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This material is neither final nor thoroughly proofread. It constitutes work in progress and might contain
errors. It should be used IN CONJUNCTION with other references if consulted for factual checking.

Report discrepancies with other sources, or factual errors, or typos to the author.

Distribution of this material in any form, without the expressly written consent of the author is PROHIB-
ITED.
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computing
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Chapter 1

Introduction to computing

1.1 What is a computer

Definition 1.1 (Computer). The fundamental elements of a computer include the following.

• The processor (CPU) also known as CPU for Central Processing Unit,

• the Main Memory (MM) also known as primary memory,

• the Input/Output modules or I/O modules that manage and control I/O and other peripheral devices,
and

• the System Bus that is the highway that allows for the communication of the other elements of the
computer.

The name CPU or Central Processing Unit was prevalent in the early era of computing when the CPU
needed multiple buildings, or multiple floors or rooms of a building to be housed.

At some point the capabilities of the CPU were miniaturized and fit inside a single chip. We started
using the name microprocessor and after dropping the prefix micro, the use of the word processor prevailed.
A processor is responsible for managing the computer and its other components and performs a variety of
data processing functions. Functions related to arithmetic or logical operations are performed in a (usually
separate) section of the microprocessor known as the Arithmetic Logic Unit (ALU). Memory management
processing takes place in a area known as the Memory Management Unit (MMU).

Definition 1.2 (Microprocessor). A microprocessor is a CPU or processor that can fit inside a (micro)chip.

Definition 1.3 (Processor and its Registers). Every processor includes a collection of limited named memory.
The named memory inside a processor is referred to as the registers of the procesor.

Definition 1.4 (Registers and Register File). The most important register is the Program Counter also known
as Instruction Pointer (PC or IP). Another imporant register is the Instruction Register (IR), the Accumulator
(AC) that collects results of operations in the ALU unit and other general or special purpose registers such
as Top of Stack and Bottom of Stack pointers, etc. A special register indicates the status of the processor: it
is known as FLAGS or Processor Status Word (PSW). Collectively, all registers are referred to as the register
file.
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4 CHAPTER 1. INTRODUCTION TO COMPUTING

The typical number of registers is small. Excluding some special purpose register and special purpose
CPU architectures (eg GPUs) it is no more than approximately 64. These are the registers that users or user
programs can use directly.

The Main Memory consists of a collection of byte(s) and it is random access. We might use the term
sequence of bytes to describe. Random access means getting the byte at offset (or address or index) i takes
a fixed amount of constant time that is independent of the ’complexity’ of the offset i. The first offset (or
address) is 0. Memory M can be represented in the form of an array M of bytes. The contents of offset i
would be denoted as M[i] or MM[i]. Contents is the value contained in address/offset i. Memory stores bytes
not bit (an acronym for binary digit). The name byte indicates the minimum about of memory one can ’bite’
from the main memory of a computer. The unit for a byte is B and for a bit is bit. Aggregations of byte that
will be used include KiB for kibi-byte, MiB, GiB and TiB equal to 210B, 220B, 230B, and 240B. The length of
M is the number of byte its contains. The size of M includes also the unit i.e. B. Thus we can say the length
of M is 8 meaning that the size of M is 8B.

The Program Counter holds the address (in MM) of the next instruction that will be executed. If the
instruction is spread over more than one byte, this would indicate the address of the first byte of the instruction.
Intel architectures are little-endian which means this would be the right-most (also known as least significant
byte) of the instruction.

1.1.1 Simple Instruction cycle

A traditional (simplified) processor of the works in essence by repeating the execution involved in a simple
instruction cycle. An instruction cycle has two stages (if there is no support for interrupts, or interrupts are
disabled) or three stages (otherwise). The first stage is the fetch stage (the CPU fetches the instruction from
memory and brings it into main memory). The second stage is the execute stage where the CPU executes
the instruction and thus performs the data processing task indicated by the instruction. By the end of this
stage the instruction’s execution is completed. Yet there is often a third stage that can be utilized. In that
third stage known as interrupt stage, the CPU checks for a hardware signal sent primarily by an external (and
usually) I/O device. That signal might indicate the completion of an I/O operation, a hardware condition or a
hardware problem. If it is generated by a timer it might mean that a given period of time has been completed
and came to a conclusion. For example at midnight one sets a timer to generate an interrupt in 18,000sec, so
that an alarm clock would be triggered at 5am.

Fetch stage of instruction cycle

The first stage is the fetch stage and involves fetching an instruction from the address in main memory as
indicated by the program counter. Thus the PC already contains the address of this instruction that is to be
fetched and executed. If one wonders what happens with the ’first instruction’ of a user program and what the
value of the PC is, one may assume that it either contains a 0, thus assuming the address of the first instruction
is 0, or that the Operating System (OS) program that loaded the user program into main memory (from, sually
a secondary memory device such as a hard disk drive), set the PC to some specific address used by the OS.

The instruction fetched is then stored into the Instruction Register (IR). By the conclusion of this stage
the PC already points to the address of the next instruction to be executed (eg the new address is the old one
plus one byte of its previous value if the instruction fetched is one byte or plus the number of byte of the
instruction just fetched). Moreover, during the next stage, the execute state, it is possible that the PC can be
altered by an appropriate PC altering instruction. For example a JUMP instruction can set the value of the PC
to some alternative specific address.
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Execute stage of instruction cycle

In the second stage that is known as the execute stage, the processor ”executes” the instruction that was made
available in the instruction register in the prior fetch stage.

Instruction execution might involve reading from MM (a load operation from MM into a CPU register),
or writing into MM (a store operation from a register into one or more MM bytes), or arithmetic or logical
operations that take place in the ALU or other data processing operations. For example a JUMP to an address
instruction can change the PC address to a new value. A HALT instruction can freeze the CPU. And a NOOP
(no operation) instruction can do nothing (thus bringing an end to the execute stage).

Interrupt stage of instruction cycle

If there is a third stage this is the interrupt stage. The CPU then and only then checks an interrupt vector to
determine if an I/O device that had an I/O operation active asked the CPU to interrupt the normal execution
of the CPU itself.

Prior to the interrupt stage of an instruction, the CPU was involved in the execution of some user’s code
(say User Program A).

This was done at a low security level (user code cannot interfere with critical code). Some architectures
refer to it as user mode or RING LEVE 3 (Intel).

Context switch from A to OS: preparing by saving context of A. As soon as the CPU realizes the
interrupt request, it stops the execution of program A. This is also known as user context. The state of the
user’s program is the values of all its registers (that were modified during the execution of A). Some or all
of these registers would form the register file that will be saved, and program A’s execution will temporarily
stop.

Context switch from A to OS: interrupt handling routine. Control will pass to an interrupt handling
routine that will service the interrupt in question. The CPU will start executing the code of the interrupt
handling routine. Prior to that the registers of the CPU (i.e. their values) associated with program A need
to be reset and initialized for the interrupt handling routine to start its execution (more precisely the CPU to
start executing the code of the interrupt handling routine).

The interrupt handling routine belongs to or is a program that used to be known as (system) monitor,
then became known as operating system, and later as kernel (the part of the operating system that is in main
memory all the time). When the code of the Interrupt Handling routine is running on the CPU (i.e. the CPU
is executing instructions of the interrupt handling routine rather than Program A) the CPU is not in user mode
(RING LEVEL 3) anymore but is (operating) system mode (may be RING LEVEL 0).

Context switch from OS to A: resuming the execution of Program A. When the interrupt is serviced,
the CPU moves back to user mode, the register file of Program A gets reinstated into the CPU (the values of
the registers reflecting the execution of Program A are copied from Main Memory and set the values of the
CPU registers) and then program A executes the next instruction that was to execute as if the interrupt stage
had been ignored (that instruction’s address is already in the PC if not by the end of the fetch stage, definitely
by the end of the execute stage of the instruction that was executed prior to the interrupt checking).

Context Switch support: OS

We skip Operating System (OS) duscussion. In the presence of a complex OS the area of Main Memory
associated with the execution of Progam A is controlled by the kernel of the OS. A Program in Execution
such as A is known as a Process. Every process has an area in main memory belonging to the operating
system and controlled by the kernel that is known as the process control block (PCB) or task structure (TS).
The PCB/TS has a area to accommodate the register file of say Program A, and to indicate whether A is
RUNNING on the CPU (i.e. CPU is running the code of A) or not (during interrupt handling).
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1.1.2 CPU and ALU
The ALU is where operations such as ADD (for addition), MUL (for multiply), DIV (for divisions) are
performed and also XOR (for exclusive OR), OR (for inclusive OR or disjunction), AND (for a conjunctions),
etc are performed.

Let us remind ourselves some definitions for programming languages. Several time we use the symbol
+ and we call it operator, to denote the operation known as addition. The elementary addition operation has
two operands x and y to which the operator applies. The result is the sum of the values of the two operands
x+ y. The form x+ y is an infix representation of addition where the operator is in-between the left operand
x and the right operand y. In a prefix representation we would write +xy and in a postfix representation xy+
instead. Parentheses could be used for clarity and to indicate order of evaluation. When multiple operators
and operands are present different rules specify the precedence of operators and in case of a tie what the
tie-breaking rule(s) are going to be.

After this long parenthesis involving the CPU let us move forward.

1.1.3 Processor and hardware
Definition 1.5 (Motherboard). The microprocessor, main memory, the system bus and the I/O modules are
arranged and attached to a motherboard that houses them.

Definition 1.6 (Socket). The microprocessor is attached to a socket, a housing area or receptacle of the
motherboard that allows for easy attachment or detachment of the microprocessor.

Definition 1.7 (Microchip and Die). The microprocessor is a CPU miniaturized on a (micro)chip. The
microchip contains one or more dies. A die is a, silicon based usually, integrated circuit covered with epoxy
inside a plastic or ceramic housing with gold plated connectors that attach on a housing or receptacle (socket)
of a computer’s motherboard.

The microchip housing the CPU can fit on the receptable that a socket is.

Definition 1.8 (SoC). A SOC is a System On a Chip, a computer housed on microchip.

Definition 1.9 (Register file). The collection of registers associated with an execution unit known as the CPU
(microprocessor, or simply processor). One of the registers is the Program Counter (PC).

Definition 1.10 (PC). PC would read as Program Counter. In very rare cases it would denote a Personal
Computer but this would be quite clear from the context.

1.2 More and more Processors: Multi
A CPU or a microprocessor can be referred to as an execution unit. An execution unit is characterized by
the register file of the CPU and is abstracted by the most important register of all, the Program Counter
(PC). Thus in early architectures one CPU mapped to one execution unit, and a PC (Personal Computer now)
contained one CPU, i.e. one execution unit. Therefore an execution unit used to imply one PC associated
with it, containing one CPU.

Definition 1.11 (Early microprocessor). An early computer era microprocessor was one execution unit con-
taining thus one PC (Program Counter) as part of the register file.
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Definition 1.12 (Uniprocessor). Uniprocessor means one processor. It refers to a processor with one execu-
tion unit (one PC of one register file). Sometimes it is interpreted to mean Unicore processor.

Definition 1.13 (Core). A core is an execution unit inside a microprocessor, i.e. what makes and defines a
microprocessor.

Early microprocessors had one execution unit i.e. one core. Thus the term microprocessor and its execu-
tion unit meant the same thing. The latter term was not much in use.

We started using the term core and execution unit when we started having multi-core processors. We use
then the term core to refer to the execution units inside a microprocessor that is then defined as a multi-core
processor.

The number of transistors in modern processor architectures can range from about a billion to 5 billion or
more (Intel Xeon E5, Intel Xeon Phi, Oracle/Sun Sparc M7).

A chip is the package containing one or more dies, actual silicon integrated circuits (IC) that are mounted
and connected on a processor carrier and possibly covered with epoxy inside a plastic or ceramic housing
with gold plated connectors. A die contains or might contain multiple cores, a next level of cached memory
adjacent to the cores (e.g. L3), graphics, memory, and I/O controllers. If L3 cache is adjacent to the cores,
this also means that L1 cache or L2 cache is in the cores as well.

Definition 1.14 (Multi-core Processor). A multi-core (or many-core) processor is a microprocessor with
many execution units (each one of them having a PC or equivalently associated with a register file) in it. The
execution units of a multi-core processor are known as cores.

From now on we drop the hyphen and write multicore processor. The term manycore processor is to be
used only when the number of cores is too large. Then we will define what ”too large” means.

Definition 1.15 (MultiComputer). A multicomputer (system) is a system consisting of more than one com-
puters.

It can be a non-homegeneous collection of computers or a homogeneous one. Think about one computer
having a plain processor, a processor that is a uniprocessor. Another computer having a multicore processor.
And so on.

Definition 1.16 (Multiprocessor). A multiprocessor is a computer with more than one processors.

We could even equivalently say that a multiprocessor is a computer with more than one execution units.

Definition 1.17 (Symmetric Multiprocessor). A symmetric multiprocessor (SMP) is a computer with more
than one processors that are all of the same type (and all sharing the same shared main memory).

Definition 1.18 (Multiprocessor System). It can refer to a Multiprocessor, or a Multicomputer, or a Symmetric
multiprocessor.
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Definitions
ExecutionUnit = Data Processing Unit ∧ (Has) RegisterFile

MicroProcessor =<2000 One ExecutionUnit ∧ InOneChip
Processor =<2000 MicroProcessor

Core = One ExecutionUnit ∧ ∃Processor : Core ∈ Processor
MulticoreProcessor = #Processor = 1 ∧ #ExecutionUnit > 1∧ InOneChip

MulticoreProcessor Alternative
= #Processor = 1 ∧ #Core > 1

Uniprocessor = #Processor = 1 ∧ #ExecutionUnit = 1

UniProcessor Alternative
= Processor(< 2000)

(Unicore) Processor = Uniprocessor
Processor =>1999 UniProcessor ∨ MulticoreProcessor

Multicomputer = #Computer > 1
SymmetricMultiprocessor (SMP) = #Computer = 1 ∧ #Processor > 1∧SameType

Multiprocessor (< 2000) = #Computer = 1 ∧ #Processor > 1
Multiprocessor (> 1999) = #Computer = 1 ∧ #ExecutionUnit > 1
MultiprocessorSystem = Multicomputer ∨ SMP∨Multiprocessor

1.3 Software front: Tasks
We use terminology from the Unix-like operating system referred to as Linux.

Definition 1.19 (Task). A task is a process or a thread.

Definition 1.20 (Process). A process is a program in execution; the OS knows about it. The kernel of the
OS maintains in data structures information about a process. A process has a PC (program counter) in its
register file, a User and Kernel stack, and of course text, initialized and uninitiliazed global variables, a heap,
and shared memory space (optional).

Definition 1.21 (Thread). A thread is a lightweight process. A thread is created inside a process. A thread
has a PC, User and Kernel stack and shares with the process in which it was created the text, initialized and
uninitiliazed global variables, the heap, and shared memory space (optional).

In Linux a task for which getpid() and gettid() return the same values is a process. If gettid() is different
from getpid() the task is a thread created within the process of the given getpid().

Definition 1.22 (Thread of execution). A thread of execution is a task defined by its PC (and register file).

A thread of execution can be that of a process or the threads of some process.

Example 1.1. A process with PID 10 created three threads. There are four threads of execution, one is that
of the process (sometimes referred to as the primary thread), and three are of the three threads created within
a process.

In Linux all four are called tasks. They have individual entries in the task table that contains task struc-
tures. So the Linux task table combines a PCB (Process Control Block) and a TCB (Thread Control Block)
functionality.
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1.3.1 Multiprocessing and Multithreading
Definition 1.23 (Multithreaded Process). A multithreaded process is a process with more than one threads
of execution. One is the thread of execution of the process itself that is defined by it PC (and register file),
and the others are threads of execution of threads created within that process.

Definition 1.24 (Multiprocessing). It is an approach or framework that includes two or more processes each
one with a single thread of execution defined by its PC (and register file).

A multiprocessor is a piece of hardware; a multiprocessing framework is the splitting of an application in
more than one programs whose execution generates more than one processes.

Definition 1.25 (Multithreaded Multiprocessing). It is an approach or framework that includes two or more
processes each one with a single or more threads of execution each one defined by its PC (and register file).

Processing and Threading Definitions
(Plain) Process = #Process = 1 ∧ #ThreadofExecution = 1

Multithreaded Process = #Process = 1 ∧ #ThreadofExecution > 1
Multiprocessing = #Process > 1 ∧ #ThreadofExecution/Process = 1

Multithreaded Multiprocessing = #Process > 1 ∧ #ThreadofExecution > #Process

The last definition is too loose. We could claim that the threads of execution in each process (per process) is
at least two. It suffices if in just one process this would be true. Thus we could replace a
#ThreadofExecution/Process≥ 2 or #ThreadofExecution/Process > 1 with a
#ThreadofExecutionofAllProcesses > #Process. The latter using the pigeonhole principle establishes that a
process will have at least two threads.

1.4 Memory lane(s)
Definition 1.26 (Register). A register is small named memory inside a CPU.

Definition 1.27 (Cache). A cache is a specially structured memory that is slower than registers but faster
than Main Memory.

Definition 1.28 (Main Memory (MM)). It is the main memory of a computer; also known as primary memory.

There are two fundamental CPU operations (instructions) related to Main Memory: a read and write
operation. If we conceptualize Main Memory as an array M of bytes, a read operation accepts one argument,
an address A of MM, and its output is the contents M[A] of that address A. The contents are returned to the
CPU. A write operation accepts two arguments, an address A and a byte value t. The effect is to set the
contents of address A of MM to t that is M[A] = t. The communication between the CPU and MM are done
through a set of register such as MAR and MDR for Memory Address Register and Memory Data Register
respectively (sometimes MDR is referred to as MBR, the Memory Buffer Register). Thus in a read operation
MAR is set to A and at the conclusion of the read step M[A] is available from MDR. In a write operation
MAR is set to A and MDR is set to t.

Main Memory sometimes is referred to as RAM for Random Access Memory. Such a characterization
means that accessing byte M[0] is no more expensive than accessing byte M[0x002F3F4F ], i.e. M[i] takes
constant time to retrieve.
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The main memory is external to the die that forms the multi-core processor. Latency is 32-128cycles
(60-110ns) and bandwidth 20-128GB/s (DDR3 is 32GiB/sec).

Moreover RAM (main) memory can be of two varieties. A DRAM (Dynamic RAM) uses 1 transistor
per bit and 1 capacitor. It is cheap, it needs a periodic refresh (every millisecond or so) and it is thus power
consuming and after every read operation, the read bit needs to be rewritten. It is volatile and has minimal
persistence (1-10s). Further more it is EMI (Electro Magnetic Interference) sensitive. A SRAM (Static RAM)
uses 4-6transistors per bit, it is x10 to x20 faster than DRAM. No refresh is needed and can be non-volatile
but is usually volatile with some remanence (preservation of data) It is non EMI sensitive and it is being used
for MM in space apps or caches in CPUs. This makes SRAM 10x to 100x more expensive than DRAM.

In a pyramid that represents the memory hierarachy, the registers are at the top, followed by the cache(s),
followed by MM, and then followed at the (or close to the) bottom of the hierarchy by other types of memory.

Definition 1.29 (Secondary Memory). Secondary memory is memory other than MM that requires commu-
nication through the I/O modules.

“Other than MM” implies an “other than MM and lower in the memory hierarchy”. Such memory includes
several disk drives such as a floppy disk drive (FDD), a hard disk drive (HDD), a CD-ROM drive, etc and
also a solid state drive (SSD), tape drives, etc.

A cached memory is a very fast memory. Its physical proximity to the CPU (or core) determines its
level. Thus we have L1 (closest to the CPU, in fact ”inside” the CPU), L2, L3, and L4 caches. The latter L4
might be available as a DRAM attached to a graphics unit (GPU) on the CPU die (e.g. Intel Iris). There are
references to an L0 cache which is much smaller in size than the L1 and is being used by the CPU to store
microcodes (microinstructions) outside of the registers.

Definition 1.30 (Memory attributes). Memory has three attributes: cost, speed and size.

Prefix Name Multiplier
d deca 101 = 10
h hecto 102 = 100
k kilo 103 = 1000
M mega 106

G giga 109

T tera 1012

P peta 1015

E exa 1018

d deci 10−1

c centi 10−2

m milli 10−3

µ micro 10−6

n nano 10−9

p pico 10−12

f femto 10−15

Figure 1.1: SI system prefixes

Prefix Name Multiplier
Ki kibi or kilobinary 210

Mi mebi or megabinary 220

Gi gibi or gigabinary 230

Ti tebi or terabinary 240

Pi pebi or petabinary 250

Figure 1.2: SI binary prefixes

Definition 1.31 (Bit). The word bit is an acronym derived from binary digit and it is the minimal amount
of digital information. The correct notation for a bit is a fully spelled lower-case bit.

Definition 1.32 (Byte). A byte is the minimal amount of binary information that can be stored into the
memory of a computer and it is denoted by a capital case B.
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Etymologically, a byte is the smallest amount of data a computer could bite out of its memory! Nowa-
days, 1B is equivalent to 8bit; it was not like this in the early years of computing. Some architectures were
using 4bit, or 6bit for a what is known nowadays as a byte.

Definition 1.33 (Word). Word is a fixed size piece of data handled by a microprocessor. The number of bit or
sometimes equivalently the number of byte in a word is an important characteristic of the microprocessor’s
architecture.

A 32-bit architecture has word size 32 bit.

Definition 1.34 (Octet). A sequence of 8 bit. Nowadays it is a synonym (alias) for a byte.

We never store bits in memory (as in main memory): we can only store a byte in it that contains the bit
in question. Thus to store a bit we embed it into a byte, store the byte, and we need to remember which of
the eight bit of the byte is our stored bit when later we retrieve the full byte with the intent of accessing the
stored bit! Thus in order to store one bit we waste the 7 remaining bit of a byte.

Definition 1.35 (Memory size). Memory size is expressed in bytes or its multiples.

We never talk of 8,000bit memory, we prefer to write 1,000B rather than 1,000byte, or 1,000Byte.

Prefix Name Multiplier
1KiB 1kibibyte 210B
1MiB 1mebibyte 220B
1GiB 1gibibyte 230B
1TiB 1tebibyte 240B
1PiB 1pebibyte 250B

Figure 1.3: SI aggregates of a byte

Name Multiplier
1 short 2B = 16bit
1 word 4B = 32bit
1 double word 8B = 64bit

Figure 1.4: Other aggregates of a byte

Definition 1.36 (Memory Latency). Memory latency is the time it takes to retrieve one byte from memory.

Definition 1.37 (Memory Throughput). Memory throughput is the times it take to retrieve additional, some-
time closely located, byte(s).

An HDD has memory latency of 5-20ms. Memory throughput is more than 20,000,000B/s. Main memory
latency is 80-120ns. Throughput is 100GiB/s

Memory Speed
Level Typical Size Latency

CPU register 8-16 1 cycle
L1D or L1I cache 8-32KiB 1-5 cycle
L2 unified cache 256-4096KiB 15 cycle
L3 unified cache 4-128MiB 45 cycle

SRAM 1-16MiB L0-L2 level
DRAM several GiB 45 cycle + 80ns

SSD hundred GiB 0.1-0.2ms
HDD several TiB 5-20ms
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1.5 Cached Memory
A cached memory is not as efficient as the on-chip registers; yet it is faster than main memory. It is more
abundant than the register file but its size is not as large as that of main memory.

Its existence allows for more effective memory transfer rates thus increasing a processor’s performance
since small segments of memory are speculatively fetched from main memory on the expectation that a
program code will exhibit temporal or spatial locality.

1.5.1 Temporal locality

Definition 1.38 (Temporal Locality). Temporal locality is the propensity of a piece of code to reuse recently
executed segments of program or data (or both).

For a example, in a C-like for-loop structure such as for(i = 0;i < n;i++){body;}, we expect the data
associated with variables i and n to be continuously retrieved and used during the execution of the for loop.
This is data temporal locality. Moreover we expect instructions such as i < n or i++ or body to be continu-
ously executed during the execution of the for loop.

1.5.2 Spatial locality

Definition 1.39 (Spatial Locality). Spatial locality is the propensity to access program/data close to pro-
gram/data that were recently retrieved.

Thus if the instruction i < n has been retrieved (and executed), we reasonably expect to have the instruc-
tions of body to execute then followed by the instructions associated with i++. Furthermore if body expands
to (the code maps to the C statement) sum+ = M[i], we can reasonably expect that access to M[500] would
follow (in the next iteration) by an access to M[501] and may be M[502] and so on. This is data spatial locality
of stride 1 (memory address 500, followed by memory address 501, followed by 502, etc). One of course also
observes the data temporal locality associated with variables i but also variable sum. The temporal locality
associated with instruction += is also clear.

Little endian architectures

Bit 31..24..23..16..15...8..7 .. 0

Byte31 Byte30 Byte29 Byte28 28 Byte Offset

...

Byte7 Byte6 Byte5 Byte4 4 Byte Offset

Byte3 Byte2 Byte1 Byte0 0 Byte Offset

1.5.3 Cached memory and its levels: L1

L1 cache is usually exclusive (private) to a core, and can be unified or not. In case it is not unified there is a
separate L1 cache for instructions and a separate L1 cache for data. They may or not have the same size and
the same form and properties.

Intel CPUs have separate L1D (Data L1) and L1I (Instruction L1) caches for data and instructions re-
spectively. This is also the case for modern ARM CPUs. The (combinded L1D and L1I) size of an L1 cache
ranges from an 8KiB (in the 1980s) to 96KiB.

For non-unified L1 caches L1D and L1I used to be of the same size. However in recent Intel architectures
(e.g. Ice Lake) L1D increased to 48KiB from 32KiB and L1I remained 32KiB, and this explains the 80KiB
combined size. Such sizes are per core.
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Note that for some AMD architectures L1I is larger in size than L1D (64KiB vs 16KiB for Bulldozer, or
64KiB vs 32KiB for Zen), and this was also the case, at least around 2008, for some Intel Atom architectures
as well (32KiB vs 24KiB).

The size of an L1 is determined by studies with the intent to maintain a hit ratio of at least 90% to 95%.
By hit ratio we mean the fraction of memory accesses of a program that can be retrieved through (are found
in) L1.

They are implemented using SRAM and latency to L1D is 4 cycles in the best of cases; transfer rate is
32-64B/cycle. Note that if L1D data is to be copied to other cores this might take a longer 40-64 cycles.

L1 caches used to be write through. When a datum is modified it is modified in both L1 and Main
Memory (MM). In recent years L1 caches are write back: only L1 is updated but not MM. This makes them
more efficient than those using a write through mechanism.

1.5.4 Cached memory and its levels: L2

An L2 cache is larger in size than L1 (typically 8x to 16x larger than L1D). Sometimes two or more cores
share an L2; this used to be the case in early architecture that lacked an L3 cache. Most Intel and AMD
general purpose architectures use private L2 caches (one per core).

An L2 cache can be inclusive (older Intel architectures e.g. Intel Nehalem) or exclusive (AMD Barcelona)
or neither inclusive nor exclusive (Intel Haswell).

Inclusive means that the same data will be in L1, L2 (and L3). Exclusive means that if data is in L2, it
can’t be in L1 and L3. Then if it is needed in L1, a cache ”line” of L1 will be swapped with the cache line of
L2 containing it, so that exclusivity can be maintained: this is a disadvantage of exclusive caches. Inclusive
caches contain fewer data because of replication. In order to remove a cache line in inclusive caches we
need only check the highest level cache (say L3). For exclusive caches all (possibly three) levels need to be
checked in turn. Eviction from one requires eviction from the other caches in inclusive caches.

L2 caches are usually coherent; changes in one are reflected in the other ones. In some architectures (e.g.
the obsolete Intel Phi), in the absence of an L3 cache, the L2 caches are connected in a ring configuration
thus serving the purpose of an L3.

The latency of an L2 cache is approximately 12-16 cycles (3-7ns), and up to 64B/cycle can be transferred
(for a cumulative bandwidth over all cores as high as 1000-1500GB/s). Note that if L2 data is to be copied to
other cores this might take 40-64 cycles.

When neither L1 nor L2 can accommodate a piece of datum, one need to be evicted to make room for a
new one. The evicted piece moves to a third level cached memory, L3.

1.5.5 Cached memory and its levels: L3

This is because a larger L3 cache is shared among all or a fraction of the cores of a processor. Accessing
a piece of datum in L3 becomes non-uniform as the L3 cache might contain data from different cores in
different states (read vs write).

In Intel’s Haswell architecture, there is 2.5MiB of L3 cache per core (and it is write-back for all three
levels and also inclusive).

In Intel’s Nehalem architecture L3 contained all the data of L1 and L2 (i.e. (64+256)∗4KiB in L3 are
redundantly available in L1 and L2).

Thus a cache miss on L3 implies a cache miss on L1 and L2 over all cores! It is also called LLC (Last
Level Cache) in the absence of an L4 of course. An L3 cache can also be exclusive or somewhat exclusive
cache (AMD Barcelona/Shanghai, Intel Haswell).
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Data evicted from the L1 cache can be spilled over to the L2 cache (victim’s cache). Likewise data evicted
from L2 can be spilled over to the L3 cache. Thus either L2 or L3 can satisfy an L1 hit (or an access to the
main memory is required otherwise).

In AMD Barcelona and Shanghai architectures L3 is a victim’s cache; if data is evicted from L1 and L2
then and only then will it go to L3. Then L3 behaves as in inclusive cache: if L3 has a copy of the data it
means 2 or more cores need it. Otherwise only one core needs the data and L3 might send it to the L1 of the
single core that might ask for it and thus L3 has more room for L2 evictions.

The latency of an L3 cache varies from 25 to 64 cycles and as much as 128-256cycles depending on
whether a datum is shared or not by cores or modified. Data throughput is 16-32B/cycle. The bandwidth of
L3 can be as high 250-500GB/s (indicative values).

1.5.6 Cached memory and its levels: L4

In 2016, a Level-4 cache memory was made available available in some architecture (Intel Haswell) as aux-
iliary graphics memory on a discrete die. It was uding DRAM technology.

It used to be 128MiB in size, with peak throughput of 108GiB/sec (half of it for read, half for write). It is
a victim cache for L3 and not inclusive of the core caches (L1, L2). It has three times the bandwidth of main
memory and roughly one tenth its memory consumption. A memory request to L3 is realized in parallel with
a request to L4.

1.5.7 Cache Characteristics

As mentioned earlier, write-back or copy-back cache is one when a write into L1 is not immediately copied
into a higher level memory. Only when the datum is to be discarded from L1 is it copied into L2, or discarded
from L2 (or L3) is it then copied into L3 (or main memory) respectively.

In a write-through cache a write into L1 also causes a write into higher memory hierarchies as needed.
In a write-miss cached either a write-allocate is performed when a write miss causes the loading of a

block/line into the cache and then the writing occurs in the cache, or no-write-allocate/write-around when
the data is modified in main memory but not in cache.

1.5.8 Cache Structure

Let x be the number of bit of an architecture that determines the number of bit of an address. For 32-bit
architectures x = 32; for 64-bit architectures though nominally x = 64, the x86-64 addressing scheme uses
only 48bit and thus x = 48.

Cache lines

For the moment let us assume that one set is one cache line.

Definition 1.40 (Cache: sets or lines). A cached memory contains a number of say C sets and each such set
contains one or more ”cache lines”.

Definition 1.41 (Number of sets or lines C). Parameter C is referred to as the number of line, or equivalently,
the number of sets of the cache. It is a power of two, and thus lgC is an integer. Let c = lgC.

An index in the range 0 . . .C−1 is used to describe an index or offset of a line of the set. Such an index
uses c = lgC bit.
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Definition 1.42 (Line: A block of byte plus more). A cache line stores a block of K bytes. Thus K is defined
as the block length or block size; the term line size can also be used.

Definition 1.43 (Block length or size K). Parameter K is referred to as the block length or equivalently, the
block size but the unit of memory size B must be appended then. Rarely will it be referred to as line size. It is
a power of two, and thus lgK is an integer. Let k = lgK.

An index in the range 0 . . .K−1 is used to describe an index or offset of a byte in a block of a line of the
cache. Such an index uses k = lgK bit.

Definition 1.44 (Tag, Block index, Line index). A cache line in addition to a block of K bytes that it stores, it
also stores a tag. The tag, the line index, and block index identify a byte in main memory and thus forms its
address. Conversely, the address in main memory of a byte in the cache can be formed by the union of the bit
of the tag, the line index, and the block index.

Definition 1.45 (Number of bit of tag t). The number t of bit of the tag is given as follows

x = t + c+ k⇒ t = x− c− k = x− lgC− lgK

The set address itself consists of a tag and (possibly of) a line index (offset). The line index of the set
address is used to identify (index) a set in cache and thus a ”cache line”.

Definition 1.46 (Control/Flag bit of a line). A cache line in addition to the tag bit (t) and the byte of the
block (K byte), it also contains a number of control (flag) bit. Let r be the number of control bit of a line of
the cache.

The flag (control) bits identify whether the cache-line is available to be replaced (not-valid) or not (valid)
or how long data have been stored in it. A cache-line that is not valid can be replaced; the block of its K bytes
gets replaced, not individual bytes within that block. How long data have been using a cache-line depends on
the policy of replacing data in it (e.g. Least Recently Used).

The structure so defined is a two-dimensional structure of byte containing C rows of K bytes. We can
view it as a C×K matrix of bytes (ignoring tag bit). The nominal size of this structure (in B) is C×K
bytes. The nominal size of this structure (in bit) is C×K× 8 bit. The actual size of this structure (in bit) is
C×K×8+C× (t + r) bit.

Definition 1.47 (Direct Mapped Cache or One-way Associative cache). A cache such as the one described
is known as a Direct Mapped Cache or One-way Associative cache

Definition 1.48 (Set associative cache). A cache containing A copies of a One-way Associative cache, is
called a set associative cache. The parameter A is the associtivity of the cache, the number of ways, or the
number of blocks per set.

Definition 1.49 (Associativity A of a cache). The associativity or number of ways A of a cache is the number
of blocks (along with their common tag and control bit) associated with a given line (index).

A 4-way associative cache contains 4 copies of a One-way associative cache. A does not need to be a
power of two. It is not uncommon in L3 caches to see A values of 13 and 15.

Cache associative greater than one allows us to store in the cache two bytes whose addresses have identical
bit for a line index and possibly the same bit for a block index (offset). In a one-way associative cache we
can only store those two byte in the cache if their tag bit are the same. If they are different we can only store
them in the cache in case A > 1. One would be stored in a block of a line of one set, and the other would be
stored in a block of a line of another set. Both lines are to have the same line index (offset).
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Example 1.2. Consider a byte with 32-bit address in hexadecimal 0x4FA12345. Let K = 16, A = 4, and let
C = 4096. Then c = lgC = 12, k = lgK = 4 and thus t = 32− c− k = 12bit. 12,4, and 12 bit map to 3, 1,
and 3 hexadecimal digit. Starting from right to left, the block index (offset) is 0x5, the line index (offset) is
0x1234, and the tag is 0x4FA,

Example 1.3. Consider a Pentium-4 L1D 4-way associative cache, with cache size 8KiB, and 64B block size.
Considering that Pentium-4 is a 32-bit architecture, reading out the rest of the information we gather that
A = 4, K = 64 and thus k = 6, and C×K×A, the nominal size of the cache is equal to 8KiB. Solving for C
we obtain C = 32 and thus c = 5. Assuming an 8-bit flag per line, we can conclude that the nominal size of
the cache in bit is 8KiB×8bit/B = 65536bit but the real cache size is 69248bit.

Example 1.4. In order to determine whether a byte of address 0x4FA12345 resides in the cache we first
determine the tag, the line index and the block index (offset). They are for the currenly discussed example,
starting from the right of the address, 0x5 for a block index, 0x1234 for a line index, and 0x4FA for the tag.
We then go to the cache line index 0x1234 and we check in all four copies of the set for that line whether
a tag includes tag number 0x4FA. If none of the four sets contains the tag number the byte with address
0x4FA12345 is not in the cache. If however the tag is found in a set, we access the byte indexed 0x5 of that
set, i.e. the sixth byte. Its contents map to the contents of the byte of MM with address 0x4FA12345. If we
retrieve the contol (flag) bit, we might detect that the byte is “dirty” i.e. modified. This means the cached
byte contains the currently correct value, and MM might contain a previous value. It also indicates that the
cache is a write-back cache.

Therefore a variety of memory levels imposes a variety of requirements or access patterns. Some memory
levels are exclusive to a particular core, whereas others (including the shared memory) are shared. Thus
access patterns become important in figuring out what the cost of accessing a memory level will be. Needless
also to say that the increasing memory level and size complicates memory modeling even more. Whether a
level is exclusive or shared among cores becomes hardware and architecture-dependent. A model that makes
some explicit assumptions and works well for some architectures might fail miserably in modeling others.
Thus for a model to be useable (i.e. it is simple enough for people to use it in analyzing program behavior)
and useful (i.e. the behavior it predicts does not contradict observed results) a certain abstraction of hardware
intricacies is desirable.

Sometimes architects can only afford these extra transistors and power dissipation that becomes the cache
by reducing the clock speed per core. Although as a whole speeds are higher, individual core speeds might
become slightly lower. This might affect memory transfer rates as well and impose certain synchronization
issues. Thus moving from one generation to the next, modeling issues become much more complex and less
straightforward.

1.6 Intel Dunnington
At approximately 2 billion transistors, it accommodates six Core 2 cores at clock speeds between 2.13 and
2.67GHz. Its 64-bit architecture allows access to 3MiB of L2 cache per pair of cores for a total of 9MiB
for the six cores. A L3 cache is shared by all six cores providing an additional 16MiB of cache memory.
All-in-all 25MiB of fast access memory is available to the six cores. Recently, all L2 caches are exclusive
to cores and not shared and smaller in size. L1 caches are also smaller in size (32KiB for data, 32KiB for
instructions) than the 96KiB of Dunnington.



Part II

Parallel computing
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Chapter 2

Architecture Taxonomies

2.1 Taxonomy based on address-space

2.1.1 Distributed memory
Definition 2.1 (Distributed Memory). In a multicomputer or multiprocessor system each computer has its
own memory and makes it available to other processors or execution units of the multicomputer/multiproces-
sor. The time it takes to retrieve one byte of main memory it depends on the distance between the execution
unit and the byte in question.

It is an architecture in which each processor has its own memory. Each processor can access its own
memory faster than it can access the memory of a remote processor. This difference (or non-uniformity) in
memory access time is also known as NUMA for Non-Uniform Memory Access.

In such a setup every execution unit has a unique ID assigned to it. A byte M[0] for example is available in
the main memory of each one of the computers of the multicomputer or multiprocessor system. Thus a byte
M[0] is better identifiable by a pair (memID,address), where memID identifies uniquely every participating
Main Memory unit, and address is the address within that unit (e.g. 0 of byte M[0]). The cost of accessing
(MemID,Address) depends on the distance between the execution unit issuing the request and the main
memory with identifier memID. If memID is the main memory of the execution unit issuing the request the
access would be fast. Otherwise it might require a network operation if MemID belongs to one computer and
the execution unit issuing the request is on another computer.

In a distributed memory organization, every memory unit has an address 0. The number of addresses 0 is
the number of main memory units available. For example in a multicomputer with 8 computers we expect to
have 8 main memories (one per computer) and each one of them has an address 0.

Definition 2.2 (Non-Uniform Memory Access (NUMA)). It is the situation where for some (MemID,Address)
memory request, an execution unit retrieves one byte from address Address from a main memory unit of ID
memID in a varying amount of time depending on the proximity of the memory unit containing the byte and
the speed of access between the computer of the client execution unit (generating the memory request) and
the computer of the server execution unit (satisfying the memory request) that contains the memory unit with
ID MemID.

Accessing the byte with address 0 from the local memory of an execution unit could take time close to
say 80ns. Accessing the byte with address 0 from the remote memory of another computer unit could take
time close to say 80microseconds or 80milleseconds depending on the proximity of the remote memory, and
the commmunication medium used (e.g. network).
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2.1.2 Shared address-space architecture
Definition 2.3 (Shared Address-space architecture). The architecture provides hardware support for read
and write operations to a shared address-space. There are two subcategories in it: (a) shared memory, and
(b) distributed shared memory.

Machines built according to this architecture are often called (or used to be called) multi-processors.

Shared memory

Definition 2.4 (Shared memory). All processors (or execution units or cores) share the same and one main
memory.

A shared-memory machine has a single address-space shared by all processors. The cost of accessing
this shared memory is the same for all processors. This is the case of a UMA (Uniform Memory Access)
architecture. Examples include the SGI Power Challenge, and Symmetric Multi Processor (SMP) machines,
the Encore Multimax, and the Sequent Symmetry.

Machines built according to this architecture are often called SMP (symmetric multi processor). The
cores of a multicore CPU (multicore processor) interact in an identical way.

Definition 2.5 (Uniform Memory Access (UMA)). It is the situation where every execution unit retrieves one
byte from main memory in the same amount of time as any other execution unit.

This is the case of an SMP and also the cores of multicore CPU.

Distributed shared memory

A distributed shared memory system is a hybrid between distributed memory and shared memory. A global
address space is shared among the processors but is distributed among them. This is also an instance of a
NUMA (Non-Uniform Memory Acess) architecture. An example of such an architecture is an SGI Origin
2000. Other examples of such machines is the BBN TC2000 butterfly supporting up to 128 processors, IBM
SP1/SP2, SGI/Cray T3D/T3E. Several multi-core designs also fall into this group.

Definition 2.6 (Distributed Shared Memory (DSM)). In a multicomputer or multiprocessor system each com-
puter has its own memory and makes it available to other processors/execution units of the multicomputer /
multiprocessor system in the form of a shared memory.

Let us call the distributed shared memory DSM[]. DSM is the union of all main memories M[] of each
one of the computers available. In the simple case where 4 computers have their own main memory of
maximum size of X bytes, the address space DSM[0..X−1] is that of M[0..X−1] of computer 0, the address
space DSM[X ..2X − 1] is that of M[0..X − 1] of computer 1, the address space DSM[2X ..3X − 1] is that of
M[0..X − 1] of computer 2, and the address space DSM[3X ..4X − 1] is that of M[0..X − 1] of computer 3.
There is only one address 0 across all processors. Thus DSM[0] resolves uniquely in a (MemID,Address)
pair that of (0,0).

The existence of a cache in shared-memory parallel machines causes cache coherence problems when
a cached variable is modified by a processor and the shared-variable is requested by another processor. An
instance of a NUMA architecture is a cc-NUMA that stands for cache-coherent NUMA architectures (SGI
Origin 2000) and resolves such issues.

Definition 2.7 (Cache Coherent Non-Uniform Memory Access (cc-NUMA)). It is the situation where a
cached shared variable is modified by one processor and that shared variable is requested by another pro-
cessor.

A multicomputer or multiprocessor system is an interconnected system.
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2.2 Taxonomy based on instruction and data separation
Definition 2.8 (Harvard Architecture). In a Harvard Architecture there is a separate main memory for the
data of a program, and a separate main memory for the program’s instructions.

Definition 2.9 (Von-Neumann Architecture). In a Von-Neumann Architecture there is one main memory for
the data of a program, and for the program’s instructions.

Sometimes a Von-Neumann Architecture is referred to as a ’Princeton Architecture’. Most modern com-
puters are Von-Neumann Architectures.

In Intel CPUs there is a level-1 cache for instructions referred to as L1I and there is a level-1 cache for
data referred to as L1D. Thus L1 design on Intel CPUs follows a Harvard Architectural approach (but for the
cache not the main memory). In AMD CPUs there is a unified L1 cache storing instructions and data. In
CPUs a level-2 or level-3 cache is a unified cached memory.

When we store programs in memory memory we split them into segments (sections). One segment is
the text (instructions), another is the global initialized variables, another is the global uninitialized variables,
another is the stack (user or kernel), another is the heap, etc. Elements of the Harvard Architecture approach
have encroached into modern von-Neumann architectures.
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2.3 Taxonomy based on communication
Definition 2.10 (Shared Memory-based communication). The execution units of an SMP use shared memory
to communicate with each other directly bypassing the available communication network.

No ’message’ is formed for this communication.

Definition 2.11 (Message Passing). Communication of execution units in a multiprocessor system and in
particular a multicomputer is realized by an execution unit (source) sending a message to another execution
unit (destination) by using the regular network interface cards (networking) of the computers hosting the two
execution units or a specialized network that is fast and optimized for the particular communication.

This architecture is also known as a message-passing architecture and systems that use it are commonly
referred to as multicomputers.

In message passing-based architectures, each processor sends/receives messages to/from other processor.
A store-and-forward protocol (used in nCUBE/10, T800 transputers) requires that the message be copied

into the memory of the receiving processor before it is dispatched away.
In circuit-switched message-passing (e.g. ATM, nCUBE 2) no intermediate processor (other than source

and destination) stores the message. A communication “pipe” is opened between source and destination and
then a communication is initiated. Examples include Cray T3D/T3E, IBM SP1/SP2.

A ’message’ is formed in this communication. It is possible that message passing is realized using shared
memory based communication if the two execution units are inside the same computer. However by default
message passing communication would involve by default the network interface cards (networking) of that
computer.
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2.4 Taxonomy based on instruction and data
Flynn’s taxonomy on instruction execution and data stream.

Flynn’s taxonomy is based on the available control mechanism in a computer architecture. Depending on
their execution and data streams, computer architectures can be distinguished into the following four groups.

2.4.1 SISD
Definition 2.12 (Single Instruction Single Data (SISD)). The architecture executes a single instruction on a
single piece of data at a time (instruction cycle).

This is a sequential computer (uniprocessor) which exploits no parallelism at either instruction-level or
data-level/stream. Older generation microprocessors (pre 1990s) are candidates.

Most modern microprocessors of this century, that exploit ILP (Instruction-Level Parallelism) by using
pipelining or specialized instruction sets (eg Intel’s MMX) would even fail to be included in this group.

2.4.2 SIMD
Definition 2.13 (Single Instruction Multiple Data (SIMD)). The architecture executes a single instruction on
multiple pieces of data. This can be done sequentially (e.g. pipelining) or in parallel.

This is a parallel architecture where the same instruction is executed on a large data set. SIMD archi-
tectures are suited for data-parallel programs e.g. image processing and multimedia processing. SIMD
execution is witnessed in specialized instruction sets (e.g. Intel’s MMX).

Example architectures include,

• Thinking Machines’ CM-1, CM-2, and CM-200 of the 1980s/1990s,

• Cray Inc’s X-MP series supercomputer of the 1980s,

• the extension of Intel’s x86 architecture to support the MMX extensions/instructions is the first wide
deployment of the SIMD paradigm,

• ILLIAC IV (1974), and MassPar MP-1 and MP-2 (1980s),

• modern GPU (Graphics Processing Units) are also offering extensive SIMD capabilities.

A vector processor (or array processor as it was known at the time of its introduction into Flynn’s tax-
onomy), is the old name for the modern paradigm of Single Instruction Multiple Thread execution, which is
a subdivision of SIMD. In the Compute Unified Device Architecture (CUDA) GPUs offered by NVIDIA
provide for a Single Instruction Multiple Thread model of execution.

Definition 2.14 (Single Instruction Multiple Thread). The architecture executes a single instruction on mul-
tiple pieces of data in parallel by execution subunit that have their own register file and memory (cache or
shared).

