
ABSTRACT

SYSTEMS FOR FREE PARKING ASSIGNMENT

by
Abeer M. Hakeem

Finding a free, curbside parking spaces in metropolitan areas, especially during rush

hours, is di�cult for drivers. The di�culty arises from not knowing where the

available spaces may be at that time; and, even if the spaces are known, many

vehicles may pursue the same spaces, causing serious parking contention and tra�c

congestion. This dissertation presents three cost-e↵ective and easily deployable free

parking assignment systems that optimize the travel time of the drivers.

The first contribution is the Free Parking System (FPS), a centralized solution

that solves the curbside parking problem. Unlike existing solutions, FPS is

cost-e↵ective, as it does not need any sensing infrastructure. It relies on drivers’

cooperation to maintain the parking availability information. FPS reduces parking

space contention because it provides individual space assignments to drivers. The

system consists of two components: a mobile app running on the drivers’ smart

phones that submits parking requests and guides drivers to their parking spaces, and

a central server that manages the parking assignment process. The main novelty of

FPS consists of its parking assignment algorithm, FPA, which combines a system-wide

objective (“social welfare”) with a modified compound laxity algorithm to minimize

the total travel time for all drivers. The simulation results demonstrate that compared

to a baseline solution, which mimics the way people search for parking today, and a

greedy parking assignment algorithm, FPA reduces the total travel time for all drivers.

Furthermore, FPA provides substantial improvements even when many parking spaces

are occupied by drivers who do not use FPS.

The second contribution is the Distributed Free Parking System (DFPS), which

solves the two intrinsic problems of the centralized FPS: scalability, as the server has



to perform intensive computation and communication with the drivers; and privacy,

as the drivers have to disclose their destinations to the server. DFPS solves the

scalability problem by using the smart phones of the drivers to cooperatively compute

and forward to drivers the parking assignments, and a centralized dispatcher to receive

and distribute parking requests. The parked drivers in DFPS are structured in a K-D

tree, which is used to serve new parking requests in a distributed fashion. DFPS

removes the computation and substantially reduces the communication handled by

the dispatcher. DFPS solves the privacy problem through an entropy-based cloaking

technique that runs on drivers’ smart phones and conceals drivers’ destinations from

the dispatcher. DFPS provides a distributed version of FPA, which optimizes the

total travel time for all drivers, while preserving driver’s destination privacy. The

evaluation demonstrates that DFPS obtains better travel time performance than a

centralized system, while protecting the privacy of drivers’ destinations and removing

the computation and communication bottleneck from the server.

The third contribution is the Multi-Destination Vehicular Route Planning

(MDVRP) system, which applies FPS to the multi-destination route planning

problem. Specifically, MDVRP proposes an e�cient solution for people in a city

who drive their cars to visit several destinations, where they need to park for a while,

but do not care about the visiting order. This instance of the multi-destination route

planning problem is novel in terms of its constraints: the real-time tra�c conditions

and the real-time free parking conditions in the city. MDVRP uses TDTSP-FPA,

a novel algorithm that finds the most e�cient order to visit the destinations and

also assigns free curbside parking spaces that minimize the total travel time for

drivers. To evaluate MDVRP, a novel experimental platform that simulates real,

multi-destination driver trips of over two million drivers, is built. Experimental

results from a prototype implementation show that TDTSP-FPA delivers the best

performance when compared to three baseline algorithms.
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CHAPTER 1

INTRODUCTION

With the fast-growing number of vehicles over the past few years, especially in

developing countries, finding a free curbside parking space has become a major

problem for drivers in big cities. According to the geography of transport systems [1],

searching for parking spaces can account for more than 10% of the local tra�c

in central areas of big cities, which leads to an average of 30% increase in tra�c

congestion. Meanwhile, in a 15-block survey area in New York, drivers cruised a

total of 945,000 extra miles per year as they searched for curbside parking [2]. This

accounted for a waste of over 47,000 gallons of gasoline and produced around 728

tons of carbon dioxide. The situation is worsening in developing countries where

the number of vehicles has been increasing without su�cient investment in parking

facilities.

