+b r 2^{k}+r^{2} 2^{2 k-2} \quad(\bmod 2)^{k+1} \\
& \equiv 2^{k} r+b r 2^{k}+0 \quad(\bmod 2)^{k+1} \\
& \equiv 2^{k} r(1+b) \equiv 0 \quad(\bmod 2)^{k+1}
\end{aligned}
$$

Thus $c^{2} \equiv a\left(\bmod 2^{k+1}\right)$. By induction the results follows given the base case $k=3$.
Proof.
Example-Proposition 16.12. Let $a, b \mathbb{Z}$ and let $m, n>1$ be odd integers. Then
(a) if $\operatorname{gcd}(a, n)>1$ if and only if $\left(\frac{a}{n}\right)=0$.
(b) $\left(\frac{a}{m n}\right)=\left(\frac{a}{m}\right)\left(\frac{a}{n}\right)$.
(c) $\left(\frac{a b}{n}\right)=\left(\frac{a}{n}\right)\left(\frac{b}{n}\right)$.
(d) if $a \equiv b(\bmod n)$ then $\left(\frac{a}{n}\right)=\left(\frac{b}{n}\right)$.
(e) if $\operatorname{gcd}(a, n)=1$ then $\left.\left(\frac{a}{n^{2}}\right)=\left(\frac{a}{n}\right)\right)_{1}$.

Example-Proposition 16.13. Let $\mathrm{C}^{-1} 1$ be odd integer. Then

Proof. $(p q)^{2}-1=p^{2} q^{2}-p^{2}+q^{2}-1=p^{2}\left(q^{2}-1\right)+p^{2}-1$. Also $(-1)^{p^{2}}=-1$ for odd p. Thus

$$
(-1)^{\left((p q)^{2}-1\right) / 8}=(-1)^{\left(p^{2}\left(q^{2}-1\right)+p^{2}-1\right) / 8}=\left((-1)^{p^{2}}\right)^{\left(q^{2}-1\right) / 8}((-1))^{\left(p^{2}-1\right) / 8}
$$

If $\left(\frac{2}{s}\right) \neq(-1)^{\left(s^{2}-1\right) / 8}$ for some odd $s>1$. Pick the smallest such s. The proposition holds for primes thus s can be a composite only. Let $s=p q$ for $p, q>1$ and smaller than s. By the minimality of s, the proposition must be true for p, q

$$
\left(\frac{2}{s}\right)=\left(\frac{2}{p q}\right)=\left(\frac{2}{p}\right)\left(\frac{2}{q}\right)=(-1)^{\left(p^{2}-1\right) / 8}(-1)^{\left(q^{2}-1\right) / 8}=(-1)^{\left((p q)^{2}-1\right) / 8}=(-1)^{\left((s)^{2}-1\right) / 8}
$$

The Law of Quadratic Residuosity generalizes to Jacobi symbols as well.

Theorem 16.24. Let $p, q>1$ be odd integers. Then

$$
\begin{aligned}
\left(\frac{p}{q}\right) & =\left(\frac{q}{p}\right) \text { if } n \equiv 1 \quad(\bmod 4) \\
\left(\frac{p}{q}\right) & =\left(\frac{q}{p}\right) \text { if } m \equiv 1 \quad(\bmod 4) \\
\left(\frac{p}{q}\right) & =-\left(\frac{q}{p}\right) \text { if } n \equiv m \equiv 3 \quad(\bmod 4)
\end{aligned}
$$

Proof. If $\operatorname{gcd}(p, q)>1$ then both sides of the equality are 0 .

HOW TO TEST QUADRATIC RESIDUOCITY for $a(\bmod n)$?
Step 1. Modulus is an (odd) prime number. Either compute $a^{(p-1) / 2}(\bmod p)$ or determine the answer through the Legendre symbol $\left(\frac{a}{p}\right)$. The latter is computationally faster than the former. The former is by Theorem 16.15, the latter follows from applications of Theorem 16 16 through Theorem 16.20.

Step 2. Modulus is a prime power. a is q.R. $(\bmod p)^{k}$ if and only if it is q.r. $(\bmod p)$. This is Theorem 16.22.
Step 3. Modulus is a composite numbar.' Theorem 16.21 might help. If the factorization of n is known use the Jacobi symbol Definition 16.5 through Step 1-2 to resolve prime factor moduli.