2.4.3 MISD
Definition 2.15 (Multiple Instruction Single Data (MISD)). The architecture executes multiple instructions
on a single piece of data.
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Some consider a systolic array a member of this group. A systolic array is a piped geometry of elemen-
tary processing units that have the capability to compute, store and receive/forward data to other units directly
connected to themselves. A form of a systolic array is the pipeline of a modern-era microprocessor.

A fault-tolerant computer can also be considered an extreme example of an MISD architecture (think of
the flight control computers of an airplane which consist of a number of identical processing units that repeat
the same computations multiple times and can tolerate the loss of a number these units).

2.4.4 MIMD
This category includes all other architectures. It includes parallel computers, multicomputers, multiprocessor
systems, SMPs and multicore processors.

Definition 2.16 (Multiple Instruction Multiple Data (MIMD)). The architecture executes multiple instruc-
tions on multiple pieces of data.

An MIMD architecture can be an MPMD or an SPMD. (Note that Flynn’s original taxonomy did not
indlude these two subcategories.)

Definition 2.17 (Multiple Program Multiple Data (MPMD)). In a Multiple-Program Multiple-Data (MPMD)
architecture, each execution unit of the architecture executes its own program on multiple data.

Definition 2.18 (Single Program Multiple Data (SPMD)). In a Single-Program Multiple-Data (MPMD)
architecture, each execution unit of the architecture executes the same one program on multiple data.

Examples include Intel iPSC, CM-5, Kendall Square Research KSR-1, Cray T3D/T3E. Silicon Graphics
Inc (SGI) Power Challenge, IBM SP2, and clusters of workstations. Multi-core designs fall into this group as
well.

2.4.5 Hybrid architectures
Some consider a Thinking Machines CM-5 as a combination of an MIMD and SIMD as it contains control
hardware that allows it to operate in an SIMD mode.
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2.5 Taxonomy based on process or processor granularity
The term granularity sometimes refers to the power of individual processors. Sometimes it is also used to
denote the degree of parallelism.

Process Granularity refers to the amount of computation assigned to a particular process/processor of
a parallel machine for a given parallel program. It also refers, within a single program, to the amount of
computation performed before communication is issued. If the amount of computation is small (low degree
of concurrency) a process is fine-grained. Otherwise granularity is coarse.

(1) A coarse-grained architecture consists of (usually few) powerful processors (e.g. the first Cray
machines).

(2) a medium-grained architecture is a hybrid between the two (e.g. CM-5).

(3) a fine-grained architecture consists of (usually many inexpensive) processors (e.g. TM CM-200,
CM-2) or the processors of a systolic array, a pipeline or the units of the MMX extensions to x86.

Further refinement is also possible. When synchronization takes place at software level (thread or process)
we have the following interpretations of multiprocessor system synchronization

Definition 2.19 (Multiprocessor System Synchronization). A multiprocessor system can have its program-
s/processes synchronizing at different granularities. These include

• Independent (e.g. two processes of two different users on same computer),

• Very Coarse granularity (e.g. a client and server process),

• Coarse granularity (e.g. ps -ef | egrep somestring),

• Medium granularity (e.g. multithreaded or multiprocessing application),

• Fine granularity (e.g. exhibited in a parallel program).
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2.6 Taxonomy based on processor synchronization
(1) In a fully synchronous system a global clock is used to synchronize all operations performed by

the processors.

(2) An asynchronous system lacks any synchronization facilities. Processor synchronization needs
to be explicit in a user’s program.

(3) A bulk-synchronous system comes in between a fully synchronous and an asynchronous sys-
tem. Synchronization of processors is required only at certain parts of the execution of a parallel
program.



Chapter 3

Introduction to parallel computing

3.1 What is parallel computing?
Parallel computing is the concurrent manipulation (“in-parallel”) of data distributed on one or more proces-
sors to cooperatively solve a computationally intensive problem faster than other methods. The collection of
processors used in parallel computing is called a parallel computer.

There are several forms of parallel computing.

• instruction-level parallelism (ILP), in which several operations are executed simultaneously employed
techniques such as pipelining, superscalar execution, speculative execution, and branch prediction to
exploit ILP,

• data parallelism, in which data are distributed over a number of processors.

• task parallelism, in which processes (or threads) are distributed over a collection of processors.

3.2 What is a parallel computer?
A parallel computer is a multiple-processor computer capable of parallel computing. Sometimes the term
parallel computer is confused with a supercomputer. The term supercomputer refers to a computer that can
solve computationally intensive problems faster than traditional computers. A supercomputer may or may
not be a parallel computer.

A parallel computer can be a very complex highly specialized system or just a collection (usually referred
to as a cluster) of pc workstations connected through a high speed (e.g. Ethernet-based) switch. It can be a
symmetric multi-processor (SMP) in which several (identical) processors access a single (shared) memory,
or a Chip Multi-Processor (CMP) that contains several control units (processors that are usually called cores)
on a single die/chip. A CMP or multi-core processor differs from superscalar processor in the sense that they
maintain multiple instruction streams from which they can issue multiple instructions. In superscalar design,
there is only one instruction stream. The cores within a CMP can in fact be superscalar processor themselves.
Multithreading (e.g. Intel’s Hyperthreading) is a form of virtual multi-core approximation, in which multiple
threads are using one execution unit.

A distributed computer is a parallel computer in which the multiple (homogeneous or non-homogeneous)
processors/computers (i.e. processing units or elements) are connected through a high-speed external (to the
processors, or cabinets, housing the processors) network. In a cluster, the computers are loosely coupled
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and are more frequently non-homogeneous. Beowulf clusters refere to homogeneous, identical computer
connected with a TCP/IP (fast) Ethernet network.

Specialized parallel computers come in the form of reconfigurable computers such as Field-Programmable
Gate Arrays (FPGA) that act as a coprocessor to a general-purpose processor, General-Purpose Graphic Pro-
cessing Units (GPGPU) that serve the same purpose that an FPGA serves, except that they specialize in
graphics processing, and vector processor.

3.3 Parallelism and Parallelization: Issues and Challenges
One example in real life that illustrates the principles related to parallel computing is book shelving in a
library. One can accomplish this simple task by using just a single worker. If the number of books to be
shelved is quite large, this task might take plenty of time to complete. If one wants to speed up the process,
one can take advantage of the inherent parallelism available in this process. Some form of parallelization
of the shelving task may be required.

Idea 1. A number p of workers is available. Then n books that are to be shelved are split evenly among
these workers so that each one stacks about n/p books. If such an approach is used, several problems may
occur when many workers try to stack the next available for stacking book in the same shelf or location.
Some kind of arbitration is required on who works first or enters the stack first.

Question 1. Does it matter if some books are heavier than others?
Question 2. Does it matter if some books are located in adjacent shelves.
Idea 2. A number p of workers is available. Then n books are split evenly among the workers so that

each one is to stack about n/p books. To avoid arbitration problems observed in Idea 1 we split the books so
that each worker works on a different set of shelves (e.g. by grouping books by topics/call numbers). In this
way, no book from two different workers will end up in the same shelf.

Question 3. How more complex is the splitting task? Does it require too much time?

Therefore the most important issue in parallelizing a sequential task is identifying the inherent and appar-
ent parallelism in that task, and then developing methods to exploiting it in an efficient manner. The following
become then important aspects of the process of parallelization.

1. Task/Program Partitioning. It describes the process of splitting a single task among the several avail-
able processors so that each processor is assigned approximately the same workload, and all processors
can and will work collectively to complete the task. The object of task partitioning is that the proces-
sors finish the work faster than the time it would take a single processor to perform that same task. This
is also referred to as task parallelism.

2. Data Partitioning. It describes the potential splitting of the data used by the task among the available
processors in such a way that processor interaction is minimized and the processors complete the task
concurrently faster than an individual processor. This is also referred to as data parallelism.

3. Communication/Arbitration. It describes the process of information of data exchange among the
processors and how one can rbitrate communication-related conflicts.

In order to realize an efficient parallelization of a sequential task several challenges need to be overcome, or
support becomes available for the realization of task or data partioning, communication and synchronization
of parallel tasks.

1. Design of parallel computers that can effectively support parallel computing requirements.
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2. Effective use of memory and multiple-memory hierarchies in the case of multi-core architectures is
undertaken.

3. Design, analysis and evaluation of parallel algorithms run on such machines is successfully undertaken.

4. Portability and scalability issues related to parallel programs and algorithms are understood and ana-
lyzed.

5. Tools and libraries become available in and for such systems for the benefit of the software developer
and other users.

3.4 Requirements for parallel software development

A parallel algorithm is an algorithm designed for a parallel computer.
A parallel computer is a collection of processors or computers that cooperatively solve computationally

intensive problems faster than other computers.
Parallel algorithms allow the efficient programming of parallel computers. This way the (or some) waste

of computational resources can be avoided.
The term supercomputer also refers to a general-purpose computer that can solve computationally in-

tensive problems faster than traditional computers. A supercomputer may or may not be a parallel computer.
The cost of building a parallel computer has dropped significantly in the past years. One is able to build

a parallel computer using off-the-shelf commercial components. This way workstations can be arranged
together in a cluster/network and interconnected with a high-speed network (e.g Myrinet switches, 100Mb/sec
or Gigabit ethernet switches) and form a high-performance parallel machine. A multi-core computer with
several cores is readily available at no (or insignificant) extra cost.

The construction of a parallel computer is more complicated than that of a sequential machine. One needs
to take into consideration not only those issues related with building a sequential machine but also issues
related with the interconnection of multiple processors and their efficient coordination. A complete network
where each processor can directly communicate with every other processors is not currently technologically
feasible if the parallel machine consists of more than a few processors. Methods thus need to be devised that
allow the efficient dispatch of information from one processor to another (routing protocols and algorithms).
Problems like congestion (bottlenecks) may occur if someone is not very careful in designing such methods.

An efficient sequential algorithm does not necessarily translate into an efficient parallel algorithm. Imple-
mentation of an inappropriate algorithm in parallel may waste resources (e.g. computational power, memory).
A sequential algorithm needs perhaps to be split into pieces so that each piece is executed by a processor of
the parallel machine. Each piece, however, may need to interact with the piece held at another processor (say
because it wants to access a memory location held there). If a sequential algorithm utilizes M memory loca-
tions and solves a problem instance within time T , one expects a parallel algorithm solving the same problem
instance to utilize as many resources as its sequential counterpart. If the algorithm is run on a p processor
machine it is thus expected to utilize memory of overall size (over all p processors) that is comparable to M
and the sum of execution time over all p processors to be around T . The best one can hope for is for the
parallel algorithm to use M/p memory per processor and its parallel time to be T/p. In order to achieve such
a running time (and it is not clear that this is possible, even if it is feasible) an algorithm designer/programmer
needs to take into consideration the architecture of the parallel machine (e.g. how processors are intercon-
nected). This optimal speedup of a parallel program is more the exception rather than the rule in practice.
The reason is that interprocessor communication (i.e. conflict resolution when accessing the same date)
and synchronization (i.e. arbitrations) are expensive operations and unavoidable in a parallel environment.
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3.4.1 Users of parallel computers
There are many science problems that can only be solved and studied by using simulations. Such problems
require extraordinary powerful computers and cannot be solved in reasonable amount of time today. A
collection of such problems that can be solved in parallel include some of the following problems that one
might refer as grand challenge problems.

• Web Searching,

• Data Mining (find preferences of customers and then use more efficient direct marketing meth-
ods).

• Quantum chemistry, statistical mechanics, cosmology and astrophysics.

• Material sciences (e.g. superconductivity).

• Biology, biochemistry, gene sequencing.

• Medicine and human organ modeling (e.g. to study the effects and dynamics of a heart attack).

• Environmental modeling and global weather prediction.

• Visualizaton (e.g. movie industry).

• Computational-Fluid Dynamics (CFD) for aircraft and automotive vehicle design.

The following example might illustrate the importance and also the challenges one is facing with parallel
computing.

For local weather prediction, an area 2000nm× 2000nm is broken into cubic cells each 0.1mile wide,
from the surface to an altitude of 10-12 miles. There are 20000×20000×100 = 4 ·1010 cubic cells overall,
each one requiring around 200 floating operations for each iteration of a weather prediction program.

Each iteration gives the state of the atmosphere for a 15 minute interval and therefore approximately
200 iterations are required for a 3 day forecast for a total computation count of 1015 flops. A commercial
processor rated at 1 Gigaflops would require 11 days to predict the weather more than one week ago!

N-body simulation involves the calculation of forces and therefore of the position of N bodies in three-
dimensional space. There are approximately 1011 stars in our galaxy. A single iteration of such a program
would require several divisions and multiplications. On a uniprocessor machine it would take a year to
complete a single iteration of the simulation. In order to predict whether a meteorite is going to hit earth in
the distant future one would need to sacrifice precision over running time or the other way around.

3.5 Past, Present and Future Challenges
In the 1980’s a Cray supercomputer was 20-100 times faster than other computers (mainframes, minicom-
puters) in use at that time. Because of this, there was an immediate pay-off in investing on a supercomputer:
a tenfold price increase was worth 20-100 times improvement in performance. In the 1990’s a “Cray”-like
CPU was on the average twice - four times as fast as (and sometimes, slower than) a microprocessor. Paying
10-20 times more to buy a supercomputer started making not much sense.

The solution to the need for computational power is a massively parallel computer, where tens to hundreds
of commercial off-the-shelf processors are used to build a machine whose performance is much greater than
that of a single processor.

Various questions arise when such a combining of processor power takes place.

• How does one combine processors efficiently?

• Do processors work independently?
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• Do they cooperate? If they cooperate how do they interact with each other?

• How are the processors interconnected?

• How can we make programs portable?

• How does one program such machines so that programs run efficiently and do not waste re-
sources?

Most of the parallel computers manufactured in the 80s and 90s were used to solve technical problems.
Several companies built proprietary systems that were hard to program in a general-purpose way. This

led to the demise of several of these companies early pioneers of parallel computing. The names of MassPar,
Thinking Machines, Cray, and Silicon Graphics are a fading memory of their glorious past.

In 1991, microprocessor speeds were at the 33MHz level. By 2002 they had reached the 2.2GHz level,
an annual increase of roughly 45% roughly confirming Gordon Moore’s Law (a co-founder of Intel) that says
that that transistor capacity would double roughly every 2 years.

Historical Parenthesis: In his original 1965 paper, Moore was predict-
ing a doubling of capacity every year. In 1975 he revised it to “every
couple of years”, and an Intel engineer (Moore himself suggesting that
engineer to be Dave House) modified it to “every 18 months” that is often
quoted in the media.

In the years leading to 2002, Moore’s law could only be maintained by incorporating several interesting
hardware tricks. This started in the late 80s with the addition of cache memories, and continued with the
use of superscalar designs, where multiple instructions are executed per clock cycle; such designs are also
pipelined, may have multiple FPUs (Floating Point Units) or ALUs (Arithmetic Logic Units).

Yet since the 2.2GHz level reached in 2002, microprocessor speeds have remained at the 3.0-4.0GHz or
lower level ever since.

One reason for this stall is technology limitations: we run out of (high-performing) hardware tricks.
Another reason is power consumption. CPU architectures started to consume too much power. The power
density of a microprocessor is around 10W/cm2!

On a hot summer day, the sunlight reaching us has density less than 0.1W/cm2, and we feel hot and
uncomfortable. Yet microprocessors operate at 100 times that comfort level!

3.5.1 Limitations of sequential (serial) processors

1. Power consumption: Remains steady at around 100W

2. Clock Speed: Recent multi-cores venture at clock speeds in the 2-3GHz level, which is roughly the
same as that achieved by single-core designs back in 2001-2002 (and some of those 2001-2002 designs
had the potential to reach clock speeds as high as 3.5-4.0GHz).

3. Transistors: Several billions per chip.
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Limitation 1: Power Consumption

Power consumption is linear to frequency and capacitance and quadratic to voltage. In other words P ≡
C ·F ·V 2, where C,V,F are capacitance, voltage, and frequency respectively.

Cutting voltage levels by 25% or so, one can decrease power consumption by 50%.
Lowering the frequency and the voltage but doubling the cores has the effect of overall increasing perfor-

mance by significantly reducing power consumption.
This byitself constitutes a benefit.
To further increase performance, cache memories were added in a variety of forms and cache sizes have

also increased considerably. Level 2 caches increased from several hundred kilobytes to several megabytes.
Level 3 caches has been added in some cases amounting of tens of megabytes.

Limitation 2: Hidden parallelism (superscalar design)

Superscalar designs (multiple ALUs, FPUs), Instruction-Level parallelism (ILP) in the form of pipelining that
allowed microprocessors to maintain their performance edge through 2002 have used up most of the tricks
available.

Limitation 3: Chip densities

Chip density has increased reaching now a billion or more transistors per chip. But this comes at an extreme
cost of building the manufacturing facilities: costs run up to billion of dollars.

3.6 The era of multi-core computing
In recent years parallel computing has been revitalized in the form of multi-core computing. Parallelism has
provided a new set of tricks to increase performance. Given the limitations of a single microprocessor, the
hardware industry came up with the concept of including multiple cores on a single die to increase overall
performance. In order to achieve this and also reduce power consumption (an impediment for designing mo-
bile devices and also cooling mechanism for non-mobile components) several trade-offs (i.e. compromises)
were made: each individual core operated at a lower frequency, all cores used a common main memory and
voltage levels were reduced.

We mentioned earlier some interesting issues related to parallelism. The emergence of multi-core com-
puting has added urgency to several of them.

• Every computer is a parallel computer. How does one put several cores on a single chip?
How does one organize the memory to increase performance? How does one allow interaction
between the cores?

• Every program is (or is going to be a) a parallel program to achieve high performance and
utilize the underlying hardware. Do we need to have a new software or programming models for
these computers? What will be the hardware abstraction equivalent to the von-Neuman model of
sequential computing? What are the killer apps?

• Every programmer who programs such a computer is (or ought to be) a parallel program-
mer. How do you educate software-engineers and instill in them that (parallel) performance
optimization will become the number one issue/priority (whether it had been so in the past or
not)?

• Software support for such architectures. In the meantime while programmers are being (or
are to be) retrained and reeducated, will software libraries fill the gap?
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In order to be able to write efficient parallel programs the following issues need to be addressed. Several
of them have no sequential computing counterpart.

• Task Parallelism. Is there enough parallelism in the application. Amdahl’s law that will be
discussed later addresses several limitations.

• Data Parallelism. Can we split the data efficiently?

• Task/Process/Thread Granularity refers to the amount of computation assigned to a particular
processor or core for a given parallel /task/process/thread. It also refers to the amount of com-
putation performed before a communication is issued. It is task and data parallelism that decide
process granularity.

• Load-Balance Are tasks performing about the same amount of work or are several of them idle?

• Locality of reference Is memory available locally or does one need to retrieve it from a remote
location? Such a remote location can be another processor’s memory bank, the main memory
residing outside the CPU chip, the level-3 (i.e. L3) cache that is often outside the CPU chip, or
the level-2 (L2) cache shared by multiple cores. Multiple memory hierarchies are being used to
increase performance and their efficient use will determine how efficient a program is.

• Synchronization Coordinate simultaneous memory accesses, or transition to the next common
task in the program sequence.

• Latency/Startup issues Cost of synchronization, communication, or starting a program which
is a process or a thread, or a memory access to an alternate memory hierarchy.

• Modeling/Abstraction What is the hardware abstraction that will provide a reliable model to
describe the performance of an algorithm/program and predict its performance on multiple multi-
core or multi-computer platforms or its scalability on similar but many-core systems?

3.7 Performance Characteristics

The performance of a parallel algorithm A that solves some problem instance can be measured in terms of
various measures.

• Parallel Time T gives the execution time of the parallel algorithm and T = maxiTi, where Ti is
the running time of algorithm A on processor i.

• Processor size P is the number of processors assigned to solve a particular problem instance.

• Work is the product P ·T . Sometimes the actual work ∑
T
j=1 Pj ≤W is used instead, where Pj is

the number of processors that are active in step j.

• Speedup given by s = Ts/T is the ratio of the execution time Ts of the most efficient sequential
algorithm that solves a particular problem instance to parallel time T of A on the same instance.

• Scaled speedup is the ratio T1/Tp, where Ti here denotes the parallel time T of A when i proces-
sors are used to solve that particular problem instance.

• Efficiency e = s/p, which is sometimes expressed as a percentage. It is also the case that e =
Ts/W , where W = T P.

• Scaled Efficiency, which is derived similarly from scaled speedup.
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3.7.1 Amdahl’s Law
Gene Amdahl was first to argue about the limitations of parallelism. His observations can take the form of
the following theorem.

Theorem 3.1 (Amdahl’s Law). Let f , 0≤ f ≤ 1, be the fraction of a computation that is inherently sequential.
Then the maximum obtainable speedup S on p processors is

S≤ 1
f +(1− f )/p

Proof. Let T be the sequential running time for the named computation. f T is the time spent on the inherently
sequential part of the program. On p processors the remaining computation, if fully parallelizable, would
achieve a running time of at most (1− f )T/p. This way the running time of the parallel program on p
processors is the sum of the execution time of the sequential and parallel components that is, f T +(1− f )T/p.
The maximum allowable speedup is therefore

S≤ T/( f T +(1− f )T/p)

and the result is proven.
Amdahl used this observation to advocate the building of even more powerful sequential machines as one

cannot gain much by using parallel machines. For example if f = 10%, then S≤ 10 as p→∞. The underlying
assumption in Amdahl’s Law is that the sequential component of a program is a constant fraction of the whole
program. In many instances as problem size increases the fraction of computation that is inherently sequential
decreases with time. In many cases even a speedup of 10 is quite significant by itself.

Consider the following alternative argument to Amdahl’s law.

Example 3.1. You are commander of a Patriot missile battery whose command processor is a sequential
computer with response time to a missile threat of 10 seconds. A new missile threat requires a response time
of only 5 seconds. You are given two options.

(1) Wait 2-3 years until a faster command processor comes out with a two-fold increase in per-
formance.

(2) Order a parallel machine that uses the current generation of command processors. The in-
herently sequential component of the sequential missile response program is at most 20%. The
parallelization of the program takes a couple of days because the programmers are NJIT gradu-
ates who had taken a parallel computing course at NJIT.

Question 3.1. What do you do? Amdahl’s law says that no matter how many processors you use you can
only get a speedup of 5. Do you wait until option (1) becomes available or take up option (2)?

This is an example where efficiency does not matter. What it really matters is whether by choosing a
parallel computer a significant increase in performance can be obtained. In addition Amdahl’s law is based
on the concept that parallel computing always tries to minimize parallel time. In some cases a parallel
computer is used to increase the problem size that can be solved in a fixed amount of time. For example
in weather prediction this would increase the accuracy of say a three-day forecast or would allow a more
accurate five-day forecast.

3.7.2 Parallel vs Sequential Computing: Gustafson’s Law
The following Law is due to Gustafson and sometimes referred to as the Gustafson-Barsis law. It states that
any sufficiently large program can be parallelized efficiently.
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Theorem 3.2 (Gustafson’s Law). Let the execution time of a parallel algorithm consist of a sequential seg-
ment f T and a parallel segment (1− f )T and the sequential segment is constant. The scaled speedup of the
algorithm is then.

S =
f T +(1− f )T p
f T +(1− f )T

= f +(1− f )p

Proof. Let T be the parallel running time. T f is the portion of the running time that is inherently sequential
and T (1− f ) is the portion that has admitted parallelization. Thus on a sequential machine consisting of only
one processor that program would take time equal to the sequential component T f plus at most T (1− f )p
that results if the p parallel segments are emulated on a single processor. Total time (sequential) is thus
T (1− f )p+ T f providing a (scaled) speedup of f +(1− f )p. For f = 0.05, we get S = 19.05, whereas
Amdahl’s law gives an S ≤ 10.26. Amdahl’s law assumes that problem size is fixed, while Gustafson’s law
assumes that running time is fixed. This is similar to the question

Question 3.2. In a 1-day timeframe what is the grid-size/accuracy to run a 3-day or a 10-day weather
prediction code?

For such a setting we are not interested in minimizing the runtime. We are more interested in improving
the information we get by running a bigger problem size in the same amount of time.

Amdahl’s Law assumes that problem size is fixed when it deals with scalability. Gustafson’s Law assumes
that running time is fixed.

Example 3.2. For f = 0.05, we get S = 19.05, whereas Amdahl’s law gives an S≤ 10.26.

Example 3.3. Consider a 1 vs p processor scenario. Time f T is inherently sequential. Sequential p = 1
parallelizable time of (1− f )T p maps to (1− f )T for p processors. The total time on p processors is T
where T = f t +(1− f )T and for one processors it becomes T ( f +(1− f )p).

3.8 Brent’s Scheduling Principle: Emulations

Suppose we have an unlimited parallelism efficient parallel algorithm, i.e. an algorithm that runs on zillions
of processors. In practice zillions of processors may not available. Suppose we have only p processors.
A question that arises is what can we do to “run” the efficient zillion processor algorithm on our limited
machine.

One answer is emulation: simulate the zillion processor algorithm on the p processor machine.

Theorem 3.3 (Brent’s Principle). Let the execution time of a parallel algorithm requires m operations and
runs in parallel time t. Then running this algorithm on a limited processor machine with only p processors
would require time m/p+ t.

Proof. Let mi be the number of computational operations at the i-th step, i.e. ∑mi = m. If we assign the
p processors on the i-th step to work on these mi operations they can conclude in time dmi/pe ≤ mi/p+ 1.
Thus the total running time on p processors would be.

∑
i
dmi/pe ≤

t

∑
i=1

mi/p+1 = t +∑
i

mi/p = t +m/p.
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3.9 Terminology

Parallel Computing/Processing is the concurrent manipulation of data distributed on one or more processors
solving a single computationally intensive problem.
Parallel computer is a multiple-processor computer capable of parallel computing.
Supercomputer is a general-purpose computer capable of solving problems at high computational speeds
and faster than traditional computers. It can be a parallel computer or not.
Process Granularity refers to the amount of computation assigned to a particular processor of a parallel pro-
gram. It also refers, within a single program, to the amount of computation performed before communication
is issued. If the amount of computation is small the granularity is fine-grained. Otherwise granularity is
coarse.
Throughput is the number of results produced in one time unit (usually, one second).
UMA (Uniform Memory Access). It refers to that processor organization where the cost of accessing a
memory location is the same for any processor. In a machine supporting UMA all processors work through a
centralized switch to reach a shared memory.
NUMA (Non-Uniform Memory Access). It refers to that processor organization where the cost of accessing
a memory location is not uniform. Parallel machines with multiple memory hierarchies fall into this category.

cc-NUMA (cache-coherent NUMA) refers to the architecture in which the existence of a cache causes cache
coherence problems when a cached variable is modified by a processor and the shared-variable is requested
by another processor. In cc-NUMA architecture such issues are resolved.
Multi-processor system. A collection of processors sharing a global shared memory. An SMP (Symmetric
Multi Processor) is an instance of a UMA multiprocessor system.
Multi-computer system. A collection of computers (each one consisting of at least one processor with its
own memory).
Multi-core is an architecture in which multiple processor cores are placed on the same chip/die.
Message-Passing is the method of interprocessor communication where each processor sends/receives mes-
sages. A store-and-forward protocol (used in nCUBE/10, T800 transputers) requires that the message be
copied into the memory of the receiving processor before it is dispatched away. In circuit-switched mes-
sage passing (e.g. ATM, nCUBE 2) no intermediate processor (other than source and destination) stores the
message. A communication “pipe” is opened between source and destination and then a communication is
initiated.
Pipelining. One way one can increase the level of parallelism is to use the technique of pipelining where
a computation is split into stages so that the output of one stage becomes the input of the following one.
This way after some initial delay different data are processed at different stages/levels of the pipeline. An
alternative to pipelining is data parallelism where multiple units operate on different pieces of data. Note
that the level of parallelism for pipelining is fixed (number of stages) whereas for data parallelism it is not
fixed.
Scalability refers to both algorithm scalability and architectural scalability. Algorithmic scalability means
that the level of parallelism increases at least linearly with problem size. For architectural scalability, it means
that the same performance per processor is maintained if number of processors increases.
Cache is a memory place between the processor and the main memory of a computer system. There are level
1, level 2, and level 3 caches available. Usually level 1 is stored on chip/die and level 2 outside the processor.

Multitasking is the execution of one or more processes apparently at the same time.
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3.10 Famous scalability-related (mis) quotes

Historical Quote: “640K OF MEMORY OUGHT TO BE ENOUGH FOR ANYBODY”, Bill
Gates, Chairman, Microsoft, 1981. He denies ever making this statement attributed to him.

Historical Quote: “(THERE IS) NO REASON FOR ANY INDIVIDUAL TO HAVE A COM-
PUTER IN HIS HOME”, Ken Olsen, Chairman, Digital Equipment Corporation, in a 1977
World Future Society meeting in Boston, MA.

Historical Quote: “I THINK THERE IS A WORLD MARKET FOR MAYBE FIVE COMPUT-
ERS”, Thomas J. Watson Sr., Chairman, IBM, 1943. Another probably incorrect misquote.
No one has ever established that this quote was actually made.

3.11 The Parallel Random Access Machine
The Parallel Random Access Machine (PRAM) is one of the simplest ways to model a parallel computer.
A PRAM consists of a collection of (sequential) processors that can synchronously access a global shared
memory in unit time. Each processor can thus access its shared memory as fast (and efficiently) as it can
access its own local memory. The main advantages of the PRAM is its simplicity in capturing parallelism
and abstracting away communication and synchronization issues related to parallel computing. Processors
are considered to be in abundance and unlimited in number. The resulting PRAM algorithms thus exhibit
unlimited parallelism (number of processors used is a function of problem size). The abstraction thus offered
by the PRAM is a fully synchronous collection of processors and a shared memory which makes it popular
for parallel algorithm design. It is, however, this abstraction that also makes the PRAM unrealistic from a
practical point of view. Full synchronization offered by the PRAM is too expensive and time demanding
in parallel machines currently in use. Remote memory (i.e. shared memory) access is considerably more
expensive in real machines than local memory access as well and UMA machines with unlimited parallelism
are difficult to build.

Depending on how concurrent access to a single memory cell (of the shared memory) is resolved, there
are various PRAM variants. ER (Exclusive Read) or EW (Exclusive Write) PRAMs do not allow concurrent
access of the shared memory. It is allowed, however, for CR (Concurrent Read) or CW (Concurrent Write)
PRAMs. Combining the rules for read and write access there are four PRAM variants: EREW, ERCW,
CREW and CRCW PRAMs. Moreover, for CW PRAMs there are various rules that arbitrate how concurrent
writes are handled.

(1) in the arbitrary PRAM, if multiple processors write into a single shared memory cell, then an
arbitrary processor succeeds in writing into this cell,

(2) in the common PRAM, processors must write the same value into the shared memory cell,

(3) in the priority PRAM the processor with the highest priority (smallest or largest indexed proces-
sor) succeeds in writing,

(4) in the combining PRAM if more than one processors write into the same memory cell, the result
written into it depends on the combining operator. If it is the sum operator, the sum of the values
is written, if it is the maximum operator the maximum is written.
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The EREW PRAM is the weakest among the four basic variants. A CREW PRAM can simulate an EREW
one. Both can be simulated by the more powerful CRCW PRAM. An algorithm designed for the common
PRAM can be executed on a priority or arbitrary PRAM and exhibit similar complexity. The same holds for
an arbitrary PRAM algorithm when run on a priority PRAM.

Assumptions
In this monograph we examine parallel algorithms on the PRAM. In the course of the presentation of the

various algorithms some common assumptions will be made. The input to a particular problem would reside
in the cells of the shared memory. We assume, in order to simplify the exposition of our algorithms, that a
cell is wide enough (in bits or bytes) to accommodate a single instance of the input (eg. a key or a floating
point number). If the input is of size n, the first n cells numbered 0, . . . ,n−1 store the input. In the discussion
below, we assume that the number of processors of the PRAM is n or a polynomial function of the size n of
the input. Processor indices are 0,1, . . . ,n−1.

3.12 PRAM Algorithm: Parallel sum

Problem 3.1 (Parallel Sum).
Input. Array/Sequence x[0 . . .n−1] of n values.
Output. Evaluate ∑

n−1
i=0 x[i] = x[0]+ . . .+ x[n−1].

Solution.
An associative operator ⊗ is one such that for all a,b,c we have (a⊗ b)⊗ c = a⊗ (b⊗ c). The operator +
can be replaced with any other associative operator such as ×, min, max or more complex operators (e.g.
matrix multiply or matrix add). A sequential algorithm that solves this problem requires n− 1 additions. If
a combining CRCW PRAM with arbitration rule sum is used to solve this problem, the resulting algorithm
is quite simple. In the first step each processor i reads memory cell i storing xi. In the following step
every processor i concurrently with the remaining processors writes the read value into an agreed cell say
0. Arbitration ruls sum guarantees that the sum would be written into cell 0. The time is T = O(1), and
processor utilization is P = O(n).

A more interesting algorithm is the one presented below for the EREW PRAM. For a PRAM implemen-
tation, value xi is initially stored in shared memory cell M[i].

Proposition 3.1. The sum x0+x1+ . . .+xn−1 is to be computed in in an EREW PRAM in T = O(lgn), P = n
and W = O(n lgn), W2 = O(n). Without loss of generality, let n be a power of two.

Proof. The algorithm consists of lgn steps. In step i, processor j < n/2i reads shared-memory cells M[2 j]
and M[2 j+1] combines (sums) these values and stores the result into memory cell M[ j]. After lgn steps the
sum resides in cell 0. Algorithm Parallel Sum has T = O(lgn), P = n and W = O(n lgn), W2 = O(n).

Algorithm Parallel Sum can be extended to include the case where n is not a power of two. Parallel Sum

is the first instance of a sequential problem that has a trivial sequential but more complex parallel solution.
Instead of operator Sum any associative operator could have been used.

Exercise 3.1. Can you improve Parallel Sum so that T remains the same, P = O(n/ lgn), and W = O(n)?
Explain.

Exercise 3.2. What if i have p processors where p < n ? (You may assume that n is a multiple of p).

Exercise 3.3. Generalize the Parallel Sum algorithm to any associative operator.



3.12. PRAM ALGORITHM: PARALLEL SUM 39

1 // pid() : ID of the processor issuing the call

2 void ParallelSum(n) {

3 i=1 ; j=pid() ; bound = n;

4 while ( i <= n ) {

5 if ( j <= bound /2) {

6 a = (2*j <= bound) ? M[2j] : 0);

7 b = (2*j+1 <= bound) ? M[2j+1] : 0);

8 M[j] = a+b$;

9 }

10 i=2*i$; bound=bound /2;

11 }

12 }

Figure 3.1: Parallel sum on an EREW PRAM

M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]

x0 x1 x2 x3 x4 x5 x6 x7 t=0

x0+x1 x2+x3 x4+x5 x6+x7 t=1

x0+...+x3 x4+...+x7 t=2

x0+...+x7 t=3

Figure 3.2: Parallel Sum: Schedule



40 CHAPTER 3. INTRODUCTION TO PARALLEL COMPUTING

3.13 PRAM Algorithm: Broadcasting

In parallel programs, several pieces of data need to be known by all processors. For example problem size, or
other problem parameters. The operation that informs all processors on this piece or pieces of data is called
broadcasting. In its simpler form, broadcasting involves making a copy of the original datum to memory
exclusively (or with no delay) accessible by each individual processor.

Problem 3.2 (Broadcasting).
Input. A piece of data (datum) d is stored in memory location M[0].
Output. Make a copy of d to memory locations M[1] . . .M[n−1] so that processor i can have exclusive access
of the copy M[i], 0≤ i≤ n−1.

Solution.
Broadcasting is a parallel copy algorithm. It replicates d from M[0] to n−1 additional locations M[1. . . .n−
1]. On a CREW PRAM no broadcasting operation is needed. A CR?W PRAM algorithm that solves the
broadcasting problem has performance P = O(n), T = O(1), and W = O(n). It works as follows. Processor i
reads d concurrently with other processors from M[0] in one parallel step. On an EREW PRAM broadcasting
can be performed in O(lgn) steps. The structure of the algorithm is structurally the reverse of the parallel sum
algorithm. In lgn steps d is broadcast as follows. In step i each processor with index j less than 2i reads the
contents of cell M[ j] and copies it into cell M[ j+2i]. After lgn steps each processor i reads the message by
reading the contents of cell i. This approach requires n to be a power of two; this however can be relaxed.

Proposition 3.2. Broacasting of d originally located at M[0] in an EREW PRAM can be realized in T =
O(lgn), P = n and W = O(n lgn), W2 = O(n). Without loss of generality, let n be a power of two.

Proof. The algorithm is shown in Figure 3.3. We assume n is a power of two and the number of processors
P is equal to n.

1 // pid() : ID of the processor issuing the call

2 // P == n

3 void Broadcast(memory M, datum d) {

4 i = 0 ; j = pid() ; M[0] = d ;

5 while ( 2**i < P ) {

6 if ( j < 2**i )

7 M [ j + 2**i ] = M[ j ] ;

8 i= i + 1 ;

9 }

10 Processor j reads d from M[j];

11 }

Figure 3.3: Broadcasting on an EREW PRAM

Exercise 3.4. Broadcasting on a hypercube and a butterfly (Hint: Base your solution on the Broadcast

algorithm).

Exercise 3.5. Suppose (in some strange model) we can copy in a single cycle not once but twice), that is,
M[0] can be copied to M[1] and M[2] in a single time-step. Can you have a faster broadcasting? What if t
copies per cycle are allowed? Explain.
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3.14 PRAM Algorithm: Parallel Prefix
Problem 3.3 (PPF Sum).
Input. Array/Sequence x[0 . . .n−1] of n values and a unit cost associative operator ⊕.
Output. Evaluate ∑

j
i=0 x[i] = x[0]⊕ . . .⊕ x[ j], for all j = 0, . . .n−1.

Solution.
Parallel prefix is also called prefix sums if the associate operation is addition or scan in general. Note that +
is an operator, that implies operation addition; the + operator in this context is a binary operator requiring a
left and right operand. The operator ⊕ can be replaced with any other associative operator such as ×, min,
max or more complex operators (e.g. matrix multiply or matrix add). In our case we will treat ⊕ as if it is +.
A sequential algorithm solves this problem by performing n−1 o-additions. The cost of an operation is going
to be assumed to be constant (in fact unit time). This can be relaxed accordingly. An algorithm is presented
below for the EREW PRAM. For a PRAM implementation, value xi is initially stored in shared memory cell
M[i]. It has many uses in parallel computing such as in load-balancing, the work assigned to processors and
compacting data structures such as arrays.

We shall prove that computing ALL THE SUMS is no more (asymptotically) difficult than computing the
single sum x0 + . . .xn−1. An algorithm for parallel prefix on an EREW PRAM would require lgn phases. In
phase i, processor j reads the contents of cells j and j−2i (if it exists) combines them and stores the result
in cell j. We first present an non-optimal divide and conquer approach that only works on a CREW PRAM
or on an EREW PRAM with a significant slowdown.

3.14.1 PPF sums: a CREW approach
Proposition 3.3 (PPF sums on a CREW PRAM). The prefix sums

j

∑
i=0

x[i] = x[0]⊕ . . .⊕ x[ j],

for all j = 0, . . .n− 1, can be computed in a CREW PRAM in T = O(lgn), P = n and W = O(n lgn), W2 =
O(n). Without loss of generality, let n be a power of two.

Proof. Figure 3.4 shows a straightforward divide-and-conquer approach to solving the parallel prefix prob-
lem. The only problem with this approach is that the n/2-nd parallel sum of the lower-half of the input
needs to be concurrently read by all computing elements (processors) of the upper-half. This can either be
done simultaneously (i.e. a concurrent-read PRAM is required) or in n/2 delayed step (i.e. a slow resulting
algorithm).
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x0 x1 x2 x3 x4 x5 x6 x7 <<Paralel Prefix "Box" for 8 inputs

| | | | | | | |

----------- ----------

| 1 | | 2 | <<< 2 PP Boxes for 4 inputs each

----------- ---------

| | | |\\\ | | |

| | | | \\\\| | | Take rightmost output of Box 1 and

| | | | | \\\ | | combine it with the outputs of Box2

| | | | | | \\ |

| | | | | | \\ \|

x0+...+x3 x0+..+x7

x0+...+x2 x0+...+x6

x0+x1 x0+...+x5

x0 x0+...+x4

Figure 3.4: Paralle Prefix: Schedule for a CREW solution

3.14.2 PPF sum : an EREW time-optimal solution
Proposition 3.4 (PPF sums on a EREW PRAM). The prefix sums

j

∑
i=0

x[i] = x[0]⊕ . . .⊕ x[ j],

for all j = 0, . . .n− 1, can be computed in an EREW PRAM in T = O(lgn), P = n and W = O(n lgn),
W2 = O(n). Without loss of generality, let n be a power of two.

1 // [i:j] = X[i]+X[i+1]+...+X[j] ; [i:i] = X[i]

2 // Input M[j] = x[j] where j=0 .. n-1

3 // Output M[j] = x[0:j] where j=0 .. n-1

4 void ParallelPrefix(memory M, int n) {

5 i=1; j=pid() ;

6 while ( i < n ) {

7 if (j > 2**(i-1) ) {

8 // Currently M[j] = [j+1 -2**(i-1):j]

9 // Currently M[j -2**(i-1)] = [j -2**(i-1) +1 -2**(i-1):j-2**(i-1)]

10 a = M[ j ] ;

11 b = M[ j- 2**(i-1) ] ;

12 M[j] = a + b ;

13 }

14 i = i + 1 ;

15 }

16 }

Figure 3.5: Parallel Prefix: EREW PRAM

Proof. Let x[ j] be assigned to M[ j]. A single processor j is assigned to that memory location and will
computer ∑

j
k=0 xk. The algorithm depicted in Figure 3.5 solves the problem in O(lgn) steps. The iteration

index is i and in the i-th iteration, a processor assigned to memory location M[ j], reads the element in a
location 2i−1 position away. If such location does not exist (index less than 0 or greater than n the read is
not performed). To this read location processor j combines its content with M[ j] so that M[ j−2i−1]+M[ j]
is computed and stored back in M[ j]. For visualization purposes, the second step is written in two different
lines in the computational schedule outline depicted in Figure 3.6.
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[i:j] to denote xi + ... + xj ; [i:i] is x[i]

* : indicates value of previous row remains the same

[i:j,j+1,k] means [i,j] op [j+1,k]

0. x0 x1 x2 x3 x4 x5 x6 x7

0. [0:0] [1:1] [2:2] [3:3] [4:4] [5:5] [6:6] [7:7]

1. * [0:0,1:1] [1:1,2:2] [2:2,3:3] [3:3,4:4] [4:4,5:5] [5:5,6:6] [6:6,7:7]

1. * [0:1] [1:2] [2:3] [3:4] [4:5] [5:6] [6:7]

2. * * [0:0,1:2] [0:1,2:3] [1:2,3:4] [2:3,4:5] [3:4,5:6] [4:5,6:7]

2. * * [0:2] [0:3] [1:4] [2:5] [3:6] [4:7]

3. * * * * [0:0,1:4] [0:1,2:5] [0:2,3:6] [0:3,4:7]

3. * * * * [0:4] [0:5] [0:6] [0:7]

[0:0] [0:1] [0:2] [0:3] [0:4] [0:5] [0:6] [0:7]

x0 x0+x1 x0+x1+x2 x0+...+x3 x0+...+x4 x0+...+x5 x0+...+x6 x0+...+x7

Figure 3.6: Computation schedule for the algorithm of Figure 3.5

3.14.3 PPF sum: Tree-based computation
Proposition 3.5 (PPF sums on a EREW PRAM). The prefix sums

j

∑
i=0

x[i] = x[0]⊕ . . .⊕ x[ j],

for all j = 0, . . .n−1, can be computed on a binary tree T = O(lgn), P = n and W = O(n lgn), W2 = O(n).
Without loss of generality, let n be a power of two.

Consider the following variation of parallel prefix on n inputs that works on a complete binary tree with
n leaves (assume n is a power of two). It is depicted in Figure 3.7. Action by nodes

1. Non-leaf : If it receives l and r from left and right children, computes l + r and sends it up and send
down to its right child the l.

2. Root : Step [1] except nothing is sent up.

3. Non-leaf : If it gets p from parent it transmits it to its left/right children.

4. Leaf : If it holds l and receives p from its parent it sets l = p + l (this order) [note p is the left argument,
l is the right one, order matters]
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[0:7] UP PHASE

/ \ LEFT + RIGHT send up

/ \ FromLeft

/ \ [0:3] PARENT SENDS LEFT DOWN-RIGHT

/ \ DOWN-RIGHT WILL PROPAGATE

/ \ THEN LEFT + RIGHT SUBTREES

[0:3] [4:7]

/ \ FromLeft / \ FromLeft

/ \[0:1] / \ [4:5]

/ \ / \

/ \ / \

/ \ / \

[0:1] [2:3] [4:5] [6:7]

/ \ /\ /\ / \

/ \FromLeft/ \FromLeft \FromLeft \ FromLeft

/ \[0:0] / \[2:2]/ \[4:4]/ \[6:6]

/ \ / \ / \ / \

/ \ / \ / \ / \

[0:0] [1:1] [2:2] [3:3][4:4] [5:5] [6:6] [7:7]

[0:7] DOWN PHASE

/ \ PASS DOWN LEFT + DOWN RIGHT

/ \ Down COMBINE

/ \ [0:3]

/ \

/ \

[0:3] [4:7]

/ \Down Down / \ Down

/ \[0:1] [0:3]/ \ [4:5]

/ \ / \

/ \ / \

/ \ / \

[0:1] [2:3] [4:5] [6:7]

/ Down Down Down Down

/ \ / \ / \ / \

/ [0:0] / [0:1]+ / [0:3]+ / [0:5]+

/ \ [0:1] [2:2] [0:3] [4:4] [0:5] [6:6]

/ \ / \ / \ / \

[0:0] [0:1] [0:2] [0:3] [0:4] [0:5] [0:6]

+ + + + + + +

[0:0] [1:1] [2:2] [3:3] [4:4] [5:5] [6:6] [7:7]

= = = = = = = =

[0:0] [0:1] [0:2] [0:3] [0:4] [0:5] [0:6] [0:7]

Figure 3.7: PPF sum: optimal tree computation



3.14. PRAM ALGORITHM: PARALLEL PREFIX 45

3.14.4 PPF sum: a recursive version
The parallel prefix algorithm of the previous page (tree-based) depicted in Figure 3.7 requires about 2 lgn+1
parallel steps, P = n processors and work W = Θ(n lgn), and W2 = Θ(n). One could describe that version
due to Ladner and Fischer as follows in Figure 3.8 By rescheduling the computation and using P = n/ lgn
processors, the work can be reduced to linear.

Proposition 3.6 (PPF sums on a EREW PRAM). The prefix sums

j

∑
i=0

x[i] = x[0]⊕ . . .⊕ x[ j],

for all j = 0, . . .n−1, can be computed on a binary tree T =O(lgn), P= n/ lgn and W =W2 =O(n). Without
loss of generality, let n be a power of two.