Lacking enough visibility to determine where parking spaces are available

exacerbates the parking problem. Consider the scenario where a person drives into

a city center/downtown for an important appointment. The normal psychology of

the driver is to reach the destination and park on a street that is close to the

destination. Unfortunately, most people do not have su�cient time at their disposal

to drive around cruising for available parking space after reaching the destination. As

another scenario, the driver is going to a concert attended by many people. Naturally,

she wants to find parking as close to the concert hall as possible. However, as she

approaches the concert hall, the driver wonders if she should park as soon as she sees

an empty space or if she should try to look for a closer space and potentially lose the

empty space she previously spotted.

In the previous two examples, the drivers just want to visit one destination,

and thus they need one parking space. There are, however, situations when people

1



have to go to several destinations in the same trip and need to park around each

destination for a period of time. They do not care about the visiting order but may

want to reduce their trip cost such as travel time consumption.

The general conclusion from all these examples is that e↵ective parking

management solutions need to be in place in order to help drivers find vacant parking

spaces and avoid tra�c congestion, air pollution, and waste of time. These solutions

should aim to optimize the travel time for all drivers in the cities.

The rest of this chapter presents an overview of the free parking problem and our

solutions in Section 1.1, and discusses the multi-destination route planning problem

and our solution, when including parking and tra�c constraints, in Section 1.2. The

contributions of this dissertation are presented in Section 1.3. Finally, Section 1.4

details the structure of this dissertation.

1.1 Free Parking Assignment

1.1.1 Centralized Free Parking Assignment

With the advent of location-based services and embedded wireless sensors, appli-

cations that enable mobile devices to find vacant parking spaces in urban

environments are being developed. A prime example of this type of application is

SFPark [3]. It relies on 8,000 sensors embedded in the streets of the city of San

Francisco, which can tell whether a parking space is available or not. The application

shows a map with the available parking spaces in the driver’s search area. The sensors

cover about 25% of the available curbside parking in the city and cost USD $23M.

The primary goal of these applications is to help the individual drivers find open

parking spaces, yet they have several shortcomings. First, deploying and maintaining

the sensor infrastructure are costly. Second, drivers may not actually find vacant

parking spaces by merely following the guidance. For instance, when the number

of vacant spaces in an area is limited, many drivers, who obtain the same parking
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information from the application, will head for the same set of spaces and only a few

will park successfully. This will lead to congestion and driver frustration because the

application does not attempt to provide individual guidance for drivers to specific

parking spaces in order to minimize parking space contention. Third, parking space

utilization becomes imbalanced: parking spaces for which information is provided are

highly utilized and cause higher tra�c congestion nearby, while other parking spaces

may be routinely left vacant. In general, this type of application does not solve the

basic parking problem. It would be better if the application just guided the drivers

to exact locations where they are most likely to find open parking spaces. Then

the following question arises: which algorithm should the application use to assign

parking spaces to drivers?

To answer this question, the dissertation first studies the parking problem in a

centralized model in which a sever makes parking choices for drivers and assigns each

driver to a specific parking space with respect to her destination and a system-wide

optimization objective, which aims to minimize the overall travel time for all drivers.

To achieve the design goals, the Free Parking Assignment system (FPS) is proposed.

FPS is cost-e↵ective and does not need a sensing infrastructure, as it relies on drivers

to cooperatively maintain parking availability information. FPS operates on-the-fly,

as it handles new parking requests received over time and parking spaces that are

found to be occupied by drivers who do not use FPS. It is important to note that

FPS does not assume that all drivers use our system. It discovers the spaces occupied

by unsubscribed drivers when the subscribed drivers report them. Then, it considers

these spaces available after a time period based on the age of the observation reports.

1.1.2 Distributed Free Parking Assignment

Although the proposed centralized parking assignment solution solves the parking

problem, the system su↵ers from two main limitations. First, the centralized server
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requires substantial computation (to manage and assign free parking spaces) and

communication with the vehicles (to receive requests and send responses) in real-time.

This can be a bottleneck and for urban areas with many parking requests. Second,

the parking assignment procedure is under risk of privacy violations. Specifically, the

system requires drivers to disclose their destinations to the central server, so that

parking spaces close to the destinations can be allocated to them. Such information

may be utilized to infer private life details, such as the type of visited places or the

number of visits at di↵erent places.