16.4 Computing sqeare roots $(\bmod p)$

 $k+$.Thus $(p \neq 1) / 4$ is minteger and thus set $b=\left(p+104\right.$. Then $b^{2} \equiv a(\bmod p)$.
Case 2. $p \equiv 1$ (mod 4 . Por tas casel $p \equiv \bmod 8$ or $p \equiv 5(\bmod 8)$.

$$
a^{2}
$$

If $b^{2} \equiv a(\bmod p)$ we are done. Ifonowever $b^{2} \equiv-a(\bmod p)$, then

$$
\left(b c^{(p-1) / 4}\right)^{2} \equiv-a c^{(p-1) / 2} \equiv a \quad(\bmod p)
$$

Case 2b. $p \equiv 1(\bmod 8)$. The $p \equiv 1(\bmod 16)$ or $p \equiv 9(\bmod 16)$.
The second of the case above is resolved similarly to Case 2 a . The Firt of the case above is being resolve by subcasing involving $(\bmod 32)$. A cascade results. Find an m such that $m^{2}-a$ is a q.nr. That is m is such that

$$
\left(\frac{m^{2}-a}{p}\right)=-1
$$

One can find m by trial and error. Then let $A \notin \mathbb{Z}_{p}$ is such that $A^{2} \equiv m^{2}-a(\bmod p)$. Since $m^{2}-a$ is not a quadratic residue A cannot belong to \mathbb{Z}_{p}. Then $\mathbb{Z}_{p}[A]=\left\{p+q A \mid p, q \in \mathbb{Z}_{p}\right\}$.

16.5 Pythagorean triplets

Let $a^{2}+b^{2}=c^{2}$ be the pythagorean identity with $a \leq b \leq c$. A triplet (a, b, c) is a solution to the identity. It is called primitive if $\operatorname{gcd}(a, b)=1$. If (a, b, c) is a triplet so is $(m a, m b, m c)$ for every integer m.

One way to generate triplets is to use the identity $(x+y)^{2}=x^{2}+2 x y+y^{2}$ and $(x-y)^{2}=x^{2}-2 x y+y^{2}$ which implye $(x+y)^{2}-(x-y)^{2}=4 x y$. Set $x=X^{2}$ and $y=Y^{2}$ we have

Thus

Theorem 16.25. Thus $a=2 X Y, b=X^{2}-Y^{2}$ and $c=X^{2}+Y^{2}$ or equivalently $(a, b, c)=\left(2 X Y, X^{2}-Y^{2}, X^{2}+Y^{2}\right)$ is a pythagorean triplet, since

$$
\left(X^{2}+Y^{2}\right)^{2}=(2 X Y)^{2}+\left(X^{2}-Y^{2}\right)^{2}
$$

Moreover $Z(a, b, c)$ are other triplets, for $X, Y, Z \in \mathbb{Z}$.

Theorem 16.26. If p is a prime factor of n with $p \equiv 3(\bmod 4)$ and p divides n an odd number of times. Then n cannot be expressed as a sum of squares.

Proof. Let us assume the theorem is false. Let n be the smallest n that is a counterexample and thus $n=a^{2}+b^{2}$. Since $p \mid n$ we have $a^{2}+b^{2} \equiv 0(\bmod p)$ i.e. $b^{2} \Rightarrow-a^{2}(\bmod p)$. If $p \nmid a$ then $p \nmid b$ and thus a^{-1} and b^{-1} exist.Thus $\left(b a^{-1}\right)^{2} \equiv-1(\bmod p)$. This means -1 is a $x(\bmod p)$. Which contradicts the non-being so since $p \equiv 3(\bmod 4)$.

Thus $p \mid a$ and $p \mid b$ and thus $p^{2} \mid n$. The $a \underset{z}{ } p a_{1}, b=p b_{1} n=p^{2} n_{1}$. We get that $n_{1}^{2}=a_{1}^{2}+b_{1}^{2}$.
A linear congruential generator $(\mathbb{L C G})$ is one such that $x_{i+1} \equiv a x_{i}+b(\bmod n)$, where $\operatorname{gcd}(a, n)=1$. If $\operatorname{gcd}(a-$ $1, n)=1$ the x_{0} should be chosen sothat $\operatorname{gcd}\left(x_{0}-b(1-a)^{-} 1, n\right)=1$