1 void PPFrecursive(X[0..n-1],Out [0..n-1],n) {

2 Out [0] = X[0] ;

3 if ( n > 1 ) {

4 for( i=0 ; i < n ; i++) in par {

5 a = (2*i < n) ? X[2*i] : 0 ;

6 b = (2*i+1 < n) ? X[2*i+1] : 0 ;

7 Temp[i] = a + b ;

8 }

9 Y = PPFRecursive(Temp [0..n/2-1], Y [0..n/2-1],n/2);

10 for( i=0 ; i < n/2-1 ; i++) in par {

11 Out [2i+1] = Y[i] ;

12 }

13 for( i=1 ; i < n/2-1 ; i++) in par {

14 a = (i-1 < n) ? Y[i-1] : 0 ;

15 b = (2*i < n) ? A[2*i] : 0 ;

16 Out [2i] = a + b ;

17 }

18

19 }

20 }

Figure 3.8: A recursive PPF sum algorithm)
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3.14.5 PPF sum : an iterative version
An iterative version of the algorithm of Figure 3.8 is depicted in Figure 3.9.

1 void PPFiterative(X[0..n-1],Out [0..n-1],n) {

2 for( i= 0 ; i < n ; i++ ) inpar {

3 T[ 0 , i ] = X[ i ] ;

4 }

5 for( j= 1 ; j<=lg(n) ; j++ ) inpar {

6 for( i=0 ; i <= n/2**j - 1; i++) inpar {

7 T[ j , i ] = T[j-1 , 2*i ] + T[j-1, 2*i + 1] ;

8 }

9 }

10 for( j= lg(n) ; j>=0 ; j-- ) inpar {

11 On pid==0 : V[ j , 0 ] = T[ j , 0 ] ; //Proc 0 only

12 for( i = 1 ; i <= n/2**j -1 ; i+= 2 ) inpar {

13 V[ j , i ] = V[j+1 , i/2 ] ;

14 }

15 for( i = 0 ; i <= n/2**j -1 ; i+= 2 ) inpar {

16 V[ j , i ] = V[j+1 , (i-1) /2 ] + T[ j , i ] ;

17 }

18 }

19 Out[ i ] = V[ 0 , i ] ;

20 }

Figure 3.9: An iterative PPF sum algorithm)
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3.14.6 An application of parallel prefix: binary addition
Problem 3.4 (Binary addition).
Input. Two n-bit integer a[0..n−1] and b[0..n−1] in little-endian representation.
Output. An (n+1)-bit integer c[0..n] such that c = a+b.

Solution.
The straightforward grade school addition requires O(n) bit operations and is inherently sequential. This is
because in order to compute the k-th bit, the k− 1-st carry needs to be computed as well. There exists a
non-trivial non-obvious parallel solution for this problem that can be done faster than linear time. We will
show a parallelization that can be performed on a complete binary tree with n leaves: a parallel-prefix based
approach. Its running time will be 2lgn+1 steps.

We shall try for each bit position to find the carry bit required to complete the corresponding addition
so that all bit positions can be added in parallel. We shall show that carry computation takes parallel time
Θ(lgn) time on a binary tree with a computation that is well-known to us: parallel prefix.
Question. How can we find i-th carry bit?

We answer this question by providing a guided example. In the example of Figure 3.10 the following
definitions for the notation s,g, p are used. The symbols appear beneath the ai and bi bit of a and b.

• s: symbol s is being used to indicate that a carry bit stops its propagation (becase ai and bi are
both 0),

• g: symbol g is being used to indicate that a carry bit is generated (because ai and bi are both
1), and

• p: symbol p is being used to indicate that the current bit position propagates a carry bit (ai and
bi are either 0,1 or 1,0).

Example 3.4. Let a and b be two 16-bit (unsigned) integers as shown below. Row 1 delineates the 16 bit
of a and b, with an extra right most bit whose position is labeled 0 used as a boundary condition bit. Row
2 provides the 16 bit of a: the leftmost one is a16 and the rightmost one a1. Likewise, Row 3 provides the
16 bit of b. Row 4 generates from ai and bi a symbol s,g, p according to the definition provided earlier.
Be default the symbol generated for index position 0 is an s. Row 5 performs the elementary calculation
(a+ b)i = ai⊕ bi⊕ ci−1, where ⊕ = XOR; It is bit addition not integer addition. Thus the result is one if
one bit is 0 and the other is 1; it is zero in any other case (both bit 0 or both bit 1). Row 6 will contain the
parallel prefix over the elements of Row 4. Finally Row 8 will contain the bit of a+b. The information will
be generated from Row 5 and Row 7 (is Row 6 where a g becomes a 1 and an s a 0). The question that needs
to be address is how do we generate Row 5/Row 6 first?

Row1 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
Row2 a 0 1 0 1 1 1 0 0 1 0 0 1 0 0 1 0 -
Row3 b 0 1 1 0 1 0 0 0 0 1 0 1 1 1 0 0 -
Row4 x s g p p g p s s p p s g p p p s s
Row5 PPFgs
Row6 PPF10
Row7 a+b
Row8 c

Figure 3.10: Binary addition example

We derive the following proposition.

Proposition 3.7 (Row 5 and 6: PPF). The i-th carry bit is one if the leftmost non-p to the right of the i-th bit
is a g.
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⊗ s p g
s s s g
p s p g
g s g g

Figure 3.11: Associative operator ⊗ for the PPF or Row6

Proof. If to the right of the i-th bit we see an s the s will stop a cary. A 0+ 0 in the (i+ 1)-st position will
never generate a carry bit of 1 to the i-th possition.

If to the right of the i-th bit we see lots of p eventually followed by an s, the s will stop a cary. A 0+0 in
the (i+ j)-st position will never generate a carry bit of 1 to the i-th possition as the p bit between position i
and i+ j would only propagate the 0 carry of the i+ j-th position.

The only case left is that on the right of the i-th bit we have a g or consecutive p followed immediately by
a g.

The previous observation takes the following algorithmic form.

Method 3.1. Let the i-th bit position symbol (p,s,g) be denoted by xi. Note that for an n-bit integer, we have
n+1 symbols for x. To generate PPF[x0 = s, . . . ,xn] it will take Θ(n) serial time or O(lgn) parallel time using
parallel prefix.

Proof. In order to generate
PPF[x0 = s, . . . ,xn]

we use for the prefix operation the associative operator ⊗ defined in Figure 3.11.

We revisit the example of Figure 3.10 by providing a solution to it.

Solution 3.1. We perform the PPF operation with associative operator ⊗ to fill Row 5. Row 6 is easy an s in
Row 5 in the i-th position gives a 0, a g gives a 1. Row 7 requires a simple XOR operation on the ai and bi of
Row2 and Row3 respectively. To complete Row 8 we look at Row 7 position i and Row 6 position i− 1 and
compute an XOR of those two bit.

Row1 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
Row2 a 0 1 0 1 1 1 0 0 1 0 0 1 0 0 1 0 -
Row3 b 0 1 1 0 1 0 0 0 0 1 0 1 1 1 0 0 -
Row4 x s g p p g p s s p p s g p p p s s
Row5 PPFgs s g g g g s s s s s s g s s s s s
Row6 PPF10 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0
Row7 a+b 0 0 1 1 0 1 0 0 1 1 0 0 1 1 1 0
Row8 c 1 1 0 0 0 1 0 0 1 1 1 0 1 1 1 0

Figure 3.12: Binary addition example solved

We summarize the algorithm in Figure 3.13.

Theorem 3.4 (Parallel Addition). Parallel Addition, using paralle prefix for the carry bit computation re-
quires approximately T (n) = O(lgn) times step. Processor size is P = 2n−1.
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1 void BinaryAdd(a[1..n], b[1..n], c[1..n+1], n ) {

2 int i;

3 alloca x[0..n] ;

4 alloca ppf [0..n] ;

5 alloca apb [0..n] ;

6 /* Row 2 is a[1..n] */

7 /* Row 3 is b[1..n] */

8 /* Row 4 is x[1..n]. Computed below */

9 x[0] = s;

10 for( i = 1 ; i <= n ; i++ ) {

11 if ( a[i] == 1 && b[i] == 1 )

12 x[i] = g ;

13 else

14 if ( a[i] == 0 && b[i] == 0 )

15 x[i] = s ;

16 else

17 x[i] = p ;

18 }

19 /* Row 5 is computed; otimes as in proof */

20 ppf = PPF(x[0..n], otimes );

21 /* Row 6 is computed */

22 for( i = 0 ; i <= n ; i++ ) {

23 ppf[i] = (ppf[i]==g ? 1 : 0 );

24 }

25 /* Row 7 is computed */

26 for( i = 0 ; i <= n ; i++ ) {

27 apb[i] = XOR ( a[ i ] , b[ i ] ) ;

28 }

29 /* Row 8 is computed */

30 for( i = 0 ; i <= n ; i++ ) {

31 c[ i ] = apb[ i ] + ppf [ i-1 ] ;

32 }

33 c[ n ] = ppf[ i ] ;

34 /* DONE */

35 return( c[0..n] ) ;

36 }

Figure 3.13: An iterative PPF sum algorithm)

Proof. We used a parallelized version of the algorithm in Figure 3.13. The loop of lines 10-18 requires one
parallel step i.e. O(1) time with n+1 processors with processor 0 dealing with line 9 and processors 1, . . .n
with the steps of the loop. Likewise the loop of lines 22-24 requires O(1) time. Likewise the loop of lines
26-28, lines 30-33 require O(1) time. The PPF of line 20 requires O(lgn) time. The proof is completed.
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3.15 Segmented Parallel Prefix

A segmented prefix (scan) computation consists of a sequence of disjoint prefix computations. Let the xi j
below take values from a set X and let ⊕ be an associative operator defined on the elements of set X . Then
the segmented prefix computation for

x11x12 . . .x1k1 | x21x22 . . .x2k2 | . . . | xm1xm2 . . .xmkm |

requires the computation of all

pi j = xi1⊕ xi2⊕ . . .⊕ xi j ∀ 1≤ i≤ m, 1≤ j ≤ ki

In brief the segment separator | terminates one prefix operation and starts another one.
One way to deal with a segmented prefix computation in parallel is to extend (X ,⊕) into (X ′,⊗) so that

X ′ = X ∪{|}∪{|x : x ∈ X}

i.e. X ′ has more than twice the elements of X : it has all the elements of X , the segment separator | and a new
element |x which consists of the segment separator and x. The new operator ⊗ is associative if we define it
as follows.

| ⊗ |=| , | ⊗x =|x, | ⊗ |x =|x,
x⊗ |=|, |x⊗ |=|, x⊗ y = x⊕ y
|x⊗ y =|(x⊕ y) x⊗ |y =|y |x⊗ |y =|y

Now, if the length of the segmented prefix formula is n we can assign n processors to solve the problem
with parallel prefix in asymptotically the same time. Note that an element in X ′ requires for its representation
no more than 2 extra bits of the storage size of an element of X . If an ⊕ computation takes O(1) time (see
Table 3.15) so does an ⊗ computation (see Table 3.15).

⊕ b
a (a⊕b)

Then, the new operator ⊗ extends ⊕ as follows.

⊗ b |b
a (a⊕b) b
|a |(a⊕b) b

3.15.1 Segmented Parallel Prefix: Example and Refinements
Example 3.5. Let us have three segments.

{2,3} {1,7,2} {1,3,6}.
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We create three segments with two barriers in between.

2 3 |1 7 2|1 3 6.

The barrier | pipe symbol is treated as a symbol for the definition of the associative operator by extending the
semigroup of numbers. The ppf operation then resolves as follows.

2 5|1 8 10|1 4 10.

We can refine the previous algorithm as follows.
Let the operator be defined as ⊕ that operates on operands a,b. Then for the segmented parallel prefix

problem, we extend operator ⊕ to operate on a,b and on extension of the operands that include |. Thus we
double the input inverse by including as inputs for any a,b the augmented |a, |b.
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3.16 Matrix Multiplication
Input: Two n×n matrices A = (ai j) and B = (bi j).
Output: The product C = A×B, where C = (ci j), with ci j = ∑k aikbk j.

A simple algorithm for multiplying two n× n matrices on a CREW PRAM with time complexity T =
O(lgn) and P = n3 follows.

For convenience, processors are indexed as triples (i, j,k), where i, j,k = 1, . . . ,n. In the first step proces-
sor (i, j,k) concurrently reads ai j and b jk and performs the multiplication ai jb jk. In the following steps, for
all i,k the results (i,∗,k) are combined, using the parallel sum algorithm to form cik = ∑ j ai jb jk. After lgn
steps, the result cik is thus computed.

The same algorithm also works on the EREW PRAM with the same time and processor complexity. The
first step of the CREW algorithm need to be changed only. We avoid concurrency by broadcasting element
ai j to processors (i, j,∗) using the broadcasting algorithm of the EREW PRAM in O(lgn) steps. Similarly,
b jk is broadcast to processors (∗, j,k).

The above algorithm also shows how an n-processor EREW PRAM can simulate an n-processor CREW
PRAM with an O(lgn) slowdown.

CREW EREW

1. aij to all (i,j,*) procs O(1) O(lgn)

bjk to all (*,j,k) procs O(1) O(lgn)

2. aij*bjk at (i,j,k) proc O(1) O(1)

3. parallel sum aij *bjk (i,*,k) procs O(lgn) O(lgn) n procs participate

j

4. cik = sum aij*bjk O(1) O(1)

j

3 3 3

T=O(lgn),P=O(n ) W=O( n lgn) W = O(n )

2

Figure 3.14: PRAM matrix multiplication : concurrent and exclusive-read approaches
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3.17 Logical AND operation
We define logical AND as follows.

Problem 3.5 (Logical AND).
Input. Let X [0 . . .n−1] be an array of length n of binary (boolean) values.
Output. Evaluate x = X [0]∧X [1]∧ . . .∧X [n−1].

3.17.1 Sequential logical AND
The sequential problem accepts a P = 1,T = O(n),W = O(n) direct solution.

3.17.2 EREW PRAM logical AND algorithm
Theorem 3.5 (EREW logical AND). By using the parallel sum and associate operator AND (∧) instead of +
the time to compute x = X [0]∧X [1]∧ . . .∧X [n−1]. is the time of parallel sum.

An EREW PRAM algorithm solution for this problem works the same way as the parallel sum algorithm
and its performance is P = O(n), T = O(lgn), W = O(n lgn) along with the improvements in P and W
mentioned for the parallel sum algorithm.

3.17.3 CRCW PRAM
Theorem 3.6 (CRCW logical AND). On a CRCW PRAM we can compute x = X [0]∧X [1]∧ . . .∧X [n−1]. in
time T = O(1), with P = n and W = Θ(n).

Solution.
The solution is outlined in the pseudocode of Figure 3.15. The CRCW PRAM capability required is that of a
common PRAM. Processor 0 first writes an 1 in the shared memory cell associated with variable x that will
hold the result. If Xi = 0, processor i writes a 0 in memory cell x. If no processor writes a 0 it means all Xi
are equal to one and conjunction is indeed 1 as initialized by processor 0. If however an Xi is equal to 0 the
processor i will read it and write a 0 into x. The conjunction is indeed 0 then as one of the Xi is 0. The correct
result x is then made available in this memory cell.

1 void logicalAND( X[0..n-1]) {

2 if pid() == 0 x=1 ;

3 if X[pid()] == 0 x=0 ;

4 /* implicit return(x) */

5 }

Figure 3.15: Logical AND

Exercise 3.6. Give an O(1) CRCW algorithm for LOGICAL OR.
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3.18 Maximum finding
Problem 3.6 (MAX operation).
Input. Let X [0 . . .n−1] be an array of length n of (comparable) values (defining a total order).
Output. Evaluate x = max{X [0],X [1], . . . ,X [n−1]}.

3.18.1 Sequential MAX
The sequential problem accepts a P = 1,T = O(n),W = O(n) direct solution. In fact we need n−1 compar-
isons to find the MAX of n keys.

3.18.2 EREW PRAM MAX algorithm
Theorem 3.7 (EREW MAX). By using the parallel sum and associate operator MAX instead of + the time to
compute x = max{X [0],X [1], . . . ,X [n−1]}. Its performance is P = O(n), T = O(lgn), W = O(n lgn) along
with the improvements in P of the parallel sum algorithm.

Proof.
We may view the PRAM algorithm of Figure 3.1 as a binary tree operating algorithm. Consider the schedule
depicted in Figure 3.2. View it as an upside down binary tree; view a + as a MAX operation. The n key
values are laid out along the t = 0 line. Each one of the n/2 key values of the t = 1 line is the maximum
(though the figure indicates the sum) of two keys of the t = 0 lines. At t = 3 or in general t = lgn we end up
with one value the MAX (or sum) of the n leaf values.

The EREW PRAM algorithm solution for this problem works the same way as the parallel sum algorithm
and its performance is P = O(n), T = O(lgn), W = O(n lgn) along with the improvements in P and W
mentioned for the parallel sum algorithm.
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3.18.3 CRCW PRAM max algorithm: MAX1
In the remainder we will investigate a CRCW PRAM algorithm. Let binary value Yi reside in the local
memory of processor i or be associated with i.

The CRCW PRAM algorithm MAX1 to be presented has performance T = O(1), P = O(N2), and work
W2 =W = O(N2).

The second algorithm to be presented in the following pages utilizes what is called a doubly-logarithmic
depth tree and achieves T = O(lg lgN), P = O(N) and W =W2 = O(N lg lgN).

The third algorithm is a combination of the EREW PRAM algorithm and the CRCW doubly-logarithmic
depth tree-based algorithm and requires T = O(lg lgN), P = O(N) and W2 = O(N).

Theorem 3.8 (MAX1). On a CRCW PRAM algorithm MAX1 computes x = max{X [0],X [1], . . . ,X [n−1]}. in
time T = O(1), with P = O(n2) and work W2 =W = O(n2).

Solution.
The setup requires the use of n2 processors. Each processor can have an ID from 0 to n2− 1. However we
prefer to number them with a pair of values (i, j) where 0≤ i, j≤ n−1. We assume without loss of generality
all keys are distinct. The if statement of line 7 compares X [i] with X [ j] by one processor and an 1 is stored
in M[i][ j] if X [i] > X [ j] and 0 otherwise. If X [t] is the MAX then row t of M i.e. all values M[t][∗] would
contain an 1, since X [t]> X [ j] for all j except for j = t and for j = t X [t]≥ X [t] so no harm.

In line 9, we calculate the logical AND of M[i][0..n− 1] for all i = 0, . . . ,n− 1. Only for i = t all the
M[t][ j] values would be one due to M[t] being the maximum. Thus Y [t] would be 1 where as Y [i], i 6= t would
be Y [i] = 0.

In line 10 processor t realizes Y [t] = 1 and thus write X [t] the maximum value into res that is then returned
as the MAX value.

1 void max1 ( X[ 0 .. n-1 ] ) {

2 // Processor pid() in 0.. n**2 -1

3 // maps to pid().i and pid().j,

4 // where pid().i = pid() / n and

5 // pid().j = pid() % n.

6

7 if X[pid().i] >= X[pid().j] M[pid().i][pid().j]=1 ;

8 else M[pid().i][pid().j]=0 ;

9

10 Y[i] = logicalAND(M[i][0..n-1]) ;

11 if Y[pid()] == 1 res= X[pid()] ;

12 return( res ) ;

13 }

Figure 3.16: Algorithm MAX1
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3.18.4 CRCW PRAM max algorithm : MAX2
In preparation of algorithm MAX2 we introduce a doubly logarithmic-depth tree.

Definition 3.1. Let n = 22m
, for some integer m > 0. A doubly logarithmic-depth tree of order n (dldt-n) has

n leaves and is defined as follows.

(1) The root of the tree at level 0 has 22m−1
= n1/2 children in level 1.

(2) Each node at level 1 has 22m−2
= n1/22

children in level 2.

(3) Each node of level i has 22m−(i+1)
= n1/2i+1

children in level i+1.

(4) Each node of level m− 1 (the level before the last) has 22m−m
= n1/2m

= 2 children in level
m = lg lgn.

(5) The nodes of level m are the leaves of the tree.

Some properties of a doubly logarithmic-depth tree are listed below.

• The height of the tree is m = lg lgn.

• A node of level i has 22m−(i+1)
children in level i+1.

• The TOTAL number of level i nodes is 22m−1
22m−2

. . .22m−i
= 22m−2m−i

.

• The product (22m−i−1
)2×22m−2m−i

is O(22m
) = O(n).

Theorem 3.9 (MAX2). On a CRCW PRAM algorithm MAX2 computes x = max{X [0],X [1], . . . ,X [n−1]}. in
time T = O(lg lgn), with P = O(n) and work W2 =W = O(n lg lgn).

Proof.
Algorithm MAX2 achieves better work performance than algorithm MAX1, even if it is slower. It exhibits
the following performance: T = O(lg lgn), P = O(n), and W =W2 = O(n lg lgn).

Algorithm Max2 works as follows:
In line 2 we arrange the n keys on the leaves of a doubly logarithmic tree with n leaves and depth m =

lg lgn.
The algorithm works bottom to top level by level starting from level m−1 (the leaves that hold the keys

are at level m).
A node at level i, call it u, will compute the MAX of its children by utilizing algorithm MAX1 (line

6-7). If the number of children of a node u at level i is q = 22m−(i+1)
the number of processors assigned to

computing at u the maximum of its children values would be (22m−i−1
)2 (line 7). The number of nodes at

level i is 22m−1
22m−2

. . .22m−i
= 22m−2m−i

and thus the total number of processors used on those nodes at level
i would be the product

(22m−i−1
)2×22m−2m−i

= n

We have exactly n processors available for level i and every level from level m−1 all the way to the root of
level 0.

Moving upwards we eventually reach the root of level 0 that will hold the MAX of the n keys (line 9).
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1 void max2 ( X[ 0 .. n-1 ] ) {

2 Arrange X[0..n-1] on leaves(dldt(n));

3 for(i=m-1 ; i >= 0 ; i-- ) {

4 // Using (2**(2**(n-i-1)))**2 processors

5 for each u of dldt(n) of level i

6 u = max1( children(u) )

7 utilizing #processors = square(level i+1 children);

8 }

9 return(root(dldt(n)); // contains MAX

10 }

Figure 3.17: Algorithm MAX2
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3.18.5 CRCW PRAM max algorithm : MAX3
Theorem 3.10 (MAX3). On a CRCW PRAM algorithm MAX3 computes x = max{X [0],X [1], . . . ,X [n−1]}.
in time T = O(lg lgn), with P = O(n/ lg lgn) and work W2 =W = O(n).

Proof.
Algorithm MAX3 has two rounds of computation.

In round 1, each one of n/ lg lgn processors is assigned lg lgn keys each. In lg lgn time each processor
finds a partial MAX among its lg lgn keys. There are n/ lg lgn partial leftovers.

In round 2, algorithm MAX2 is run on dldt(n/ lg lgn), a doubly logarithmic depth tree of the remaining
n/ lg lgn partial maxima.

The maximum is then on the root of the dldt(n/ lg lgn) at the completion of round 2.
With regard to the code of Figure 3.18 lines 2-4 map to round 1. The running time of these steps is

T1 = lg lgn with P1 = n/ lg lgn, and W =W2 = Θ(n).
Lines 5-11 is a copy of MAX2 but on a dldt(n/ lg lgn). Time is T2 = lg lgn, and P = n/ lg lgn with

W =W2 = Θ(n).

1 void max3 ( X[ 0 .. n-1 ] ) {

2 Assign lg(lg(n)) keys per processor among X[0..n-1]

3 In parallel n/lgg(n) partial maxima are determined;

4 Results in X[0.. n/lg(lg(n)) -1] ;

5 Arrange X[ 0..n/lg(lg(n))-1 ] on leaves(dldt(n/lg(lg(n))));

6 for(i=m-lg(lg(lg(n)))-1 ; i >= 0 ; i-- ) {

7 // Using (2**(2**(n-i-1)))**2 processors

8 for each u of dldt(n) of level i

9 u = max1( children(u) )

10 utilizing #processors = square(level i+1 children);

11 }

12 return(root(dldt(n)); // contains MAX

13 }

Figure 3.18: Algorithm MAX3

Question 3.3. Is there a p ≤ n processor CRCW PRAM algorithm that finds the maximum of N keys faster
than Max2 or Max3?
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3.18.6 A matching Lower bound and Turan’s Theorem

Definition 3.2. On an undirected graph G = (V,E), an independent set is a set of vertices such that no two
vertices are connected by an edge.

Definition 3.3. On an undirected graph G = (V,E), a clique is a set of vertices such any two vertices are
connected by an edge.

A clique on n vertices is the ”complement” of an independent set on the same n vertices. The complete
graph on n vertices is a clique on n vertices by default. A clique of n vertices has n(n−1)/2 edges.

Theorem 3.11 (Turan). Let G = (V,E) be an undirected graph, where |V |= n and |E|= m. Graph G has an
independent set of size at least n2/(2m+n).

Another formulation of Turan’s Theorem is the following one.

Theorem 3.12 (Alternative Turan). Let G = (V,E) be an undirected graph, where |V | = n and |E| = m. If
graph G has no p clique then it has at most (1−1/(p−1))n2/2 edges.

Proof. If n ≤ p− 1 then G does not have obviously a p-clique and G has at most n(n− 1)/2 edges. It is
obvious that n(n−1)/2≤ (1−1/(p−1))n2/2 by elementary calculation.

Thus the interesting case left is n ≥ p. If graph G has the maximum number of edges but does not have
a p-clique it must have a (p− 1)-clique. This is because otherwise we could add edges to G to create such
a (p− 1)-clique; this would contradict the maximality of edges of G. Call C a (p− 1)-clique of G. C has
(p−1)(p−2)/2 edges. Call G′ the graph G without C, i.e. G′ = G−C. Graph G′ has m′ edges. Let k be the
number of edges that go from G′ to C. By induction on G′ we have that m′ ≤ (1−1/(p−1))(n− p+1)2/2.
Since G does not have a p-clique every vertex of G′ is connected to at most p− 2 vertices of C (since if it
were connected to all the vertices of C a p-clique would have been formed). Thus k ≤ (p−2)(n− p+1).

Therefore the number of edges m of G is

m≤ (p−1)(p−2)/2+(1−1/(p−1))(n− p+1)2/2+(p−2)(n− p+1)≤ (1−1/(p−1))n2/2.

If we solve this inequality for p we get

p−1≥ n2

n2−2m

Therefore an equivalent formulation is that G has a p−1 clique of size at least n2

n2−2m .
Now take the complementary graph (where an edge becomes a non-edge and a non-edge becomes an

edge). The complement of G has N = n vertices and M = n(n−1)/2−m edges. From the latter we get that
2m= n(n−1)−2M = n2−n−2M. A p−1 clique in G becomes an independent set in its complement whose
size is at least n2

n2−2m = N2

N2−2m = N2

N2−n2+n+2M = N2

N+2M , noting that N = n. This latter bound is the expression
in the first version of Turan’s theorem.

An easy corollary is that a graph with n/k vertices, k ≥ 1, and n edges has an independent set of size at
least n/4k2.
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3.18.7 Lower bounds for MAX finding
We are going to show some lower bounds on finding the MAXIMUM of n keys. The model of computation
we are going to use is the decision tree model, and in fact the parallel decision tree model where we allow p
processors to work at any time step each one performing a single comparison between two keys. The decision
tree model in the case p = 1 was used to prove the lower bound Ω(n lgn) for comparison-based sorting. Note
that this model deals with information gathering to compute the MAXIMUM. One also needs to process
this information to derive the MAXIMUM. The model assume that processing is for free. We can do so
because we plan to establish a lower-bound (minimum possible running time) not to establish an algorithm
for realizing this bound.

We know from the sequential setting that finding the MAXIMUM of n keys requires at least n−1 com-
parisons.

Theorem 3.13. MAX can be found in ONE parallel step with n(n−1)/2 processors.

Proof. n keys allow n(n−1)/2 pairs and thus comparisons to be realized to obtain all the information required
to find the MAXIMUM (one needs to do some additional processing eg. establishing the rank but that it is
for free!). If we have that many processors each one responsible for one comparison, this concludes the
proof.

Theorem 3.14. In order to find MAX in ONE parallel step we need at least n(n−1)/2 processors.

Proof. In order to prove a lower bound, we use a proof by contradiction. Suppose we can do it with one
fewer processor P = n(n− 1)/2− 1. Since there are n(n− 1)/2 pairs of keys to compares, one such pair is
not compared. Call the keys of the pair x,y. What we are going to show, by playing the role of an adversary,
is that we can set up the values of the n input keys so that the missing comparison of the x,y is the crucial
one to establish the maximum. We thus play the role of an adversary whose only mission is to make the
algorithm that uses P processors to fail. To do so, we set the results of the comparisons in such a way that x,y
are the MAX and SECOND MAX keys. Thus the comparison between x,y (that is not being performed) is
CRUCIAL in determining the MAXIMUM of the n keys. Since it is not performed we cannot find the MAX
with P processors. Contradiction is established.

Question. What can you prove about the SECOND MAX key?
An interesting question is how many processors one needs to use to find the MAX of n keys not in one

parallel step but in two parallel steps.
Problem 1. Find MAX in two steps with O(n3/2) processors.
Hint. Split n keys into groups of

√
n. Compute MAX of each group in first step, and MAX of MAXes in

second step.
Problem 2. Find MAX in two steps with O(n4/3) processors.
Hint. Optimize the splitting.

√
n might not be optimal.

Problem 3. Show that MAX in two steps requires Ω(n4/3) processors.
The Proof is a repetition of the arguments of the proof of Theorem 1.

3.18.8 A matching lower bound
Theorem 3.15 (Valiant). Computing the maximum of n keys requires at least lg lgn parallel steps with p≤ n
processors.

Proof. (By induction) It is proved by what we call an adversary argument through induction. An adversary
for this problem is allowed to choose the input keys by modifying their values in such a way so as to force the
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algorithm to run for at least lg lgn steps. These modifications should not invalidate, however, the operations
of the algorithm already performed.

View step i as a graph Gi =(Vi,Ei). The vertices are the keys and the edges are the comparisons performed
at step i.

Consider initially graph G which becomes G1. Since any max finding algorithm can perform no mores
than p≤ n comparisons at any time step, |E1| ≤ n and |V1|= n. So by Turan’s theorem G1 has an independent
set of size n/4. Call this set of keys I1. Consider now the computation where all the I1 keys are the larger
than anything in V1− I1. In this case every node in I1 wins in the comparisons performed and is a candidate
for the maximum. Since I1 is an independent set we have no information on the relative order of the keys in
I1.

Consider now G2 and take the intersection of G2 and I1. It has≤ n edges (since p≤ n can be performed at
a time) and at least n/4 vertices (lower bound for I1 size. So the graph G2 intersected by I1 has an independent
set of size at least n/64 and call it I2. Repeating the same thing for Gi and Ii−1 we end up with an independent
set of size n/22i+1−2. So if we repeat this procedure about Ω(lg lgn) times the independent set will drop
below 2 and the maximum will be established. This takes however Ω(lg lgn) parallel steps.

Let us prove Problem 3.

Proof. (Problem 3). We set up a graph, just as in Theorem 1, with n vertices. Let us have p processors. In
one step they can force p comparisons. By Turan’s theorem the graph on n vertices and p edges must have an
independent set of size at least k = n2/(n+2p). We can set the values of the keys or equivalently determine
the output of the comparisons so that the keys of the named independent set are all candidates for the MAX.
Since they form an independent set none has been compared to any other key of the set. Thus in the second
round we can find the MAX among these k keys in k(k− 1)/2 comparisons/processors using Lemma 1, if
and only if we can afford to do so i.e. p≥ k(k−1)/2, which leads to p = Ω(n4/3).

Problem 4. Is there an algorithm that finds the MAX in O(lg lgn) parallel steps using n processors? What
is the work of the algorithm?

Long Hint. Consider n keys. Splits into n/3 groups of 3 keys each. For each group we can detemine the
MAX in 3(3−1)/2 = 3 comparisons using 3 procs per group. Total number of processors used is n/3 ·3 = n.
Thus we are left with determining the max of n/3 keys.

Take the n/3 Maxima, and split them into groups of 7. We have n/(3 · 7) groups of 7 keys. Each group
requires 7(7− 1)/2 = 21 processors to find the MAX of the group. Total processors used is n/21 · 21 = n,
that we can afford to. Thus after the second second it suffices to find the max of n/21 keys to determine the
MAX of the original n keys.

How do we split the n/21 keys next? What is the pattern?
Say we at some point we end up having n/s keys. We split them into groups of t so that t(t − 1)/2

comparisons/processors per group. You can fill in the details to show that this way lg lgn can be achieved.
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3.19 PRAM Integer Sorting: Count-Sort

We introduce a special case of sorting n keys that are integers whose values are in the range of [0.. lgn−1],
where lgn we assume it is also an integer. This is the well-known problem of count-sort. Sorting n keys
in the range 0..k− 1 requires sequential time O(n+ k). We show below that sorting n integer keys in the
specified range with P = n/ lgn processors can be done in time T = O(lgn) using W =W2 = Θ(n). Note that
count-sort does not sort in place i.e. we are going to use different arrays for input and output. Let M[1..n−1]
be the input and N[1...n−1] the output arrays.

The idea is to assign lgn keys per processor; for example if keys are in M[1..n−1], processor i= 0, . . . , p−
1 deals with keys i lgn+ j+1, where j = 0, . . . , lgn−1. The P processors collectively create an P× lgn array
C initialized to 0. We assign to each processor a single row of the array. Thus initialization take O(lgn) steps
to zero the entries of row i assigned to processor i. Entry (i, j) of the table would indicate how many keys
with value j processor i is assigned to. This information can be collected easily: processor i scans its keys
and for each key it updates the counters of row i of C. Total time is O(lgn). Then a parallel prefix operation
is formed. It consists of the first column, the second column and so on the last column. The purpose is to
count all the keys with values 0 before the ones with value 1, before those with value 2 and so on. Note that
the prefix sequence is of length n. If we have n processors we can work it out in O(lgn) time. Now that
we have only P processors we can invoke Brent’s principle to do it in O(lgn) time as well but with O(n)
work. Note that during the prefix operation C is not overwritten; a new array D will hold the results. After
the prefix operation if the entry that corresponded initially to the (i, j) element of C has value t, this means
that processor i will store the keys assigned to it with value j to consecutive positions ending with memory
location t of the output. Thus if for example we have that C(i, j) = 3, then N[t-2] N[t-1] and N[t] will hold
the three keys with value j of processor i. Processor i, after D becomes available scans its keys and writes
them into N as appropriately.

Theorem 3.16. Sorting n keys in the range [0.. lgn− 1] with P = n/ lgn processors can be done in time
T = O(lgn) and work W =W2 = Θ(n).

Applying this theorem t times (i.e. use t rounds of count-sort to obtain a radix-sort algorithm) the follow-
ing is derived.

Theorem 3.17. Sorting n keys in the range [0.. lgt n− 1] with P = n/ lgn processors can be done in time
T = O(t lgn) and work W =W2 = Θ(tn).

3.19.1 Parallel Count-Sort: Sequential algorithm

3.19.2 Parallel Count-Sort: An example
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1 CountSort(I[0..n-1],O[0..n-1],n,k)

2 for(i=0;i<k;i++)

3 C[i]=0; // Initialize the Counter Array of length k

4 for(j=0;j< n;j++) // If key I[j] is m increment C[m] by one

5 C[I[j]] ++; // Result: C[m] : number of keys with value m

6 for(i=1;i<k;i++) // C[i] becomes #keys with values at most i.

7 C[i] = C[i]+C[i-1];// C[i]-1 is the last index of O holding an i

8 for(j=n-1;j>=0;j--) {

9 C[I[j]]--;

10 O[C[I[j]]]=I[j

11 }

Figure 3.19: Algorithm CountSort

1

2 Step 1: Split n keys on p processors ;

3 P: 0 1 2 3

4 ------------------------------------------

5 I: 0 2 2 0 1 3 0 0 1 3 0 3 2 1 3 2 [n=16, lgn=4]

6

7 Step 2: Initialize C;

8 P: 0 1 2 3

9 ------------------------------------------

10 C: 0 0 0 0 0

11 1 0 0 0 0

12 2 0 0 0 0

13 3 0 0 0 0

14

15 Step 3: Count keys + update C accordingly;

16 P: 0 1 2 3

17 ------------------------------------------

18 C: 0 2 2 1 0

19 1 0 1 1 1

20 2 2 0 0 2

21 3 0 1 2 1

22

23 Step 4: Parallel Prefix Sum (row major)

24 [Transpose values before ppf]

25 P: 0 1 2 3

26 ------------------------------------------

27 PPF: 0 2 4 5 5

28 1 5 6 7 8

29 2 10 10 10 12

30 3 12 13 15 16

31

32 Step 5: Output row major

33 P: 0 1 2 3

34 ------------------------------------------

35 PPF: 0 0 0 0 0

36 1 0 1 1 1

37 2 2 2 2 2

38 3 3 3 3 3

Figure 3.20: Algorithm CountSort example
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3.20 Comparison or comparator networks

A comparison network consists of wires (also called lines or channels) and comparators. The values of the
network are atomic: they cannot be subdivided nor duplicated. The values travel in a number of wires also
known as channels that will be represented with horizontal lines. (An alternative representation uses vertical
lines.) The inputs are presented on the far left (or alternatively top) and after they travel through the network
in some permuted order on the far right (or alternatively bottom). The network is notionally divided into a
finite number of levels. We may call level 0 the level of the inputs. Each one of subsequent levels contains a
number of comparators. Each comparator is placed on two wires. At most one comparator is placed on any
wire at any given level. We shall denote a comparator with a vertical line with the contact points indicated by
an x in the text figures to be shown. When two wires are interrupted by a comparator, the wires’ values are
fed into the comparator and the appropriate value are output from the comparator, as to be explained.

For input x1, . . . ,xn on wires 1, . . . ,n we shall say that wire i transfers value v at level k on x1, . . . ,xn if

a. either k = 0 and v = xi,

b. or k > 0, there is no comparator on wire i at level k and wire i transfers value v at level k−1,

c. or k > 0, there is a comparator on wire i and wire j at level k, and j < i, wire i transfers value vi at level
k−1, wire j transfers value v j at level k−1, and v = max{vi,v j}.

d. or k > 0, there is a comparator on wire i and wire j at level k, and j > i, wire i transfers value vi at level
k−1, wire j transfers value v j at level k−1, and v = min{vi,v j}.

The output is the set of values transferred by the wires at the final level. Cases (c) and (d) describe the action
of a comparator as specified in a simple form below.

comparator is a box with two inputs a and b, fed through wires and two outputs c and d feeding into
wires. The comparator compares a and b and outputs through c the minimum of a and b and through d the
maximum of a and b.

The box of Fig. 1 in most cases is simplified into the vertical line of Fig. 2 Each comparator takes O(1)
time steps to compare the two keys and output them in proper order (from now one 1 step).

A comparison network consists of wires and comparators. A comparator is a box with two inputs x
and y and two outputs a and b. The comparator compares x and y and outputs through a the minimum of
x and y and through b the maximum of x and y. The box of Fig 1. in most cases is simplified into the
vertical line of Fig 2. Each comparator takes O(1) time steps to compare the two keys and output them
in proper order. The wires transmit values as a whole (think of parallel communication rather than serial)
from left to right. If multiple comparators are attached to a horizontal line that transfers the input values the
result of a preceding comparator must become available before a succeeding comparator starts performing
the comparison required. The depth of a sorting network is the maximum number of comparators attached
in a path (not line) from an input to an output. Thus if all input lines are of depth 0, and the input wires
to a comparator are of depth d1 and d2 then the two output wires of the comparator are of the same depth
max{d1,d2}+1.

3.21 Sorting network

Definition 3.4. A sorting network is a comparison network that always sorts its inputs. That is the inputs
appear in ascending (non-decreasing) order, smallest at top, largest at bottom on the right side which is the
final (last) level of the network.
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1 ------------

2 a----->| |---> c=minimum(a,b) a---|--- c a---x---c

3 |comparator| or | or |

4 b----->| |---> d=maximum(a,b) b---|--- d b---x---d

5 ------------

6 (a) (b)

Figure 3.21: Comparator

A sorting network is a (comparison) network that always sorts its inputs by performing comparisons only
(i.e. countsort, radix sort can not be implemented in such networks). Sorting networks are special cases of
the broader class of networks known as comparison networks.

A sorting network is a comparison network whose output lines generate the input sequence in mono-
tonically increasing order top-to-bottom (i.e. smallest element appear on top-right output line and largest in
bottom-right).
Note 1. This means that countsort, radix sort can not be implemented in sorting networks that uses compara-
tors.
Note 2. Sorting networks are thus special cases of the broader class of networks known as comparison
networks.
Note 3. The wires transmit values as a whole (think of parallel port communication rather than serial port
communication) from left to right.
Note 4. If multiple comparators are attached to a horizontal line that transfers the input values the result
of a preceding comparator must become available before a succeeding comparator starts performing the
comparison required.

The depth of a comparison network is the number of its levels. It is thus the maximum number of
comparators attached in a path (not line/wire) from an input to an output. Thus if all input are of level 0
implying also a depth 0, and the input wires to a comparator are of level d1 and d2 then the two output wires
of the comparator are of the same depth max{d1,d2}+1.

The depth of a sorting network is the depth of the corresponding comparison network.
The size of a sorting network is the number of its comparators i.e. the size of the corresponding compar-

ison network.
The comparator as define is sometimes called a MIN-MAX comparator. Like-wise one can define a

MAX-MIN comparator where the top line generator the maximum of a and b. One could even build a
network of MIN-MAX and MAX-MIN comparators. A result due to Floyd and Knuth states that a network
of MIN-MAX and MAX-MIN comparators can result into a network of MIN-MAX comparators of the same
depth and size.

A sorting network can be transformed into a serial (sequential) sorting algorithm if we describe in a code
the appropriate sequence of comparisons generated or performed by the sorting network. The ’running time’
is derived from the size of the network. Moreover a sorting network can be transformed into a parallel sorting
algorithm if we extract from the network structure of the sorting network the necessary parallelism. The
’parallel runing time’ is then the depth of the network.

The sorting algorithm implied by a sorting network is an oblivious sorting algorithm. An oblivious
algorithm is an algorithm whose actions are always the same and independent of the input and output: in an
oblivious sorting algorithm the sequence of comparisons performed is the same for all inputs and outputs.

The sorting algorithm implied by a sorting network is an oblivious sorting algorithm. An oblivious
algorithm is an algorithm whose actions are always the same and independent of the input and output: in an
oblivious sorting algorithm the sequence of comparisons performed is the same for all inputs and outputs.

Odd-even transposition sort is an oblivious sorting algorithm. In an even round the keys indexed 0-1, 2-3,
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4-5, 6-7 are compared (and swapped as needed). In an odd round the keys indexed 1-2, 3-4, 5-6 are compared
and swapped. (One can call odd-even transposition sort an unoptimized version of bubble sort.)

3.21.1 Finding the maximum
We present first some comparison networks for simple operations. Later on we build on them in creatin a
sorting network of increasing complexity.

Suppose we are interested in Finding the maximum of n values.
Suppose we are interested in Finding the maximum of n values. We shall use the term values interchange-

ably with the term keys. Note that keys (or values) are comparable i.e. a total order is defined on them. Thus
for two keys x and y a comparator comp(x,y) yields the MIN(x,y) on the top line and MAX(x,y) on the bottom
line. (In case of equality the input order is preserved.)

Let n be a power of two.
One way to build a comparison network for finding the maximum is divide and conquer. Suppose that

a comparison network with n input lines and n output lines finds the maximum of n values fed through the
input lines and this maximum appears through the bottom wire of the output. We can construct this network
recursively by first constructing two networks, one that finds the maximum of the first n/2 values and one
that finds the maximum of the remaining n/2 values. Then, a single comparison determines the maximum of
the two maxima, i.e. the maximum of the n values.

We want to build a comparison network for MAX called MAX(n) that would consist of n input wires
containing n input keys (value), and n output wires, where the last (bottom-most) contains the MAX of the n
input and the other n−1 wires are irrelevant (eg they contain the remaining n−1 inputs. For the sake of this
exposition let n be a power of two.

A recursive construction: We can use divide-and-conquer in constructing the MAX(n) network that com-
putes the maximum of n input values x0, . . .xn−1.

One way to construct MAX(n) of x0, . . .xn−1 is by using divide-and-conquer to:

(a) first constructing a MAX(n/2) of x0, . . . ,xn/2−1 that computes the MAX of the first n/2 values in the
bottom-most output wire,

(b) then constructing a second MAX(n/2) of xn/2, . . . ,xn−1, that computes the MAX of the next n/2 values
in the bottom-most output wire, and then

(c) combining by comparing the bottom-most output wires of both networks to compute the MAX of the
n values as the maximum of the two generated partial maxima.

Let S(n) be the size of MAX(n). Then, a simple recursive formulation shows

S(n) = 2S(n/2)+1

We have as a base case S(2) = 1. A solution for S(n) is thus S(n) = n−1
Let D(n) be the depth/delay of MAX(n). Then,

D(n) = D(n/2)+1

We have D(2) = 1. A solution for D(n) is D(n) = lgn.

3.21.2 Sorters
Figure 3.23 describes comparator networks for sorting a fixed number of inputs.
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1 MAX(i): A box with i input and i output wires.

2 The maximum appears through the bottom output wire

3

4 x0 ----------

5 ------| |-------------------------------- Network

6 | MAX | Construction

7 ... | n/2 | ... for MAX(n)

8 | | MAX(x0 ,... , xn/2-1)

9 ------|_________ |----x---------------------------

10 xn/2-1 |

11 |

12 xn/2 ---------- |

13 ------| |----|--------------------------

14 | | |

15 ... | MAX | ...|

16 | n/2 | | MAX(xn/2,...,xn -1)

17 ------|__________|----x--------------------------

18 xn -1 MAX(n/2) MAX(x1... xn)

Figure 3.22: Comparator network for MAX

1 Sorting 1 key ---------- Immediate

2

3 Sorting 2 keys ----X----- Trivial

4 |

5 ----X-----

6

7 Sorting 3 keys -x------x- An insertion sort based network

8 | | or

9 -x---x--x- is it odd -even transposition sort?

10 |

11 -----x----

12

13 Sorting 4 keys -x---x----x-- Sort first three keys as before

14 | | | Then binary search/insert 4th

15 -x-x-x-x--x-- key into the first three.

16 | |

17 ---x---|--x--

18 | |

19 -------x--x--

20

21 or -x---x---x--- Sort using insertion sort;

22 | | | Last three comparators (one touched

23 -x-x-x-x-x--- from right) insert 4th key into the

24 | | sorted sequence of the first three

25 ---x-x-x----- (figure from above)

26 |

27 -----x-------

Figure 3.23: Comparator networks for sorting 1,2,3,4 keys
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3.21.3 0-1 Sorting Lemma
The 0-1 Sorting Lemma also referred to as 0-1 (Sorting) principle can be used to show that a comparison
network is indeed a sorting network. The 0-1 sorting lemma says that if a sorting network sorts all inputs of
zeroes and ones correctly, then it can sort any type of inputs as well, be them floating point numbers, integers,
etc. Note that the lemma applies to sorting “algorithms” that are oblivious and use only comparisons and do
not inspect the values of the input.

Lemma 3.1 (Lemma MonotonicP). If a comparison network transforms a = 〈a0, . . . ,an−1〉 into a b =
〈b0, . . . ,bn−1〉, then for any monotonically increasing function f , the network transforms,
f (a) = 〈 f (a0), . . . , f (an−1)〉, into f (b) = 〈 f (b0), . . . , f (bn−1)〉.