Conventional solutions, such as parking assignment games, where vehicles

acting as players choose parking spaces in a competitive parking setting [4] are

scalable. However, they assume that each vehicle has access to the location of other

vehicles, which raises privacy concerns and has technical di�culties in real-time. The

proposed parking assignment solution in [5] capitalizes on the ability of a trustworthy

central controller to construct a feasible assignment in a distributed fashion via the

coordination of drivers. The car-parking mechanism in this work is privacy-preserving

in the sense that any car involved with the algorithm will not be able to find out the

destination of any other car during the algorithm iteration. The problem with this

solution is that the assignment computation and communication are burdens on the

central controller. In addition, all exchanged information are stored in the controller

which puts the private information at risk. Several techniques have been proposed

for driver’s privacy preservation, such as location perturbation and obfuscation [6],

dummy location [7], and spatial cloaking [8, 9]. However, with these techniques,

the assignment may not be optimal (i.e., parking spaces may not be close to the

destinations).

Therefore, this dissertation explores an e�cient approach for designing a free

parking assignment solution in a distributed mobile system, called a Distributed Free

Parking Assignment (DFPS). DFPS aims to achieve driver’s destination privacy with
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low communication and computation overheads, and optimizes the total travel time

of the drivers. DFPS solves the scalability problem by using the smart phones of

the drivers to cooperatively compute and forward to drivers the parking assignments,

and a centralized dispatcher to receive and distribute parking requests. Furthermore,

DFPS solves the privacy problem through an entropy-based cloaking technique that

runs on drivers’ smart phones and conceals drivers’ destinations from the dispatcher.

1.2 Multi-destination Route Planning

The aim of multi-destination route planning is to find the most e�cient order of

visiting a number of destinations in order to reduce the trip cost, such as the travel

time. This problem has been studied extensively in the context of the Traveling

Salesman Problem (TSP) [10, 11]. TSP is one of the most famous problems with

route planning for multiple destinations. The goal of TSP is to find the shortest

route that visits each destination once and returns to the original location. Although

the TSP solutions can find a short path to multiple destinations, the concept of tra�c

constraint is not considered.

The Time-Dependent Traveling Salesman Problem (TDTSP) is a variation of

TSP in which the amount of time it takes the salesman to travel from one destination

to another fluctuates depending on the time of the day. By allowing the travel time

between destinations to vary, TDTSP can better model real-world conditions such as

heavy tra�c, road repairs, and automobile accidents. We are interested in the time

dependent problem introduced by [11–13], which strives to find the shortest route

when the travel time depends on the time of day when the route is traversed. TDTSP

is an e�cient algorithm for routing problems, but to the best of our knowledge, none of

the methods developed so far solve the multi-destination route planning problem with

multiple real-time constraints such as parking and tra�c. The problem is two-fold:

a route planning problem and a free parking assignment problem.
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Managing the interplay between tra�c conditions and parking conditions to

reduce the travel time for drivers can help both delivery companies and individuals in

a city. For example, many times, delivery drivers must park around their destinations

(e.g., big buildings) where they need to deliver several packages. An individual, on the

other hand, may have a number of tasks to do in a weekend day: grocery shopping,

take clothes to/from dry cleaning, stop by the work o�ce to get some papers, and see

a small art exhibition downtown. The tasks can be done in any order, and we want

to do it as e�ciently as possible.

This dissertation presents a centralized solution that is able to e�ciently plan

routes for all drivers while satisfying the free curbside parking conditions (i.e., provide

parking guidance).

1.3 Contributions of Dissertation

This dissertation introduces three main contributions: two cost-e↵ective and easily

deployable free parking assignment systems (i.e., centralized and distributed) that

optimize the total travel time for all drivers, and a multi-destination vehicular route

planning system that solves the multi-destination vehicular route planning problem,

with parking and tra�c constraints.

1.3.1 FPS: Free Parking System

We designed and developed a centralized free parking assignment system, FPS, that

solves the shortcomings in the current parking guidance solutions. FPS has two

components: a mobile app running on drivers’ smart phones and a server, which is

responsible for assigning parking spaces to drivers and providing individual parking

guidance. In addition to submitting parking requests and providing parking guidance

to drivers, the app reports to the server when a car is parked and when it leaves

a parking space using input either from the drivers or from an activity recognition
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algorithm based on phone sensors (e.g., accelerometers and GPS). The server manages

information about available parking spaces and handles parking requests in such a

way as to optimize the social welfare system objective (i.e., the total travel time for

all drivers).

FPS employs a novel free parking assignment (FPA) algorithm to achieve this

goal. FPA uses the social welfare criterion to solve driver contention for the same

parking spaces in such a way as to minimize the total travel time to the destinations.