The period of LCG is its madulus n if and only if $\operatorname{gcd}(b, n)=1, a \equiv 1(\bmod p)$ for every prime p such that $p \mid n$, and $a \equiv 1(\bmod 4)$ if $4 \mid n .5^{\circ}$

A Blum-Blum-Shub (BBS) squence is ona where $n=p q$ and p, q are primes such that $p \equiv q \equiv 3(\bmod p)$. A seed x_{0} is chosen sothat gcef $\left.x_{0}, n\right) 1$. Then $x_{i+1}^{2} \equiv d(\operatorname{dod} n)$. The output is $x_{i}(\bmod 2)$. For a long period $\operatorname{gcd}(\phi(p-1), \phi(\alpha-1))$ issmall compake 9 to $n .1$

16.6 सublie Kexcraptography

16.6.1 Diffie Hellman keßexchăng

It uses \mathbb{Z}_{p} exponentiation. Chorse aftarge $\mathfrak{R r m e} p$ and an element $g \in \mathbb{Z}_{p}$ where g is preferably a primitive root. This is public The following tyo aredecret foreach party involved. Alice chooses a secret exponent $1 \leq a \leq p-1$. Bod chooses a secret exponent $1 \leq \mathcal{D}^{-1}$. Alice publishes g^{a} and Bob $g^{b}(\bmod p)$. The other party picks the other's published info and compute $g^{b}($ Pod p). Only they are privy to both multiplicands and thus their product. The only way to retrieve from g^{a}, g^{b}, g, p the a or b is by a slow discrete logarithm process.

16.6.2 RSA

Let p, q are two large primes $p \neq q$. Let $n=p q$ and choose an e such that

$$
\operatorname{gcd}(e, \phi(n))=\operatorname{gcd}(e,(p-1)(q-1))=1
$$

Public key. It is the pair (e, n).
The modular equation

$$
e d \equiv 1 \quad(\bmod (p-1)(q-1))
$$

is then solved. Because $\operatorname{gcd}(e,(p-1)(q-1))=1$, there exists one and only one solution $(\bmod \phi)(n)$.

Private key. It is the pair (p, q) or for convenience the triplet (d, p, q) (d is not needed as it can be recomputed from the public key and private p, q).

Public Information: Alice's $\left(e_{A}, n_{A}\right)$ and Bob's $\left(e_{B}, n_{B}\right)$.
Private Information: Alice's $\left(d_{A}, p_{A}, q_{A}\right)$ and Bob's $\left(d_{B}, p_{B} q_{B}\right)$.
Alice sends encrypted message M to Bob. Alice gets Bob's public keys. For message M alice computes $C \equiv M^{e_{B}}$ $(\bmod n)_{B}$. It transmits C to Bob.
Alice $\left(e_{A}, n_{A}\right)$ and Bob $\left(e_{B}, n_{B}\right)$.
Bob receives and decrypts message C from Alice. He performs the following computation (note $n_{B}=p_{B} q_{B}$).

$$
C^{d_{B}} \equiv\left(M^{e_{B}}\right)^{d_{B}} \equiv M^{e_{B} d_{B}} \equiv M \quad(\bmod n)_{B}
$$

RSA's difficulty relies on the perceived difficulty of factoring n into p, q and thus computing d. Equivalently on computing d from e, n alone without factoring n.

For RSA message M must be close to the size of $\phi(n)$. Thus padding may need to be performed if M is small (or an attacker may rely on brute force techniques). Because of these, RSA is primarily being used to transmit secret keys, and use another method for transmitting messages.

Chapter 17

Useful formulae

17.1 Formulae collection

The mathematics (not discrete mathematics) that you need can be summarized in the following one-page summary.

D1.

$$
(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x), \quad\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g^{2}(x)}, \quad\left(c^{x}\right)^{\prime}=\ln (c) c^{x}
$$

S1.

$$
\frac{1}{1-x}=1+x+x^{2}+\ldots+x^{i}+\ldots=\sum_{i=0}^{\infty} x^{i}
$$

S2.

$$
\frac{x}{(1-x)^{2}}=x+2 x^{2}+\ldots+i x^{i}+\ldots=\sum_{i=0}^{\infty} i x^{i}
$$

S3.

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\ldots+\frac{x^{i}}{i!}+\ldots=\sum_{i=0}^{\infty} \frac{x^{i}}{i!}
$$