Proof. MonotonicP. A proof of the monotonic property will be by induction.
Base case. A single comparator has the monotonic property. Suppose that the inputs to a comparator are
x and y. If x ≤ y, then f (x) ≤ f (y) by the monotonicity of f . In the former case x is output on the top
output line and in the latter case f (x) is output on the top output line. A similar observation applies to
the case x ≥ y, where y, f (y) are on the top output line. Therefore min( f (x), f (y)) = f (min(x,y)) , and
max( f (x), f (y)) = f (max(x,y)).
Inductive step (on depth). A comparator C at depth d has input lines that are of depth strictly less that
d. If these input lines carry ai and a j when the input is a, they will carry, by the induction hypothesis
f (ai) and f (a j), when the input is f (a). This completes the induction, as C would produce, f (min(ai,a j)),
f (max(ai,a j)) by the base case.

Lemma 3.2 (0-1 Sorting Lemma). If a comparison network with n inputs sorts all 2n possible input sequences
of zeroes and ones, then it sorts all sequences of arbitrary numbers correctly.

Proof. 0-1SL. Suppose that the comparison network sorts all 2n binary n inputs, but fails to sort a sequence
s of arbitrary numbers. Then this means that in sequence s there are two numbers si and s j that are out of
order, i.e. si < s j but the network places s j before si. We then define the following monotonically increasing
sequence.

f (x) =
{

0 if x≤ si
1 if x≥ si

Since the network places s j before si then given a monotonically increasing f it would place f (s j) = 1 before
f (si) = 0 in the output sequence, i.e. it would place an 1 before a 0. Then this specific input sequence of 0’s
and 1’s (implied by f ) would not be sorted contradicting the assumption that all binary sequences are sorted
correctly.

3.22 Arbitrary input sorting networks
We will propose the construction of two sorting networks both proposed by K. Batcher. One is known as the
bitonic-based sorting network and the other is known as the odd-even merge sort-based network.

We first discuss the bitonic-based sorting network implying a bitonic-based sorting algorithm.
In order to build a sorting network, we will proceed in steps.

Step 1. We first show how to sort some structured sequences called bitonic sequences. We call the network that
achieves that a bitonic sorting network. The network for sorting bitonic sequences of length n would
be denoted by FC(n).
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Step 2. We then show how to merge two sorted sequences and thus how to construct a merging sorting network
using Step 2. The network for merging two sorted sequences is a variation of FC(n), and is denoted by
FC′(n).

Step 3. We finally show how to sort an arbitrary sequence by using a merging-based approach: to sort a se-
quence of length n, we recursively sort the two halves i.e. sequences of length n/2 and then we merge
them using FC′(n). We call the latter network BS(n).

Because in Step 3 the algorithm uses Step 1, it is referred to as bitonic-based sorting or just bitonic sorting.

3.22.1 Bitonic sequence
A bitonic sequence is a sequence that

S1 monotonically increases and then monotonically decreases or

S2 is a circular shift (rotation) of a sequence described in case S1.

Example 3.6. For example 〈4,7,8,6,5,3,2,1〉 is a bitonic sequence ; this is because 4↗ 7↗ 8↘ 6↘
. . .↘ 1.

Example 3.7. The sequence 〈7,8,6,5,3,2,1,4〉 is also a bitonic sequence. It results from shifting/rotating
the sequence 〈4,7,8,6,5,3,2,1〉 one position to the left.

In the remainder we will assume that n is a power of two. If this is not the case, we can pad keys in the
sequence so that its length becomes a power of two.

3.22.2 Properties of bitonic sequences
Theorem 3.18 (Bitonic sequences). The number of 0-1 bitonic sequences is n2−n+2.

Proof. 0-1 bitonic sequences of length n are of the form 0i1 j0k where 1 < i, j < n or 1i0 j1k or 0n or 1n. The
last two are special cases of the former two with j = k = 0 and i = n.

Consider the former sequence 0i1 j0k.

0 1 2 3 4 5 n-3 n

x x x x x .... x x x .... x x x

We can place two separators A,B on any two of the x′s above: first A is placed anywhere and then B on the
remaining x’s between A and the rightmost x. Everything on the left of A will be 0 and associated with i,
between A, B will be 1’s and associated with j and on the right of B will be a 0’s as well associated with k.
How many choices do we have for A? Given that i > 1, we have n− 1 choices for A/i from 1 to n− 1, and
n− i choices for B/ j from i+1 through n i.e. a total of n− (i+1)+1 = n− i. This also fixes the choices for
k which will be n minus the value of j.

Thus the number of 0i1 j0k sequences is ∑
n−1
i=0 (n− i) = n(n− 1)/2. Similarly the number of 1i0 j1k se-

quences is ∑
n−1
i=0 (n− i) = n(n−1)/2.

If we add the 0n and 1n we have n(n−1)/2+n(n−1)/2+2 = n2−n+2.

Theorem 3.19 (0-1 Principle for bitonic sequences). If a comparator network sorts all 0-1 bitonic sequences,
then it sorts arbitrary bitonic sequences.

Proof. The proof is identical to the 0-1 Sorting Lemma.
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a. We assume that a network sorts all 0-1 bitonic sequences but does not sort a generic bitonic sequence
A. For this to happen an input a j appears ”on top” of an input ai even if it should have been the other
way around, i.e. it appears that even ai < a j the output indicates that a j < ai, i.e. it is incorrect.

b. We use a monotonically increasing function f (.) to convert the generic bitonic sequence A into a bitonic
sequence of 0-1s. Let that be f (A). By the proof of the 0-1 Monotonic Lemma, we have that the output
instead of ai,a j is f (ai) and f (a j), i.e. it is an output of 0-1s. Given that f is constructed so that
f (ai) is 0 and f (a j) is an 1, the appearance of f (a j) on top of f (ai) indicates that f (a j) < f (ai), a
contradiction.

The function f as noted above is the same as used in the 0-1 Sorting Lemma. The only thing that needs to be
proved is that f converts a generic bitonic sequence A into a bitonic sequence f (A) of 0-1s. If the latter f (A)
input sequence was not bitonic, no contradiction could be be proven as we don’t know the behavior of the
bitonic sorting network on non-bitonic input sequences generic or otherwise. Thus the only thing we need to
prove is that if A = 〈a1, . . . ,an〉 is a bitonic sequence then the sequence f (A) = 〈 f (a1), . . . , f (an)〉 is also a
0-1 bitonic sequence, where f (.) is a monotonically increasing function defined by

f (x) =
{

0 x≤ ai
1 x > ai

Since A = 〈a1, . . . ,an〉 is bitonic, then A is↗↘ or a rotation of it. We prove below that f (A) is also bitonic.
If A is↗↘ we show that f (A) is also of that form. If A is a rotation, then let the rotated sequence which

is of the form↗↘ be R = 〈at , . . . ,an,a1, . . .at−1〉= s(A). We then prove that f (R) is also of the↗↘ form
and thus A is a bitonic sequence.

Case 1: A is an↗↘ sequence. For this case we distinguish three subcases as shown below. In all three
cases the corresponding subcases yield a bitonic 0-1 sequence for f (A), as shown.

Case 1a: A is↗↘ with a left-point higher than the right-point.

Case 1a: 1 = i : 1* 0*

/\ 1 < i < k : 0* 1* 0*

/ \

/ \ i = k : 0*

/ \

\ k < i< 2k-1 : 0* 1* 0*

\

\ i =2k-1 : 1* 0*

\ 2k-1< i : 1* 0*

|---|-------|

1 k n
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Case 1b: A is↗↘ with a left-point and right-point at the same level/value.

Case 1b:

k

/\ 1,n = i : 1*

/ \ i < k : 0* 1* 0*

/ \ i = k : 0*

/ \ k < i : 0* 1* 0*

/ \

/ \

/ \

/ \

|-------|-------|

1 k n

Case 1c: A is↗↘ with a left-point lower than the right-point.

Case 1c:

/\ 1 = i : 1*

/ \ 1 < i <=2k-n : 0* 1*

/ \ 2k-n < i < k : 0* 1* 0*

/ k = i : 0*

/ k < i < n : 0* 1* 0*

/ i = n : 0* 1*

/

/

|-------|--|

1 k n

Case 2: A is not a↗↘ sequence, but R is
If R = s(A), a circular shift of A, is a ↗↘ sequence, then f (R) is a 0-1 bitonic sequence from Case 1

above, and thus A = s−1(R) is also a bitonic sequence of 0-1s.

3.22.3 Bitonic sequence sorting using FC(n)
We first show how to sort a bitonic sequence of length n.
Input. A bitonic sequence of length n

Output. The bitonic sequence sorted (in non-decreasing order).

In the remainder we will assume that n is a power of two. If this is not the case, we can pad keys in the
sequence so that its length becomes a power of two.

Idea 1: Half-cleaner HC(n). We construct a comparison network where line i is connected to line i+n/2,
0 ≤ i < n/2. Such a network turns a bitonic sequence of 0’s and 1’s into two bitonic sequences of half the
original size, one of which is clean (all output lines contain one kind of input either all 0 or all 1). We call
such a network a half-cleaner and we denote it with HC(n). (Proof of correctness is deferred to 6-5-5.)

Idea 2: Full-cleaner: bitonic sequence sorting done. We use the idea of half-cleaning recursively until
we “clean” all the lines/wires. The first application of half-cleaning cleans half the input (which becomes a
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1 0 --x------0-x--0-x-- 0 Bitonic Sequence Sorting using an FC(n)

2 | | | (case with FC(8) for n=8)

3 1 --|-x----1-|-x0-x-- 0

4 | | | |

5 1 --|-|-x--0-x-|0-x-- 0

6 | | | | |

7 1 --|-|-|-x0---x1-x-- 1

8 | | | |

9 1 --x-|-|-|1-x--1-x-- 1

10 | | | | |

11 1 ----x-|-|1-|-x1-x-- 1

12 | | | |

13 0 ------x-|1-x-|1-x-- 1

14 | | |

15 0 --------x1---x1-x-- 1

Figure 3.24: Bitonic sequence sorter FC(n)

trivial bitonic sequence) and turns the other half into a bitonic sequence whose elements are smaller than (or
equal to) the cleaned ones if it is the top-half and at least the cleaned elements if it is the bottom half.

Bitonic sequence sorting: Full-cleaner. A full cleaner results by using half cleaners for smaller and smaller
line size networks. We start with HC(n) a half-cleaner for n wires. It is then followed by two HC(n/2),
followed by four HC(n/4) and so on. This becomes a FC(n). An HC(n) uses n/2 comparators and its depth is
one. Thus

DHC(n) = 1, SHC(n) = n/2.

Bitonic sequence sorter FC(n). An FC(n) uses lgn levels of HC(.) Each level consists of n/2 comparators.
The depth and size of the network are respectively

DFC(n) = lgn SFC(n) = n lgn/2.

Bitonic sequence sorting: Algorithm Correctness
In order to prove the correctness of this scheme we distinguish eight cases for a bitonic sequence of zeroes

and ones. The first four of those cases are of the form 0̄1̄0̄, where 1̄, 0̄ denote a block of 1’s and 0’s of arbitrary
(potentially not equal) size respectively. The remaining symmetric cases are for 1̄0̄1̄ and treated analogously.

(a) 1̄ does not include the midpoint and falls in top half.

(b) 1̄ does not include the midpoint and falls in bottom half.

(c) 1̄ includes midpoint and length less than n/2.

(d) 1̄ includes midpoint and length not less than n/2.

In case (a) a block 0̄ of length at least n/2 results in the top half (i.e it is clean). Same for case (b). In
case (c) we have the same. In case d we have a block 1̄ of length n/2 in the bottom/upper half, and a bitonic
sequence in the bottom half.

In all cases we obtain at least one clean half, two bitonic sequences, and every element in the top half is
less than or equal to every element in the bottom half.
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1 0 --x------0-x--0-x-- 0 Merging network using

2 | | | a modified full cleaner FC(n)

3 1 --|-x----1-|-x0-x-- 0

4 | | | |

5 1 --|-|-x--0-x-|0-x-- 0

6 | | | | |

7 1 --|-|-|-x0---x1-x-- 1

8 | | | |

9 0 --|-|-|-x1-x--1-x-- 1

10 | | | | | ,

11 0 --|-|-x--1-|-x1-x-- 1 FC (8)

12 | | | |

13 1 --|-x----1-x-|1-x-- 1

14 | | |

15 1 --x------1---x1-x-- 1

Figure 3.25: Bitonic sequence sorter FC′(n)

3.23 Merging
The problem of merging deals with merging two sorted sequences into one sorted sequence. The problem of
merging is defined as follows.

MERGING(X[1..k],Y[1..l],Z[1..n=k+l],k,l,n=k+l) of two sorted sequences.
Input. Two sorted sequences X [1..k] and Y [1..l]
Output. Merge X and Y into a sorted sequence Z[1..n] keys, where n = k+ l.

In the remainder we will assume that k = l = n/2.
The input 〈X ,Y 〉 consisting of two sorted sequences can become a bitonic sequence. For two sorted

sequences X and Y we can form first sequence 〈X ,Y 〉. Afterwards we form 〈X ,rev(Y )〉, where rev(Y ) is
sequence Y reversed. The latter is a bitonic sequence.

Merging two sorted sequencs 〈X ,Y 〉 is equivalent to sorting the bitonic sequence 〈X ,rev(Y )〉. The only
problem that needs to be resolved is transforming 〈X ,Y 〉, two sorted sequences, into a bitonic sequence. This
transformation can be incorporated in the first level of the bitonic sequence sorting network described in
previous pages.

We recall that in the first phase of the bitonic sequence sorting involving FC(n) network line i is compared
to i+n/2 as part of an HC(n) that is at the first level of FC(n).

Projecting X and Y as inputs to FC(n), the key of Y in line i+n/2 is the i-th largest key of Y . If Y was to
be reversed then the key would move to line n− i+1.

Thus in order to build a merging-network out of FC(n) we need to make sure that the input is a bitonic
sequence rather than two sorted sequences! This means that we need to have HC′(n) at the first level where
wire i and n− i+1 are fed into a comparator rather than i and i+n/2. (After the first phase is completed we
get two bitonic sequences for the top and bottom half and thus the remaining phase of the bitonic sorter need
not be modified.)

An FC′(n) is an FC(n) where the first level HC(n) has been replaced with an HC′(n).

3.23.1 Sorting bitonically
A sorting network that is bitonic-based and utilizes FC′(n) will be presented.

We are now ready to introduce the algorithm for sorting, i.e. build a sorting network that sorts its ar-
bitrarily ordered input. The algorithm is merge-sort based. In order to sort n keys we produce two sorted
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1 lg(2) + lg(4) + lg(8) levels

2 0 --x--0---x----x--0-x----0--x---0-x- 0

3 | | | | | | BS(n) for n=8

4 1 --x--1---|--x-x--1-|x---1--|x--0-x- 0

5 | | || || BS(8)

6 1 --x--1---|--x-x--1-||x--0--x|--0-x- 0

7 | | | ||| | |

8 1 --x--1---x----x--1-|||x-0---x--1-x- 1

9 ||||

10 0 --x--0---x----x--0-|||x-1--x---1-x- 1

11 | | | ||| | |

12 0 --x--0---|--x-x--0-||x--1--|x--1-x- 1

13 | | || ||

14 1 --x--1---|--x-x--1-|x---1--x|--1-x- 1

15 | | | | | |

16 1 --x--1---x----x--1-x----1---x--1-x- 1

Figure 3.26: Bitonic-based sorter BS(n)

sequences recursively (divide and conquer step) and merge these sorted sequences , by the n-line merging
network FC′(n) of the previous section.

The base case of the recursive decomposition is easy. A sequence consisting of a single key is already
sorted.

Therefore using this divide and conquer construction of a sorting network we build BS(n) and can con-
clude the following.

A bitonic-based sorter BS(n) consists of two BS(n/2) that sort the first n/2 and the last n/2 keys respec-
tively. At the output we have two sorted sequences. This structure is then followed by an FC′(n) that merges
the two n/2-long sorted sequences. Building block wise

BS(n) = BS(n/2)+BS(n/2)+FC′(n).

The depth of BS(n) can be derived from the recursive construction above. DBS(n) = DBS(n/2)+DFC′(n).
Therefore

DBS(n) = DBS(n/2)+ lgn⇒ DBS(n) = lgn(lgn+1)/2.

The size of BS(n) can be derived from the recursive construction above. SBS(n) = 2SBS(n/2)+SFC′(n).
Therefore

SBS(n) = 2SBS(n/2)+(n/2) lgn⇒ SBS(n) = n lgn(lgn+1)/4.

3.23.2 Odd-even merge sort-based sorting network
We present the second sorting network that is known as the odd-even merge sort-based network. Building
steps to constructing an odd-even merge sort-based sorting network are as follows.

Step 1. We first show how to merge two sorted sequences of length n/2 each, by using a method known as
odd-even merge-sort. The network for merging two such sequences of total length n would be denoted
by OM(n).

Step 2. We finally show how to sort an arbitrary sequence by using a merging-based approach: to sort a se-
quence of length n, we recursively sort the two halves i.e. sequences of length n/2 and then we merge
them using OM(n). We call the latter network OS(n).
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1 MergeSort(A,n)

2 MS(A,0,n-1);

3

4 MS(A, l, r)

5 if (l > 1)

6 Divide A[l..r] into two halves A[l..m] and A[m+1..r].

7 Sort A[l..m] and A[m+1..r] recursively.

8 Merge A[l..m] and A[m+1..r] into A[l..r]

Figure 3.27: MergeSort MS(n)

Theorem 3.20. Properties of OS(n): DOS(n) and SOS(n). The new sorting network has DOS(n) = lgn(lgn−
1)/2 and SOS(n) = n lgn(lgn−1)/4.

The idea behind it is just plain merge-sort as well. In the remainder we assume that n is a power of two.

Question 3.4. How many recursive rounds implied in Step 3 above?

Answer: O(lgn).

Question 3.5. How do you realize Step 2 above?

Answer: OS(n) using a recursive construction.

Question 3.6. How do you realize Step 3 above?

Answer: OM(n) using a recursive construction and Odd-Even merging.

Question 3.7. What are the properties of the sorting network?

Answer: DOM(n) = lgn+1. DOS(n) = lgn(lgn−1)/2. The depth recurrence is as follows.

DOS(n) = DOS(n/2)+DOM(n)

where DOS(n) is the depth of the sorting network for sorting n arbitrary keys, DOM(n) is the depth of the
odd-even merging network for merging two sorted sequence of n/2 keys each.

The only question left unaswered is: relates to odd-even merging that works miraculously well.

3.23.3 Odd-even merging (Batcher’s original method)

OddEvenMergeB(A = 〈a0 . . .an/2−1〉, B = 〈b0 . . .bn/2−1〉, n)
Input. Two sorted sequences A and B as stated with a total of n keys, where n is a power of two. Each
sequence contains m = n/2 keys.
Output. Merge A and B into a sorted sequence of n keys: the first half appears in A and the second half in B.
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1 void OddEvenMergeB(keys A[0..m-1] , keys B[0..m-1], int n ) {

2 /* This is the original Batcher method. Note m=n/2=> n=2*m */

3 if $(n>2) {

4 Even(A) = [A[0], A[2], ... , A[m-2]] ;

5 Odd(A) = [A[1], A[3], ... , A[m-1]] ;

6 Even(B) = [B[0], B[2], ... , B[m-2]] ;

7 Odd(B) = [B[1], B[3], ... , B[m-1]] ;

8 C = OddEvenMergeB ( Even(A), Even(B), m/2) ;

9 D = OddEvenMergeB ( Odd (A), Odd (B), m/2) ;

10 M = [c[0], d[0], c[1], d[1], c[2], d[2],..., c[m-1], d[m-1]] ;

11 /* Below x:y denotes comparator applied to inputs x,y *\

12 L = [c[0], d[0]:c[1], d[1]:c[2],..., d[m-2]:c[m-1], d[m-1]] ;

13 /* Perform a comparison side -by-side between d[i] and c[i+1] */

14 }

15 else CompareSwap( a[0], b[0]) ;

16 Return(L) ;

17 }

Figure 3.28: Odd Even merge

begin ODDEVENMERGEB (A = 〈a0 . . .am−1〉,B = 〈b0 . . .bm−1〉,2m)
// This is the original Batcher method. Note m = n/2

0. if (n > 2)
1a. Even(A) = 〈a0,a2, . . . ,am−2〉;
1b. Odd(A) = 〈a1,a3, . . . ,am−1〉;
1c. Even(B) = 〈b0,b2, . . . ,bm−2〉;
1d. Odd(B) = 〈b1,b3, . . . ,bm−1〉;
2a. C= ODDEVENMERGEB(Even(A),Even(B),m/2);
2b. D= ODDEVENMERGEB(Odd (A),Odd (B),m/2);
3. M = 〈c0,d0,c1,d1,c2,d2, . . . ,cm−1,dm−1〉;

// Below x:y denotes comparator : and two input x,y
4. L = 〈c0,d0 : c1,d1 : c2, . . . ,dm−2 : cm−1,dm−1〉;

//Perform a comparison side-by-side between di and ci+1.
5. else CompareSwap( a0, b0);
6. Return(L);
end ODDEVENMERGEB
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1 OM(n) is in terms of 2 x OM(n/2) plus one level of comparators.

2

3 A: a0 a1 a2 a3 a4 ... am -2 am -1 B: b0 b1 b2 b3 b4 ... bm -2 bm -1

4 ... ... ... ... ... ...

5 ================================ =================================

6 | a0 a2 a4 ... b0 b2 b4 ... | | a1 a3 a5 ... b1 b3 b5 ... |

7 | | | |

8 | OM(n/2) | | OM(n/2) |

9 | | | |

10 C:| c0 c1 c2 ... cm -2 cm -1| D:| d0 d1 d2 ... dm -2 dm -1 |

11 ================================ =================================

12 | | \ \ | / |

13 | ------|----------------/-- |

14 | ______________________________| / | |

15 | | \ \ / | |

16 M: c0 d0 c1 d1 c2 ... dm -2 cm -1 dm -1

17 | | | | | | | |

18 | x--x x--x x--x |

19 | | | | | | | |

20 L: l0 l1 l2 l3 l4 ln -3 ln -2 ln -1

Figure 3.29: Batcher’s odd-even merging network

3.23.4 Example
An Example of the Batcher’s method

A= < 1 5 7 8 >

B= < 2 3 4 6 >

even(A) = < 1 7 > odd(A) = < 5 8 >

even(B) = < 2 4 > odd(B) = < 3 6 >

C = OddEvenMerge(even(A), even(B)) = < 1 2 4 7>

D = OddEvenMerge( odd(A), odd(B)) = < 3 5 6 8>

M = < 1 3:2 5:4 6:7 8>

L = < 1 2 3 4 5 6 7 8>

3.23.5 Batcher’s odd-even merging network: a recursive structuring

Lemma 3.3. Algorithm ODDEVENMERGEB works as claimed. Consequently network OM(n) works as
claimed as well.

Proof. We use the 0-1 Sorting Lemma.
Base case m = 2. OM(2) consists of one comparator. OM(4) is true by inspection.
Inductive step. Let us suppose that OM(n/2) and OM(n/2) merge correctly. We are going to use the 0-1
Merging Lemma which is the merging analogue of the 0-1 Sorting Lemma. Let A consists of a zeroes and B
of b zeroes. Thus the number of ones is m− a and m− b respectively. Then C contains c = da/2e+ db/2e
zeroes followed by m−da/2e−db/2e=m−c ones. Likewise D contains d = ba/2c+bb/2c zeroes followed
by m−ba/2c−bb/2c= m−d ones. Note that c can be two more than d and no more.

For sequence M subsequently formed there are three cases to consider.
Case 1. C has the same number of zeroes as D and a = b = 0. The output is trivially sorted.
Case 2. C has the same number of zeroes as D and a,b > 1. Then M looks like and it is sorted and thus L
would remain sorted.
Case 3. C has one more zero than D. Then M looks like as follows. L would be sorted anyway.
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c0 d0 c1 d1 c2 d2 c3 d3 c4
0 0 0 0 0 0 1 1 1

c0 d0 c1 d1 c2 d2 c3 d3 c4
0 0 0 0 0 1 1 1 1

Case 4. C has two more zeroes than D. Then M looks like. The comparison involving d1 : c2 would turn L
sorted. This completes the proof.

c0 d0 c1 d1 c2 d2 c3 d3 c4
0 0 0 1 0 1 1 1 1

Theorem 3.21 (Depth). The depth DOM(n) = DOM(n/2)+ 1 where the +1 is the extra level to generate M
from L. Moreover DOM(2) = 1. For n a power of two we obtain

DOM(n) = lgn.

Theorem 3.22 (Size ). The size SOM(n) = 2SOM(n/2)+ n/2− 1 where the number of comparators from M
to L is (n−2)/2 = n/2−1. Moreover SOM(2) = 1. For n a power of two we obtain

SOM(n) = (n/2) lg(n/2)+1 = n lgn/2−n/2+1.

3.23.6 Yet another variant
A variant of odd-even merging of Batcher’s original method is shown below.

OddEvenMergeV(A = 〈a0 . . .an/2−1〉, B = 〈b0 . . .bn/2−1〉, n)
Input. Two sorted sequences A and B as stated with a total of n keys, where n is a power of two. Each
sequence contains m = n/2 keys.
Output. Merge A and B into a sorted sequence of n keys: the first half appears in A and the second half in B.

The variant given here slightly differs from Batcher’s original method shown on the previous page. Last
page Odd(A) with Odd(B) and Even(A) with Even(B) are merged. That however, requires the comparison of
di with ci+1 in line 4 instead, with c0 and dm−1 not participating in that step (left unchanged). In this variant
the comparisons are natural ci with di.

3.23.7 An example
An Example of Batcher’s variant.

A= < 1 5 7 8 >

B= < 2 3 4 6 >

even(A) = < 1 7 > odd(A) = < 5 8 >

even(B) = < 2 4 > odd(B) = < 3 6 >

C = OddEvenMerge(even(A), odd(B)) = < 1 3 6 7>

D = OddEvenMerge(odd (A),even(B)) = < 2 4 5 8>

M = < 1:2 3:4 6:5 7:8>

L = < 1 2 3 4 5 6 7 8>

Lemma 3.4. Algorithm ODDEVENMERGEV works as claimed. Consequently network OM′(n) works as
claimed as well.
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1 void OddEvenMergeV(keys A[0..m-1] , keys B[0..m-1], int n ) {

2 /* This is a variant of Batcher method. Note m=n/2=> n=2*m */

3 if $(n>2) {

4 Even(A) = [A[0], A[2], ... , A[m-2]] ;

5 Odd(A) = [A[1], A[3], ... , A[m-1]] ;

6 Even(B) = [B[0], B[2], ... , B[m-2]] ;

7 Odd(B) = [B[1], B[3], ... , B[m-1]] ;

8 C = OddEvenMergeV ( Even(A), Odd(B), m/2) ;

9 D = OddEvenMergeV ( Odd (A), Even(B), m/2) ;

10 M = [c[0], d[0], c[1], d[1], c[2], d[2],..., c[m-1], d[m-1]] ;

11 /* Below x:y denotes comparator applied to inputs x,y *\

12 L = [c[0]:d[0], c[1]:d[1], c[2]:d[2],..., c[m-1] :d[m-1]] ;

13 /* Perform a comparison side -by-side between d[i] and c[i+1] */

14 }

15 else CompareSwap( a[0], b[0]) ;

16 Return(L) ;

17 }

Figure 3.30: Odd Even merge variant of Batcher’s method

begin ODDEVENMERGEV (A = 〈a0 . . .am−1〉, B = 〈b0 . . .bm−1〉,2m)
// This is a variant of Batcher’s method. Note m = n/2

0. if n > 2
1a. Even(A) = 〈a0,a2, . . . ,am−2〉;
1b. Odd(A) = 〈a1,a3, . . . ,am−1〉;
1c. Even(B) = 〈b0,b2, . . . ,bm−2〉;
1d. Odd(B) = 〈b1,b3, . . . ,bm−1〉;
2a. C= ODDEVENMERGEV(Even(A),Odd (B),m/2);
2b. D= ODDEVENMERGEV(Odd (A),Even(B),m/2);
3. M = 〈c0,d0,c1,d1,c2,d2, . . . ,cm−1,dm−1〉;

// Below x:y denotes comparator : and two input x,y
4. L = 〈c0 : d0,c1 : d1,c2 : d2, . . . ,cm−1 : dm−1〉;
5. else CompareSwap( a0, b0);
6. Return(L);
end ODDEVENMERGEV

Proof. We use the 0-1 Sorting Lemma.
Base case m = 2. OM′(2) consists of one comparator. OM′(4) is true by inspection. Inductive step. Let us
suppose that OM′(n/2) and OM′(n/2) merge correctly. We are going to use the 0-1 Merging Lemma which
is the merging analogue of the 0-1 Sorting Lemma. Let A consists of a zeroes and B of b zeroes. Thus the
number of ones is m− a and m− b respectively. Then C contains c = da/2e+ bb/2c zeroes followed by
m−da/2e−bb/2c = m− c ones. Likewise D contains d = ba/2c+ db/2e zeroes followed by m−ba/2c−
db/2e = m−d ones. Note that now c and d can be equal or one is off by one from the other in other words
| c−d |≤ 1.

For sequence M subsequently formed there are four cases to consider.
Case 1. C has the same number of zeroes as D and a = b = 0. The output is trivially sorted.
Case 2. C has the same number of zeroes as D and a,b > 1. Then M looks like and it is sorted and thus L
would remain sorted.
Case 3. C has one more zero than D. Then M looks like as follows. L would be sorted anyway. Case 4. C
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1 OM’(n) is in terms of 2 x OM’(n/2) plus one level of comparators.

2

3 A: a0 a1 a2 a3 a4 ... am -2 am -1 B: b0 b1 b2 b3 b4 ... bm -2 bm -1

4 ... ... ... ... ... ...

5 ================================ =================================

6 | a0 a2 a4 ... b1 b3 b5 ... | | a1 a3 a5 ... b0 b2 b4 ... |

7 | | | |

8 | OM’(n/2) | | OM’(n/2) |

9 | | | |

10 C:| c0 c1 c2 ... cm -2 cm -1| D:| d0 d1 d2 ... dm -2 dm -1 |

11 ================================ =================================

12 | | \ \ | / |

13 | ------|----------------/-- |

14 | ______________________________| / | |

15 | | \ \ / | |

16 M: c0 d0 c1 d1 c2 ... dm -2 cm -1 dm -1

17 | | | | | | | |

18 x--x x--x x-- | x-----x

19 | | | | | | | |

20 L: l0 l1 l2 l3 l4 ln -3 ln -2 ln -1

Figure 3.31: Batcher’s odd-even merging variant network

c0 d0 c1 d1 c2 d2 c3 d3 c4
0 0 0 0 0 0 1 1 1

has one fewer zero than D. Then M looks like. The comparison involving ci : di (in the example c2 : d2 would
turn L sorted.

Theorem 3.23 (Depth). The depth DOM′(n) = DOM′(n/2)+1 where the +1 is the extra level to generate M
from L. Moreover DOM′(2) = 1. For n a power of two we obtain

DOM′(n) = lgn.

Theorem 3.24 (Size ). The size SOM′(n) = 2SOM′(n/2)+n/2 where the number of comparators from M to L
is n/2. Moreover SOM′(2) = 1. For n a power of two we obtain

SOM′(n) = n lgn/2

3.23.8 From merging to sorting
The interesting point about ODDEVENMERGEB or ODDEVENMERGEV is that they are the preparatory steps
of a sorting algorithm or network OS(n). The algorithm implies by OS(n) is called ODDEVENMERGESORT
and is described below for completion. It sorts a sequence of n keys.

Theorem 3.25 (Sorting using Batcher’s odd even merge). We analyze Batcher’s original version with respect
to depth. The same analysis applies to the variant. Note that DOS(2) = 1 or equivalently DOS(1) = 0. For
other values of n > 1 we have

DOS(n) = DOS(n/2)+DOM(n/2)
DOS(n) = DOS(n/2)+ lgn

DOS(n) = lgn(lgn+1)/2
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c0 d0 c1 d1 c2 d2 c3 d3 c4
0 0 0 0 0 1 1 1 1

c0 d0 c1 d1 c2 d2 c3 d3 c4
0 0 0 0 1 0 1 1 1

Size-wise we have SOM(n/2) = n lgn/2−n/2+1 and SOM(1) = 0 for Batcher’s odd-even sorter. Generating
the recurrence we have.

SOS(n) = 2SOS(n/2)+SOM(n/2)

SOS(n) = 2
n lgn(lgn−1)

4
+n−1.

we obtain the indicated solution. The running time is the size of the network OS(n).

The analysis of the size of the variant OS′(n) and is left as an exercise to show SOS′(n) = n lgn(lgn+1)/4.

3.23.9 Conclusion
Theorem 3.26 (Odd-even merge sorting). Odd-even merge-sort works as claimed.

Proof. A proof that OE merge-sort works utilizes the 0-1 sorting lemma. By induction let us assume that OE
merge-sort works for sizes less than or equal to n−1.

Therefore in order to sort n keys, we split them into 2 halves of size n/2 each. By the inductive hypothesis,
o-e merge-sort sorts independently the two halves. It remains to be shown that the merging algorithm so
described merges the two sorted sequences and the theorem is proved. The latter has been proven earlier.

3.23.10 AKS sorting network
There are asymptotically faster sorting networks today (eg. the AKS network due to Ajtai-Komlos-Szemeredi,
1984) that have depth O(lgn); however they suffer from large constants hidden in the big-Oh notation and
they are not practical for small values of n.

begin ODDEVENMERGESORT (X = 〈x0 . . .xn−1〉,n)
1a. Left(A) = 〈x0,x1, . . . ,xn/2−1〉;
1b. Right(A)= 〈xn/2,xn/2+1, . . . ,xn−1〉;
2a. L(A) = ODDEVENMERGESORT(Left (A),n/2);
2b. R(A) = ODDEVENMERGESORT(Right(A),n/2);
3. Y= ODDEVENMERGE(L(A),R(A),n/2);
5. Return(Y);
end ODDEVENMERGESORT
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Step 1: OddEvenMerge Step 2: Call OddEvenMerge recursively
Top Half: Horizontal links Even(A)+Odd(B) in A0-A2-A4-A6 [n/2 butterfly]
BottomHalf: Cross links Odd(A)+Even(B) in A1-A3-A5-A7 [n/2 butterfly]
3 2 1 0 3 2 1 0

a0 x---xa0x------x---x--------------x A0 a0 x---xa0x------x---x--------------x A0
\ / \ / \ / \ / \ / \ /
\ \ / \ / \ \ / \ /

/ \ \/ \ / / \ \/ \ /
a1 x---xa1x------x---x---\----------x A1 a1 x---xa1x------x---x---\----------x A1

\ / \/ \ \ / / \ / \/ \ \ / /
\ /\ \ \ / / \ /\ \ \ / /

/ \/ \ \ \ / / / \/ \ \ \ / /
a2 x---xa2x------x---x---\---\---/--x A2 a2 x---xa2x------x---x---\---\---/--x A2

\ / / \ \ \ / \ / / \ / / \ \ \ / \ / /
\ / \ \ \ / / \ / \ \ \ / /

/ \ / \ \ / \ / \ / / \ / \ \ / \ / \ /
a3 x---xa3x------x---x---\---\---\--x A3 a3 x---xa3x------x---x---\---\---\--x A3

\ / \ / \ / \/ \ / \ / \ / \/
\ \ \ /\ \ \ \ /\

/ \ / \ / \/ \ / \ / \ / \/ \
b0 x---xb1x------x---x---\---\---\--x A4 b0 x---xb1x------x---x---\---\---\--x A4

\ / \ / / \ / \ / \ \ / \ / / \ / \ / \
\ \ / / / \ \ \ \ / / / \ \

/ \ \/ / / \ / \ \ / \ \/ / / \ / \ \
b1 x---xb0x------x---x---/---\---\--x A5 b1 x---xb0x------x---x---/---\---\--x A5

\ / \/ / / \ \ \ / \/ / / \ \
/ /\ / / \ \ / /\ / / \ \

/ \/ \ / / \ \ / \/ \ / / \ \
b2 x---xb3x------x---x---/-------\--x A6 b2 x---xb3x------x---x---/-------\--x A6

\ / /\ / \ \ / /\ / \
\ / \ / \ \ / \ / \

/ \ / \ / \ / \ / \ / \
b3 x---xb2x------x---x--------------x A7 b3 x---xb2x------x---x--------------x A7

Step 1: Level 3 to Level 2 for 8-butterfly: Prepare odd-even sequences.
Step 2: Level 2 to Level 0 back to Level 2 : Recursive merging.

Step 3: The C/D are in level 2 Step 4: Done
Use leftmost cross links to
compare ci:di and fix position
3 2 1 0 3 2 1 0
x---xc0x------x---x--------------x A0 l0 x---xc0x------x---x--------------x A0
\ / \ / \ / \ / \ / \ /
\ \ / \ / \ \ / \ /

/ \ \/ \ / / \ \/ \ /
x---xd0x------x---x---\----------x A1 l1 x---xd0x------x---x---\----------x A1

\ / \/ \ \ / / \ / \/ \ \ / /
\ /\ \ \ / / \ /\ \ \ / /

/ \/ \ \ \ / / / \/ \ \ \ / /
x---xc1x------x---x---\---\---/--x A2 l2 x---xc1x------x---x---\---\---/--x A2
\ / / \ \ \ / \ / / \ / / \ \ \ / \ / /
\ / \ \ \ / / \ / \ \ \ / /

/ \ / \ \ / \ / \ / / \ / \ \ / \ / \ /
x---xd1x------x---x---\---\---\--x A3 l3 x---xd1x------x---x---\---\---\--x A3

\ / \ / \ / \/ \ / \ / \ / \/
\ \ \ /\ \ \ \ /\

/ \ / \ / \/ \ / \ / \ / \/ \
x---xc2x------x---x---\---\---\--x A4 l4 x---xc2x------x---x---\---\---\--x A4
\ / \ / / \ / \ / \ \ / \ / / \ / \ / \
\ \ / / / \ \ \ \ / / / \ \

/ \ \/ / / \ / \ \ / \ \/ / / \ / \ \
x---xd2x------x---x---/---\---\--x A5 l5 x---xd2x------x---x---/---\---\--x A5

\ / \/ / / \ \ \ / \/ / / \ \
/ /\ / / \ \ / /\ / / \ \

/ \/ \ / / \ \ / \/ \ / / \ \
x---xc3x------x---x---/-------\--x A6 l6 x---xc3x------x---x---/-------\--x A6
\ / /\ / \ \ / /\ / \
\ / \ / \ \ / \ / \

/ \ / \ / \ / \ / \ / \
x---xd2x------x---x--------------x A7 l7 x---xd3x------x---x--------------x A7
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3.24 Realistic Parallel Abstraction: BSP model

Reading. L.G.Valiant. A bridging model for parallel computation. Communications of the ACM, 33(8):103-
111, August 1990, accessible through the Course Web-page.

Recommended Reading. Culler, Karp, Patterson et al. LogP: Towards a Realistic model of parallel
computation. Proceedings of the 4th ACM SIGPLAN Symposium on Principles and practice of parallel
programming, San Diego, CA, USA. Pages 1-12. 1993.

3.25 The bulk-synchronous parallel model (BSP Model)

Since the introduction and adaptation of the von-Neumann model for sequential computing, the effects of
computer revolution on society have been pretty significant. A general purpose computer performs well on
computer programs written on a variety of standardized programming languages like C, Fortran, Cobol or
Lisp and the same computer program can be easily ported on other platforms.

It has always been realized that parallel computers will eventually supersede sequential machines. This
has yet to happen despite advances in computer technology and the fact that chip technology seems to have
reached physical limitations; nowadays, fast machines are not much faster than the slowest ones which are
as fast (or perhaps faster) as a supercomputer of twenty years ago. Small incremental improvements that
may lead to stagnation of sequential computing seem inevitable. Despite these shortcomings of sequential
computing, there has been no significant spread of use of parallel computers and few companies have realized
that their future may rely on parallel platforms. The main reason for this has been that parallel computer
platforms are built in such a way that are too hardware specific, programs written for them exhibit poor
performance unless the programmer fine-tunes its code to take into consideration features of the particular
architecture. Not only the code is non-portable but scalability comes at a high cost as well. On the other
hand parallel algorithms designed and analyzed by the theorists work on parallel models that usually ignore
communication and/or synchronization issues, like the PRAM and its variants, and work only under unlimited
parallelism assumptions.

One of the earliest attempts to model a parallel computer has been the Parallel Random Access Machine
(PRAM) which is one of the most widely studied abstract parallel models. A PRAM consists of a collection of
processors which work synchronously and which communicate with a global shared random access memory
which can access in unit time. There are many different types of PRAMs which are distinguished from the
way they access the shared memory (eg CRCW, EREW PRAMs). Numerous parallel algorithms have been
developed for this parallel computer model.

More realistic models of parallel computing view a parallel computer as a collection of sequential proces-
sors, each one having its own local memory (distributed-memory model). The processors are interconnected
by a network which allows them to communicate by sending and receiving messages. Constraints such as the
maximum number of pins on a chip, or the maximum width of a data bus, limit the capacity of a processor
to communicate with any other processor. It is only possible for a single processor to communicate directly
with few others, in most cases those physically close to it. If a message needs to be sent to a distant processor
it is relayed through a number of intermediate processors.

As it has already been mentioned, the parallel machines built in the 1980s and early 90s failed to garner
general acceptance mainly because of the lack of a stable, unified and bridging parallel programming model.
These deficiencies made programming of such machines difficult (cf. assembly vs higher level programming
languages), time consuming, non-portable and architecture-specific. Recently, the introduction of realistic
parallel computer models such as the Bulk-Synchronous Parallel (BSP) model of computation by L.G. Valiant
comes to address these limitations of parallel computing. Our hope is that further architectural convergences
will occur with the goal of writing software that will be portable and run with high performance on a variety
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of architectures from networks/clusters of workstations (NOW/COW) to parallel supercomputers.
The Bulk-Synchronous Parallel (BSP) model of computation has been proposed by L.G. Valiant, as a

unified framework for the design, analysis and programming of general purpose parallel computing systems.
It allows the design of algorithms that are both scalable and portable.

In a BSP program, processors jointly advance through its various phases called supersteps with the re-
quired computations and remote communication occurring between them; at the end of a superstep processors
check themselves in order to proceed to the following superstep.

The BSP model consists of three parts:

(1) a collection of processor-memory components,

(2) a communication network that can deliver messages point-to-point among the components, and

(3) a facility for global synchronization, in barrier style, of all or a subset of the components.

A time step (as opposed to a CPU instruction or cycle) would refer to the time needed to perform a local
computation (such as a fetch from memory and a floating-point operation followed by a store operation).

It should be noted that, although the model stresses global barrier-style synchronization, pairs of process-
ing units may synchronize pairwise by sending messages to and from an agreed memory location. However,
such message exchanges should respect the superstep rules.

As mentioned, computation on the BSP model proceeds in a succession of supersteps. A superstep may be
thought of as a segment of computation during which each processor performs a given task using data already
available there locally before the start of the superstep. Such a task may include (i) local computations, (ii)
message transmissions, and (iii) message receipts.

3.25.1 BSP Model: Parameter p,L,g

The tuple (p,L,g) characterizes the behavior and performance of a BSP computer.

• p is the number of components available.

• L is the minimum time between successive synchronization operations,

• g is the ratio of the total throughput of the whole system (in a steady state, i.e. in a state of
continuous message usage) in terms of basic computational operations, to the throughput of the
communication network in terms of words of information delivered.

• A lower bound on the value of L is the time for a remote memory operation/message dispatch to
become effective and is thus dependent on say, the diameter of the interconnection network.

• The time for barrier synchronization also poses a lower bound on the effective value of L.

• An upper bound on L is application specific and expressed in terms of problem size n as well.

• The value of g is measured while the network is in a steady state, i.e. latency issues become
insignificant in the measurement of communication time; parameter L is large enough for the
theoretical bound on g to be realizable.

The theoretical definition of g relates to the routing of h-relations; when each processor sends or receives
at most h messages (of the same size) an h-relation is realized and the cost assigned to this communication is
gh provided that h≥ h0, where h0 is a machine dependent parameter.

Otherwise the cost of communication is L.
This way latency issues associated with small message size/messages are taken into consideration.
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Machine Mflop (≥) p L (≥) in flops/µsec g in flops/word/µsec/word
SGI Power Challenge 80 4 2000/26 9.3/0.13
MultiProc Sun 10 4 120/12 4.1/0.41
IBM SP2 30 4 3600/140 8.0/0.30
Digital Alpha Farm 10 4 47000/4664 81/8.10
PCs in Cluster 200 4 180000/900 65/0.325

Figure 3.32: Estimated BSP parameters for a variety of platforms

In practice, and in various libraries implementing the BSP model message requests issued/accepted by
processors are of variable size. The h of an h-relation relates then to the total size of communicated data and
g is expressed in terms of basic computational operations (sometimes, floating-point operations) or absolute
time (seconds) per data-unit (a byte or word of information).

In practice, the parameter L of the BSP model not only hides the cost of communication when each
processor sends or receives a small number of messages but also the cost of communication where each
processor may send or receive a large number of messages but each one is of small size.

For any BSP computer, the values of L and g are likely to be a non-decreasing functions of p.
The use of L and g to characterize the communication and synchronization performance of a BSP com-

puter is important because such issues are abstracted in only two parameters thus allowing considerations to
be moved from a local level to a global one.

For the sake of an example, the values for L and g for some abstract network topologies are as follows.
A ring has L = O(p),g = O(p), a 2d-array (mesh) L = O(

√
p),g = O(

√
p), a butterfly L = O(log p),g =

O(log p), and a hypercube L=O(log p),g=O(1). For the case of a hypercube, as g=O(1) the cost of routing
a permutation, i.e. an one-relation is not 1 ·g but L. Thus h0 for the hypercube is such that h0 = Θ(log p).

If in a superstep

(1) an h-relation is realized, and

(2) x computational operations are performed,

then, the cost of the superstep is given by the following formula.

(1) max{L,x+gh}.

Alternative costs are max{L,x,gh} and L+ x+gh.
The maximum size of a superstep depends on the problem in hand. Under the BSP programming

paradigm the objective is to maximize the size of supersteps, decrease their number and increase proces-
sor utilization.

The description of BSP programs can be simplified by separating computation and communication and
assuming that each superstep contains either local computations or communication.

3.26 Optimality of Algorithms under the BSP model

Two modes of programming on the BSP model were envisaged: automatic mode where programs are writ-
ten, say PRAM style, in a high level language that hides memory distribution from the user and direct mode
where the programmer retains control of memory allocation. In the direct mode of programming small
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multiplicative constant factors in runtime are important. It can be shown that the automatic mode achieves
optimality within constant factors by simulating say PRAM algorithms on the BSP.

The term slack in the context of algorithm design refers to the ratio of the problem size over the processor
number of the BSP machine. The question is whether the direct mode can be beneficial in circumstances
where:

• small multiplicative constant factors in runtime are important,

• where smaller problem instances can be run more efficiently in direct mode (less slack is re-
quired) than in automatic mode,

• where the available machine has high g (automatic mode requires g to be constant), and

• L is high for direct but not for automatic mode for the problem instance in hand.

Although it is difficult to measure performance to high accuracy, since the operations that are counted
have to be carefully defined, we can make such measures meaningful by measuring ratios between runtimes
on pairs of models that have the same set of local instructions.

The performance of a BSP algorithm P is thus described in three parts.

• A sequential algorithm S with which we are comparing P is first specified.

• The model of computation used for both algorithms is then defined and the basic computational
operations that will be counted in both P and S are also described and the charging policy is made
explicit.