FPA delays the parking space assignment as long as possible in order to accumulate

more parking requests and thus perform a more e�cient assignment. We created

a modified version of the compound laxity algorithm [14] to determine how long a

request can be delayed before it must be assigned a space. Our algorithm minimizes

the total driving time to the parking spaces. By combining social welfare and

compound laxity assignments, FPA is able to minimize the total travel time for all

drivers.

FPS has been evaluated using two baseline assignment algorithms and two

versions of FPA: (i) a naive algorithm that assumes a breadth-first-search for parking

spaces around the destinations; (ii) a greedy algorithm that assigns the closest

available space to the destination as soon as the driver enters a predetermined parking

space allocation area; (iii) a basic FPA version that considers spaces occupied by

unsubscribed drivers to remain occupied forever; (iv) an enhanced FPA version,

FPA-1, that re-considers the spaces occupied by unsubscribed drivers after a time

period. The results demonstrate that FPA reduces the total travel time by more

than 4 times when compared to the naive algorithm and by 42% when compared with

greedy algorithm, when all the drivers use our system. FPA also provides substantial

improvements even when 25% of the spaces are occupied by unsubscribed drivers,

and FPA-1 performs the best among all algorithms in this scenario. For example,

FPA-1 reduces the travel time by 52% compared to greedy.
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1.3.2 DFPS: Distributed Free Parking System

We designed and implemented DFPS, a distributed free parking system for assigning

free curbside parking spaces to cruising drivers in cities. DFPS solves the two main

problems with FPS: scalability due to its centralized architecture, and privacy due

to the server knowing the destinations of all drivers. DFPS has three features: (1) a

scalable system architecture for distributed parking assignment; (2) a distributed

parking assignment algorithm among drivers that cooperate to e�ciently assign

parking spaces to drivers; and (3) a privacy-aware parking request generation that

protects the privacy of drivers’ destinations.

DFPS has two components: a mobile app running on drivers’ smart phones and

a dispatcher running at a server that enables cooperation among phones. The mobile

apps on the phones form a distributed system that manages and assigns free curbside

parking spaces. This substantially reduces the communication and computation

overhead on the central server. The parked drivers in DFPS are structured in a

K-D tree [15] based on their locations. This structure allows high e�ciency in serving

new parking requests through parallel processing. The K-D tree also provides for

localized distributed computation and communication, which makes DFPS scalable.

To conceal drivers’ destinations from the central dispatcher, DFPS uses a novel

entropy-based spatial cloaking technique, where each driver can entertain parking

assignment services without revealing her real destination and without seeking help

from any centralized third party. In addition to spatial cloaking [8,9], techniques such

as location perturbation and obfuscation [6] and dummy location [7] can also solve the

problem of location privacy protection. However, they cannot be used in our settings

because they may lead to parking assignments far from destinations [16,17]. The basic

idea of our entropy-based cloaking technique is that each driver submits her parking

request with a cloaked region as her destination, instead of her real destination.

Specifically, for each real destination, the entropy-based cloaking technique selects the
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nearest neighbouring destinations to construct a cloaked region, which contains both

the real destination and the selected new destinations. The cloaked region must satisfy

a k�anonymity privacy requirement: in addition to the real destination, the region

must have at least another k�1 possible destinations that are not distinguishable from

the real destination. When constructing a region, an entropy of distance method [18]

is employed to avoid the clustering problem (i.e., multiple destinations clustered in a

small area, making it easier for an attacker to exploit the driver’s destination). The

method selects k�1 destinations that are evenly distributed to form the cloaked

region. The technique also requires that the cloaked region contains at least a

minimum number of available parking spaces to ensure that a parking space close

to the real destination is likely to be available when the driver approaches it.

Similar to FPS, DFPS does not assume that all drivers use our system. It relies

on subscribed drivers to submit observation reports regarding the parking spaces

occupied by drivers that are not part of our system. DFPS avoids allocating the

reported spaces for a period of time proportional with the age of the observation

reports; then, it reconsiders these spaces.

DFPS is evaluated through multiple experiments. The results show that DFPS

scales well. In particular, it eliminates all computation from the centralized dispatcher

and reduces its communication load by a factor of two. In terms of average travel

time, DFPS can decrease the average travel time by 26% compared to the centralized

system, in addition to not disclosing the drivers’ destinations to the dispatcher.