• Second, two ratios π and µ are specified.

• π , is the ratio between the computation time CP, of the BSP algorithm, over the time
CS of the comparing sequential algorithm divided by p, i.e., π = pCP/CS.

• µ , is the ratio between the communication time MP required by the communication
supersteps of the BSP algorithm and the computation time of S divided by p, i.e.,
µ = pMP/CS.

• When communication time is described, it is necessary that the amount of information
that can be conveyed in a single message be made explicit.

• Finally, conditions on n, p, L and g are specified that are sufficient for the algorithm
to be plausible and the claimed bounds on π and µ to be valid.

Corollaries describe sufficient conditions for the most interesting optimality criteria, such as c-optimality,
i.e., π = c+o(1) and µ = o(1). All asymptotic bounds refer to the problem size as n→ ∞.

3.27 Software Support under the BSP model

The BSP model, unlike other models of parallel computation, is not just an architectural-oriented theoretical
model; it can also serve as a paradigm for programming parallel computers.

(1) The fundamental concept introduced by the BSP model is the notion of the superstep, and that
all remote memory accesses occur between supersteps as part of a global operation among the
processors the results of these accesses become effective at the end of the current superstep.
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Although it may have been apparent why some consider the BSP as a satisfactory unifying and bridging
model for parallel computation, one may ask the question of how successful it has been as a practical model
and what level of software support there is for BSP. The BSP model has been realized as a library of functions
for process creation and destruction, remote memory access and message passing, and global, barrier-style,
synchronization The abstraction offered by the BSP model is such that any library offering such facilities
can be used for programming according to the BSP programming paradigm. The Oxford BSP Library that
supports Direct Remote Memory Access (DRMA) for parallel programs, the Green BSP library that supports
message passing and the Oxford BSP Toolset that supports both DRMA and message passing are some of
the libraries that specifically allow programming according to the BSP paradigm. Just as the von-Neumann
model encompasses various programming language paradigms eg. functional, logic programming, the BSP
does not dictate a particular mode of programming as well. All three libraries present a particular set of
choices to the user. Some of the elements of this set are:

• Data Parallel Program Structure. It allows large-scale parallelism by splitting data and con-
currently working on the individual pieces.

• SPMD programs. A Single Program Multiple Data programming style is used as perhaps im-
plied by the structure of supersteps.

• Direct mode of global memory management. The programmer has direct access to memory
allocation and determines how data are partitioned.

• Static processor allocation. The number of participating processors is determined in the begin-
ning of the execution and cannot vary during the computation dynamically.

3.28 Performance vs Running Time Prediction under the BSP model

Whereas performance of a particular BSP algorithm can be reliably predicted, one should not expect the BSP
cost model to accurately predict the running time and behavior of a particular implementation. Accurate
prediction is difficult even for sequential algorithms due to the existence of varying memory hierarchies on
real machines; adding parallelism and the side-effects of communication introduces two more difficulties.

There have been various attempts to more accurately predict parallel performance by extending the BSP
model. The E-BSP model is one such approach and is more explicit and specific about the communication
network of a particular hardware platform, and the patterns of communication involved in routing. The at-
tractiveness of the BSP cost model is its simplicity and generality; introducing more parameters to describe
the performance of a communication network under various patterns of communication increases the com-
plexity of describing the performance of all but the simplest algorithms with perhaps only small gains in
prediction accuracy. Such an approach may also be problematic as it is the main reason parallel computing
failed in the past: the attempt to realize for a particular algorithm those patterns of communication that are
optimal for a given platform (and communication network), whereas they may lead in significant degradation
in performance, if utilized in other platforms (portability vs. efficiency). Another variant of the BSP model
introduces one more parameter, B, related to message size, and associates g with that message size, enforcing
this way coarse-grained communication of messages of size equal to B. The original BSP model does not
elaborate in detail between fine-grained and coarse-grained communication. If small h-relations are commu-
nicated (where “small” is to mean less than some parameter h0, usually assumed to be equal to L/g) a cost
L is assigned to such a communication; no mention of message size is inferred. Presumably, for BSP to be
an abstract and general-purpose model, details of how communication is performed efficiently are left to the
BSP library implementor. In practice, the generality of the BSP model works well if one interprets the cost
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model so as to absorb in L not only “small” h-relations but also “small” messages; therefore, the value of B
is reflected in the choice of L and g (as is, h0 as well) without the need of introducing an extra parameter.

3.28.1 Traditional vs Architecture Independent Parallel Al gorithm Design

As an example of how traditional PRAM algorithm design differs from architecture independent parallel
algorithm design, example algorithm for broadcasting in a parallel machine is introduced.

Problem: In a parallel machine with p processors numbered 0, . . . , p− 1, one of them, say processor
0, holds a one-word message The problem of broadcasting involves the dissemination of this message to the
local memory of the remaining p−1 processors.

The performance of a well-known exclusive PRAM algorithm for broadcasting is analyzed below in two
ways under the assumption that no concurrent operations are allowed. One follows the traditional (PRAM)
analysis that minimizes parallel running time. The other takes into consideration the issues of communication
and synchronization as viewed under the BSP model. This leads to a modification of the PRAM-based
algorithm to derive an architecture independent algorithm for broadcasting whose performance is consistent
with observations of broadcasting operations on real parallel machines.

3.28.2 Broadcasting: PRAM-1

Algorithm. Without loss of generality let us assume that p is a power of two. The message is broadcast in
lg p rounds of communication by binary replication. In round i = 1, . . . , lg p, each processor j with index
j < 2i−1 sends the message it currently holds to processor j+ 2i−1 (on a shared memory system, this may
mean copying information into a cell read by this processor). The number of processors with the message at
the end of round i is thus 2i.
Analysis of Algorithm. Under the PRAM model the algorithm requires lg p communication rounds and so
many parallel steps to complete. This cost, however, ignores synchronization which is for free, as PRAM
processors work synchronously. It also ignores communication, as in the PRAM the cost of accessing the
shared memory is as small as the cost of accessing local registers of the PRAM.

Under the BSP cost model each communication round is assigned a cost of max{L,g ·1} as each processor
in each round sends or receives at most one message containing the one-word message. The BSP cost of the
algorithm is lg p ·max{L,g ·1}, as there are lg p rounds of communication. As the communicated information
by any processors is small in size, it is likely that latency issues prevail in the transmission time (ie bandwidth
based cost g ·1 is insignificant compared to the latency/synchronization reflecting term L).

In high latency machines the dominant term would be L lg p rather than g lg p. Even though each com-
munication round would last for at least L time units, only a small fraction g of it is used for actual commu-
nication. The remainder is wasted. It makes then sense to increase communication round utilization so that
each processor sends the one-word message to as many processors as it can accommodate within a round.

3.28.3 PRAM-2

Input: p processors numbered 0 . . . p−1. Processor 0 holds a message of length equal to one word.
Output: The problem of broadcasting involves the dissemination of this message to the remaining p−1

processors.
Algorithm 2. In one superstep, processor 0 sends the message to be broadcast to processors 1, . . . , p−1

in turn (a “sequential”-looking algorithm).
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Analysis of Algorithm 2.
The communication time of Algorithm 2 is 1 ·max{L,(p− 1) · g} (in a single superstep, the message is

replicated p−1 times by processor 0).

3.28.4 Broadcasting: Algorithm 3

Algorithm 3. Both Algorithm 1 and Algorithm 2 can be viewed as extreme cases of an Algorithm 3. The
main observation is that up to L/g words can be sent in a superstep at a cost of L. Then, It makes sense for
each processor to send L/g messages to other processors. Let k− 1 be the number of messages a processor
sends to other processors in a broadcasting step. The number of processors with the message at the end of a
broadcasting superstep would be k times larger than that in the start. We call k the degree of replication of the
broadcast operation.

Architecture independent Algorithm 3. In each round, every processor sends the message to k− 1 other
processors. In round i = 0,1, . . ., each processor j with index j < ki sends the message to k− 1 distinct
processors numbered j+ ki · l, where l = 1, . . . ,k−1. At the end of round i (the (i+1)-st overall round), the
message is broadcast to ki · (k− 1)+ ki = ki+1 processors. The number of rounds required is the minimum
integer r such that kr ≥ p, The number of rounds necessary for full dissemination is thus decreased to lgk p,
and the total cost becomes lgk pmax{L,(k−1)g}.

At the end of each superstep the number of processors possessing the message is k times more than that
of the previous superstep. During each superstep each processor sends the message to exactly k− 1 other
processors. Algorithm 3 consists of a number of rounds between 1 (and it becomes Algorithm 2) and lg p
(and it becomes Algorithm 1).

1 void Broadcast (message M, int p, int k) {

2 /* M message to be broadcast to p processors */

3 /* Degree of replication is k; PRAMs use k=2 */

4 pid = bsp_pid () ;

5 mask_pid = 1 ;

6 while (mask_pid < p ) {

7 if ( my_pid < mask\_pid )

8 for ( i=1, j=mask_pid ; i<k ; i++, j+=mask\_pid ) {

9 target_pid = my\_pid + j ;

10 if ( target_pid < p )

11 bsp_put (target_pid ,&M,&M,0, sizeof(M)) ;

12 }

13 bsp_sync ()} ;

14 mask_pid = mask_pid * k;

15 }

Figure 3.33: BSP broadcasting

3.28.5 Broadcasting n > p words: Algorithm 4

Now suppose that the message to be broadcast consists of not a single word but is of size n > p. Algorithm
4 may be a better choice than the previous algorithms as one of the processors sends or receives substantially
more than n words of information. There is a broadcasting algorithm, call it Algorithm 4, that requires only
two communication rounds and is optimal (for the communication model abstracted by L and g) in terms of
the amount of information (up to a constant) each processor sends or receives.
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Algorithm 4.
Two-phase broadcasting
The idea is to split the message into p pieces, have processor 0 send piece i to processor i in the first round

and in the second round processor i replicates the i-th piece p−1 times by sending each copy to each of the
remaining p−1 processors (see attached figure).

3.28.6 PPF

Exercise. What can you say about parallel prefix? Analyze the BSP performance of the PRAM algorithm
for parallel prefix. Can you halve its number of supersteps yet maintain the same BSP cost?

The structure of the four algorithms described for broadcasting can also be used to derive algorithms for
parallel prefix that require similar number of supersteps (at most twice as many).

Algorithm 1 gives rise to a “sequential”-like parallel prefix algorithm. Algorithm 2 gives rise to the binary
tree based algorithm that requires 2 lgn supersteps. The corresponding PRAM algorithm, however, (that also
runs on the butterfly) requires half as many supersteps and is thus more efficient on the BSP model. Algorithm
3 gives rise to the equivalents of 2 when the number of supersteps needs to be decreased.

We can generalize the prefix problem so that each processor instead of holding a single scalar value,
holds a sequence/vector of scalar values n. In the case n > p, implementations following the counterparts of
Algorithm 1,2 and 3 for broadcasting fail to provide optimal algorithms.

Algorithm 4 gives rise to a two-phase parallel prefix algorithm that is more efficient in architectures with
large L for large independent prefix problems n.

3.28.7 Matrix Computations

SPMD program design stipulates that processors executes a single program on different pieces of data. For
matrix related computations it makes sense to distribute a matrix evenly among the p processors of a parallel
computer. Such a distribution should also take into consideration the storage of the matrix by say the compiler
so that locality issues are also taken into consideration (filling cache lines efficiently to speedup computation).
The are various ways to divide a matrix. Some of the most common one are described below.

One way to distribute a matrix is by using block distributions. Split an array into blocks of size n/p1×
n/p2 so that p = p1× p2 and assign the i-th block to processor i. This distribution is suitable for matrices as
long as the amount of work for different elements of the matrix is the same.

The most common block distributions are.

• column-wise (block) distribution. Split matrix into p column stri pes so that n/p consecutive
columns form the i-th stripe that will be stored in processor i. This is p1 = 1 and p2 = p.

• row-wise (block) distribution. Split matrix into p row stripes so that n/p consecutive rows form
the i-th stripe that will be stored in processor i. This is p1 = p and p2 = 1.

• block or square distribution. This is the case p1 = p2 =
√

p, i.e. the blocks are of size n/
√

p×
n/
√

p and store block i to processor i.

There are certain cases (eg. LU decomposition, Cholesky factorization), where the amount of work
differs for different elements of a matrix. For these cases block distributions are not suitable. In block cyclic
distributions the rows (similarly for columns) are split into q groups of n/q consecutive rows per group, where
potentially q > p, and the i-th group is assigned to a processor in a cyclic fashion.
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• column-cyclic distribution. This is an one-dimensional cyclic distribution. Split matrix into
q column stripes so that n/q consecutive columns form the i-th stripe that will be stored in
processor i%p. The symbol % is the mod (remainder of the division) op erator. Usually q > p.
Sometimes the term wrapped-around column distribution is used for the case where n/q = 1,
i.e. q = n.

• row-cyclic distribution. This is an one-dimensional cyclic distribution. Split matrix into q row
stripes so that n/q consecutive rows form the i-th stripe that will be stored in processor i%p. The
symbol % is the mod (remainder of the division) op erator. Usually q > p. Sometimes the term
wrapped-around row distribution is used for the case where n/q = 1, i.e. q = n.

• scattered distribution. Let p = qi · q j processors be divided into q j groups each group Pj con-
sisting of qi processors. Particularly, Pj = { jqi + l | 0 ≤ l ≤ qi−1}. Processor jqi + l is called
the l-th processor of group Pj. This way matrix element (i, j), 0 ≤ i, j < n, is assigned to the
(i mod qi)-th processor of group P( j mod q j). A scattered distribution refers to the special case
qi = q j =

√
p.

The BSP algorithm for matrix multiplication presented below was presented in the seminal work of
Valiant. It works for p ≤ n2. Each processor is assigned the task of computing an n/

√
p× n/

√
p subma-

trix of the product A×B. The input matrices A and B are divided into p block-submatrices, each one of
dimension m×m, where m = n/

√
p. We call this distribution of the input among the processors block dis-

tribution. This way, element A(i, j), 0≤ i < n,0≤ j < n, belongs to the ( j/m)∗√p+(i/m)-th block that is
subsequently assigned to the memory of the same-numbered processor. Let Ai (respectively, Bi) denote the
i-th block of A (respectively, B) stored in processor i. With these conventions the algorithm can be described
in Figure 3.34. The following Proposition describes the performance of the aforementioned algorithm.

begin MULT A (C,A,B,n,p)
1. Let m = n/

√
p ;

Each processor is also assigned a unique processor number q;
2. Let pi = q mod

√
p ; p j = q/

√
p ; Cq = 0;

3. al ← Api+l∗√p, 0≤ l <
√

p;
4. bl ← Bp j∗

√
p+l , 0≤ l <

√
p;

5. for 0≤ l <
√

p do
Cq =Cq +al×bl ;

end MULT A

Figure 3.34: Procedure MULT A.

3.28.8 Mult A algorithm
Example-Proposition 3.8. Algorithm MULT A for multiplying two n×n matrices A and B stored according
to the block distribution requires, for any p≤ n2, computation time Cmul(n) that is given by

Cmul(n) = max{L, (2n−1)n2

p
},

and communication time Mmul(n) that is given by the expression

Mmul(n) = max{L,g2n2
√

p
}.



92 CHAPTER 3. INTRODUCTION TO PARALLEL COMPUTING

One immediately realizes that algorithm MULT A is not memory efficient since it requires more local
memory per processor – by a factor of

√
p – than the required one. Algorithm MULT B shown in Figure

3.35 is the memory efficient variant of MULT A. It is not synchronization efficient though since its number of
supersteps is not constant any more; it has been increased by a factor of

√
p. The performance of algorithm

MULT B is summarized in Proposition 3.9.

3.28.9 Mult B algorithm

begin MULT B (C,A,B,n,p)
1. Let m = n/

√
p ;

Each processor is also assigned a unique processor number q;
2. Let pi = q mod

√
p ; p j = q/

√
p ; Cq = 0;

3. for 0≤ l <
√

p do
begin

4. a← A((pi+p j+l) mod
√

p)∗√p+pi ;
5. b← B((pi+p j+l) mod

√
p)+p j∗

√
p;

6. Cq =Cq +a×b;
end

end MULT B

Figure 3.35: Procedure MULT B.

Example-Proposition 3.9. Algorithm MULT B for multiplying two n×n matrices A and B stored according
to the block distribution requires, for any p≤ n2, computation time Cmul(n) that is given by

Cmul(n) =
√

p max{L, (2n−1)n2

p3/2 }

and communication time Mmul(n) that is given by the expression

Mmul(n) =
√

p max{L,g2n2

p
}

3.28.10 Experimental Results

In order to show the efficiency of algorithm design on the BSP model we present some experimental results
for matrix multiplication on Cray T3D; additional results can be found in the author’s Web page. Algorithm
MULTT B is a variation of MULT B where in order to multiply A with B, matrix A is first transposed and the
loop for matrix multiplication is changed accordingly. This way the access patterns for both A and B are the
same (column - column as opposed to row - column) thus improving locality (cache usage), and subsequently
program performance.
3.28.11 C
Finally, we outline a matrix multiplication algorithm that is computation, communication and synchronization
efficient. It fails, however, to be memory efficient, as its memory requirements are a multiplicative factor p1/3

from the optimal. Algorithm MULTT C is outlined in the remainder of this section.
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Algorithm MULT B
p = 1 p = 4 p = 16 p = 64

n Time Mfl Time Mfl Time Mfl Time Mfl
(sec) rate (sec) rate (sec) rate (sec) rate

256 4.1 7.9 1.1 7.8 0.28 7.4 0.03 13.9
512 34.0 7.8 8.4 7.9 2.1 7.7 0.56 7.4

1024 289.8 7.4 68.4 7.8 16.9 7.9 4.3 7.7
2048 - - - - 136.8 7.8 33.8 7.9

Table 3.1: Execution time for MULT B on the Cray T3D

Algorithm MULTT B
p = 1 p = 4 p = 16 p = 64

n Time Mfl Time Mfl Time Mfl Time Mfl
(sec) rate (sec) rate (sec) rate (sec) rate

256 2.3 14.3 0.58 14.4 0.15 13.7 0.03 15.1
512 20.7 12.9 4.7 14.1 1.16 14.4 0.30 13.5

1024 202.7 10.5 41.7 12.8 9.4 14.1 2.3 14.3
2048 - - - - 83.5 12.8 19.0 14.1

Table 3.2: Execution time for MULTT B on the Cray T3D

In MULTT C matrices A and B (and the result C) are split into two ways into submatrices. Each matrix
(A, B and the result C) is split into p “physical” block-submatrices, as in the previous algorithms, each
of size n/p1/2× n/p1/2. A “physical” block-submatrix indicates the part of the matrix stored in a single
physical (processor) location (i.e. block-submatrix Ai is stored in processor i). At the same time, each of the
three matrices is split into p2/3 “virtual” block-submatrices each of size n/p1/3×n/p1/3. A “virtual” block-
submatrix indicates the block geometry that will be used in the matrix multiplication algorithm to be outlined
below. The elements of a “virtual” block-submatrix may be stored in more than one physical processors.

Whereas in the first two algorithms “physical” and “virtual” block-submatrices coincided in number and
dimension, in this communication efficient algorithm are clearly distinguished.

Let the “virtual” block-submatrices be identified as Ai j, Bi j and Ci j. Matrix multiplication will thus

require the computation of all Ci j = ∑
p1/3

k=1 Ci jk = ∑
p1/3

k=1 AikBk j, where Ci jk = AikBk j.
The algorithm consists of the following steps. We name the processors (i, j,k) the way we did in the

matrix multiplication algorithm on the hypercubic networks.
Step 1. Processor (i, j,k) gets Aik and Bk j. Note that each of these two “virtual” block-submatrices may orig-
inate from more than one processors. Each processor sends at most 2n2/p elements (but each one replicated
p1/3 times) and receives at most 2n2/p2/3 elements. The communication cost of Step 1 is max{L,2gn2/p2/3}.
Subsequently, the two submatrices are multiplied as in the sequential case a step requiring at most max{L,2n3/p}
time. Partial-submatrix Ci jk is thus computed on processor (i, j,k). Each element of such a submatrix is a
partial sum of an element clm of the result matrix C.
Step 2. Each element of Ci jk is transmitted from (i, j,k) to that physical processor that stores the “physical”
block-submatrix of C whose elements will be formed as sums of the receiving elements (partial sums) of
Ci jk. Note that each (i, j,k) processor may send its elements to more than one physical processors. At the
completion of this step, each of the p processors storing a block-submatrix of C of dimension n/p1/2×n/p1/2

receives at most p1/3 ·n2/p such elements (partial sums). The complex communication performed in this step
requires time max{L,gn2/p2/3}.
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Step 3. The received partial sums are added. p1/3 partial sums are summed to give an element of C stored at a
physical processor, for a total of n2/p such elements (of a “physical” block-submatrix). The total computation
time performed is max{L,n2/p2/3}.

Example-Proposition 3.10. Algorithm MULT C for multiplying two n×n matrices A and B stored according
to the block distribution requires, for any p≤ n2, computation time Cmul(n) that is given by

Cmul(n)≤max{L,2n3/p}+max{L,n2/p2/3},

and communication time Mmul(n) that is given by the expression

Mmul(n) = max{L,2g
n2

p2/3 }+max{L,g n2

p2/3 }.

The optimality in communication of the algorithm is established by the following result.

Theorem 3.27. On a model of computation that allows the operations {+,∗} only, if any processor reads s
elements of A and B and computes at most s partial sums of C, it can compute at most O(s3/2) multiplicative
terms for these sums.

This way, if a processor reads at most s elements of A and B it can compute at most O(s3/2) multiplicative
terms of C. Combined, all p processors can compute p O(s3/2) such terms which must be Ω(n3). Therefore
s = Ω(n2/p2/3) and thus algorithm MULT C is communication optimal.

How can one prove the Theorem? It suffices to show that if A has s 1’s in arbitrary posisition (all other
positions are 0) and so has B, then the product C = A×B requires at most O(s3/2) non-trivial multiplica tions
(i.e. multiplications where both terms are non-zero). This can be proved by considering two sets of rows for
A, the small ones having at most

√
s ones on each such row and the large one. Call As the submatrix of A

forme d by these small rows, and Al the submatrix consisting of the large rows having at least√
s ones. We can only have at most

√
s rows in Al . Consider Al ×B. The results can contribute at most

s3/2 non-trivia l multiplications in C. The reason for that is that each row of Al can contribute s ones when
multi plied with B since B has only s ones. There are at most

√
s in Al , i.e . claim follows. For As×B just

note that each row of As has at most
√

s ones. Since only s terms are computed in C, and a term involves a
row of As that has at most

√
s elements, this As×B product can only involve at most s3/2 multiplications.

3.29 The LogP Model

The LogP model (Culler, Karp, Patterson, Sahay, Schauser, Santos, Subramonian and von Eicken, 1993)
has also been suggested as a realistic model for the design of parallel algorithms that work predictably well
on a wide range of parallel machines. It models a parallel machine as a distributed memory multiprocessor
in which processors communicate by point-to-point messages. It is an asynchronous model that does not
enforce synchronization of the processors, as the BSP model does. If processor synchronization is required
in a program, the programmer must provide it. A parallel machine under the LogP model can be characterized
by the following tuple (p,L,g,o) of parameters. Each parameter is explained in more detail below (note that
LogP may use the same notation for some of its parameters as the BSP model but these may have different
meaning).

p: The number of processor/memory components (as in the BSP model).
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L: an upper bound on the latency or delay of the machine, incurred while communicating a message of
very small size (one or a small number of words) from a source to a destination component. In other
words, such messages are delivered by the router within time L.

o: the overhead, defined as the length of time that a processor is engaged in the transmission or receipt
of each message (i.e the time required for the submission of a message to the router or acquisition of a
received message from it).

g: the gap, defined as the minimum time interval between consecutive message transmissions or consec-
utive message receptions at a processor. 1/g gives the bandwidth of the system per processor.

In addition, the communication capacity of the system is limited. This means that at most L/g messages
can originate or be destined to any processor at any time. If a processor needs to transmit a message that
would violate this condition, it stalls until this transmission is possible (i.e. there is some available capacity).
Writing under the LogP model into a remote memory location takes time L+2o.

Although BSP and LogP are similarly powered models (one can simulate a BSP computation on the LogP
and the other way around), the BSP model seems to be more usable as a theoretical model for the design and
analysis of parallel algorithms and as a programming paradigm for writing parallel software that is scalable
and transportable (portable and efficient among a variety of hardware platforms).

The importance of BSP is that it introduces a new abstraction for communication in terms of the BSP
parameters L and g so that considerations in programming parallel machines move from a local (detailed)
level to a global (abstract) one. The two parameters abstract all communication and synchronization issues
related to parallel computing and allow the design of software (a unifying property) that work on any machine
independent of the underlying architecture (eg. shared memory vs distributed memory).

Under the BSP model, an algorithm designer describes the performance of a parallel algorithm in terms
of p,L,g and problem size n. A collection of algorithms that solves a given problem can then be formed with
varying performance characteristics (for example, one algorithm may be suitable for machines with small
L, another for machines with small g or n, and so on). For a given machine whose BSP parameters are
known or are measurable, that algorithm is chosen from the collection whose performance (computation and
communication) on the particular machine is the best available.

3.30 Programming models and approaches: Process vs Thread

We write parallel programs usually using the SPMD (Single-Program Multiple-Data) approach. A directive-
based model can also be used where high-level constructs are used that leaves further details to the com-
piler. If SPMD is used, one program is written that contains all the information needed for execution by a
multiplicity of processors. Each processor determines which fraction of the code it will execute based on
directives within the code that determine the thread of execution for a given processor. Depending on the
used parallel programming library, some other restrictions might also apply. In the general case, one can em-
ploy a fully MIMD (Multiple-Instruction Multiple-Data) approach by using an MPMP (Multiple-Program
Multiple-Data) approach. This is not explicitly covered here although several libraries (e.g. Open MPI) could
support it.

In the case of an SPMD approach, the Single-Program can give rise to a number of processes or threads.
Thus we could classify the possible models of programming in three major groups as follows.

a. Process Model. The single program spawns multiple processes. All memory is local to the processor.
A UNIX-based process approach is used.
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b. Thread Model. The single program/process spawns multiple threads. All memory is global and can
be accessed by all the available threads A Posix-threads API is used. A set of functions is provided for
the creation, termination and synchronization of threads. Threads are covered in detail in this work.

c. Directive-based Model. One uses high-level compiler directive to specify concurrency. This is the
OpenMP approach that is not covered here.

d. Global address space programming languages. They provide an abstraction that facilitates the use of
shared and private data at the same time. The underlying hardware can be typical distributed memory
which is not shared. UPC (Unified Parallel C) is an example; we do not cover PC here.

The thread model is rather low-level. Each thread has its own program counter, stack space and register
set, and priority. No collective communication operations are available such as those provided by MPI or
BSPlib.



Part III

Multi-core computing
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Chapter 4

Multi-core computing overview

4.1 What is multi-core computing
In the past 20 years uniprocessor (single core) performance has barely improved. The limitations of CPU
clock speeds (around 2-3GHz), power consumption, and heating issues have significantly impacted the im-
provement in performance through instruction level parallelism. Some minor improvements have due to the
increasing size and use of multi-level cached memory hierarchies.

An alternative that has been pursued is the increase of the number of “processors” on a processor die
(computer chip). Because we have used the term processor to identify an execution unit inside a single
computer (micro)chip, we introduced earlier the term “execution unit” to refer to the “processors” inside
processor (or inside a processor’s chip). When we deal with multiple execution units within the same chip
we usually use the term core to refer to them.

Thus if we have two processors with eight execution units each, we say that each processor has eight
cores. The total number of execution units is however 16 spanning those two processors.

In the past 20 years in order to increase performance instead or relying to increasing the clock speed of
a single processor, we utilize multiple cores that work at the same (or not) clock speed (boost speed), or in
several instance at lower clock speeds (regular speed). To support such a multi-core processor architecture,
traditional cached memory hierarchies such as the L1 and L2 used by traditional (uniprocessor) architectures
are not enough. L1 and L2 caches are usually local to a processor or a single core. A higher memory hierarchy
is needed to allow cores to share memory ”locally”. An L3 cache hierarchy has been made available to
support multicore and more recently (2015) L4 cache hierarchies have been tested to support L3 for specific
(graphics-related) purposes. The disappearance or lack of dominance of an L4 cached memory shows that
such manylevel cache hierarchy approaches have their limitations.

The difference between multicore and manycore is not clearly delineated. One might use the latter term
if the number of core is greater than say 50 (as in Intel’s now defunct Phi architecture). Such architectures
usually sacrifice the L3 cache for more control logic (processors). To allow inter-core communication the L2
caches are linked together to form a sort of L3 cache.

The effective use of multiple cores requires familiarity with multiprocessing development. Traditional
parallel programming is not more different in a multicore environment. Performance differences, however,
exist. The multiple cores are physically closer, inter-core communication utilizes highly advanced bus/cross-
bar architectures, and latency considerations in communication become less important than say the case
where processors are interconnected with a slow (eg. ethernet-based) interconnection device (eg. switch).

A process can be defined as a program that is being executed. One can define a thread to be a light-weight
process. Each process maintains its own state information (eg. open files) and has its own address-space and
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interprocessor communication requires facilitation by the operating system itself, whereas a thread shares the
same address space with the other threads of a given process.

The term hyperthreading refers to the ability to run two or more threads on a single chip/die and is a
logical form of viewing a single physical processor as multiple cores. Although certain hardware is repli-
cated to allow for hyperthreading, such replication is not sufficient for the on-chip hardware to be called a
multicore. In multicore chips nowadays, each core is capable (it has hardware support) to run about two
threads at a time. Manycore architectures have more enhanced support for hyperthreading.

There are also hybrid multicore architectures that mix multiple processor types in a single chip. One
such example, is IBM/Sony/Toshiba’s Cell Broadband Engine (CBE) architecture.

4.2 Multi-core programming requirements
The effective use of the extra cores requires parallelization and optimized memory usage since one needs to
manage multiple memory hierarchies. Besides the main (eg. system) memory, cache memory is available
in the hierarchy between the processor and its main memory. While the cache is not as efficient as the on-
chip registers, it is faster than main memory; it is more abundant than the register set but its size is not as
large as that of main memory. Its existence allows for more effective memory transfer rates thus increasing
a processor’s performance since small segments of memory are speculatively fetched from main memory on
the expectation that a program code will exhibit temporal or spatial locality.

In multi-core computing, parallelization is important but so is efficient memory utilization through the
available memory hierarchies. If all cores must access the same main memory, at the same time problems
can arise. To avoid such problems, one needs to utilize the cache hierarchy.

Locality of reference becomes important.
The piece of data that will be accessed in the next core cycle must already be available in the cache nearby

(L1 is preferable over L2, and L2 over L3, and all of them are preferable to main memory); if the piece of
data still resides in main memory, competition with other cores will occur at a lower transfer rate than cache
transfers. Otherwise performance may deteriorate if it is shared by multiple cores.
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GPU computing

5.1 CPU vs GPU CPUs
A CPU (Central Processing Unit) refers to a traditional microprocessor (a.k.a. processor) that can be unicore
(rarely nowadays) or multi-core or many-core.

The number of cores is usually (2023) less than 30 (e.g. Intel’s Xeon processors). Sometimes many-core
processors (e.g. Intel’Phi) are attached to the CPU and work in ’parallel’ with the CPU or independetly of it.
In such a case a many-core is called a coprocessor.

A GPU (Graphics Processing Unit) is used primarily for graphics processing. CUDA (Compute Uni-
fied Device Architecture) is an application programming interface (API) and programming model created
by NVIDIA. It allows CUDA-enabled GPU units to be used for General Purpose processing, sequential or
massively parallel. Such GPUs are also known as GPGPU (General Purpose GPU) when provided with an
API for general purpose work. With time this evolved (around 2007) into CUDA, when NVIDIA released
a software architecture and computational model that allows one to use the CUDA interface with C or C++
programs. CUDA gives programmers access to the GPU’s parallel computing elements and instruction set to
exploit the high degree or parallelism of the GPU. Other languages and interfaces are also supported.

Definition 5.1 (Host and Device). The terms host and device refer respectively to the traditional CPU (i.e.
Intel or AMD) and the CUDA device (i.e. a GPU) attached to the host.

Each one has its own memory space, host memory and device memory respectively. Separate mechanisms
are being used to allocate and free such memory and allow data transfer between any of the two destinations.

Definition 5.2 (CUDA GPU abstraction). A CUDA GPU is using three abstractions.

• a hierarchical order of thread groups,

• shared memories, and

• a mechanism for a barrier synchronization.

At a higher level CUDA allows a programmer to split an application (problem) by organizing its data and
its computational tasks. Data are organized into groups of coarse-grained data, and computational tasks are
organized using task parallelism so that they can independently be solved by blocks of threads.

Each task is then split into finer pieces using fine-grained data and thread parallelism by having all threads
in a block cooperating in solving a specific task.

Thus at block level the GPU automatically schedules the execution of blocks of threads to one of several
available multiprocessors with the details hidden from the user/programmer.
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Definition 5.3 (Hierarchical division: threads, blocks, grids). At the lowest level of the CUDA hierarchy
there are threads. Threads form groups known as thread blocks, and thread blocks form other groups known
as grids.

At the lowest level of the hierarchy there are threads. Each thread has its own private memory (registers).
Threads form groups known as thread blocks, and threads blocks form grids. The threads in a thread block
share memory that is visible to them during the lifetime of the block, and also read-only memory. All threads
share/have access to the DRAM (global memory).

The use of multithreading serves several reasons.

• Given that global memory is slow (100s of processor cycles), multithreading allows the processor
to switch to a thread that has already received data from the global memory and thus is ready for
computation.

• It supports fine-grained parallelism for graphics related applications, and

• provides hardware virtualization support for many-threading as each thread has its own registers, pro-
gram counter and execution state/status and thus can execute an independent code sequence, and this
is accomplished with minimal overhead.

5.2 What is a (CUDA) GPU
At the hardware level, a GPU (device) is attached as a PCI3 card in the motherboard chassis of a traditional
desktop PC that has a CPU (host).

A GPU consists of a number of streaming multiprocessors known in NVIDIA terminology as SM, SMX
(Kepler architecture), or SMM (Maxwell architecture) in different architecture generations (Kepler, Maxwell)
of NVIDIA.

Definition 5.4 (Streaming Multiprocessor (SM)). A GPU consists of a number of streaming multiprocessors.
Each streaming multiprocessor (SM) has hardware support for multiple streaming processors (SM cores or
functional units).

Generically we shall be using the term SM unless we describe a specific architecture and then we might
use the specific name for an SM (e.g. SMX for Kepler). Multiple GPUs may be on the same card and can
communicate directly with each other (no host utilization).

An SM is similar to a traditional ’CPU core’ but has hardware support for multiple streaming processors
(’SM cores’ or functional units) and thus it is a highly multithreaded coprocessor to the accompanying CPU
(host).

An SM executes many threads in parallel on several multiprocessor cores. Thus we may have multiple
GPUs containing multiple SMs that contain multiple SM core that execute multiple threads each.

5.2.1 NVIDIA K20X GPU
A K20X GPU Kepler Accelerator (GK110) has 14 SMX (SM of a Kepler architecture), and each one of them
has 512 functional units. These functional units include

• 192 ALU (Arithmetic Logic Units),

• 192 FPU (Floating-Point Unit) for single-precision (SP) floating-point operations,

• 64 FPU for double-precision floating-point operations,
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• 32 load/store units, and

• 32 SFU (Special Function Units) for transendental functions (log, sqrt, sin, cos etc).

Thus the 192 ALUs with its 192 FPUs can be viewed as 192 cores of each SMX for a total of 2688 cores
altogether for a K20X.

If double-precision computations are to be supported the parallelism of an SM is thus limited to 64 cores
per SMX.

Multiprocessors execute in parallel and asynchronously. Thus threads residing in one multiprocessor
cannot send data into threads of another multiprocessor.

L1 and shared memory of an SM

Each SM/SMX multiprocessor has registers (register file), a data cache (to be called L1 even if it differs from
a CPU’s L1 cache) and shared memory that is limited in size (tens of kilobytes) and that it is shared by all the
cores (e.g. 192) of the SM. In Kepler the same 64KiB of memory can be configured as 16KiB of L1 cache
and 48KiB of shared memory, or 32KiB of L1 and 32KiB of shared memory, or 48KiB of L1 and 16KiB of
shared memory.

The shared memory is organized in 32, 4B banks. Successive words are accessed through different banks
of the shared memory (see example of matrix transposition later on). If multiple threads use the same bank
to access different words, serialization takes place If those multiple threads access the same word however, a
multicast takes place and the access is completed in one fetch.

In such an architecture, L1 serves as a victim cache/spill memory for the registers.
It is not a very good practice to use the L1 cache of a GPU the same way an L1 is being used in a CPU

i.e. to cache (to move into faster memory) a block of memory that is to be used in an imminent computation.
This is because 100s or 1000s of threads spread over all cores of an SM would be competing for the L1

cache of that SM. In fact it would be better to use the shared memory as the latter is shared among all the
threads of an SM; moreover no eviction will ever take place from shared memory!

L2 for all SMs

An L2 memory might be (and currently is) available and it is shared among all SM multiprocessors and their
cores (and their threads). No cache coherence is available.

If a register does not contain the information but it is in L1, a 128B transfer is initiated; if data is not in
L1 but in L2, then a 32B transfer is initiated.

Global memory of the device

Global memory (of the device) is faster than the host CPU memory (2-3 times on the average) but it is 100-
300 times slower than the registers of the SM multiprocessors and their cores, and at least 5-30 times slower
than L1 cache and the shared memory and 2-3 times slower than the L2 cache.

Communication between host and device is through PCI3 at more than 10GB/s and up to 85GB/s with
close to 800ns latency or so.

For NVIDIA architectures and their SM and core configurations see Figure 5.1.

5.2.2 NVIDIA Tesla GPU
An NVIDIA Tesla C2075 GPU has 14 SM each of which has 32 cores, and thus 32 · 14 = 448 threads may
be running simultaneously.
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Architecture Tesla Fermi Kepler Maxwell

Timeframe 2006-2009 2010-2011 2012-2014 2014-2015

CUDA 1.10-1.2 2.0-2.1 3.0-3.5 5.0

Number of SM 16-30 7-16 8-30 4-5

Number of cores/SM 8 32-48 192 128

Number of cores 128-240 336-512 1536-5760 512-640

Figure 5.1: Grids, Blocks, Threads (CUDA 5.0 and higher); typical ranges

The base clock speed is 575MHz but cores run at twice that speed at 1.15GHz. Memory is 384-bit wide
and 6GiB in size operating at 3000MT/sec with effective bandwidth of 144GB/sec. Single precision flop rate
is 1030.4GFLOPS and double precision is 515.2GFLOPS. TDP (Thermal Design power) is 225W.

By comparison a K20X GPU Kepler Accelerator (GK110), as stated earlier has 14 SMX and 512 func-
tional units thus providing 192 cores per SMX and 2688 cores atogether, has 732MHz base clock rate but
cores operate at that speed and not at double of that as they did in Tesla; the same 384-bit bus width is
utilized and same device memory, with 2× 2600MT/s for 250GB/s bandwidth (ECC enabling might affect
performance) .

Its single and double precision performance is 3935 (= 732× 192× 14× 2) and 1310 GFLOPS respec-
tively. (This is under the assumption that all instruction are multiply-and-add; for regular operations peak SP
performance is half of that at 1967 GFLOPS.) TDP (Thermal Design power) is 235W.

The L1/shared memory is 64KiB per SMX. L2 cache is 1.5MiB. The SRAM used operates at the same
732MHz. The effective bandwidth of L1/shared memory is about 187-1330GB/s and the L2 cache can support
1024B/cycle.

In more recent architecture realizations (Maxwell) the number of cores per SM has been reduced to 128
from 192, and so has the number of SM down from 4-5 from 8-30.

5.2.3 NVIDIA Fermi GPU

An NVIDIA Fermi GPU has 16 SM. They share a common L2 cache. 1.5GHz. Each SM has 1 instruction
cache, 2 warp schedulers and 2 dispatch units, a register file of 32768 32-bit registers, 2× 16 CUDA cores,
16 LOAD/STORE unit, 4 SFU transcedental function units, 16 double precision units allowing for the same
number of MultiplyAndAdd operations per clock, and 32 single precision units.

Each CUDA kernel ca use up to 63 registers.
64KiB L1 cache which is a register spillover memory of individual threads or a shared memory of all

threads of a block. It is configured as (16KiB,48KiB) or (48KiB,16KiB). It has 10-20 cycle latency and
1600GiB/s throughput.

It interfaces with the L2 cache. Memory that cannot fit into the register can spill over local memory
(mapped global memory).

An L2 cache is used as a unified memory for all SM but also as a texture (graphics) memory. It has size
768KiB.

Global memory is also accessible by the host but has high latency (400-800 cycles). 1GHz operation, and
384bit data bus width accommodating 2× (384/8)×1GHz = 96GiB/s.

Peak performance is 2 (Multiply and Add) operations per core (32 cores) per GHz float performance; half
of it for double performance. Peak performance is 2×32×16×1.5GHz = 1.5Tflop/s.
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5.2.4 NVIDIA Turing GPU
An NVIDIA Turing GPU (2018) has 16-72 SM with 64 cores per SM for a total of up to 4608 cores. L1
cache is 96KiB per SM (1.5-6.75MiB), L2 cache is 1-6MiB and power consumption to 280W.

5.2.5 NVIDIA Volta GPU
An NVIDIA Volta V100 GPU (2018) has 80 SM with 64 cores per SM for a total of 5120 cores. GPU global
memory is 32GiB. Memory bandwidth is 900GiB/s. The 5120 cores operate at 1.370GHz. A shared L2 cache
has size 6MiB. Warp size remains 32.

Peak performance double is 7.450Tflop/s derived as 1×1370MHz×80×64.

5.2.6 NVIDIA Ampere A100 GPU
An NVIDIA Ampere A100 GPU (2020) has 108 SM with 64 INT32, 64 FP32 (or 32 FP64) cores for a total
of 6912 INT32, 6912 FP32 (3456 FP64) cores. Frequency is 765MHz with boost 1410MHz. Thus an SM
has 32FP64 cores, 64FP32, and 64 INT32 cores.

Global memory size is 40GiB (1555GiB/s bandwidth). Register file size is 256KiB/SM. Shared memory
is at most 164KiB per SM, L1 cache size is 192KiB per SM. L2 cache size is 40MiB for all SM. A 5120bit
that is 640B data path leads to the L2 cache allowing for a 1555GiB/s bandwidth. A 32B cache lines allows
for 8 floats or 4 doubles. Power dissipation is 400W for 54.2billion transistors.

Peak performance float is 10.575Tflop/s derived as 2×765MHz×108×64. Peak performance double is
5.287Tflop/s derived as 1×765MHz×108×64. Boosted performance is 19.491Tflop/s and 9.746Tflop/s for
float and double respectively.

5.2.7 NVIDIA Hopper H100 GPU
An NVIDIA Hopper H100 PCIe has 114 SM per GPU. It operates at 1125MHz with boost speed at 1755MHz.
Peak performance float is 51.217Tflop/s and double performance 25.608Tflop/s.

IT has 128 FP32 cores, 64 FP64 cores and 64 INT32 cores. for a total of 14592 FP32, 7296 INT32 cores,
and 7296 FP64 cores.

Global memory size is 80GiB (2000GiB/s bandwidth, memory clock 1593MHz, 640B bus width). Share
memory size is at most 228KiB and L2 is 50MiB. Register file size is 256KiB with 300-350W dissipation for
80 billion transistors.

5.3 Heterogeneous programming
The device attached to a host operated in conjunction with the host as a coprocessor to it. The compute
capability (CUDA) of a device is expressed as a version number X.Y, where X is the version number and Y a
minor subversion/revision number. If X is the same it means devices are using the same architecture. Thus a
Maxwell architecture has X = 5, a Kepler X = 3, a Fermi X = 2, and a Tesla architecture X = 1.

C code can be translated into assembly form (i.e. what is known as PTX code) or binary form (i.e. into
a cubin object). PTX code using just-in-time compilation is further compiled into binary code by a specific
device driver. This way an application for which PTX code is available can be run on new architectures as
soon as a specific device driver is provided.

For PTX instruction generation architecture specific requests are using the -arch option as in -arch=sm 30.
Such PTX code can always get converted into a cubin with at least the X and Y values of the PTX code. To
enforce binary code output use in the compiler the -code option. Thus -code=sm 30 will produce binary
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code for devices with compute capability 3.0. A cubin generated for X.Y will only execute on devices X.Z
where Z ≥ Y .

Device code can be 32-bit or 64-bit and -m32 or -m64 selects the corresponding compiler option. A
cudeDeviceReset executed by the host destroys the primary context of the device the host thread currently is
operating on. Whereas cudaMalloc and cudaFree is the mechanism to allocate linear memory in the device,
alternative mechanisms exists for 2D or 3D memory such as cudaMallocPitch() and cudaMalloc3D(). More-
over cudaMemcpy2D() and cudaMemcpy3D() can be used for memory transfer. A thread (tx, ty) accessing a
2D array of width w at base address a, retrieves the element a+w∗ ty + tx. Asynchronous transfers between
the host and the device are possible through the explicit use of streams. (See Section 3.2.5.5 of the Cuda C
Programming Guigde by NVIDIA, page 33, 2015).

Extensions File
.cu : CUDA source file host or device

.h .cuh : Header files
.c : C
.cc : C++

.cpp : C++

.cxx : C++
.o : Linux object

.obj : Windows object
.a : Static library Linux

.lib : Static Library Windows
.so : Shared Object

.gpu : Intermediate Compilation File (device)
.ptx : Portable Device Assembly Format

.cubin : Cuda Binary for a specific architecture (GPU)

Figure 5.2: CUDA file extensions

Note that single-precision operation should be preferred. Functions sinf, cosf, tanf, sincosf and
their DP counterparts are expensive and become even more expensive if the function argument is a large value
(in magnitude). To do i/n for n a power of 2, it is better to do i� lg2(n), and i (mod n) is equivalent to
i&(n−1).

Control flow instructions (if, switch, for, while) can cause threads to diverge and the different execution
paths will be serialized.
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CUDA 3.0 CUDA 3.5 CUDA 5.0
32-bit +,*, *+ 192 192 128
64-bit +,*, *+ 8 64 4
32-bit 1/, sqrt 32 32 32

log2,exp2
32-bit int add,int sub 160 160 128

32-bit int *,int *+ 32 mi* mi*
32-bit shift 32 64 64

cmp,min,max 160 160 64
32-bi OR,AND,XOR 160 160 128

sum—a-b— 32 32 64
type convert 8,16,32 128 128 32

type to/from 64 8 32 4
other conversions 32 32 32

*mi = multiple instructions

Figure 5.3: Arithmetic Operations (number of ops per clock cycle per SM)

CUDA OpenCL
Grid Grid

Block Work Group
Thread Work Item

lobal kernel
device global
shared local
local private

syncthreads barrier()
threadIdx.x get local id(0)
threadIdx.y get local id(1)
threadIdx.z get local id(2)
blockIdx.x get group id(0)
blockIdx.y get group id(1)
blockIdx.z get group id(2)

Figure 5.4: Correspondence between OpenCL and CUDA



108 CHAPTER 5. GPU COMPUTING



Part IV

CUDA SIMT Computing
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Chapter 6

CUDA computing

6.1 CPU execution model : SIMD
In SIMD (Single Instruction Multiple Data) execution, a task executes the same instruction as any other task.
The difference is that different tasks operate on different data.

Example 6.1. Let us assume that we have four tasks identified with a task ID number denoted by tid. Let
tid values be in the range 0..3. The same instruction c[tid] = a[tid]+b[tid] operates on different data on the
four tasks available.

Task0 : c[0] = a[0]+b[0]
Task1 : c[1] = a[1]+b[1]
Task2 : c[2] = a[2]+b[2]
Task3 : c[3] = a[3]+b[3]

We can call the instruction a kernel indicated by the global prefix; inside it obtainIDoftask is a variable
that makes available the id of the task to variable tid. A task can be a process or a thread.

In the discussion to follow the term kernel does not refer to an operating system’s kernel. It refers to the
few instructions that several tasks (that will become threads) are going to execute in parallel, thus processing
multiple data (e.g. the elements of a vector, matrix, image, packet, etc).

__global__ void add(a,b,c) {

int tid = obtainIDoftask;

c[tid]=a[tid]+b[tid];

}

Figure 6.1: A kernel

The kernel 6.1 is quite limited; it can deal with arrays of length equal to the number of tasks available.

111
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6.2 GPU CUDA execution model : SIMT
In a GPU (Graphics Processing Unit) available computer we have the host machine (e.g. a PC computer)
that has a GPU attached to it in the form of a card inserted into one of the slots of a desktop or laptop PC
computer. The PC is known as the host and the GPU as the device. NVIDIA is one company that provides
GPU hardware (GPU CPUs). A GPU CPU is a collection of streaming multiprocessors (SM).

In GPU execution, a task is a thread. The same instruction is to be executed by multiple threads on
different pieces of data. This is the SIMT (Single Instruction Multiple Thread) model.

For NVIDIA GPUs, the CUDA (Compute Unified Device Architecture) model interprets SIMT execution
as follows.

An NVIDIA GPU contains many (streaming) multiprocessors. NVIDIA refers to them as streaming mul-
tiprocessors (SM). An SM core (functional execution unit in an SM) is SIMT. CUDA programs are thus SIMT
to match the available hardware (SM core). SIMT computing requires the presence of two functionalities: SI
and MT. These are as follows.

SI Availability of the common SI (Single CPU Instruction) to be executed: the single CPU instruction
is part of a sequence of CPU instructions that are generated after compilation of a function written in
a high-level programming language such as C or C++. The function is known as the kernel in GPU
CUDA terminology.

MT Availability of MT (Multiple Threads) that each one will execute the CPU instructions of the kernel,
one (common) CPU instruction at a time. The threads are organized into blocks (i.e. thread blocks),
and blocks are organized into a grid. The grid (of blocks) and the block (of threads) can have regular
1D, 2D or 3D shapes.

In order to start a GPU hosted computation we launch a kernel grid. The kernel describes the C/C++ function
(SI part) and the grid the group of blocks of threads (MT part) that would execute the kernel.

When a program is written for a CUDA-enabled device (GPU) it is usually written at the host and com-
piled by the NVIDIA framework/compiler (known as nvcc) that determines what part is going to be executed
at the host and thus invokes the host’s compiler infrastructure or what part is going to be executed by the
CUDA device and thus the device’s compiler infrastructure is to be used. The host code executed at the host
can include sequential (serial) and parallel code. The device code is a parallel function (kernel) written in
CUDA. A program in CUDA thus operates as follows:

(1) data are copied from host (CPU) memory into device (GPU) memory,

(2) a kernel grid is then launched, and the device code is then executed, and while this is being done, device
memory is being used and cached on (device) chip, and

(3) when the computation is completed results are then transferred from the device (GPU) memory back
to the CPU memory.

6.2.1 Threads in CUDA
Threads in CUDA are organized hierarchically and have their own program counters (PC) and registers (reg-
ister file).

Definition 6.1 (CUDA tasks : threads). A CUDA task is a thread.

A thread is an entity that represents the execution of a kernel.
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Definition 6.2 (Kernel). A kernel is a high level programming language function that is being invoked by the
host to execute on a CUDA device by a specified aggregation of threads referred to as a grid.

In the CUDA model, threads do not exist independently.
Multiple threads that will be associated with a kernel and execute that kernel are combined into a thread

block or just block. A (thread) block is an aggregation of threads that can have a regular 1D (one dimensional),
2D (two-dimensional), or 3D (three-dimensional) shape.

Definition 6.3 (Threads in a thread block). A block of threads (or thread block) contains a number of threads
shaped into regular 1D, 2D, or 3D shapes.

Multiple thread blocks (of the same shape) form a grid. A grid can have a regular 1D, 2D, or 3D shape
consisting of blocks (of threads) of the same shape.

Definition 6.4 (Grid of thread blocks). A grid contains one or more thread blocks. A grid executes (or
launches) a kernel: each thread of the thread blocks of the grid execute SIMT-style the instructions of the
kernel.

The threads of a grid (consisting of blocks of threads) execute a kernel, which is the common set of CPU
instructions that will be thus executed SIMT-style by all the threads (of the thread blocks) of the grid.

Several grids can co-exist and execute a unique (usually different) kernel each.
A running instance of a kernel is executed by the threads of the grid associated with that kernel.

Definition 6.5 (Multiple Grids). In a program multiple grids can launch multiple kernels, but each grid can
launch one and only one kernel.

Definition 6.6 (Shape of a grid or block). The threads of a block or the blocks of a grid can be organized
into 1D, 2D, or 3D regular shapes.

A thread belongs to a block of threads and blocks of threads are organized into a grid. Thus threads are
arranged into a one, two, or three dimensional grid of identically shaped blocks. Blocks of the same shape
form a grid. Any block of a grid contains the same number of threads as any other block of that same grid.

6.2.2 CUDA kernel grid launch
In the CUDA model a kernel grid or just kernel is launched by the host to be executed on the device.

A kernel is the set of common instructions that will be executed by the threads that form the (thread)
blocks of the kernel (grid). The grid is the structure that describes the shape of the thread blocks associated
with the execution of the kernel, and the shape of the threads within each block. Each grid maps to a unique
kernel. The number of instances (paralel copies) of the kernel is referred to as the number of (thread) blocks.
Every (thread) block of the kernel contains the same number of threads. The blocks inside the grid can form
arbitrary regular shapes: 1D, 2D, 3D rectangular shapes. So can the threads of a block.

Prior to (or At) the launch of the kernel, the grid of thread blocks and the threads of each block need to
be defined and described. Thus we call such a launch either a kernel launch or a kernel grid launch. All the
threads of all the blocks of the launched grid are going to perform the same instruction or set of instructions,
and these are the instructions of the kernel associated with the launched kernel grid. A Gigathread global
scheduler distributes thread blocks to SMs.

Definition 6.7 (Kernel Launch). A kernel is launched according to the prototype of Figure 6.2. KernelName
is the name of the function describing the set of common instructions to be executed by the threads of each
one of the blocks of the grid. Parameter nblocks describes the geometry of the grid, and the number of blocks
of the grid; parameter nthrdperB describes the geometry of a block of the grid and the number of threads per
block of the grid. args is the argument list of function KernelName.
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A kernel is launched as follows.

KernelName <<< nblocks,nthrdperB >>> args;

Figure 6.2: A kernel launch

Note that the term SIMT implies a single instruction execution; a kernel might contain several instruc-
tions, albeit common to all threads (of the grid). A question that will arise later is what happens if an
instruction contains a conditional execution such as that equivalent of an if statement. In an SIMT, execution
threads cannot diverge; all threads will execute both the TRUE and FALSE part of an if statement!

Example 6.2. A kernel launch is specified in Figure 6.3. The name of the kernel that will be launched maps to
kernel function add. All the threads of the blocks of the grid will execute the same two instructions, as shown
in Figure 6.1. The variable nblocks describes the number of launched blocks including their arrangement
(geometry) within the (kernel) grid. Variable nthrdperB (for number of threads per block) describes the
number of threads per block and their arrangement (geometry) within a thread block.

add <<< nblocks,nthrdperB >>> (a,b,c);

Figure 6.3: A kernel launch: Add vector b and c into a

Kernel execution

A single kernel lauch launches a single grid containing at least one and usually several blocks. Each block of
the grid has one or more threads. All threads of a grid share the same global memory space.

The threads of a block can cooperate using block-level synchronization and block-local shared memory.
Threads from different blocks cannot cooperate easily (unless they use global memory, the RAM of the GPU).

Each thread of a block has its own memory (registers). What cannot fit into a limited number of registers
becomes part (spillage) of a shared memory, or becomes part of a local memory (mapped global memory). All
the threads of a block have access to limited shared memory (approximately 48KiB for Kepler architectures,
growing to approximately 128KiB but at most 256KiB in later architectures). A read-only constant memory
is also available for faster access. An L2 memory is also available for global memory access.

All the threads of a block share an instruction stream (SIMT). When there is (instruction stream) diver-
gence the different branches are run sequentially while they are divergent. When they converge, parallelism
is restored.

Multiple kernels may be launched on the same GPU. All such kernels share a Global memory.

Definition 6.8 (Running instance of Kernel). A running instance of a kernel is executed by the threads as-
signed to that kernel, i.e. the threads of the threads blocks of the grid that launched the kernel.

Definition 6.9 (An app of several kernels). The same application can launch (spawn) and execute several
kernels. One grid is associated, launches and executes a unique kernel. A programmer defines the shape of
the grid, and the shape of the blocks of the grid.
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6.2.3 Block and Thread identification
Definition 6.10 (Shape of grid: gridDim). The shape of a grid is available through variable gridDim that is
of type dim3.

gridDim = (gridDim.x,gridDim.y,gridDim.z)

For a 2D (two-dimensional) grid gridDim.z = 1, and for a 1D (one-dimensional) grid gridDim.z = gridDim.y = 1.
The number of blocks of a grid is given by the following product.

NumO f Blocks = gridDim.x×gridDim.y×gridDim.z.

Therefore, variable gridDim provides two pieces of information: (a) the actual shape of a grid, i.e. whether
it is one-dimensional (1D), 2D, or 3D, and (b) the number of thread blocks which is the product of the three
dimension contributions of the elements of gridDim. A 1D grid has gridDim.y = 1,gridDim.z = 1, and a 2D
grid has gridDim.z = 1, as noted.

Definition 6.11 (ID of block of a grid: blockIdx). Each (thread) block of a grid has a block identification
index available through variable blockIdx that is of type uint3. For a 3D grid this translates as

blockIdx = (blockIdx.x,blockIdx.y,blockIdx.z)

A missing dimension assumes a value zero.

Definition 6.12 (Shape of a block: blockDim). The shape of a (thread) block is available through variable
blockDim that is of type dim3.

blockDim = (blockDim.x,blockDim.y,blockDim.z)

For a 2D block blockDim.z = 1, and for a 1D block blockDim.z = blockDim.y = 1. The number of threads
in a block is given by the following product.

NumO f T hreads = blockDim.x×blockDim.y×blockDim.z.

A missing dimension assumes a value one.

Definition 6.13 (ID of a thread of a block: threadIdx). Each thread of a block has a thread identification
index available through variable threadIdx that is of type uint3. For a 3D grid this translates as

threadIdx = (threadIdx.x, threadIdx.y, threadIdx.z)

A missing dimension assumes a value zero. Note that a threadIdx might uniquely identify a thread in a
thread block but not a thread in the grid of the thread blocks.

Definition 6.14 (ID of a thread in a grid). Threads in a grid are uniquely identified by the pair

(blockIdx, threadIdx)

Note that there are three elements in variable blockIdx and three more elements in variable threadIdx.

Definition 6.15 (Number of threads of a grid). The number of threads of a grid is given by the product of the
number of blocks and the number of threads per such block.

NumofThreads = gridDim.x×gridDim.y×gridDim.z×blockDim.x×blockDim.y×blockDim.z.
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Implicit to this is the fact that all block of a grid have the same shape and thus contain the same number
of threads.

Definition 6.16 (Warp size). The size of a warp is available through variable

warpSize

and is of type int. It is hardware-based. By default the value is 32.

The value cannot be changed by a programmer. It has been set to 32 for a while and remains so for at
least 10 years now (as of 2023).

Example 6.3.
dim3 grid(16,8); /* grid.x=16 grid.y=8 grid.z =1 */
dim3 block(16,2,1); /* block.x=16 block.y=2 block.z=1 */
/* Num of blocks = 16x8 = 128 */
/* Num of threads/block = 16x2=32 */
/* Num of threads/grid = 32x128= 4096 */

Quoting NVIDIA’s manuals the data type of dim3 is an integer vector type based on uint3 that is used
to specify dimensions. When defining a variable of type dim3, any vector component left unspecified is
initialized to 1. We summarize variable in Figure 6.4.

gridDim : to obtain grid size (number of instances of kernel,
i.e. number of blocks)

gridDim : dimension of grid of blocks
blockDim : block size (number of threads within instances,blocks)
blockDim : dimension of thread block

args : pointer to GPU memory of arguments
blockIdx : index of a block in grid
threadIdx : index of a thread in thread block
warpSize : 32 as of 2023 and hardware bound

Figure 6.4: Variables

6.2.4 Thread linearized identification
The unique identification of a thread in a grid through a pair of triplets (or if we flatten it, through a sextuplet)
is cumbersome. Several times we need to map a thread ID into a scalar value, i.e. one single number.

The following assigns a row-oriented numbering to the threads of the grid for a 1D or 2D grid composed
of 1D or 2D blocks, as applicable.

Definition 6.17 (1D grid of 1D blocks). In a 1D grid containing 1D blocks, a block is identified by blockIdx.x,
and inside that block, a thread is identified by threadIdx.x. A unique threadID for each thread of the grid is
then given as follows representing an integer between 0 and NumofThreads−1.

threadID = blockIdx.x×blockDim.x+ threadIdx.x.

In case we have a 2D block in the grid, we need to figure out how to assign IDs to the threads of a block.
This involves (usually) a row-major assignment. The following assigns IDs to the threads of all preceding
blocks of the 1D grid, before assigning IDs to the threads of the next block, row-major way.
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Definition 6.18 (1D grid of 2D blocks). In a 1D grid containing 2D blocks, a block is identified by blockIdx.x,
and inside that block, a thread is identified by (threadIdx.x, threadIdx.y). A unique threadID for each thread
is then given as follows representing an integer between 0 and NumofThreads−1.

threadID = blockIdx.x×blockDim.x×blockDim.y+ threadIdx.y×blockDim.x+ threadIdx.x.

The assignment become a bit more complex in the case of a 2D grid. The following assigns IDs to the
blocks of the grid in row-major form. Within a 1D block ID are assigned to threads normally and serially.

Definition 6.19 (2D grid of 1D blocks). In a 2D grid containing 1D blocks, a block is identified by blockIdx.x,
blockIdx.y, and inside that block, a thread is identified by threadIdx.x. A unique threadID for each thread is
then given as follows representing an integer between 0 and NumofThreads−1.

threadID = blockIdx.y×gridDim.x×blockDim.x+blockIdx.x×blockDim.x+ threadIdx.x

The following assigns IDs to the threafs of all preceding row blocks of the 2D grid in row-major form
(and inside a block in row-major form) before assigning IDs to the next row’s block, in row-major form.

Definition 6.20 (2D grid of 2D blocks). In a 1D grid containing 2D blocks, a block is identified by blockIdx.x,
blockIdx.y, and inside that block, a thread is identified by (threadIdx.x, threadIdx.y). A unique threadID for
each thread is then given as follows representing an integer between 0 and NumofThreads−1.

threadID = (blockIdx.y×gridDim.x+blockIdx.x)×blockDim.x×blockDim.y
+ threadIdx.y×blockDim.x+ threadIdx.x.

Another way is to assing thread IDs to the first block row of the first grid row, in row-major form, thus
viewing the grid as a

gridDim.y ·blockDim.y×gridDim.x ·blockDim.x

matrix with gridDim.y×blockDim.y number of rows and gridDim.x×blockDim.x number of columns. Thus
the first row of the first row block of the grid that contains gridDim.x×blockDim.x threads will be assigned
IDs in turn and serially, then the next row of gridDim.x×blockDim.x threads spanning the first row block of
thread blocks and their threads and so on.

Definition 6.21 (Grid-global row-major 2D grid of 2D blocks). In a 1D grid containing 2D blocks, a block is
identified by blockIdx.x,blockIdx.y, and inside that block, a thread is identified by (threadIdx.x, threadIdx.y).
A unique threadID for each thread is then given as follows representing an integer between 0 and NumofThreads−
1.

threadID = (blockIdx.y×blockDim.y+ threadIdx.y)×gridDim.x×blockDim.x
+ blockIdx.x×blockDim.x+ threadIdx.x.

Example 6.4. In Figure 6.5 the layout of a 2× 2 grid of blocks is shown. The ID of each block in the form
(blockIdx.x,blockIdx.y), is shown. Each block is also identified by a number in row-major form: B0, . . . ,B3.
For one specific block the threadIdx values are also shown in Figure 6.6. Each block is a 2D 4× 8 block
containing 32 threads in four rows of 8 threads per row.

Example 6.5. In Figure 6.7 the layout of the 2× 2 grid of blocks utilized in Figure 6.5 and Figure 6.6 is
shown.
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B0:(0,0) B1:(1,0)
B2:(0,1) B3:(1,1)

Figure 6.5: Grid of Blocks (a 2× 2
grid)

B3: (0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0)
(0,1) (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1)
(0,2) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (7,2)
(0,3) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (7,3)

Figure 6.6: Thread blocks (4×8 thread block)

B0: (0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) B1: (0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0)
(0,1) (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1) (0,1) (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1)
(0,2) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (7,2) (0,2) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (7,2)
(0,3) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (7,3) (0,3) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (7,3)

B2: (0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) B3: (0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0)
(0,1) (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1) (0,1) (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1)
(0,2) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (7,2) (0,2) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (7,2)
(0,3) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (7,3) (0,3) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (7,3)

Figure 6.7: Labelling threads

Example 6.6. In Figure 6.8 the layout of the 2× 2 grid of blocks utilized in Figure 6.5 and Figure 6.6 is
shown. Threads for blocks B0 (all threads), B1 (all threads), B2 (first thread row) are labelled according to
the 2D grid of 2D block numbering scheme.

Example 6.7. In Figure 6.9 the layout of the 2× 2 grid of blocks utilized in Figure 6.5 and Figure 6.6 is
shown. Threads for blocks B0 (all threads), B1 (all threads), B2 (first thread row) are labelled according to
the grid-global row-major 2D grid of 2D block numbering scheme.
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B0: 0 1 2 3 4 5 6 7 B1: 32 33 34 35 36 37 38 39
8 9 10 11 12 13 14 15 40 41 42 43 44 45 46 47
16 17 18 19 20 21 22 23 48 49 50 51 52 53 54 55
23 25 26 27 28 29 30 31 56 57 58 59 60 61 62 63

B2: 64 65 66 67 68 69 70 71 B3: (0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0)
(0,1) (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1) (0,1) (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1)
(0,2) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (7,2) (0,2) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (7,2)
(0,3) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (7,3) (0,3) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (7,3)

Figure 6.8: Labelling threads (2D grid of 2D blocks)

B0: 0 1 2 3 4 5 6 7 B1: 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

B2: 64 65 66 67 68 69 70 71 B3: (0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0)
(0,1) (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1) (0,1) (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1)
(0,2) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (7,2) (0,2) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (7,2)
(0,3) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (7,3) (0,3) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (7,3)

Figure 6.9: Labelling threads (Grid-blobal row-major)

6.2.5 Launch examples
Definition 6.22 (Function prefixes). In CUDA a function can accept a prefix. This is shown in Figure 6.10.

Example 6.8. The launch
add <<< 4,1 >>> (a,b,c);

launches a 1D grid of 4 blocks, each block containing 1 thread.

Each block of the 1D grid has an ID: blockIdx.x gives the ID of a block in the 1D grid of blocks. The
only thread of any one of the four blocks also has an ID. It is threadIdx.x and it is 0 for all four threads of the
four blocks. It also indicates that a unique ID for a thread in this case is the pair (blockIdx.x, threadIdx.x).

Example 6.9. The launch
add <<< 1,4 >>> (a,b,c);

launches a 1D grid of 1 block, each block containing 4 threads.

Each block of the 1D grid has an ID: blockIdx.x gives the ID of a block in the 1D grid of blocks. The
only block of the grid had blockIdx.x equal to 0. Each one of the four threads of the only grid block also has
an ID. It is threadIdx.x and it is 0, 1, 2 or 3 for each one of the four threads of the block. It also indicates that
a unique ID for a thread in this case is just threadIdx.x or also the pair (blockIdx.x, threadIdx.x) as before.

Example 6.10. The launch

dim3 nblocks(4,4);
dim3 nthrd perB(16,16);

add <<<nblocks,nthrd perB >>> (a,b,c);

launches a kernel grid containing 16 blocks in 4×4 2D arrangement, and each block contains 256 threads
also arranged in a 16×16 2D arrangement. Thus the total number of threads launched is 16×256 = 4096.

Prefix Execution Callable
global On device Host or Device
device On device Device
host On Host Host (Default, can be omitted)

Figure 6.10: Function Prefixes
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6.3 CUDA block execution
A kernel is executed by a grid of thread blocks. Threads form thread blocks, these thread blocks form a grid,
and a grid launches and thus executes a kernel.

A Gigathread global scheduler distributes thread blocks to streaming multiprocessors (SMs). A block is
thus a group of threads assigned and executed to a specific SM. Thus threads are assigned to SMs in the form
of thread blocks rather than individual threads.

Execution-wise a block is split into warps: a single instruction in CUDA is issued for a group of a fixed
number of threads at a time. This group of threads is called a warp. A warp is scheduled for execution by a
warp scheduler. There can be one or more warp schedulers. Thus threads are assigned to cores in the form of
warps (a scheduling unit of currently 32 threads).

Different blocks can be assigned to the same or different SM, can be executed simultaneously (mul-
tithreading) or one after another on the same or different SM. But thread blocks are required to execute
independently. It must be possible that they can execute in any order. Thus an SM can execute multiple
warps, interleaving their execution to hide memory stalls and thread blocks should be multiples of warp size
for optimal performance.

When threads in a warp start execution at the same program address they use their own program counter(s)
and are thus free to branch and execute independently. Threads in different SMs cannot send data one another
or communicate with the shared memory: there is no guarantee that they will be executed on the same SM.
The threads in a block are not (necessarily) executed concurrently but sequentially in warps (groups). The
threads in a warp are executed in parallel on an SM. Each warp could consist of two half-warps or four
quarter-warps.

If ”communication” is needed it might utilize L2 or the global (GPU’s main) memory. All threads of all
blocks of all SMs have access to the same global memory.

On the other hand, threads within a block can share information through the shared memory of the SM
assigned to that block; the lifetime of shared memory is the lifetime of the block. Moreover threads within
a block can synchronize themselves using function syncthreads, a lightweight barrier synchronization mech-
anism requiring approximately 128 cycles. Threads in different blocks or SMs cannot synchronize globally
unless they use the global memory for explicit (programmer implemented) synchronization.

If one wants all threads of a set to be synchronized together, then one needs to assign them to a single
block. This would limit significantly the SM utilization as one block is assigned to just one SM, and can not
be assigned to multiple SMs.

Definition 6.23 (Warp). A warp is the group of threads of a thread block that executes a single instruction in
CUDA at any time. Warp size is hardware dependent (and as of this writing in 2023, equal to 32 threads).

ThreadID in a warp is consecutive and increasing.
Each thread of a block has its own memory (registers). What cannot fit into a limited number of registers

becomes a spilling memory (similar to a victim’s cache) and part of a private local memory (mapped global
memory). All the threads of a block, during their lifetime, have access to limited shared memory (approx-
imately 48KiB for Kepler architectures). Threads of a block have access to shared memory, can perform
atomic operations and barrier style synchronization. Threads of different blocks do not interact.

All kernels (and their threads) share a Global memory; a read-only constant memory is also available for
faster access. Texture read-only memory is available for graphics applications. An L2 cache is also available.

Whereas register and shared Memory are on the GPU chip, global, read-only constant and read-only
texture memory are not; they persist kernel launches of the same application.

Example 6.11 (Tesla warps). At the physical execution level, in Tesla, a 32-thread warp is distributed on 8
(of the 192) cores of an SM with 4 threads assigned to each core. Over 4 clock cycles each of the 4 threads
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executes an instruction and thus the execution of one instruction for the warp of 32 threads gets completed
as well.

Example 6.12 (Multiple Warp Schedulers). If more than one scheduler is available (Fermi has 2, Kepler has
4), more than one warps can be executed concurrently. Kepler has four warp scheduler and eight instruc-
tion dispatch units. Thus four warps can be executed concurrently with two instructions per warp can be
dispatched each cycle.

6.3.1 Block assignment on SM
A GPU has many SMs. A launched kernel grid has many blocks of threads. These blocks are distributed to
several SMs for execution. Terefore several blocks can end up to (execute) on the same SM.

A (single) block is always scheduled to execute on ONLY one SM and stays there until the end of its
execution.

A block of threads on a given SM can contain multiple threads. The SM cannot sustain the concurrent
execution of an arbitrary number of threads because of limited hardware resources including cores and mem-
ory (registers or local memory). Each SM splits blocks assigned to it into one or more groups of threads by
forming a warp. A warp contains consecutive threads of the split block. Warp size (as of 2023) is 32.

A warp scheduler picks the next warp to be executed on an SM. A warp scheduler is a local thread
scheduler at SM level compared to the Gigathread global scheduler.

Warp size can vary but it has been a fixed number and equal to 32 so far (2023) and is hardware imposed.
All threads in a warp execute the same instruction at the same time (almost) on different data. Threads

in a warp start at the same (machine instruction) address; individual threads can have varying behavior. Each
thread has its own PC (program counter also known as instruction pointer), register file and register state. It
can have its own independent execution path that can cause problems to the threads of a warp of a block.
Threads can synchronize within a block; no inter block synchronization can (currently) occur.

Moreover, the warps of a block can be scheduled arbitrarily. No assumption can be made that they will
execute in a specific order.

The number of active warps is limited by SM resources. In addition to an active Warp, a Waiting (or
Stalled) Warp is possible. See below for more information.

Also no assumption can be made about the order of the execution of the threads of a block.

6.3.2 SM, warps, blocks and threads
Instruction execution latency for math operations is 4-6 clock cycles; they can thus be hidden if 4 to 8 to 16
warps are executing and thus hiding these latencies. Shared memory / L1 size can be adjusted.

Register access is zero cycle per instruction. Read after write however can be penalized from 16 to 24
cycles. Shared memory access can be as fast as register access as long as there is no contention among threads
of a block. Shared memory utilizes shared in variable definition. Constant constant works if a warp of
threads reads the same memory.

Effect of warpSize

The warpSize is fixed to 32 and several times determines or affects optimality in scheduling threads in thread
blocks of a grid.

The maximum number of active warps in an SM is 64 and thus there can be no more than 64×32 = 2048
threads in an SM.

Moreover in an SM no more than 16 blocks can be active. The maximum number of threads per block
is 32 warps i.e. 1024 threads (Kepler K20X) but used to be 512 (in earlier versions of NVIDIA chips). The
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Max NoofKernels per device 32 CUDA 5.0
Max NoofThreads per block 1024 RULE-2
Max NoofThreads per block 1536 some recent archs.
Max NoofBlocks per SM 16 or 32 RULE-1
Max NoofWarps per SM 64
Max NoofThreads per SM 2048 RULE-3
Max NoofRegister per SM 65536 (32-bit)
Max NoofRegister per block 65536
Max NoofRegister per Thread 255
Max dimgrid (x,y,z) = (231−1,65535,65535)
Max dimblock(x,y,z) = (1024,1024,64)
Max Shmem per SM 48KiB
Max Shmem per SM 164KiB 8.0 (Ampere)
Max Shmem per SM 100KiB 8.6
Max Shmem per SM 96KiB Volta
Max Shmem per block 100KiB 8.0 (Ampere)
Max Shmem per block 99KiB 8.6
Max Shmem per block 96KiB
Max WarpSize per device 32
Num WarpSchedulers per SM 4

Figure 6.11: Restrictions

number of 32-bit registers per SM is 65536 but the maximum number of registers per thread is around 255
(and rising to 1023 for some new NVIDIA chips).

For example, If a thread block contains one thread, it is still going to form, during execution, a warp of
size 32. One thread of the 32-thread warp will compute, and 31 of the remaining threads of the warp will do
nothing. This is inefficient.

If a block contains 33 threads, it is still going to form two warps of size 32. 31 of the 32 threads of the
second warp will do nothing. This is also inefficient. It is advisable that a block contains a multiple of 32
number of threads (or more accurately a multiple of warpSize number of threads).

The number of warps per block is given obviously by the following formula.

nWarps = ceil(T hreadsPerBlock/warpSize),

where warpSize is currently equal to 32.

On Ampere architectures, a typical block can contain 4 warps of 128 threads total. One SM is assigned
8-12 blocks for a total of approximately 2000 threads.

If the threads of a block are arranged in a 1D shape, then 32 consecutive threads form a warp. The
assignment of threads to a warp will use the linearized 1D threadID threadID = threadIdx.x. If however the
threads of a block are arranged in a 2D shape, then the threads are virtually mapped into identifiers of a 1D
shape using the linearized 2D threadIDs,

threadID = threadIdx.y∗blockDim.x+ threadIdx.x,

and the virtual threadID is used to form the 32 consecutive threads that will form a warp. For 3D shapes, the
linearized 3D threadID,

threadID = threadIdx.z×blockDim.x×blockDim.y+ threadIdx.y×blockDim.x+ threadIdx.x,
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will then be used.
Variable warpSize is hardware-bound and currently fixed to 32. However there are multiple restrictions

imposed by the GPU and its SMs on how many threads or blocks there can be in a system.

SM restrictions

Occupancy issues can restrict further the possible geometries. For a example an SM can have a maximum
of 65536 (32-bit) registers. A thread can have a maximum of 255 registers. If the threads of a block use the
maximum number of registers (let us call them thick threads) we can have no more than 256 of them in a
block. 1 If however they use only 16 registers, we can not have 4096 threads in a block because the limit
(for some GPUs) is 1024 threads per block. Likewise we cannot have more than 2048 threads per SM either.
Thus block occupancy restrictions and SM restrictions can affect performance.

The number of block maintained by an SM should be kept below its maximum (16 or 32). Given that
the maximum number of resident threads per SM is 2048 this means than a block should have no more than
128 threads. An SM has 64 maximum resident warps. This is consistent with 2048/32 = 64, the thread
occupancy of an SM (2048 threads) and warpSize (32).

Each SM unit has 4 warp schedulers. Each warp scheduler can issue one or two instructions as long as
they are destined for different functional units (e.g. one to the floating-point unit, and the other to the load-
store or the SFU) or are output independent. For example a = b+ c,d = e+ c are output independent, but
a = b+ c,d = e+a are not.

Note also that among the 192 cores per SM (Kepler), the fact that there are only 4 warp schedulers limits
the number of active threads to 4× 32 = 128. This means that 192− 128 = 64 cores are not utilized unless
there is a memory stall in the 128 cores. Because of possibly this consideration the number of cores per SM
(or SMM) in the Maxwell architecture has dropped to 128 from 192. A code such as the one below executed
among the threads of a block would require time which would be the maximum of a() + max(b())+max(c())
+ d() . It would be better to split into a separate block the threads that execute b() from those executing c().

Moreover if the number of blocks per grid is say 256, and an SM can accommodate 16 blocks, we need a
GPU with 16 SM; a K20X has only 14!

As of this writing NVIDIA CUDA has the set of restrictions as described in Figure 6.11.
In order to determine the number of threads per block one might have to satisfy several conditions. It is

the minimum as defined below:

min{
nWarpSchedulers∗WarpSize,
MaxThreadsPerSM
SzSharedM/SharedMPerThread,
RegsPerBlock/RegsPerThread,

}

6.3.3 Warp divergence and stall
Warp divergence is resolved by having all threads executing both branches of say an if-then-else statement
with a cost of execution at least the sum of the costs of the branches.

Example 6.13. Let a kernel instruction be an if-then-else statement such as the one of Figure 6.12. Let for
the sake of this example WarpSize is a non-standard 8, and let threads 0,4,5,6 execute the ifstep and threads
1,2,3,7 execute the elsestep of the if-then-else statement. Such an executions, breaks the essence of SIMT that
dictates that the threads of a block must execute the same instruction at the same time. Assuming a D means
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if (x) {

ifstep

}

else {

elsestep

}

Figure 6.12: An if-else statement

Thread 0 1 2 3 4 5 6 7
x : ifstep D S S S D D D S
!x : elsestep S D D D S S S D

Figure 6.13: Branches

DO and an S means STALL (or DISABLED) the overview of the activity of the 8 threads over the if-then-else
statement would look like as follows in Figure 6.13.

The syntax of the last two lines of Figure 6.13 is that of a predication. If x evaluates to true, the ifstep is
executed, otherwise the elsestep does.

By default in NVIDIA CPUs each one of the threads would execute both the ifstep and the elsestep part.
They will just stall (get disabled) over the part that is of no consequence. (Threads 1,2,3,7 will stall over the
ifstep part.) Thus all 8 threads would first evaluate the condition predicate x, and based on the evaluation of
predicate x half will stall and half will execute the ifstep, and then likewise half will execute and half will
stall over the elsestep.

Thus the execution time of the if-then-else would be the sum of the times of the ifstep and elsestep plus
the stall/DISABLE overhead, if any.

NVIDIA GPUs use branch predication to avoid stalling. It works only for small ifstep and elsestep
executions.

In a warp maximum efficiency is extracted if all threads of a warp have identical execution path (e.g. they
all perform the ”if” part). If there is a divergence of paths, both the ”if” and then the ”else” parts get executed
and disabled as needed to resume a common execution path at the end. Thus within a warp we can have
active and inactive threads.

Furthermore, consider the extreme scenario where a block is split into 32 warps of 32 threads per warp.
Only one thread per warp will execute the elsestep and the kernel contains only an if-then-else statement.
Moreover the ifstep contains two instructions and the elsestep contains 20 instructions. Assuming an SM
executes one warp at a time, the 32 warps will take 32× (20+2) = 704 instructions. Now consider rewriting
the kernel so that all the elsestep threads are relegated to a single warp. The running time now would be
31×2+22 = 86 instructions total, an 8-fold improvement in performance.

Thus with divergence CUDA gives the illusion of an MIMD architecture even if it is inherently SIMD/SIMT.

6.3.4 Warp scheduler
The warp scheduler(s) at every instruction iteration selects a warp that is ready to execute and issues the
instruction to its active threads. Latency is defined as the time it takes for a warp to be ready to execute. A
warp might not be ready because its instructions have not received their input operands yet. Off chip memory
take 200-400 cycles to be delivered. Thus to hide a latency of l clock cycles we need l cycles for devices with
2.0 compute capability as an SM issue one instruction per warp over two cycles for warps at a time, 2l for 2.1
compute capability as an SM issues a pair of instruction per warp over two cycles for two warps at a time,
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and 8l for 3.0 as a multiprocessor issues a pair of instructions per warp over one clock cycle for 4 warps at a
time.
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6.4 Memory
In a CUDA GPU, every thread has its own “local” memory; it is referred to as registers. According to
Figure 6.11 the maximum number of registers per thread is 255. Moreover all the registers used by all threads
of a block cannot exceed 65536. This is also the number of registers supported by all blocks assigned to an
SM.

The threads of a block can cooperate using block-level synchronization and block-local shared memory.
Threads from different blocks CANNOT cooperate.

What cannot fit into a limited number of registers becomes part of a spilling local memory (mapped global
memory cached in L1), similar to a victim’s cache.

All the threads of a block have access to limited shared memory (approximately 48KiB for Kepler archi-
tectures).

All kernels (and of course all the threads of their thread blocks) share a Global memory; a read-only
constant memory is also available for faster access. Texture read-only memory is available for graphics
applications. An L2 cache is also available.

Whereas registers and shared Memory are on the GPU chip, global, read-only constant and read-only
texture memory are not; they persist kernel launches of the same application.

Global memory

Writes into a common global memory location by more than one threads of a warp are undefined for non-
atomic instructions; for atomic instructions serialization occurs but its order is also undefined. Global memory
is 100x slower than L1/shared memory.

Functions malloc and free allocate and release memory in the host’s heap. Functions cudaMalloc and
cudaFree do the same with device global memory. Function cudaMemcpy is used for the transfer of memory
From/To Host To/From the device.

Global memory instructions support read/writes of 1/2/4/8/16B.
”Coalesced” access occurs when the 32 threads of a warp access adjacent memory locations, properly

aligned.
”Uncoalesced” access occurs when the memory locations have gaps (i.e. stride is greater than 1).
Since the PASCAL GPU, the use of a unified cudaMallocManaged and cudaDevicesSynchronized elimi-

nated the need of cudaMemcpy as memory shared by host AND device (global memory).

Shared memory

Shared memory is organized in 32 banks equal to the number of threads in a warp. Banks can be accessed
simultaneously.

Thus 32 read instructions on 32 addresses of 32 different banks can be served in one step. If they are to
the same step, serialization takes place i.e. 32 steps are required.

Type Location Access Scope;Lifetime
Register on-chip RW thread;thread

Local off-chip RW thread;thread
Shared on-chip RW block; block
Global off-chip RW grid; host

Constant off-chip R grid; host

Figure 6.14: Memory type and lifetime
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6.5 Floating-point performance
In modern GPUs double (DP) floating-point performance (64-bit) is half the rate of float (FP) floating-point
perfomance (32-bit).

In a older generation multiprocessor (Kepler) only 64 FPU-DP units existed and 192 FPU-SP units. That
meant that the DP rate was one-third of the SP rate. However a mix of SP and DP operations in the code can
sustain higher performance than the DP implied rate. Moreover SFU units are available for transcendental
operations (sin, cos, sqrt, etc).

6.5.1 SFU operations and intrinsic functions

f divide(x,y) faster than /
rsqrtf(x) instead of 1.0/sqrt(x)

f add Addition float
f sub Subtraction float
f mul Multiplication float
f sqrt Square root float
f rsqrt Reciprocal square root
f ma f Multiply and add
f rcp Recirprocal
f div Division float

f divide f
sin f Trigonometrix (sin)
cos f
tan f

sincos f sin(cos(.))
log f Logarithmic float

log2 f Log base two
log10 f Log base ten
exp f Exponential

exp10 f 10 to power
pow f General power x**y
dadd Double addition
dsub Double subtract
dmul Double multiply
dma Double multiply and add
ddiv Double divide
drcp Double reciprocal
dsqrt Double square root

Figure 6.15: SFU Intrinsic functions

Several of the logarithmic and trigonometric functions are three times faster for floats than doubles. Suf-
fixes such as rn, rz, ru, rd means “round nearest even”, “round towards zero”, “round up”, “round
down”.
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Chapter 7

NVIDIA CUDA

7.1 Overview
The CUDA model abstraction uses SIMD processors and SIMT execution: massive parallelism is applied to
thousands of threads sharing (or not) data at various levels. GPU computing uses fine-grained parallelism and
is data intensive in contrast to CPU computing that is more coarse-grained and program control is (or can be)
more complicated.

A grid is a logical organization of thread blocks. Variable gridDim provides information about the di-
mensionality of the grid: thus the number of non-one values among gridDim.x, gridDim.y and gridDim.z
determine whether the thread blocks of the grid are structured in a 1D, 2D or 3D shape.

The x dimension grows ”horizontally”, the y dimension grows ”vertically” , and the z dimension grows
”depth-wise”.

The product of gridDim.x, gridDim.y and gridDim.z determines the number of thread blocks in the grid.
(A thread block is also known as CUDA block; from now on we will call it a block droping the thread in front
of it.)

Example 7.1. A (5,3) grid implies it is a 2D grid and thus gridDim.x = 5, gridDim.y = 3 and gridDim.z = 1
(implied). The total number of blocks of the grid is 5×3 = 15.

In matrix notation we would denote a (5,3) grid as an 3× 5 matrix of blocks. The x dimension grows
”horizontally”, along the columns of a matrix, y dimension grows ”vertically”, along the rows of a matrix,
and z dimension grows ”depth-wise”.

Example 7.2. A (16,32) block implies it is a 2D aggregation of threads and thus blockDim.x = 16,
blockDim.y = 32 and blockDim.z = 1 (implied). The total number of threads of the block (and more impor-
tantly, of any block of the grid) is 16×32 = 512.

The location of a block within a grid is retrieved through variable blockIdx. Its location is then blockIdx=
(blockIdx.x,blockIdx.y,blockIdx.z)

Example 7.3. Thus for a (5,3) grid, the grid of the previous example,

blockIdx = (blockIdx.x = 2,blockIdx.y = 1,blockIdx.z = 0)

identifies the middle block of threads.

The location of a thread within a block is retrieved through variable threadIdx. Its location is then
threadIdx = (threadIdx.x, threadIdx.y, threadIdx.z) .

129
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(16×12) block

(4
×

3)
gr

id

A Thread of the block
A Warp

(0,0) block (1,0) block (2,0) block

(0,1) block (1,1) block (2,1) block

(0,2) block (1,2) block (2,2) block

(0,3) block (1,3) block (2,3) block

Figure 7.1: Grids, Blocks, Threads and a Warp

Example 7.4. Figure 7.1 shows a (3,4) grid, consisting of 12 blocks. Each block is a (12,16) thread block.
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7.2 Execution at the host
Let us see how a HelloWorld program can be written for CUDA. A CUDA program resides in a file ending
with the suffix .cu and other than that it can be compiled and executed as a regular C program but one needs
to the Nvidia C compiler known as nvcc. For several activities it serves as a wrapper.

Figure 7.3 looks like a traditional C program. It can be compiled by a traditional C compiler gcc or nvcc.
When the generated executable file (a.out) loads for execution, tt is executed at the host. NVIDIA’s CUDA
would use only host compiler infrastructure to compile and then the code is to run only on the host!

Figure 7.4 is a variation. It still executes on the host the printf line but NVIDIA’s CUDA would use not
only the host compiler infrastructure but the NVIDIA’s one as well since the executable will execute a piece
of code on the device (NVIDIA GPU). The function (kernel) that will be executed is a no code function. The
kernel mykern is laynched on a grid consisting one one block; the block contains only one thread.

A traditional C program is an acceptable NVIDIA CUDA program. It executes on the host. See Figure 7.2.

1 #include <stdio.h> /* c7c00.cu */

2 int main(void){ /* stored in c7c00.cu */

3 printf("Hello world!\n"); /* module load cuda /11.0.2 */

4 return (0); /* compile with nvcc c7c00.cu */

5 } /* run with ./a.out */

Figure 7.2: Hello world in C

1 #include <stdio.h> /* c7c01.cu */

2 int main(void) { /* % module load cuda /11.0.2 */

3 printf("Hello world\n"); /* % nvcc c7c01.cu */

4 return (0); /* % ./a.out */

5 } /* Hello world */

Figure 7.3: Hello world in C (host launch and execution)

1 #include <stdio.h> /* c7c02.cu */

2 #include <cuda_runtime.h>

3 __global__ void mykern (void) {

4 /* empty */ ;

5 }

6 int main(void) { /* % module load cuda /11.0.2 */

7 mykern <<< 1, 1 >>>(); /* % nvcc c7c02.cu */

8 printf("Hello world\n"); /* % ./a.out */

9 return (0); /* Hello world */

10 }

Figure 7.4: Hello world in C (host launch and execution, device usage)
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7.3 Execution at the device
We need to move to the code of Figure 7.5 to be able to execute on the device. Compilation is similar to the
previous pieces of code; instructions are thus omitted. If we have information about the GPU architecture we
might include an architecture directive such as arch = sm 30, as needed.

1 #include <stdio.h> /* c7c03.cu */

2 #include <cuda.h>

3 #include <cuda_runtime.h>

4 __global__ void mykern (void) {

5 printf("Hello world : (%d , %d )\n",

6 blockIdx.x,threadIdx.x);

7 }

8 int main(void) {

9 mykern <<< 1, 4 >>>();

10 cudaDeviceSynchronize ();

11 return (0);

12 }

Figure 7.5: Hello world in C (host launch, device execution)

Figure 7.6 for a change defines an (1,2) grid. Each of the two blocks of the grid has 8 threads arranges
as a (2,4) thread block. Identical information about the shape of the grid will be printed by each one of its
16 threads. Likewise about the shape of a block. Identical BlockIdx information will be printed by each one
of the 8 threads of each of the two blocks. We need to reach the output of threadIdx to be able to get unique
information per thread.

1 #include <stdio.h> /* c7c04.cu */

2 #include <cuda.h>

3 #include <cuda_runtime.h>

4 __global__ void newkern (void) {

5 printf("Grid : %d %d %d\n",gridDim.x, gridDim.y,gridDim.z);

6 printf("Block: %d %d %d\n",blockDim.x, blockDim.y,blockDim.z);

7 printf("BlockIdx %d %d\n",blockIdx.x, blockIdx.y);

8 printf("ThreadIdx %d %d\n",threadIdx.x, threadIdx.y);

9 }

10 int main(void) {

11 dim3 grid (1,2);

12 dim3 blck (2,4);

13 newkern <<< grid , blck >>>();

14 cudaDeviceSynchronize ();

15 return (0);

16 }

Figure 7.6: Grid and Block information

We can reduce the output by a factor of one quarter if we decide that only threads with threadIdx.y = 2
will print something. THis is Figure 7.7.

Let us provide some information about the structure of a CUDA program. The kernel is defined by using
the prefix global . It is callable on the device or the host, but execution always takes place on the device.
If it is omitted, a host would then be implied that is callable on the host and execution takes place on
the host. Thus Figure 7.8 would generate a compilation error because kernel newkern cannot be launched,
because it is not a kernel, but a host function (a regular C function) though its contents and never attempted
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1 #include <stdio.h> /* c7c05.cu */

2 #include <cuda.h>

3 #include <cuda_runtime.h>

4 __global__ void newkern (int tidy) {

5 if (tidy== threadIdx.y){

6 printf("Grid : %d %d %d\n",gridDim.x, gridDim.y,gridDim.z);

7 printf("Block: %d %d %d\n",blockDim.x, blockDim.y,blockDim.z);

8 printf("BlockIdx %d %d\n",blockIdx.x, blockIdx.y);

9 printf("ThreadIdx %d %d\n",threadIdx.x, threadIdx.y);

10 }

11 }

12 int main(void) {

13 dim3 grid (1,2);

14 dim3 blck (2,4);

15 newkern <<< grid , blck >>>(2);

16 cudaDeviceSynchronize ();

17 return (0);

18 }

Figure 7.7: Argument passing (host to device)

launch might indicate otherwise. Nor using the prefix device would change anything. Note that there
are two underscores preceding and two following the global, host and device keywords.