1.3.3 MDVRP: Multi-destination Vehicular Route Planning System

The last contribution of the dissertation defines a new instance of the multi-

destination route planning problem, which has significant practical applicability.

To the best of our knowledge, this is the first work on route planning that

considers simultaneously the real-time conditions of vehicular tra�c and free parking
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availability. The main novelties of this work are: (1) the design and implementation

of MDVRP system, and (2) TDTSP-FPA algorithm to manage the multi-destination

route planning problem. The optimization goal of the algorithm is to minimize

the total travel time for all drivers, where this time includes both the driving

time to parking spaces and walking time between parking spaces and destinations.

The design of MDVRP is modular and, thus, other algorithms for time-dependent

route planning and parking assignment can be used to replace TDTSP-FPA; (3)

we build a new experimental platform for realistic simulations of multi-destination

routing. We use real vehicular mobility traces from over two million drivers from

the city of Cologne, Germany to learn the spatio-temporal distribution of real

driver destinations. Our platform then uses a new method to generate realistic

multi-destination route requests, exploiting Cologne’s road network along with many

destinations and curbside parking spaces in the city’s downtown.

The design of MDVRP has two components: a mobile app running on the

drivers’ smart phones and a server running in the cloud. The app submits real-time

route requests to the server, receives optimized routes from the server, and guides

the drivers toward destinations. In addition, the app reports to the server when and

where a car is parked and when it leaves its parking space. This allows the server to

manage the parking information and assign parking spaces to drivers. The server’s

main job is to interact with the mobile apps of all drivers and to optimize the routes

for these drivers to reduce their travel time, while managing tra�c congestion. The

optimization determines the best order to visit the destinations and finds the best

free curbside parking spaces for the drivers.

MDVRP uses TDTSP-FPA, a novel algorithm that combines a solution for the

Time-Dependent Traveling Salesman Problem (TDTSP) [19] to find the fastest route

for the next destination with our Free Parking Assignment Algorithm (FPA) to find

free curbside parking that minimizes the driving plus walking time for all drivers in
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the system. TDTSP-FPA manages the incoming requests in two steps: first, it finds

the shortest path to the next destination in a trip in such a way as to minimize the

total travel time. Second, it solves driver contention for the same parking spaces in

such a way as to minimize the total travel time for all drivers. The travel time for one

driver is the sum of: (1) driving time from the moment the driver submits a parking

request to the moment she parks, and (2) walking time from the parking space to the

destination and back. TDTSP-FPA’s optimization goal is to reduce the total travel

time for all drivers.

According to the experimental results, TDTSP-FPA reduces the total travel

time by 34% when compared to the solution that represents current driver habits

HTPO and by 29% and 26% when compared to baseline solutions for TSP

and TDTSP, respectively. TDTSP-FPA scales well, as it works better when a

larger fraction of drivers in the road network are MDVRP drivers. For example,

TDTSP-FPA’s travel time reduction compared with TDTSP’s is 25% when 5% of

drivers are part of MDVRP vs. 19% when only 3% of the drivers are part of MDVRP.

The system is robust and provides benefits even when drivers do not comply with the

recommended visiting order, but accept the parking assignment.

1.4 Structure of Dissertation

The subsequent chapters of this dissertation are structured as follows: Chapter 2

reviews related work. Chapter 3 presents FPS, a centralized parking assignment

system. Chapter 4 describes DFPS, a mobile distributed system for free parking

assignment. Chapter 5 describes MDVRP, a multi-destination vehicular route

planning system. Finally, the dissertation concludes in Chapter 6.
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CHAPTER 2

RELATED WORK

There are a large number of research work on di↵erent aspects of intelligent

parking systems, which include occupancy detection, parking management, system

development, dynamic pricing, etc. In this chapter, the reviewed papers are classified

based on their specific approach, focusing on parking guidance information, parking

assignment in both centralized and distributed architecture, and privacy preserving

parking assignment. We also discuss the relevant work for the multi-destination

vehicular route planning problem, with parking and tra�c constraints.