1 #include <stdio.h> /* c7c06.cu */

2 #include <cuda.h>

3 #include <cuda_runtime.h>

4 void newkern (int tidy) {

5 if (tidy== threadIdx.y){

6 /* stripped down */

7 printf("ThreadIdx %d %d\n",threadIdx.x, threadIdx.y);

8 }

9 }

10 int main(void) {

11 dim3 grid (1,2),blck (2,4); /* condensed */

12 newkern <<<grid , blck >>>(2);

13 cudaDeviceSynchronize ();

14 return (0);

15 }

Figure 7.8: Erroneous prefix usage for kernel (implied host))

The following refers to Figure 7.6 even if it applies to other compilable code e.g. Figure 7.5, and Fig-
ure 7.7. The code to be run on the device is known as the kernel and is the unit of work that is offloaded by
the host to be executed on the device. This code is executed in parallel by all threads. The function newkern

gets launched by the host and executed in the device. The launch (function invocation) of the function from
the host is the third line of main. The first line of main defines a grid named grid. It is a (1,2) grid of
(two) blocks. The second line of main defines the shape of a thread block as being (2,4) thus establishing
8 threads in a block and 16 threads for the grid. The launched kernel would thus be executed by 16 threads
in total belonging to two blocks. In the simple launch no arguments are pass and this explains the empty set
of parentheses in the third line of main. Figure 7.7 has an example of parameter passing from the host to the
device. Thus a successful and well-designed launch must include

• the shape of the grid of blocks,
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1 #include <stdio.h> /* c7c07.cu */

2 #include <cuda.h>

3 #include <cuda_runtime.h>

4 __device__ void newkern (int tidy) {

5 if (tidy== threadIdx.y){

6 /* stripped down */

7 printf("ThreadIdx %d %d\n",threadIdx.x, threadIdx.y);

8 }

9 }

10 int main(void) {

11 dim3 grid (1,2),blck (2,4); /* condensed */

12 newkern <<<grid , blck >>>(2);

13 cudaDeviceSynchronize ();

14 return (0);

15 }

Figure 7.9: Erroneous prefix usage for kernel (device))

• the shape of each block of threads of the grid,

• the kernel prefixed with global , and

• appropriate parameters passed from host to device.

Code that is called and run on the device only can have the CUDA C keyword device . This is not
the case for the launched kernel that is called on the host. This explains the compilation error of Figure 7.8
(to be called on host, to run on host, but expected to launch a kernel that should run on the device) and also
of Figure 7.9 (to be called on device, to run on device, but expected to launch a kernel that should be called
on host)!

It is the responsibility of the nvcc compiler to separate host and device code and device code is then
processed by the NVIDIA compiler but host code by the host compiler (eg. gcc). This separation is impossible
for Figure 7.8 and Figure 7.9. Moreover the number of threads, grid geometry and block geometry that will
be used, is derived from information used in the launch invocation.

The simple launch used in Figure 7.4 and Figure 7.5 that does not use the dim3 data type directly, gen-
erates a 1D grid and 1D block(s). We need the setup of Figure 7.6 to be able to generate a 2D grid and 2D
blocks. This setup can be used to generate 3D grids and 3D blocks, or mix 1D, or 2D, or 3D grids with 1D,
or 2D, or 3D blocks.

A kernel launch in addition to grid and blck as the first and second argument can have two additional
arguments. Thus ≪ grid,blck,N,S ≫ defines a grid grid with block shape and geometry blck but allo-
cated N byte of shared memory (N must of type size t) that is to be dynamically allocated to each block
(default is 0 bytes), and also generates a number S of streams (default is also a 0).

An application can also launch by altering bounds that are specified using launch bounds . The
latter accepts as a first argument maxThreadsPerBlock and a second argument MinBlocksPerMultiprocessor.
Observe Figure 7.10
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1 #include <stdio.h> /* c7c08.cu */

2 #include <cuda.h>

3 #include <cuda_runtime.h>

4 __global__ void __launch_bounds__ (8,2) newkern (int tidy) {

5 if (tidy== threadIdx.y){

6 printf("Grid : %d %d %d\n",gridDim.x, gridDim.y,gridDim.z);

7 printf("Block: %d %d %d\n",blockDim.x, blockDim.y,blockDim.z);

8 printf("BlockIdx %d %d\n",blockIdx.x, blockIdx.y);

9 printf("ThreadIdx %d %d\n",threadIdx.x, threadIdx.y);

10 }

11 }

12 int main(void) {

13 dim3 grid (1,2);

14 dim3 blck (2,4);

15 newkern <<< grid , blck >>>(2);

16 cudaDeviceSynchronize ();

17 return (0);

18 }

Figure 7.10: Launch bounds launch bounds
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7.4 Configuration information
A cudaGetDeviceCount can provide information about the number of devices available and cudaGetDeviceProperties
about their properties. The output of the execution of the code in Figure 7.12 is shown in Figure 7.13 and it
is the platform of the benchmark experiments run on the following chapters.

1 struct cudaDeviceProp { /* c7c09.cuh */

2 char name [256]; // Device Name

3 size_t totalGlobalMem; // Global Device Memory in B

4 size_t sharedMemPerBlock; // Max shared memory per block

5 int regsPerBlock; // 32-bit registers per block

6 int warpSize; // number of threads in a warp

7 size_t memPitch; // max pitch for memory copies in B

8 int maxThreadsPerBlock;

9 int maxThreadsDim [3];

10 int maxGridSize [3];

11 size_t totalConstMem;

12 int major; // major revision number

13 int minor; // minor revision number

14 int clockRate;

15 size_t textureAlignment;

16 int deviceOverlap; // cudaMemcpy and kernel exec ovrlp

17 int multiProcessorCount; // SM in device

18 int kernelExecTimeoutEnabled;

19 int integrated;

20 int canMapHostMemory;

21 int computeMode;

22 int concurrentKernels;

23 int ECCEnabled;

24 int pciBusID;

25 int pciDeviceID;

26 int tccDriver;

27 }

28

29 /* For information Purposes re c7c09.cu */

Figure 7.11: cudaDeviceProp
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1 #include <stdio.h> /* c7c09.cu */

2 #include <cuda.h>

3 #include <cuda_runtime.h>

4 int main(void) {

5 int i,count;

6 cudaGetDeviceCount (&count);

7 cudaDeviceProp prop;

8 memset (&prop , 0, sizeof(cudaDeviceProp));

9 printf("Number of Devices is %d\n",count);

10 for (i=0;i<count;i++) {

11 cudaGetDeviceProperties (&prop ,i);

12 printf("Device Number is %d \n",i);

13 printf("Device Name is %s \n",prop.name);

14 printf("Total Global M : %d \n",prop.totalGlobalMem);

15 printf("Shared Mem/Block %d \n",prop.sharedMemPerBlock);

16 printf("Registers /Block %d \n",prop.regsPerBlock);

17 printf("WarpSize %d \n",prop.warpSize);

18 printf("memPitch %d \n",prop.memPitch);

19 printf("maxThreads/Block %d \n",prop.maxThreadsPerBlock);

20 printf("maxThreads Dim %d %d %d \n",prop.maxGridSize [0],

21 prop.maxGridSize [1],

22 prop.maxGridSize [2]);

23 printf("TotConst Memory %d \n",prop.totalConstMem);

24 printf("Major Revision %d \n",prop.major);

25 printf("Minor Revision %d \n",prop.minor);

26 printf("Clock Rate %d \n",prop.clockRate);

27 printf("deviceOverlap %d \n",prop.deviceOverlap);

28 printf("SM in device %d \n",prop.multiProcessorCount);

29 printf("Compute Mode %d \n",prop.computeMode);

30 printf("Concurrent Kernl %d \n",prop.concurrentKernels);

31 }

32 cudaDeviceSynchronize ();

33 return (0);

34 }

Figure 7.12: cudaGetDeviceProperties
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Number of Devices is 1

Device Number is 0

Device Name is Quadro P600

Total Global M : 2095841280

Shared Mem/Block 49152

Registers /Block 65536

WarpSize 32

memPitch 2147483647

maxThreads/Block 1024

maxThreads Dim 2147483647 65535 65535

TotConst Memory 65536

Major Revision 6

Minor Revision 1

Clock Rate 1556500

deviceOverlap 1

SM in device 3

Compute Mode 0

Concurrent Kernl 1

Figure 7.13: Configuration of CUDA platform



Chapter 8

Vector calculations

8.1 Step-wise CUDA programming: Program 1 (c8c01.cu)
We provide a first program that shows how data can be transferred from host to device and the other way
around. As mentioned earlier this can be circumvented by newer methods that allow sharing of info between
host and device. With reference to Program 1 of Figure 8.1 we observe the following.

In line 17 an array a is allocated on the host (heap). The C standard libary function malloc is invoked. It
is initialized with data in lines 17-21.

In line 22 an array da is allocated on the device. The equivalent to malloc is invoked. This is cudaMalloc
that has malloc’s syntax. In line 23, with cudaMemcpy data is transferred to the destination (first argument)
from the source (second argument), the size of data is indicated as the third argument, with a fourth argument
to cudaMemcpy being the direction of the transfer (from Host to Device). Thus this argument indicates that
the second argument is located on the host, and the first argument on the device.

The cudaDeviceSynchronize() are there to make sure that GPU activity has been completed, prior to the
data transfer from the device to the host. Extra cautiouly a second cudaDeviceSynchronize() is inserted in
line 28 prior to the printing.

By inspecting the kernel and look at the output of the execution we observe the following. The grid used
is a 1D with 2 blocks. Each block is 1D with 8 threads. Thus the total number of threads in the grid is 16.
So are the number of elements of a and da. The tid of line 7 is the threadID of 1D grid of 1D blocks derived
earlier in Chapter 6. Thus tid has a range from 0 to 15. The printing of lines 9-11 confirm this. Finally the
result is copied from device to host and output in lines 29-31. It is a good practice to deallocate memory in
the reverse order of allocation.

139
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1 #include <stdio.h> /* c8c01.cu */

2 #include <cuda.h>

3 #include <cuda_runtime.h>

4 #define FTYPE float

5

6 __global__ void c8c01 (FTYPE *da) {

7 int tid = blockIdx.x * blockDim.x +threadIdx.x;

8 da[tid] = (FTYPE) tid;

9 printf("blockIdx.x = %3d threadIdx.x = %3d tid= %3d da= %8f\n",

10 blockIdx.x, threadIdx.x, tid , da[tid] );

11 }

12 int main(void) {

13 FTYPE *a, *da;

14 int i , grid=2, blck =8;

15 int nnum , nsze;

16 nnum=grid*blck; nsze=nnum*sizeof(FTYPE);

17 a=(FTYPE*) malloc(nsze);

18 for (i=0; i< nnum ; i++) {

19 a[i]=nnum -( FTYPE)i;

20 printf("a[%3d] = %8f\n",i,a[i]);

21 }

22 cudaMalloc ((void **)&da,nsze);

23 cudaMemcpy(da,a,nsze ,cudaMemcpyHostToDevice);

24

25 c8c01 <<<grid ,blck >>>(da);

26 cudaDeviceSynchronize ();

27 cudaMemcpy(a,da ,nsze ,cudaMemcpyDeviceToHost);

28 cudaDeviceSynchronize ();

29 for (i=0; i< nnum ; i++) {

30 printf("a[%3d] = %8f\n",i,a[i]);

31 }

32 cudaFree(da);free((void*)a);

33 }

Figure 8.1: Program 1: Host - Device data echange
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8.2 Program 2: c8c02.cu
Figure 8.2 shows the same functionality but by using cudaMallocManaged which has the arguments of
malloc, and avoids the use of cudaMemcpy that cudaMalloc needs.

The use of cudaMalloc requires the following steps in CUDA programming. The use of cudaMallocManaged
combines into one Steps 1 and 2, eliminates 3,4,5 or just maintains 4, and also eliminates step 7.

1. Setup input memory on host (CPU memory),

2. allocate input memory on device (GPU memory),

3. copy input memory from host to device,

4. allocate output on host,

5. allocate output on device,

6. compute on device after launching one or more GPU kernels from the host,

7. copy output from device to host, and

8. free all memory.

1 #include <stdio.h> /* c8c02.cu */

2 #include <cuda.h>

3 #include <cuda_runtime.h>

4 #define FTYPE float

5

6 __global__ void c8c01 (FTYPE *da) {

7 int tid = blockIdx.x * blockDim.x +threadIdx.x;

8 da[tid] = (FTYPE) tid;

9 printf("blockIdx.x = %3d threadIdx.x = %3d tid= %3d da= %8f\n",

10 blockIdx.x, threadIdx.x, tid , da[tid] );

11 }

12 int main(void) {

13 FTYPE *a;

14 int i , grid=2, blck =8;

15 int nnum , nsze;

16 nnum=grid*blck; nsze=nnum*sizeof(FTYPE);

17 cudaMallocManaged (&a,nsze);

18 for (i=0; i< nnum ; i++) {

19 a[i]=nnum -( FTYPE)i;

20 printf("a[%3d] = %8f\n",i,a[i]);

21 }

22 c8c01 <<<grid ,blck >>>(a);

23 cudaDeviceSynchronize ();

24 for (i=0; i< nnum ; i++) {

25 printf("a[%3d] = %8f\n",i,a[i]);

26 }

27 cudaFree(a);

28 }

Figure 8.2: Program 2: Program 1 with cudaMallocManaged
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8.3 Vector addition
In this section we would describe a variety of methods to perform a simple vector operation, that of vec-
tor addition. Two vectors a and b would be added and the result stored in a third vector c. The code is
c8vadd1.cu, c8vadd2.cu, c8vadd3.cu, c8vadd4.cu, c8vadd5.cu, c8vadd6.cu. Note that not all code
works correctly (e.g. c8vadd2.cu) all the time. We present it to show the limitations of some (obvious) grid
choices. Moreover c8vadd6.cu is a cudaMallocManaged utilized version of c8vadd4.cu. The same frame-
work can be used to convert the other programs similarly to the c8vadd4.cu into c8vadd6.cu conversion.

For c8vadd1.cu we would present its code completely into several parts that will span multiple pages.
For the rest only the kernel function will be depicted, along with the kernel launch. The remaining lines are
identical.

In addition our code also benchmarks the execution of the vector add operation. Timing results will be
reported as well.

The kernel code is a function with name the name of the corresponding file minus the extension (e.g.
c8vadd1).

8.3.1 c8vadd1.cu
In c8vadd1 the corresponding kernel is launched on a grid consisting of N blocks, each block containing one
thread. Given all this prior discussion on warpSize, the choice of a block size of one is poor. The launch
code is Figure 8.4. The launch code is extracted from lines 29, 30, and 32 of Figure 8.6. N is the length
of the vector. With a total of N threads, each thread will add one element of the vector. The kernel code is
Figure 8.3. Variable blockIdx.x provides a unique ID to each thread also mapping to an index of vectors a, b,
or c.

After compilation using nvcc c8vadd1.cu and execution with ./a.out we observe an execution time
of 0.03789s. The default execution pick N = 1024 as a vector length. This can be changed through the
command line, and ./a.out 32768 uses N = 32768. and reports execution time of 0.35488s. For ./a.out
65536 and N = 32768. it reports execution time of 0.77011s. It seems for large values N ≫ 1024, doubling
of the vector length double execution time. The Mflop rate is a lowly 0.085Mflop/s. Neither a Gflop let alone
a Tflop. Do not get tempted to increase blocksize. Limitations of the GPU will creep in eventually. Our
code does a limited check to verify that the result is correct. Thus if you try ./a.out 1000000000 and wait
some time you will realize that the launch did not launch! Moreover ./a.out 1000000 seems to work and
outputs an answer after 11.33331s.

1 __global__ void c8vadd1 (FTYPE *a, FTYPE *b, FTYPE *c, int n) {

2 int tid= blockIdx.x;

3 if (tid < n)

4 c[tid] = a[tid] + b[tid];

5 }

Figure 8.3: Vector addition: Version 1 (kernel)

1 grid = N;

2 blck = 1;

3 c8vadd1 <<<grid , blck >>> (da,db,dc ,N); /* c8vadd1 */

Figure 8.4: Vector addition: Version 1 (launch)
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1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <cuda.h>

4 #include <cuda_runtime.h>

5 #define NPREDEFINED 1024

6 #define FTYPE float

7 #define TPERB 512

8

9 void filld(FTYPE *z, int n,int type){

10 int i;

11 if (type ==0)

12 memset(z,0,n*sizeof(FTYPE));

13 if (type ==1)

14 for(i=0;i<n; i++) z[i]=FTYPE(i+1);

15 if (type ==2)

16 for(i=0;i<n; i++) z[i]=FTYPE (1+1);

17 /* N - (FTYPE) i */

18 }

19 void printd(FTYPE *z, int n){

20 int i;

21 if (n>6) {

22 printf("(N=%4d) %4d %4d %4d ... %4d %4d %4d\n",

23 n,z[0],z[1],z[2],z[n-3],z[n-2],z[n-1]);

24 }

25 else {

26 printf("(N=%4d)",n);

27 for(i=0;i<n;i++) printf("%d ",z[i]);

28 printf("\n");

29 }

30 }

31 void printv(FTYPE *a,FTYPE *b, FTYPE *c, int n){

32 int i;

33 FTYPE sum1=(FTYPE)0, sum2=(FTYPE)0;

34 for(i=0;i<n;i++) sum1+=a[i]+b[i];

35 for(i=0;i<n;i++) sum2+=c[i] ;

36 for (i=0; i< 5 ; i++) {

37 printf("%4d:(%4f , %4f , %4f)\n",i,a[i],b[i],c[i]);

38 }

39 printf(" ...\n");

40 for (i=n-5; i< n ; i++) {

41 printf("%4d:(%4f , %4f , %4f)\n",i,a[i],b[i],c[i]);

42 }

43 printf("Difference %f - %f must be zero %f\n",sum1 ,sum2 ,

44 sum1 -sum2);

45 }

Figure 8.5: Vector addition: Version 1 (part one)
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1 __global__ void c8vadd1 (FTYPE *a, FTYPE *b, FTYPE *c, int n) {

2 int tid= blockIdx.x;

3 if (tid < n)

4 c[tid] = a[tid] + b[tid];

5 }

6

7 int main(int argc , char **argv) { /* c8vadd1 */

8 FTYPE *ha, *hb, *hc, *da, *db , *dc;

9 size_t size;

10 int grid , blck ,N;

11 if (argc ==1){

12 N=NPREDEFINED;

13 printf("Usage: %s N\n",argv [0]);

14 }

15 else N=atoi(argv [1]);

16 size=N*sizeof(FTYPE);

17 cudaEvent_t start ,stop;

18 cudaEventCreate (& start);

19 cudaEventCreate (&stop );

20 ha=( FTYPE*) malloc(size); filld(ha,N,1);

21 hb=( FTYPE*) malloc(size); filld(hb,N,2);

22 hc=( FTYPE*) malloc(size); filld(hc,N,0); printv(ha,hb ,hc,N);

23 cudaMalloc ((void **)&da,size);

24 cudaMalloc ((void **)&db,size);

25 cudaMalloc ((void **)&dc,size);

26 cudaMemcpy(da,ha,size ,cudaMemcpyHostToDevice);

27 cudaMemcpy(db,hb,size ,cudaMemcpyHostToDevice);

28 cudaMemcpy(dc,hc,size ,cudaMemcpyHostToDevice);

29 grid = N;

30 blck = 1;

31 cudaEventRecord(start);

32 c8vadd1 <<<grid , blck >>> (da,db,dc ,N);

33 cudaDeviceSynchronize ();

34 cudaEventRecord(stop);

35 cudaMemcpy(hc,dc,size ,cudaMemcpyDeviceToHost);

36 cudaEventSynchronize(stop);

37 FTYPE mill = 0.0f;

38 cudaEventElapsedTime (&mill ,start ,stop);

39 cudaDeviceSynchronize ();

40 printv(ha,hb ,hc,N);

41 cudaFree(dc); cudaFree(db); cudaFree(da);

42 free(hc); free(hb); free(ha);

43 printf("Elapsed Time %10.5f\n",mill);

44 return (0);

45 }

Figure 8.6: Vector addition: Version 1 (part two)
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8.3.2 c8vadd2.cu
In c8vadd2 the corresponding kernel is launched on a grid consisting of 1 block, each block containing N
threads. Given all this prior discussion on warpSize, the choice of a grid of size 1 and of a block of size N is
equally poor compared to our previous choices. The launch code is Figure 8.8. N is the length of the vector.
With a total of N threads in the single block of the grid, each thread will add one element of the vector. The
kernel code is Figure 8.7. Variable threadIdx.x provides a unique ID to each thread also mapping to an index
of vectors a, b, or c. Compilation can be followed by a default execution ./a.out that reports a 0.06963s,
almost double of the time reported earlier. Furthermore ./a.out 32768 generates incorrect answers. We
packed too many threads into one block.

1 __global__ void c8vadd2 (FTYPE *a, FTYPE *b, FTYPE *c, int n) {

2 int tid= threadIdx.x ;

3 if (tid < n)

4 c[tid] = a[tid] + b[tid];

5 }

Figure 8.7: Vector addition: Version 2 (kernel)

1 grid = 1;

2 blck = N;

3 c8vadd2 <<<grid , blck >>> (da,db,dc ,N); /* c8vadd2 */

Figure 8.8: Vector addition: Version 2 (launch)
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8.3.3 c8vadd3.cu
In c8vadd3 the corresponding kernel is launched on a grid consisting of several blocks, whose number de-
pends on N, the vector length, each block containing a fixed number of threads (constant TPERB gives the
number of threads per block and is set to 512). The launch code is Figure 8.10. N is the length of the vector,
TPERB is fixed to 512, and the grid calculation is a ceiling calculation to accommodate the case that N is
not a multiple of TPERB. Note that in this setup we have a 1D grid of blocks, and each block is a 1D block
of threads. The kernel code is Figure 8.9. Providing unique IDs to threads become more elaborate so we
need to go back to section of linearized thread ID to pick the appropriate mapping. For the first time tid < n
might provide some robustness assistance. If N = 1025 for TPERB equal to 512, three blocks of 512 threads
would be utilized. The first two blocks are at full capacity, the third block is almost empty. Line 3 of the
kernel deals with the almost empty block of thread execution. Compilation can be followed by a default ex-
ecution ./a.out that reports a 0.02867s, better than the best run so far. Furthermore ./a.out 32768 runs
in 0.02944s vs a 0.35488 of the Figure 8.3 kernel, i.e. ten times faster. Furthermore ./a.out 1000000 runs
in 0.22717s vs a 11.33331 of the Figure 8.3 kernel, i.e. 50 times faster.

You may explore other configurations and capacities of blocks: vary TPERB accordingly.

1 __global__ void c8vadd3 (FTYPE *a, FTYPE *b, FTYPE *c, int n) {

2 int tid= blockIdx.x * blockDim.x + threadIdx.x ;

3 if (tid < n)

4 c[tid] = a[tid] + b[tid];

5 }

Figure 8.9: Vector addition: Version 3 (kernel)

1 grid = (N+TPERB -1)/TPERB;

2 blck = TPERB;

3 c8vadd3 <<<grid , blck >>> (da,db,dc ,N); /* c8vadd3 */

Figure 8.10: Vector addition: Version 3 (launch)
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8.3.4 c8vadd4.cu
The setup for c8vadd4.cu is similar to c8vadd3.cu. In all previous cases including c8vadd3.cu the length
N of the vectors mapped one-to-one to the number of threads. Thus the number of threads was equal to N.
In c8vadd4 similarly to the other kernels examined so far, the corresponding kernel is launched on a grid
consisting of several blocks, whose number depends on N, the vector length, each block containing a fixed
number of threads (constant TPERB gives the number of threads per block and is set to 512) for small values
of N. But for large values of N the number of blocks is fixed. This means the threads will have to perform
more work to complete the task assigned to them (and the grid). The launch code is Figure 8.12. Note that
in this setup we have a 1D grid of blocks, and each block is a 1D block of threads. The kernel code is
Figure 8.11. Providing unique IDs to threads becomes more elaborate so we need to adjust for the fact that
thread perform more work. Experimental results are given in Figure 8.17.

You may explore other configurations and capacities of blocks: vary TPERB accordingly.

1 __global__ void c8vadd4 (FTYPE *a, FTYPE *b, FTYPE *c, int n) {

2 int tid= blockIdx.x * blockDim.x + threadIdx.x ;

3 int step= gridDim.x * blockDim.x;

4 int i;

5 for(i=0;i<n;i+=step) {

6 if ((i+tid) < n)

7 c[i+tid] = a[i+tid] + b[i+tid];

8 }

9 }

Figure 8.11: Vector addition: Version 4 (kernel)

1 grid = (MYMIN(N ,32768)+TPERB -1)/TPERB;

2 blck = TPERB;

3 c8vadd4 <<<grid , blck >>> (da,db,dc ,N); /* c8vadd4.cu */

Figure 8.12: Vector addition: Version 4 (launch)
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8.3.5 c8vadd5.cu
The setup for c8vadd5.cu is similar to that of c8vadd4.cu. The minor change is in the kernel; the for loop
has become a while loop. The launch code is Figure 8.14. The kernel code is Figure 8.13. Experimental
results are given in Figure 8.17. You may explore other configurations and capacities of blocks: vary TPERB
accordingly.

1 __global__ void c8vadd5 (FTYPE *a, FTYPE *b, FTYPE *c, int n) {

2 int tid= blockIdx.x * blockDim.x + threadIdx.x ;

3 while (tid <n){

4 c[tid ] = a[tid ] + b[tid ];

5 tid += blockDim.x * gridDim.x;

6 }

7 }

Figure 8.13: Vector addition: Version 5 (kernel)

1 grid = (MYMIN(N ,32768 )+TPERB -1)/TPERB;

2 blck = TPERB;

3 c8vadd5 <<<grid , blck >>> (da,db,dc ,N); /* c8vadd5.cu */

Figure 8.14: Vector addition: Version 5 (launch)
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8.3.6 c8vadd6.cu
The setup for c8vadd6.cu is similar to that of c8vadd4.cu; the former however uses cudaMallocManaged
and managed memory that does not need host to device communication duplication. The launch code is
Figure 8.16. The kernel code is Figure 8.15. Experimental results are given in Figure 8.17. You may explore
other configurations and capacities of blocks: vary TPERB accordingly.

For large values of N it is the only one that works. However performance drops overall, and for larger
values of N close to a billion performance is erratic. The launch kernal needs to adjust the grid size. It is very
likely that spillage of registers occurs for such value that make performance 20 times worse than expected.
Thus changing (MYMIN(N,1048576)+TPERB−1)/TPERB into (MYMIN(N,65536)+TPERB−1)/TPERB
can accomplish this: a 5-factor improvement occurred. Decreasing the 65536 to 32768 can lead to a deterio-
ration of performance.

1 __global__ void c8vadd6 (FTYPE *a, FTYPE *b, FTYPE *c, int n) {

2 int tid= blockIdx.x * blockDim.x + threadIdx.x ;

3 int step= gridDim.x * blockDim.x;

4 int i;

5 for(i=0;i<n;i+=step) {

6 if ((i+tid) < n)

7 c[i+tid] = a[i+tid] + b[i+tid];

8 }

9 }

Figure 8.15: Vector addition: Version 6 (kernel)

1 grid = (MYMIN(N ,1048576)+TPERB -1)/TPERB;

2 blck = TPERB;

3 c8vadd6 <<<grid , blck >>> (ha,hb,hc ,N); /* c8vadd6.cu */

Figure 8.16: Vector addition: Version 6 (launch)

N Version Version Version Version
3 4 5 6

1024 0.02 0.02 0.02 0.3
32K 0.02 0.02 0.02 0.4

256K 0.07 0.07 0.06 1.1
1024K 0.23 0.24 0.24 3.5

4194304 0.92 0.92 0.92 13.82
16777216 3.62 3.76 3.76 64.91
67108864 14.54 15.02 15.00 213.30

268435456 Fail Fail Fail 801.52
536870912 Fail Fail Fail 8481.85-35913.23

Figure 8.17: Vector Addition: Experimental Results
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8.4 Vector Multiply and Add
In this section we present code similar to that of the previous section dealing with vector addition. The code
is for multiply and add. Thus for three vectors a[],b[],c[]. the element at offset i is computed as follows:
c[i] = c[i]+a[i]∗b[i].

We provide the sixteen kernels below starting with Figure 8.19 and ending with Figure 8.33. All grid
kernels use a 1D arrangement of blocks. Each block has an 1D arrangement of threads. The wrapper code is
the same with two exceptions: (a) the launched kernel grid is described in the table of Figure 8.18, (b) Kernel
6’s CUDA code utilized cudaMallocManaged similarly to the same numbered code for vector additions.

The table of Figure 8.18 is presented first followed by the kernels. The table presents some benchmarks
for N = 262144. Kernel 2 failed to run because of thread capacity issues. Another kernel, Kernel 11, shows
how one can bypass such problems. Some kernels such as Kernel 13, Kernel 14, and Kernel 15 are variant of
Kernel 3, Kernel 4, and Kernel 5 with different launched grids. Also Kernel 7 and Kernel 8 are identical but
with different launched grid. This shows the importance of grid choices.

For the table of Figure 8.18, column Grid indicates the grid dimension, the number of 1D blocks launched.
Column Block indicates the number of threads in a 1D block. Performance indicates time in millisecond for
all CUDA activity for N = 262144. Comment provides a rudimentary commentary for the corresponding
kernel. Note that Kernels 13, 14, and 15 are labeled in Figure 8.31 through Figure 8.33 as Kernel03, Kernel04
and Kernel05 to highlight the similarity with kernels as Kernel 3, Kernel 4 and Kernel 5 respectively. A
fraction such as N/512 for a kernel grid should be interpreted as ceiling of N/512 i.e. (N + 512− 1)/512.
Similarly for N/128. For the starred versions, N/512∗, we use a grid of (min(N,32768)+512−1)/512 or
(min(N,32768)+128−1)/128 blocks as indicated.

Kernel 8.19 is serial code with one grid launching one block containing one thread. Kernel 8.20 uses
one grid launching N blocks each containing one thread: an underutilized block approach. The symmetric
Kernel 8.21 loads too many threads in the single block grid. Naturally it fails for N = 262144.

Kernel Grid Block Performance(ms) Comment
0 1 1 53.36 Serial code; Work per thread N
1 N 1 3.08 Underutilized block;capacity issues
2 1 N FAIL One op per thread; capacity issues
3 N/512 512 0.093 Flat; no loops; capacity issues
4 N/512* 512 0.091 For-loop kernel
5 N/512* 512 0.085 While-loop kernel
6 N/512* 512 1.496 CudaManaged version For-loop
7 N/128* 128 0.258 Different inefficient For-loop
8 N/64 64 0.087 Kernel 7 grid variant

10 N 1 3.284 Restructured Kernel 1
11 1 128 1.056 Restructured Kernel 2
12 1 128 0.806 Restructured Kernel 11/Kernel 2

13(i.e. 03) N/128 128 0.089 Kernel 3 different grid
14(i.e. 04) N/128 128 0.089 Kernel 4 different grid
15(i.e. 05) N/128 128 0.088 Kernel 5 different grid

Figure 8.18: Vector Multiply and Add kernels
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1 __global__ void c8vmul0 (FTYPE *a, FTYPE *b, FTYPE *c, int n) {

2 int tid;

3 for(tid=0; tid <n; ++tid)

4 c[tid] += a[tid]*b[tid];

5 }

Figure 8.19: Vector multiply and add (Kernel 0)

1 __global__ void c8vmul1 (FTYPE *a, FTYPE *b, FTYPE *c, int n) {

2 int tid= blockIdx.x;

3 if (tid < n)

4 c[tid] += a[tid] * b[tid];

5 }

Figure 8.20: Vector multiply and add (Kernel 1)

1 __global__ void c8vmul2 (FTYPE *a, FTYPE *b, FTYPE *c, int n) {

2 int tid= threadIdx.x ;

3 if (tid < n)

4 c[tid] += a[tid] * b[tid];

5 }

Figure 8.21: Vector multiply and add (Kernel 2)

1 __global__ void c8vmul3 (FTYPE *a, FTYPE *b, FTYPE *c, int n) {

2 int tid= blockIdx.x * blockDim.x + threadIdx.x ;

3 if (tid < n)

4 c[tid] += a[tid] * b[tid];

5 }

Figure 8.22: Vector multiply and add (Kernel 3)

1 __global__ void c8vmul4 (FTYPE *a, FTYPE *b, FTYPE *c, int n) {

2 int tid= blockIdx.x * blockDim.x + threadIdx.x ;

3 int step= gridDim.x * blockDim.x;

4 int i;

5 for(i=0;i<n;i+=step) {

6 if ((i+tid) < n)

7 c[i+tid] += a[i+tid] * b[i+tid];

8 }

9 }

Figure 8.23: Vector multiply and add (Kernel 4)
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1 __global__ void c8vmul5 (FTYPE *a, FTYPE *b, FTYPE *c, int n) {

2 int tid= blockIdx.x * blockDim.x + threadIdx.x ;

3 while (tid <n){

4 c[tid ] += a[tid ] * b[tid ];

5 tid += blockDim.x * gridDim.x;

6 }

7 }

Figure 8.24: Vector multiply and add (Kernel 5)

1 __global__ void c8vmul6 (FTYPE *a, FTYPE *b, FTYPE *c, int n) {

2 int tid= blockIdx.x * blockDim.x + threadIdx.x ;

3 int step= gridDim.x * blockDim.x;

4 int i;

5 for(i=0;i<n;i+=step) {

6 if ((i+tid) < n)

7 c[i+tid] += a[i+tid] * b[i+tid];

8 }

9 }

Figure 8.25: Vector multiply and add (Kernel 6)

1 __global__ void c8vmul7 (FTYPE *a, FTYPE *b, FTYPE *c, int n) {

2 int tid= blockIdx.x * blockDim.x + threadIdx.x ;

3 int i,m,bb;

4 bb= blockDim.x *gridDim.x;

5 m= n/bb;

6 bb= tid* m;

7 for(i=0;i<m;++i) {

8 if ((i+bb ) < n)

9 c[i+bb ] += a[i+bb ] * b[i+bb ];

10 }

11 }

Figure 8.26: Vector multiply and add (Kernel 7)

1 __global__ void c8vmul8 (FTYPE *a, FTYPE *b, FTYPE *c, int n) {

2 int tid= blockIdx.x * blockDim.x + threadIdx.x ;

3 int i,m,bb;

4 bb= blockDim.x *gridDim.x;

5 m= n/bb;

6 bb= tid* m;

7 for(i=0;i<m;++i) {

8 if ((i+bb ) < n)

9 c[i+bb ] += a[i+bb ] * b[i+bb ];

10 }

11 }

Figure 8.27: Vector multiply and add (Kernel 8)
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1 __global__ void c8vmul10(FTYPE *a, FTYPE *b, FTYPE *c, int n) {

2 int tid = blockIdx.x ;

3 int nblk= gridDim.x;

4 int nsub= n/nblk;

5 int i;

6

7 for(i=tid*nsub; i<(tid+1)*nsub ;++i)

8 c[i] += a[i]*b[i];

9 }

Figure 8.28: Vector multiply and add (Kernel 10)

1 __global__ void c8vmul11(FTYPE *a, FTYPE *b, FTYPE *c, int n) {

2 int tid = threadIdx.x ;

3 int nthr= blockDim.x * gridDim.x ;

4 int nsub= n/nthr;

5 int i;

6

7 for(i=tid*nsub; i<(tid+1)*nsub ;++i)

8 c[i] += a[i]*b[i];

9 }

Figure 8.29: Vector multiply and add (Kernel 11)

1 __global__ void c8vmul12(FTYPE *a, FTYPE *b, FTYPE *c, int n) {

2 int tid = threadIdx.x ;

3 int nthr= blockDim.x * gridDim.x ;

4 int i;

5

6 for(i=0; i<n;i+=nthr)

7 c[i+tid] += a[i+tid]*b[i+tid];

8 }

Figure 8.30: Vector multiply and add (Kernel 12)

1 __global__ void c8vmul03(FTYPE *a, FTYPE *b, FTYPE *c, int n) {

2 int tid = blockIdx.x * blockDim.x + threadIdx.x ;

3 if (tid <n)

4 c[tid] += a[tid]*b[tid];

5 }

Figure 8.31: Vector multiply and add (Kernel 13)
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1 __global__ void c8vmul04(FTYPE *a, FTYPE *b, FTYPE *c, int n) {

2 int tid = blockIdx.x * blockDim.x + threadIdx.x ;

3 int step= gridDim.x * blockDim.x;

4 int i;

5 for(i=0;i<n;i+=step) {

6 if ((i+tid) < n)

7 c[i+tid] += a[i+tid] * b[i+tid];

8 }

9 }

Figure 8.32: Vector multiply and add (Kernel 14)

1 __global__ void c8vmul05(FTYPE *a, FTYPE *b, FTYPE *c, int n) {

2 int tid = blockIdx.x * blockDim.x + threadIdx.x ;

3 int step= gridDim.x * blockDim.x;

4 while (tid <n){

5 c[tid] += a[tid] * b[tid];

6 tid += step;

7 }

8 }

Figure 8.33: Vector multiply and add (Kernel 15)
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8.5 Inner Product
There are two implementations for matrix vector product One uses shared memory and a slower using mu-
texes. Note that the code is not robust. There is some N value, where N is the length of the two vectors,
for which the implementations would give incorrect results: we assume that there are enough threads to be
assigned to all elements of the two vectors a,b whose inner product would be computed.

8.5.1 Shared memory edition
The code for c8inp1.cu is displayed in three parts. Part1 is c8inp1 p1.cu that contains initialization and
output functions plus declarations. Part1 is c8inp1 p2.cu that contains initialization and output functions
plus declarations.

1 grid = (N+TPERB -1)/TPERB;

2 blck = TPERB;

3 cudaEventRecord(start);

4 c8inp1 <<<grid , blck >>> (da,db,dc ,N); /* c8inp1 */

5 cudaDeviceSynchronize ();

6 cudaEventRecord(stop);

Figure 8.34: Inner product (shmem) Launch

1 __global__ void c8inp1 (FTYPE *a, FTYPE *b, FTYPE *c, int n) {

2 __shared__ float mycache[TPERB];

3

4 int index = blockIdx.x * blockDim.x + threadIdx.x;

5 int cindx = threadIdx.x, step;

6 FTYPE temp= (FTYPE)0;

7

8 while (index <n) {

9 temp += a[ index ] * b[ index ];

10 index += blockDim.x * gridDim.x ;

11 }

12 mycache[ cindx ] = temp;

13

14 __syncthreads ();

15 step = blockDim.x / 2 ;

16 while (step !=0) {

17 if (cindx < step) {

18 mycache[cindx] += mycache[cindx+step];

19 }

20 __syncthreads ();

21 step >>=1;

22 }

23 if (threadIdx.x == 0 ) {

24 c[blockIdx.x] = mycache [0];

25 }

26 }

Figure 8.35: Inner product (shmem) Kernel

Let us consider a slightly more involved example that shows how threads can interact with each other. In
Figure 8.35 we see the kernel for the inner vector product code. Let P = blockDim.x× gridDim.x. Every
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thread with threadID T = index, where index = blockIdx.x× blockDim.x+ threadIdx.x (line 4), computes
the partial products (and their sum contribution to the inner product) of the indexes T , T +P, T +2P, T +3P,
and so on. The sum of those partial products is computed in variable temp. The threads of every block share
a common shared memory. Thus the value of variable temp gets stored inside that shared memory named
mycache at offset threadIdx.x. Note that the offset only depends on threadIdx.x rather than say blockIdx.x:
different blocks have different shared memory assigned to each block. The size of shared memory is enough
to accommodate the blockDim.x threads of a block. In our code blockDim.x is set to be a TPERB and by
default equal to 512. This is also the size of the shared memory. As soon as in a block the threads have
computed the partial vector products assigned to them and their sum stored in main memory, then the sum of
the values stored in shared memory is performed. This requires lgT PERB rounds, where lg . is the logarithm
base two of a number. In other words, a reduction reduces x sums into x/2 first, then x/4 and eventually into
one sum stored at offset 0 of the shared memory. This value is retrieved in line 24 of the kernel into array c.
The offset of the array is the blockIdx.x of the block involved in this specific calculation. Thus array c is of
length equal to the number of blocks of the grid.

In Figure 8.37 we see the kernel, and in Figure 8.36 the launch for a inner product computation using
mutexes.

1 grid = (N+TPERB -1)/TPERB;

2 blck = TPERB;

3 cudaEventRecord(start);

4 c8inp2 <<<grid , blck >>> (da,db,dc ,N,mutex); /* c8inp2 */

5 cudaDeviceSynchronize ();

6 cudaEventRecord(stop);

Figure 8.36: Inner product (mutex) Launch
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1 __global__ void c8inp2 (FTYPE *a, FTYPE *b, FTYPE *c, int n,int *mutex) {

2 __shared__ float mycache[TPERB];

3

4 int index = blockIdx.x * blockDim.x + threadIdx.x;

5 int cindx = threadIdx.x, step;

6 FTYPE temp= (FTYPE)0;

7 int isset =0;

8 while (index <n) {

9 temp += a[ index ] * b[ index ];

10 index += blockDim.x * gridDim.x ;

11 }

12 mycache[ cindx ] = temp;

13

14 __syncthreads ();

15 step = blockDim.x / 2 ;

16 while (step !=0) {

17 if (cindx < step) {

18 mycache[cindx] += mycache[cindx+step];

19 }

20 __syncthreads ();

21 step >>=1;

22 }

23 if (threadIdx.x == 0 ) {

24 do {

25 if (isset=atomicCAS(mutex ,0,1) ==0) {

26 *c += mycache [0];

27 }

28 if (isset) {

29 *mutex =0;

30 }

31 }

32 while (!isset);

33 }

34 }

Figure 8.37: Inner product (mutex) Kernel
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1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <cuda.h>

4 #include <cuda_runtime.h>

5 #define NPREDEFINED 1024

6 #define FTYPE float

7 #define TPERB 512

8 #define NBLCK ((N+TPERB -1)/TPERB)

9

10 void filld(FTYPE *z, int n,int type){

11 int i;

12 if (type ==0)

13 memset(z,0,n*sizeof(FTYPE));

14 if (type ==1)

15 for(i=0;i<n;++i) z[i]= FTYPE(i+1);

16 if (type ==2)

17 for(i=0;i<n;++i) z[i]= FTYPE (1+1);

18 if (type ==3){

19 for(i=0;i<n;++i) {

20 if ((i%2) == 0)

21 z[i]=( FTYPE)2;

22 else

23 z[i]=( FTYPE)1;

24 }

25 }

26 }

27 void printv(FTYPE *a,FTYPE *b, FTYPE val , int n){

28 int i;

29 double sum=( double)0;

30 for(i=0;i<n;++i) {

31 sum+=a[i]*b[i];

32 }

33 for (i=0; i< 4 ;++i) {

34 printf("%4d:(%4f , %4f )\n",i,a[i],b[i]);

35 }

36 printf(" ...\n");

37 for (i=n-4; i< n;++i) {

38 printf("%4d:(%4f , %4f )\n",i,a[i],b[i]);

39 }

40 printf("Difference %f - %f must be zero %f\n",(double)sum ,( double)val ,

41 (double)(sum -val) );

42 }

Figure 8.38: Inner product (shmem) part 1 of 2
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1 int main(int argc , char **argv) {

2 FTYPE *ha, *hb, *hc , *da, *db, *dc , hval=(FTYPE)0;

3 size_t size ,siz;

4 int grid , blck ,N,i;

5 if (argc ==1){

6 N=NPREDEFINED;

7 printf("Usage: %s N\n",argv [0]);

8 }

9 else N=atoi(argv [1]);

10 size=N*sizeof(FTYPE);

11 siz=NBLCK*sizeof(FTYPE);

12 cudaEvent_t start ,stop;

13 cudaEventCreate (& start);

14 cudaEventCreate (&stop );

15 ha=( FTYPE*) malloc(size); filld(ha,N,3);

16 hb=( FTYPE*) malloc(size); filld(hb,N,3);

17 hc=( FTYPE*) malloc(siz ); filld(hc,NBLCK ,0);

18 printv(ha,hb ,hval ,N);

19 cudaMalloc ((void **)&da,size);

20 cudaMalloc ((void **)&db,size);

21 cudaMalloc ((void **)&dc,siz );

22

23 cudaMemcpy(da,ha,size ,cudaMemcpyHostToDevice);

24 cudaMemcpy(db,hb,size ,cudaMemcpyHostToDevice);

25 cudaMemset(dc ,0,siz );

26

27 grid = (N+TPERB -1)/TPERB;

28 blck = TPERB;

29 cudaEventRecord(start);

30 c8inp1 <<<grid , blck >>> (da,db,dc ,N); /* c8inp1 */

31 cudaDeviceSynchronize ();

32 cudaEventRecord(stop);

33 cudaMemcpy(hc,dc,siz ,cudaMemcpyDeviceToHost);

34 cudaEventSynchronize(stop);

35 FTYPE mill = 0.0f;

36 hval =0;

37 for(i=0;i< NBLCK ; ++i)

38 hval += hc[i];

39 cudaEventElapsedTime (&mill ,start ,stop);

40 cudaDeviceSynchronize ();

41 printv(ha,hb ,hval ,N);

42 cudaFree(dc); cudaFree(db); cudaFree(da);

43 free(hb); free(ha);

44 printf("N=%d val=%f Elapsed Time %10.5f\n",hval ,N,mill);

45 return (0);

46 }

Figure 8.39: Inner product (shmem) part 2 of 2
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1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <cuda.h>

4 #include <cuda_runtime.h>

5 #define NPREDEFINED 1024

6 #define FTYPE float

7 #define TPERB 512

8 #define NBLCK ((N+TPERB -1)/TPERB)

9

10 void filld(FTYPE *z, int n,int type){

11 int i;

12 if (type ==0)

13 memset(z,0,n*sizeof(FTYPE));

14 if (type ==1)

15 for(i=0;i<n;++i) z[i]= FTYPE(i+1);

16 if (type ==2)

17 for(i=0;i<n;++i) z[i]= FTYPE (1+1);

18 if (type ==3){

19 for(i=0;i<n;++i) {

20 if ((i%2) == 0)

21 z[i]=( FTYPE)2;

22 else

23 z[i]=( FTYPE)1;

24 }

25 }

26 }

27 void printv(FTYPE *a,FTYPE *b, FTYPE val , int n){

28 int i;

29 double sum=( double)0;

30 for(i=0;i<n;++i) {

31 sum+=a[i]*b[i];

32 }

33 for (i=0; i< 4 ;++i) {

34 printf("%4d:(%4f , %4f )\n",i,a[i],b[i]);

35 }

36 printf(" ...\n");

37 for (i=n-4; i< n ;++i) {

38 printf("%4d:(%4f , %4f )\n",i,a[i],b[i]);

39 }

40 printf("Difference %f - %f must be zero %f\n",(double)sum ,( double)val ,

41 (double)(sum -val) );

42 }

Figure 8.40: Inner product (mutex) part 1 of 2
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1 int main(int argc , char **argv) {

2 FTYPE *ha, *hb, *da, *db, *dc, hval=(FTYPE)0;

3 size_t size;

4 int grid , blck ,N, *mutex ,lckstate =0;

5 if (argc ==1){

6 N=NPREDEFINED;

7 printf("Usage: %s N\n",argv [0]);

8 }

9 else N=atoi(argv [1]);

10 size=N*sizeof(FTYPE);

11

12 cudaEvent_t start ,stop;

13 cudaEventCreate (& start);

14 cudaEventCreate (&stop );

15 ha=( FTYPE*) malloc(size); filld(ha,N,3);

16 hb=( FTYPE*) malloc(size); filld(hb,N,3);

17

18 printv(ha,hb ,hval ,N);

19 cudaMalloc ((void **)&da,size);

20 cudaMalloc ((void **)&db,size);

21 cudaMalloc ((void **)&dc,sizeof(FTYPE));

22 cudaMalloc ((void **)&mutex ,sizeof(int));

23 cudaMemcpy(da,ha,size ,cudaMemcpyHostToDevice);

24 cudaMemcpy(db,hb,size ,cudaMemcpyHostToDevice);

25 cudaMemcpy(dc ,&hval ,sizeof(FTYPE),cudaMemcpyHostToDevice);

26 cudaMemcpy(mutex ,&lckstate ,sizeof(int),cudaMemcpyHostToDevice);

27 grid = (N+TPERB -1)/TPERB;

28 blck = TPERB;

29 cudaEventRecord(start);

30 c8inp2 <<<grid , blck >>> (da,db,dc ,N,mutex); /* c8inp2 */

31 cudaDeviceSynchronize ();

32 cudaEventRecord(stop);

33 cudaMemcpy (&hval ,dc ,sizeof(FTYPE),cudaMemcpyDeviceToHost);

34 cudaEventSynchronize(stop);

35 FTYPE mill = 0.0f;

36

37

38

39 cudaEventElapsedTime (&mill ,start ,stop);

40 cudaDeviceSynchronize ();

41 printv(ha,hb ,hval ,N);

42 cudaFree(dc); cudaFree(db); cudaFree(da);

43 free(hb); free(ha);

44 printf("N=%d val=%f Elapsed Time %10.5f\n",hval ,N,mill);

45 return (0);

46 }

Figure 8.41: Inner product (mutex) part 2 of 2
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Chapter 9

Matrix Operations

We start by showing code for matrix addition. It can be adopted for matrix subtraction and other operations
that are element wise.

We then present NVIDIA matrix multiplication code starting with a simple solution and proceeding to
solutions that use shared memory (shared by the threads of a thread block).

After that in a separate section we present several similar approaches that (a) store a matrix in a column-
major order rather than the default column major, and (b) use row-major but offer variations of the scheme
available through the NVIDIA examples.

9.1 Matrix Addition
The matrices are stored in the form of a 1D array in column major form. Thus A[i][ j] is stored in array a
at offset j ∗N + i, for a square matrix of order N or a matrix A with N rows. Part 2 of the code for matrix
addition is the kernel. Part 1 are testing functions and definition, and Part 3 is the main function that includes
the kernel launch. The gird geometry is adapted to match the square structure of the input arrays. Thus if p
is the number of threads per thread block (constant TPERB is p), the number of block of the grid would be
N2/p, and the grid would have a 2D geometry of N/

√
p×N/

√
p blocks arranged in rows and columns. A

thread block of p threads would form a 2D structure of
√

p×√p threads also arranged in grid form. In the
code SQRTP denotes the

√
p of this discussion.
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1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <cuda.h>

4 #include <cuda_runtime.h>

5 #define NPREDEFINED 1024

6 #define FTYPE float

7 /* SQRTP = sqrt(TPERB) */

8 #define TPERB 1024

9 #define SQRTP 32

10 /* DOUBLECHECK PREV VALUES ARE CONSISTENT */

11 #define MYMIN(X,Y) ((X) <(Y)?(X):(Y))

12 #define R 4

13

14 void fillm(FTYPE *z, int n,int type){

15 int i,j;

16 if (type ==0)

17 memset(z,0,n*n*sizeof(FTYPE));

18 if (type ==1)

19 for(i=0;i<n;++i)

20 for(j=0;j<n;++j){z[j*n+i]=( FTYPE)(j+1);}

21 if (type ==2)

22 for(i=0;i<n;++i)

23 for(j=0;j<n;++j){z[j*n+i]=( FTYPE)(2*j+i+1);}

24 }

25 void printm(FTYPE *a,FTYPE *b, FTYPE *c, int n,int debug){

26 int i,j;

27 double sum1=( double)0, sum2=( double)0, sum3=( double)0;

28 for(i=0;i<n*n;++i) sum1 += a[i];

29 for(i=0;i<n*n;++i) sum2 += b[i];

30 for(i=0;i<n*n;++i) sum3 += c[i];

31 printf("asig=%f , bsig=%f , csig=%f \n",sum1 ,sum2 ,sum3);

32 if (debug){

33 printf("Input A \n");

34 for(i=0;(i<n);++i)

35 for(j=0;(j<n);++j)

36 if(( (i<R) || ((i>n-1-R) && (i<n))) &&

37 ( (j<R) || ((j>n-1-R) && (j<n))) )

38 printf("%6.1f%c",a[j*n+i],((j<(n-1))?’ ’:’\n’));

39 printf("Input B \n");

40 for(i=0;(i<n);++i)

41 for(j=0;(j<n);++j)

42 if(( (i<R) || ((i>n-1-R) && (i<n))) &&

43 ( (j<R) || ((j>n-1-R) && (j<n))) )

44 printf("%6.1f%c",b[j*n+i],((j<(n-1))?’ ’:’\n’));

45 printf("Input C \n");

46 for(i=0;(i<n);++i)

47 for(j=0;(j<n);++j)

48 if(( (i<R) || ((i>n-1-R) && (i<n))) &&

49 ( (j<R) || ((j>n-1-R) && (j<n))) )

50 printf("%6.1f%c",c[j*n+i],((j<(n-1))?’ ’:’\n’));

51 }

52 }

Figure 9.1: Matrix addition part 1
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1 __global__ void c9ma01 (FTYPE *a, FTYPE *b, FTYPE *c, int n) {

2 int i= threadIdx.x + blockIdx.x * blockDim.x;

3 int j= threadIdx.y + blockIdx.y * blockDim.y;

4 if (i < n && j< n)

5 c[j*n+i] = a[j*n+i]+b[j*n+i];

6 }

Figure 9.2: Matrix addition part 2

1 int main(int argc , char **argv) {

2 FTYPE *ha, *hb, *hc, *da, *db, *dc;

3 size_t size;

4 int N,debug =0;

5 if (argc ==1){

6 N=NPREDEFINED; debug =0;

7 printf("Usage: %s N debug(0 or 1)\n",argv [0]);

8 }

9 else {

10 N=atoi(argv [1]); debug=atoi(argv [2]);

11 }

12 size=N*N*sizeof(FTYPE);

13 cudaEvent_t start ,stop;

14 cudaEventCreate (& start);

15 cudaEventCreate (&stop );

16 ha=( FTYPE*) malloc(size); fillm(ha,N,1);

17 hb=( FTYPE*) malloc(size); fillm(hb,N,2);

18 hc=( FTYPE*) malloc(size); fillm(hc,N,0); printm(ha,hb ,hc,N,debug);

19 cudaDeviceSynchronize ();

20 cudaMalloc ((void **)&da,size);

21 cudaMalloc ((void **)&db,size);

22 cudaMalloc ((void **)&dc,size);

23 cudaMemcpy(da,ha,size ,cudaMemcpyHostToDevice);

24 cudaMemcpy(db,hb,size ,cudaMemcpyHostToDevice);

25 cudaMemcpy(dc,hc,size ,cudaMemcpyHostToDevice);

26 dim3 blck(SQRTP ,SQRTP);

27 dim3 grid((N+blck.x-1)/blck.x,(N+blck.y-1)/blck.y);

28 cudaEventRecord(start);

29 c9ma01 <<<grid , blck >>> (da,db,dc ,N); /* c9ma01 */

30 cudaDeviceSynchronize ();

31 cudaEventRecord(stop);

32 cudaMemcpy(hc,dc,size ,cudaMemcpyDeviceToHost);

33 cudaEventSynchronize(stop);

34 FTYPE mill = 0.0f;

35 cudaEventElapsedTime (&mill ,start ,stop);

36 cudaDeviceSynchronize ();

37 printm(ha,hb ,hc,N,debug);

38 cudaFree(dc); cudaFree(db); cudaFree(da);

39 free(hc); free(hb); free(ha);

40 printf("Elapsed Time %10.5f\n",mill);

41 return (0);

42 }

Figure 9.3: Matrix addition part 3
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9.2 Matrix transposition
We present some naive implementations for matrix transposition. The kernel of Figure 9.4 assumes a column-
major storage of a matrix A[][] as a 1D array a[]. The kernel of Figure 9.5 rearranges and use an i, j loop
indexing versus the j, i loop order of the kernel in Figure 9.4.

The kernel of Figure 9.6 assumes a row-major storage of a matrix A[][] as a 1D array a[] and uses the j, i
loop order of the kernel in Figure 9.4 .

All three kernels are launched with a grid of one block and one thread in it. A rather serial invocation!
The kernel of Figure 9.7 exhibits some paralellism. It is invoked with a invocation similar to the one

given below assuming an 1D grid and 1D block of 1024 threads. It results in a hundred-fold increase in
performance for n = 1024 and 300-fold increase for n = 2048 and square matrices as the ones indicates in all
kernels.

c9tr01 ≪ (n+1024−1)/1024,1024 ≫ (da,db,n);

1 __global__ void c9tr00c(FTYPE *a, FTYPE *b, int n) {

2 int i,j;

3 for(j=0;j<n;j++)

4 for(i=0;i<n;i++)

5 b[i*n+j]=a[j*n+i];

6 }

Figure 9.4: Matrix transposition naive ji kernel (column-major)

1 __global__ void c9tr01c(FTYPE *a, FTYPE *b, int n) {

2 int i,j;

3 for(i=0;i<n;i++)

4 for(j=0;j<n;j++)

5 b[i*n+j]=a[j*n+i];

6 }

Figure 9.5: Matrix transposition naive ij kernel (column-major)

1 __global__ void c9tr00r(FTYPE *a, FTYPE *b, int n) {

2 int i,j;

3 for(j=0;j<n;j++)

4 for(i=0;i<n;i++)

5 b[j*n+i]=a[i*n+j];

6 }

Figure 9.6: Matrix transposition naive kernel (row-major)

9.2.1 Shared memory usage in transposition
Solutions presented earlier would never extract maximal GPU performance because of uncoalesced global
memory (load) access. In CUDA, execution of threads on an SM occurs at warp level (32 threads). ”Coa-
lesced” access occurs when the 32 threads access adjacent memory locations. ”Uncoalesced” access occurs
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1 __global__ void c9tr01 (FTYPE *a, FTYPE *b, int n) {

2 int i = blockIdx.x * blockDim.x + threadIdx.x ;

3 int j;

4 for(j=0;j<n;j++)

5 b[j*n+i] = a[i*n+j];

6 }

Figure 9.7: Matrix transposition naive kernel (row-major)

when the memory locations have gaps (i.e. the stride is greater than 1). In matrix transposition no matter
how we store the matrix as an one-dimensional entity, either the writing or the reading would occur in an
uncoalesced way. Using ANSI C language’s restrict statement we allow for optimization of assignment
operations by NVIDIA’s CUDA. This is shown in the kernel of Figure 9.8. It results into a 30% improvement
in execution time over the kernal of Figure 9.7.

1 __global__ void c9tr01 (const FTYPE * __restrict__ a, FTYPE *b, int n) {

2 int i = blockIdx.x * blockDim.x + threadIdx.x ;

3 int j;

4 for(j=0;j<n;j++)

5 b[j*n+i] = a[i*n+j];

6 // column -major write of b ; row -major read of a

7 }

Figure 9.8: Matrix transposition naive kernel (row-major)

9.2.2 Further optimization
Some further optimization can be achieved through the use of shared memory! We also use information
available in the reference ”GP-GPU Programming with CUDA” by Larry Brown. We tranpose the matrix
by transposing small sub-blocks of it (say 32× 32) that are stored in shared memory. It is very likely that
performance of shared memory would be worse. This is because shared memory is organized in 32 banks,
each warp has 32 threads and either row or column access generates shared memory conflicts that are serial-
ized among threads. In the example of Figure 9.9 row accesses are to independent banks (i.e. no conflicts)
but column accesses are to the same bank. Thus in the former case the 32 elements of a row can be read in
parallel in one step, but in the other case, the columns would require serialization i.e. 32 steps for a read.
Adding one extra column that is left unused breaks this pattern. See below in the kernel of Figure 9.10. For
example the padded column of the first row is assigned to Bank 0 and thus the second row starts with Bank
1, not Bank 0 that the first row started with. This results in a 50% performance improvement for transposing
a square matrix of order n = 1024.

Note that the kernel grid has blocks with 1024 threads arranged in a 2D pattern of 32×32 inside a block.
All optimizations described use such a layout.

Structures of arrays or arrays of structures? In general, an array of C structs is not optimal in a
GPU. Convert first into a struct of arrays by ”transposing” the data! Use shared memory to handle block
transposes!
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1 __global__ void c9tr05 (FTYPE *a, FTYPE *b, int n) {

2 __shared__ float small[SQRTP][SQRTP];

3 int i = blockIdx.x * blockDim.x + threadIdx.x ;

4 int j = blockIdx.y * blockDim.y + threadIdx.y ;

5 small[threadIdx.y][ threadIdx.x] = a[j*n+i];

6 __syncthreads ();

7 i = blockIdx.y * blockDim.y + threadIdx.x ;

8 j = blockIdx.x * blockDim.x + threadIdx.y ;

9 b[j*n+i] = small[threadIdx.x][ threadIdx.y];

10 }

Figure 9.9: Matrix transposition with shared memory

1 __global__ void c9tr05p(FTYPE *a, FTYPE *b, int n) {

2 __shared__ float small[SQRTP][SQRTP +1];

3 int i = blockIdx.x * blockDim.x + threadIdx.x ;

4 int j = blockIdx.y * blockDim.y + threadIdx.y ;

5 small[threadIdx.y][ threadIdx.x] = a[j*n+i];

6 __syncthreads ();

7 i = blockIdx.y * blockDim.y + threadIdx.x ;

8 j = blockIdx.x * blockDim.x + threadIdx.y ;

9 b[j*n+i] = small[threadIdx.x][ threadIdx.y];

10 }

Figure 9.10: Matrix transposition with (padded) shared memory

0_0 1_1 2_2 3_3 ... 30_30 31_31 i is column _j is Bank ; all of i column in Bank i.

...

0_0 1_1 2_2 3_3 ... 30_30 31_31

Add a ’dummy column

0_0 1_1 2_2 3_3 ... 30_30 31_31 32_0

0_1 1_2 2_3 3_4 ... 30_31 31_0 32_1

... ...

0_31 1_0 2_1 3_2 30_29 31_30 32_31

Figure 9.11: How to break conflicts!
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9.3 NVIDIA examples for matrix multiplication
We multiply two matrics a and B and store the result in matrix C i.e. C = A×B. Let the dimensions of A and
B be n× p and p×m so that the dimension of C is n×m.

For the sample code presented in this section we shall assume that N = n = p = m, i.e. the matrices are
all square of the same dimension (geometry) or order N.

Each thread block would be responsible for the computation of a square submatrix of c.
The discussion that follows is from ”Cuda C Programming, Design Guide”, NVIDIA, PG-02829-0001 v7.5,

Sep 2015, pages 39-45.
Matrices A,B,C are to be structured as one-dimensional arrays and elements stored in row-major form

with indexes starting from 0 (with row 0 left to right first, then row 1 left to right and so on). The block
size determines the geometry of a block to 64 or 1024 threads in a 2-dimensional grid i.e. blockDim.x = 32,
blockDim.y = 32, blockDim.z = 1, for the case that a block maps to 1024 threads. In experiments we are
going to examine also the case of 64 threads arranged as a 8×8 2D thread block.

Matrices A,B,C are first allocated and initialized, and then copied from host to device memory. The
ensuing matrix multiplication requires that every row of a is read m times (columns of B and C), and every
column of B is read n times (rows of A and C).

9.3.1 NVIDIA version 1: simple implementation
Figure 9.13 contains the kernel. Figure 9.12 contains initialization and debugging code plus definitions.
Constant TPERB is the number of threads per block arranges as a 2D structured of SQRTP×SQRTP threads
where SQRTP =

√
TPERB. The default values are 1024 and 32 respectively. We only tested the code with

this set and also 64 and 8 respectively. Figure 9.14 contains the main function that included communication
between host and device and the launch of the kernel grid. The kernel is self explanatory.

9.3.2 NVIDIA version 2: a better implementation
Figure 9.15 contains the kernel of the second approach that does block matrix multiplication and utilizes
shared memory shared by all the threads of a thread block. Bear in mind that SQRTP =

√
TPERB, and

TPERB is the number of threads per thread block.
The thread block indexed (br,bc) will compute a subblock of matrix C of geometry SQRTP×SQRTP,

indexed also (br,bc). The thread block (br,bc) will need to read all sublocks of a owned by thread blocks
indexed (br,∗), where the star ∗ indicates any value from 0 to n/SQRTP− 1. Likewise, the thread block
(br,bc) will need to read all sublocks of b owned by thread blocks indexed (∗,bc), where the star ∗ indicates
any value from 0 to n/SQRTP−1. Those blocks are ”read” by fetching them into the shared memory. Kernel
2, in lines 28-29 will have one block of a identified with (br, j), and one block of b identified with ( j,bc)
being brought into the shared memory (AA and BB) respectively; the thread (r,c) of thread block (br,bc)
will bring one element of block (br, j) of a and one element of block ( j,bc) and that element within the
corresponding block will have relative row and column index r and c respectively. A barrier synchronization
of the threads of the thread block is realized in line 30, before the thread of thread block (br,bc) proceed to
the next and compute the block matrix product a(br, j) ∗ b(( j,bc). Overall iterations of lines 27-34 all the
matrix products for all values of j from 0 to n/SQRTP− 1 thus computing a sub block of C of geometry
SQRTP×SQRTP.
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1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <cuda.h>

4 #include <cuda_runtime.h>

5 #define NPREDEFINED 1024

6 #define FTYPE float

7 /* SQRTP = sqrt(TPERB) */

8 #define TPERB 1024

9 #define SQRTP 32

10 /* DOUBLECHECK PREV VALUES ARE CONSISTENT */

11 #define MYMIN(X,Y) ((X) <(Y)?(X):(Y))

12 #define R 4

13

14 void rfillm(FTYPE *z, int n,int type){

15 int i,j;

16 if (type ==0)

17 memset(z,0,n*n*sizeof(FTYPE));

18 if (type ==1)

19 for(j=0;j<n;++j)

20 for(i=0;i<n;++i){z[i*n+j]=( FTYPE)(j+1);}

21 if (type ==2)

22 for(j=0;j<n;++j)

23 for(i=0;i<n;++i){z[i*n+j]=( FTYPE)(2*j+i+1);}

24 }

25 void printm(FTYPE *a,FTYPE *b,FTYPE *c,int n,int debug){

26 int i,j;

27 double sum1=( double)0, sum2=( double)0, sum3=( double)0;

28 for(i=0;i<n*n;++i) sum1 += a[i];

29 for(i=0;i<n*n;++i) sum2 += b[i];

30 for(i=0;i<n*n;++i) sum3 += c[i];

31 printf("asig=%f , bsig=%f , csig=%f \n",sum1 ,sum2 ,sum3);

32 if (debug){

33 printf("Input A \n");

34 for(i=0;(i<n);++i)

35 for(j=0;(j<n);++j)

36 if(( (i<R) || ((i>n-1-R) && (i<n))) &&

37 ( (j<R) || ((j>n-1-R) && (j<n))) )

38 printf("%6.1f%c",a[i*n+j],((j<(n-1))?’ ’:’\n’));

39 printf("Input B \n");

40 for(i=0;(i<n);++i)

41 for(j=0;(j<n);++j)

42 if(( (i<R) || ((i>n-1-R) && (i<n))) &&

43 ( (j<R) || ((j>n-1-R) && (j<n))) )

44 printf("%6.1f%c",b[i*n+j],((j<(n-1))?’ ’:’\n’));

45 printf("Input C \n");

46 for(i=0;(i<n);++i)

47 for(j=0;(j<n);++j)

48 if(( (i<R) || ((i>n-1-R) && (i<n))) &&

49 ( (j<R) || ((j>n-1-R) && (j<n))) )

50 printf("%6.1f%c",c[i*n+j],((j<(n-1))?’ ’:’\n’));

51 }

52 }

Figure 9.12: NVIDIA matrix multiplication version 1 (part1)
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1 /* Source: PG -02829 -0001 _v7.5 Sep 2015 */

2 /* Cuda C Programming , Design Guide , NVIDIA ,( pages 39-45) */

3 /* row -major row -i, col -j is X[i][j] = X.elts + i*X.cols +j */

4 __global__ void c9mm10 (FTYPE *A, FTYPE *B, FTYPE *C, int n) {

5 FTYPE Cv = (FTYPE) 0;

6 int r,c,i;

7 r = blockIdx.y * blockDim.y + threadIdx.y;

8 c = blockIdx.x * blockDim.x + threadIdx.x;

9 for(i = 0; i < n ; ++i)

10 Cv += A[r * n + i] * B[i * n + c];

11 C[r * n + c] = Cv;

12 }

Figure 9.13: NVIDIA matrix multiplication version 1 (part 2: kernel)

1 int main(int argc , char **argv) {

2 FTYPE *ha, *hb, *hc, *da, *db, *dc;

3 size_t size;

4 int N,debug =0;

5 if (argc ==1){N=NPREDEFINED; debug =0;

6 printf("Usage: %s N debug(0 or 1)\n",argv [0]);

7 }

8 else { N=atoi(argv [1]); debug=atoi(argv [2]); }

9 size=N*N*sizeof(FTYPE);

10 cudaEvent_t start ,stop;

11 cudaEventCreate (& start);

12 cudaEventCreate (&stop );

13 ha=( FTYPE*) malloc(size); rfillm(ha,N,1);

14 hb=( FTYPE*) malloc(size); rfillm(hb,N,2);

15 hc=( FTYPE*) malloc(size); rfillm(hc,N,0); printm(ha,hb ,hc,N,debug);

16 cudaDeviceSynchronize ();

17 cudaMalloc (&da ,size);

18 cudaMalloc (&db ,size);

19 cudaMalloc (&dc ,size);

20 cudaMemcpy(da,ha,size ,cudaMemcpyHostToDevice);

21 cudaMemcpy(db,hb,size ,cudaMemcpyHostToDevice);

22 cudaMemcpy(dc,hc,size ,cudaMemcpyHostToDevice);

23 dim3 blck(SQRTP ,SQRTP);

24 dim3 grid((N+blck.x-1)/blck.x,(N+blck.y-1)/blck.y);

25 cudaEventRecord(start);

26 c9mm10 <<<grid , blck >>> (da,db,dc ,N); /* c9mm10 */

27 cudaDeviceSynchronize ();

28 cudaEventRecord(stop);

29 cudaMemcpy(hc,dc,size ,cudaMemcpyDeviceToHost);

30 cudaEventSynchronize(stop);

31 FTYPE mill = 0.0f;

32 cudaEventElapsedTime (&mill ,start ,stop);

33 cudaDeviceSynchronize ();

34 printm(ha,hb ,hc,N,debug);

35 cudaFree(dc); cudaFree(db); cudaFree(da);

36 free(hc); free(hb); free(ha);

37 printf("Elapsed Time %10.5f\n",mill);

38 return (0);

39 }

Figure 9.14: NVIDIA matrix multiplication version 1 (part3)
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1 /* Source: PG -02829 -0001 _v7.5 Sep 2015 */

2 /* Cuda C Programming , Design Guide , NVIDIA ,( pages 39-45) */

3 /* row -major row -i, col -j is X[i][j] = X.elts + i*X.cols +j */

4

5 __device__ float gelt(FTYPE *A, int r, int c, int n) {

6 return A[r*n + c];

7 }

8 __device__ void selt(FTYPE *A, int r, int c, float value , int n) {

9 A[r*n + c] = value;

10 }

11 __device__ FTYPE* getsmatrix(FTYPE *A, int r, int c, int n) {

12 FTYPE *As;

13 As = &A[n * SQRTP * r + SQRTP * c];

14 return(As);

15 }

16

17 __global__ void c9mm11 (FTYPE *A, FTYPE *B, FTYPE *C, int n) {

18 __shared__ FTYPE AA[SQRTP][SQRTP], BB[SQRTP][ SQRTP];

19 FTYPE *aa , *bb, *cc;

20 FTYPE Cv = (FTYPE)0;

21 int r,c,br ,bc,i,j;

22 br = blockIdx.y ; bc = blockIdx.x ;

23 r = threadIdx.y ; c = threadIdx.x;

24 cc = getsmatrix(C,br,bc ,n); Cv = 0;

25 for (j = 0; j < (n/SQRTP); ++j) {

26 aa =getsmatrix(A,br,j,n ); bb = getsmatrix(B,j ,bc,n);

27 AA[r][c]=gelt(aa ,r,c,n) ; BB[r][c]= gelt(bb ,r,c,n);

28 __syncthreads ();

29 for(i = 0; i < SQRTP ; ++i)

30 Cv += AA[r][i] * BB[i][c];

31 __syncthreads ();

32 }

33 selt(cc ,r,c,Cv,n);

34 }

Figure 9.15: NVIDIA matrix multiplication version 2 kernel
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9.3.3 NVIDIA version 3: a refined implementation
Figure 9.16 contains the kernel of the third approach that tries to optimize the fetching of the blocks of A and
B.

1 /* Source: PG -02829 -0001 _v7.5 Sep 2015 */

2 /* Cuda C Programming , Design Guide , NVIDIA ,( pages 39-45) */

3 /* row -major row -i, col -j is X[i][j] = X.elts + i*X.cols +j */

4

5 __device__ float gelt(FTYPE *A, int r, int c, int n) {

6 return A[r*n + c];

7 }

8 __device__ void selt(FTYPE *A, int r, int c, float value , int n) {

9 A[r*n + c] = value;

10 }

11

12 __device__ FTYPE* getsmatrix(FTYPE *A, int r, int c, int n) {

13 FTYPE *As;

14 As = &A[n * SQRTP * r + SQRTP * c];

15 return(As);

16 }

17

18 __global__ void c9mm12 (FTYPE *A, FTYPE *B, FTYPE *C, int n) {

19 __shared__ FTYPE AA[SQRTP][SQRTP], BB[SQRTP][ SQRTP];

20 FTYPE Cv = (FTYPE) 0;

21 int r,c,br,bc ,i,j,k;

22 int astr ,aend ,astp ,bstr ,bstp;

23 br = blockIdx.y ; bc = blockIdx.x ;

24 r = threadIdx.y ; c = threadIdx.x;

25

26 astr = br * n * SQRTP; aend = astr + n - 1; astp= SQRTP;

27 bstr = bc * SQRTP ; ; bstp= n * SQRTP;

28

29 for(i = astr , j = bstr ; i <= aend ; i += astp , j += bstp ) {

30 AA[r][c] = A[i+ n * r + c ]; BB[r][c] = B[j+ n * r + c ];

31 __syncthreads ();

32 for( k=0; k< SQRTP ; ++k)

33 Cv += AA[r][k] * BB[k][c];

34 __syncthreads ();

35 }

36 k = n * SQRTP * br + SQRTP * bc ;

37 C[k+ n * r + c] = Cv;

38 }

Figure 9.16: NVIDIA matrix multiplication version 3 kernel
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9.4 More Matrix multiplication
We first present simple code for column-major matrix multiplication.

We then present the kernels only for five more versions. We do not comment on the code as it resembles
the NVIDIA code and draws from it. Furthemore, we present experimental results of all nine kernels: (a)
the three NVIDIA ones identified as Kernel 11, Kernel 12, Kernel 13 matching to version 1, version 2, and
version 3 presented earlier, and (b) the six new kernels starting with Kernel 1 (column-major), and Kernel 2
through Kernel 6 all row-major.

The experimental results (time in milliseconds) are for three problem sizes of square matrices of order
N = 1024, N = 2048 and N = 4096 and two thread block configurations 32× 32 and 8× 8 mapping to
TPERB = 1024 and TPERB = 64 respectively.

Kernel N = 1024 N = 2048 N = 4096
1 39.80 295.78 2464.61
2 39.35 287.25 2476.20
3 16.28 129.74 853.71
4 84.62 563.07 4399.87
5 14.72 106.79 853.11
6 76.43 550.03 4398.79

10 (NVIDIA 1) 34.38 398.51 2484.09
11 (NVIDIA 2) 13.35 106.51 854.70
12 (NVIDIA 3) 16.12 128.49 854.87

Figure 9.17: Expiremental results for Matrix Multiply; 32×32 blocks

Kernel N = 1024 N = 2048 N = 4096
1 60.18 470.57 4126.77
2 60.30 462.82 4109.33
3 28.07 240.36 2070.73
4 34.34 254.00 2134.46
5 28.19 236.85 2036.47
6 34.35 250.72 2124.88

10 (NVIDIA 1) 60.22 458.90 4105.09
11 (NVIDIA 2) 28.22 238.88 2065.06
12 (NVIDIA 3) 28.77 243.37 1928.55

Figure 9.18: Expiremental results for Matrix Multiply; 8×8 blocks
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1 __global__ void c9mm01 (FTYPE *a, FTYPE *b, FTYPE *c, int n) {

2 int j= threadIdx.y + blockIdx.y * blockDim.y;

3 int i= threadIdx.x + blockIdx.x * blockDim.x;

4 FTYPE csum = (FTYPE) 0;

5 int k;

6 if (i < n && j < n ) {

7 for(k=0; k < n ; ++k) {

8 csum += a[k*n+i] * b[j*n+k];

9 }

10 c[j*n+i]=csum;

11 }

12 }

Figure 9.19: Matrix Multiplication Kernel 1 (column-major)

1 __global__ void c9mm02 (FTYPE *a, FTYPE *b, FTYPE *c, int n) {

2 int i= threadIdx.y + blockIdx.y * blockDim.y;

3 int j= threadIdx.x + blockIdx.x * blockDim.x;

4 FTYPE csum = (FTYPE) 0;

5 int k;

6

7 if (i < n && j < n){

8 for(k=0; k < n ; ++k) {

9 csum += a[i*n+k] * b[k*n+j];

10 }

11 c[i*n+j]=csum;

12 }

13 }

Figure 9.20: Matrix Multiplication Kernel 2
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1 __global__ void c9mm03 (FTYPE *a, FTYPE *b, FTYPE *c, int n) {

2 int i= threadIdx.y + blockIdx.y * blockDim.y;

3 int j= threadIdx.x + blockIdx.x * blockDim.x;

4 __shared__ float ta[SQRTP][SQRTP ];/* in general: blockDim.y, blockDim.x */

5 __shared__ float tb[SQRTP][SQRTP ];/* in general: blockDim.x, blockDim.y */

6 FTYPE csum = (FTYPE) 0;

7 int k, m,base;

8 for (m=0; m < gridDim.x ; ++m){

9 base = i*n + m * SQRTP + threadIdx.x;

10 if (base >= (n*n)) {

11 ta[threadIdx.y][ threadIdx.x] = (FTYPE) 0;

12 }

13 else {

14 ta[threadIdx.y][ threadIdx.x] = a[base];

15 }

16 base = (m * SQRTP + threadIdx.y)*n+j;

17 if (base >= (n*n)) {

18 tb[threadIdx.y][ threadIdx.x] = (FTYPE) 0;

19 }

20 else {

21 tb[threadIdx.y][ threadIdx.x] = b[base];

22 }

23 __syncthreads ();

24 for(k=0; k < SQRTP ; ++k) {

25 csum += ta[threadIdx.y][k] * tb[k][ threadIdx.x];

26 }

27 __syncthreads ();

28 }

29 if (i< n && j < n ) {

30 c[i*n+j]=csum;

31 }

32 }

Figure 9.21: Matrix Multiplication Kernel 3



9.4. MORE MATRIX MULTIPLICATION 177

1 __global__ void c9mm04 (FTYPE *a, FTYPE *b, FTYPE *c, int n) {

2 int i= threadIdx.y + blockIdx.y * blockDim.y;

3 int j= threadIdx.x + blockIdx.x * blockDim.x;

4 __shared__ float ta[SQRTP][SQRTP ];

5 __shared__ float tb[SQRTP][SQRTP ];

6 FTYPE csum = (FTYPE) 0;

7 int k, m,base;

8

9 for (m=0; m < gridDim.x ; ++m){

10 base = i*n + m * SQRTP + threadIdx.x;

11 if (base >= (n*n)) {

12 ta[threadIdx.y][ threadIdx.x] = (FTYPE) 0;

13 }

14 else {

15 ta[threadIdx.y][ threadIdx.x] = a[base];

16 }

17 base = (m * SQRTP + threadIdx.y)*n+j;

18 if (base >= (n*n)) {

19 tb[threadIdx.x][ threadIdx.y] = (FTYPE) 0; /* transpose */

20 }

21 else {

22 tb[threadIdx.x][ threadIdx.y] = b[base]; /* transpose */

23 }

24 __syncthreads ();

25

26 for(k=0; k < SQRTP ; ++k) {

27 csum += ta[threadIdx.y][k] * tb[threadIdx.x][k]; /* transpose */

28 }

29 __syncthreads ();

30 }

31 if (i< n && j < n ) {

32 c[i*n+j]=csum;

33 }

34 }

Figure 9.22: Matrix Multiplication Kernel 4
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1 __global__ void c9mm05 (FTYPE *a, FTYPE *b, FTYPE *c, int n) {

2 int i= threadIdx.y + blockIdx.y * blockDim.y;

3 int j= threadIdx.x + blockIdx.x * blockDim.x;

4 __shared__ float ta[SQRTP][SQRTP ];/* in general: blockDim.y, blockDim.x */

5 __shared__ float tb[SQRTP][SQRTP ];/* in general: blockDim.x, blockDim.y */

6 FTYPE csum = (FTYPE) 0;

7 int k, m,base;

8

9 for (m=0; m < gridDim.x ; ++m){

10 base = i*n + m * SQRTP + threadIdx.x;

11 ((base >=(n*n))? ta[threadIdx.y][ threadIdx.x] = (FTYPE) 0:

12 ta[threadIdx.y][ threadIdx.x] = a[base]);

13 base = (m * SQRTP + threadIdx.y)*n+j;

14 ((base >=(n*n))? tb[threadIdx.y][ threadIdx.x] = (FTYPE) 0:

15 tb[threadIdx.y][ threadIdx.x] = b[base]);

16 __syncthreads ();

17 for(k=0; k < SQRTP ; ++k) {

18 csum += ta[threadIdx.y][k] * tb[k][ threadIdx.x];

19 }

20 __syncthreads ();

21 }

22 if (i< n && j < n ) {

23 c[i*n+j]=csum;

24 }

25 }

Figure 9.23: Matrix Multiplication Kernel 5

1 __global__ void c9mm06 (FTYPE *a, FTYPE *b, FTYPE *c, int n) {

2 int i= threadIdx.y + blockIdx.y * blockDim.y;

3 int j= threadIdx.x + blockIdx.x * blockDim.x;

4 __shared__ float ta[SQRTP][SQRTP ];

5 __shared__ float tb[SQRTP][SQRTP ];

6 FTYPE csum = (FTYPE) 0;

7 int k, m,base;

8

9 for (m=0; m < gridDim.x ; ++m){

10 base = i*n + m * SQRTP + threadIdx.x;

11 ((base >=(n*n))? ta[threadIdx.y][ threadIdx.x] = (FTYPE) 0:

12 ta[threadIdx.y][ threadIdx.x] = a[base]);

13 base = (m * SQRTP + threadIdx.y)*n+j;

14 ((base >=(n*n))? tb[threadIdx.x][ threadIdx.y] = (FTYPE) 0:

15 tb[threadIdx.x][ threadIdx.y] = b[base]);

16 __syncthreads ();

17

18 for(k=0; k < SQRTP ; ++k) {

19 csum += ta[threadIdx.y][k] * tb[threadIdx.x][k]; /* transpose */

20 }

21 __syncthreads ();

22 }

23 if (i< n && j < n ) {

24 c[i*n+j]=csum;

25 }

26 }

Figure 9.24: Matrix Multiplication Kernel 6



Chapter 10

Scan Operations

10.1 Parallel sum
We show how one can implement a parallel sum routine. The sum function (sequential executed on the host)
is given in Figure 10.1 and is quite simple.

1 // A[0..n-1]

2 sum =0;

3 for(i=0 ; i < n ; ++i)

4 sum = sum + A[i];

5 A[0]= sum;

Figure 10.1: Serial code for sum

We first do parallel sum on a block (as in one block containing the currently maximum number of 1024
threads), and then show how to generalize this to multiple threadblocks. However both the number of blocks
must be a power of two and so should the number of threads. We did casual checking to confirm that the
vectorsize does not need to be a power of two, in general.

10.1.1 One block only parallel sum
The sample code here is for a single thread block and its threades. Thus it works for the maximum of
1024 threads that are defined (or are possible) for a block. The simplicity or not of the code depends on its
functionality.

Figure 10.2 offers a while-loop structured Kernel 1.
Figure 10.3, Figure 10.4, Figure 10.5, offer a for-loop structured Kernel 2, Kernel 3, and Kernel 5 (there

is no Kernel 4 in this writeup). For multiplication by two the code can use addition, for other multiplications
and divisions involving a power of two a shift is preferable to the indicated operation. We tried not to overload
the code with optimizations.

The placement of a syncthreads() could be optimized or corrected.
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1 /* Limited to one threadblock */

2 __global__ void c10ps01(FTYPE *A, int n) {

3 int tid = threadIdx.x ;

4 int step=1, bound = n ;

5 float a, b ;

6

7 while (step <= n ) {

8 if (tid <= bound /2) {

9 (((2* tid) <=bound)? a= A[ 2*tid] : a=0.0);

10 (((2* tid+1) <=bound)? b= A[ 2*tid +1]: b=0.0);

11 __syncthreads (); /* to swap or not swap with previous line? */

12 A[tid]= a+b;

13 }

14 step = step <<1;

15 bound= bound >>1;

16 } /* Psum in A[0] */

17 }

Figure 10.2: Kernel 1 : while loop

1 /* Limited to one threadblock */

2 __global__ void c10ps02(FTYPE *A, int n) {

3 int tid = threadIdx.x ; /* Limited use: Threads of a */

4 int step = 1 ; /* 1D block; at most 1024 */

5

6 for(step = 1 ; step < blockDim.x ; step *= 2 ) {

7 if ((tid % (2* step)) == 0) {

8 A[tid] += A[tid+step];

9 }

10 __syncthreads ();

11 } /* Psum in A[0] */

12 }

13 }

Figure 10.3: Kernel 2 : for loop

1 /* Limited to one threadblock */

2 __global__ void c10ps03(FTYPE *A, int n) { /* Limited use: Threads of a */

3 int tid = threadIdx.x ; /* /* 1D block; at most 1024 */

4 int step = 1 , src ;

5

6 for(step = 1 ; step < blockDim.x ; step *= 2 ) {

7 src = tid * 2 * step ;

8 if ( src < blockDim.x ) {

9 A[src] += A[src+step];

10 }

11 __syncthreads ();

12 } /* Psum in A[0] */

13 }

Figure 10.4: Kernel 3 : for loop alternaive
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1 /* Limited to one threadblock */

2 __global__ void c10ps05(FTYPE *A, int n) {

3 int pid = threadIdx.x ;

4 int step = 1 ;

5

6 for(step = blockDim.x /2 ; step > 0 ; step >>= 1 ) {

7 if ( pid < step ) {

8 A[pid] += A[pid+step];

9 }

10 __syncthreads ();

11 } /* Psum in A[0] */

12 }

Figure 10.5: Kernel 5 : for loop alternaive
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10.1.2 More generic parallel sum

We show how to generalize the previous kernels to do parallel sum on multiple threadblocks. However both
the number of blocks must be a power of two and so should the number of threads.

Kernel 20 of Figure 10.6 is Kernel 2. Whereas in Kernel 2 the sum of A[0..n−1] was stored in A[0] this
is not the case here. Every block and in particular the block with blockIdx.x replaces A[blockIdx.x] with the
parallel sum of the values assigned to the threads of the block. All this values are transferred from global
memory (A is stored there) into the shared cache memory. Line 17 might cause problems including the two
synchronizations in lines 14 and 19. A further ironing out of sychronization issues is known later in Kernel
23 (for line 17) and Kernel 24 (for lines 14 and 19).

1 /* Modified kernel ps02; assume #TPERB is power of 2, *

2 * and number of blocks also a power of two *

3 * parallel sum is NOT readily available it is the *

4 * sum_i i=0 to blockDim.x-1 of A[i] *

5 * line shmem[tid} += might cause problems; fix is *

6 * available in kernel ps23 ... */

7 __global__ void c10ps20(FTYPE *A, int n) {

8 int tid = threadIdx.x ;

9 int step = 1 ;

10 int pid = blockIdx.x * blockDim.x + threadIdx.x ;

11 __shared__ FTYPE shmem[TPERB];

12

13 shmem[tid] = A[pid];

14 __syncthreads ();

15 for(step = 1 ; step < blockDim.x ; step += step ) {

16 if ((tid % (2* step)) == 0) {

17 shmem[tid] += shmem[tid+step];

18 }

19 __syncthreads ();

20 } /* Parallel sum is sum_i < blockDim.x A[i] */

21 if (tid ==0) A[blockIdx.x] = shmem [0];

22 }

Figure 10.6: Kernel 20 : generalizing kernel 2

In Kernel 21 of Figure 10.7 we avoid the modulo operation.
In Kernel 22 of Figure 10.8 we provide an alternative for-loop configuration.
In Kernel 23 of Figure 10.9 we first fix the issue of parallel sum as described in the case of a PRAM

algorithm. The parallel sum of n numbers using n processors utilizes only half of those processors. In the
case of a CUDA-based approach, the number of thread blocks utilized is half of the grid blocks. This is taken
care in Kernel 23. In Kernel 23 of Figure 10.9 we also slightly modify line 15 of Kernel 22. Without this
modification the code would have been buggy because of timing issues. This change can be propagated to
the other Kernel as well.

In Kernel 24 of Figure 10.10 we have rearranged and used only one syncthreads() function call that is
embedded in line 13 rather than in line 10 and line 18 (or rather after the right brace of line 17). This change
can propagate cautiously to the other codes as well.

We provide a comparative study of the five kernels Kernel 20, through Kernel 24. This is depicted in
Figure 10.11. Note that parallel sum beyond around n = 223 leads to instability of the computed value of the
sum. (Unless we compute a sum of ones or twos.) All timings are in milliseconds.

These experimental results are for the platform of Figure 7.13 also shown here (Quadro P600).
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1 /* Assumes powers of two (see ps20 kernel info *

2 * Derives from kernel ps03 that dealt with *

3 * only one block; see there for note on shmem*/

4 __global__ void c10ps21(FTYPE *A, int n) {

5 int tid = threadIdx.x ;

6 int step = 1 , src ;

7 int pid = blockIdx.x * blockDim.x + threadIdx.x ;

8 __shared__ FTYPE shmem[TPERB];

9

10 shmem[tid] = A[pid];

11 __syncthreads ();

12

13 for(step = 1 ; step < blockDim.x ; step +=step ) {

14 src = tid * 2 * step ;

15 if ( src < blockDim.x ) {

16 shmem[src] += shmem[src+step];

17 }

18 __syncthreads ();

19 } /* Parallel sum is sum_i < blockDim.x A[i] */

20 if (tid ==0) A[blockIdx.x] = shmem [0];

21 }

Figure 10.7: Kernel 21 : generalizing kernel 3

For an alternative platform see Figure 10.13 for its configuration and Figure 10.14 for additional experi-
mental results.

Other optimizations are possible: NVIDIA CUDA manual describe them. They can result in a three-fold
or better increase in performance.
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1 /* Read info re kernel ps20; all applicable *

2 * but based on simplified kernel ps05 */

3 /* Read also ps24 re realignment of __sync */

4 __global__ void c10ps22(FTYPE *A, int n) {

5 int tid = threadIdx.x ;

6 int step = 1 ;

7 int pid = blockIdx.x * blockDim.x + threadIdx.x ;

8 __shared__ FTYPE shmem[TPERB] ;

9

10 shmem[tid] = A[pid];

11 __syncthreads ();

12

13 for(step = blockDim.x /2 ; step > 0 ; step >>= 1 ) {

14 if ( tid < step ) {

15 shmem[tid] += shmem[tid+step] ;

16 }

17 __syncthreads () ;

18 } /* Parallel sum is sum_i < blockDim.x A[i] */

19 if (tid ==0) A[blockIdx.x] = shmem [0] ;

20 }

Figure 10.8: Kernel 22 : generalizing kernel 5

1 __global__ void c10ps23(FTYPE *A, int n) {

2 int tid = threadIdx.x ;

3 int step = 1 ;

4 int pid = blockIdx.x * (2* blockDim.x) + threadIdx.x ;

5 __shared__ FTYPE shmem[TPERB] ;

6 FTYPE temp;

7

8 temp= ((pid < n)? A[pid]: 0);

9 if ((pid+blockDim.x) <n)

10 temp += A[pid+blockDim.x];

11 shmem[tid] = temp;

12 __syncthreads ();

13

14 for(step = blockDim.x /2 ; step > 0 ; step >>= 1 ) {

15 if ( tid < step ) {

16 shmem[tid] =temp= temp+ shmem[tid+step] ;

17 }

18 __syncthreads () ;

19 }

20 if (tid ==0) A[blockIdx.x] = shmem [0];

21 }

Figure 10.9: Kernel 23 : for loop alternaive
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1 /* This is kernel ps21 with realignment *

2 * of __syncthreads (); under testing */

3 __global__ void c10ps24(FTYPE *A, int n) {

4 int tid = threadIdx.x ;

5 int step = 1 , src ;

6 int pid = blockIdx.x * blockDim.x + threadIdx.x ;

7 __shared__ FTYPE shmem[TPERB];

8

9 shmem[tid] = A[pid];

10 /* __syncthreads (); */

11

12 for(step = 1 ; step < blockDim.x ; step +=step ) {

13 __syncthreads ();

14 src = tid * 2 * step ;

15 if ( src < blockDim.x ) {

16 shmem[src] += shmem[src+step];

17 }

18 } /* Parallel sum is sum_i < blockDim.x A[i] */

19 if (tid ==0) A[blockIdx.x] = shmem [0];

20 }

Figure 10.10: Kernel 24 : for loop alternaive

Version n = 220 n = 221 n = 222

Kernel 20 1.35 2.67 5.33
Kernel 21 0.81 1.62 3.22
Kernel 22 0.64 1.25 2.48
Kernel 23 0.61 1.21 2.40
Kernel 24 0.76 1.51 3.01

Figure 10.11: Parallel Sum Experimental Results

Number of Devices is 1

Device Number is 0

Device Name is Quadro P600

Total Global M : 2095841280

Shared Mem/Block 49152

Registers /Block 65536

WarpSize 32

memPitch 2147483647

maxThreads/Block 1024

maxThreads Dim 2147483647 65535 65535

TotConst Memory 65536

Major Revision 6

Minor Revision 1

Clock Rate 1556500

deviceOverlap 1

SM in device 3

Compute Mode 0

Concurrent Kernl 1

Figure 10.12: Configuration of CUDA platform
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Number of Devices is 1

Device Number is 0

Device Name is Tesla P100-PCIE-16GB

Shared Mem/Block 49152

Registers /Block 65536

WarpSize 32

memPitch 2147483647

maxThreads/Block 1024

maxThreads Dim 2147483647 65535 65535

TotConst Memory 65536

Major Revision 6

Minor Revision 0

Clock Rate 1328500

deviceOverlap 1

SM in device 56

Compute Mode 0

Concurrent Kernl 1

Figure 10.13: Configuration of alternative CUDA platform

Version n = 220 n = 221 n = 222

Kernel 20 0.75 1.45 2.83
Kernel 21 0.36 0.66 1.30
Kernel 22 0.30 0.56 1.10
Kernel 23 0.32 0.60 1.15
Kernel 24 0.35 0.66 1.30

Figure 10.14: Parallel Sum Experimental Results (alternative platform)
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