2.1 Parking Guidance Information

In the last few years, extensive research e↵orts have been dedicated towards finding

e�cient means to aid drivers in their search for free curbside parking spaces,

especially in highly solicited and crowded urban areas. To this end, one crucial

piece of information required to decide which parking space to select is about parking

occupancy or spaces’ availability. With the advent of location-based services and

embedded wireless sensors, several smart applications have been developed in order

to assist drivers in their parking search. Proposed solutions in literature fall into

two main categories: parking solutions with infrastructure assistance, and parking

solutions relying on estimated/predicted information. In the first category, existing

or added facilities gather accurate data about parking occupancy and capacities in

order for drivers to e�ciently locate their parking spaces. Whereas, in the second

category, such privilege no longer exists and the status of the parking spaces is either

predicted or estimated with other methods.

The relevant examples of solutions with infrastructure assistance are [3,20,21].

In SFpark [3] and SmartParking [20], where each parking space is equipped with
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a fixed sensor to determine its occupancy/availability. The infrastructure then

advertises the available parking spaces and manages their reservation. Moreover,

a penalty mechanism is proposed in [20] to ensure that vehicles respect their assigned

spaces. However, the deployment of these solutions is very expensive when monitoring

the curbside parking spaces. For instance, in SFpark, the sensors that installed into

the asphalt and cover about 25% of the available curbside parking in the city and

cost $23M. When a user wants to find a parking space in some area of the city,

the application shows a map with marked locations of the open parking spaces in the

area. This necessitates a large installation and operational cost in order to adequately

monitor the parking spaces at a city-wide level, or even at the level of a downtown area.

ParkNet [21] proposed reducing the number of required infrastructure/sensors. Their

idea was to provide a set of special vehicles (such as caps or buses) with ultrasonic

sensors. These devices are used to determine and reserve vacant spaces even in isolated

areas of the road. Although the authors show that these monitoring approaches

are very e↵ective and convenient, they have several shortcomings. First, the cost

involved in deploying and maintaining the sensor infrastructure is high. Second, the

precision of these ultrasonic devices lacks accuracy. Third, the concept of the solution

itself implies that the designated vehicles continuously monitor the state of the road

checking for parking availability. Fourth, all drivers see the same map at any given

time, and many of them will compete for the same spaces. This will lead to congestion,

drivers’ frustrations, and parking contention problems. Finally, drivers have to shift

their focus from the road to the map in their mobile devices to decide which space to

choose from all available spaces. It would be more su�cient and safer if the app just

guided the driver to an exact location where she will most likely find an open parking

space.

As an example of a solution based on predictability, Verroios et al. [22]

used vehicular ad-hoc networks (VANETs) as vehicles navigate through urban road
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networks to search for open parking spaces. They presented an algorithm based on

the time-varying Traveling Salesman Problem to compute a route of a driver that

goes through all the parking spaces that are considered available. Their approach

considered a probability of successful parking within a certain distance from the

current location. However, this solution is di�cult to apply in reality because the

availability of the parking spaces can change at any time. In addition, even if a driver

is successfully guided to a parking space, such a system in the aforementioned solution

increases the probability of finding any parking space at the expense of missing the

opportunity for a better space. Wolfson et al. [23] is another example that focuses

on P2P dissemination of parking reports and presents a parking choice algorithm

to choose parking spaces based on a relevance metric that includes the age of the

open parking report. Their work assumes that a driver knows the expected time the

slot will remain available from now, and how long it will take to travel there. In

the solution presented by Bessghaier et al. [24], vehicles exchange information about

both available and occupied parking spaces in cities. Based on the preferences of the

driver, a decision module selects an appropriate parking space (in the experimental

evaluation, parking spaces closer to the current location of the vehicle are preferred)

and stops di↵using information about that parking space in order to maximize the

chance of finding it open. Parking payment terminals (parking automates) are also

used in [25] to disseminate information about available parking spaces. These types

of solutions su↵er from accuracy and scalability problems since this process needs to

be iterated repeatedly for each freed parking space. It can also lead to the parking

contention problem and tra�c congestion.

The proposed solutions in this dissertation di↵er from the above research by

three aspects. First, they do not rely on expensive infrastructure; instead rely on

cooperative smart phones, which is a cheaper, more convenient, and more flexible

alternative. They choose to learn the parking information from the drivers and from
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cost-e↵ective parking monitoring solutions. As an example, Nawaz et al. [26] proposed

a smart phone based sensing system that leverages the ubiquity of WiFi beacons to

monitor the availability of street parking spaces. Salpietro et al. [27] developed Park

Here!, a smart curbside parking system based on smart phone-embedded sensors

and short range communication technologies. Arnott and Rowse [28] developed an

integrated model for curbside parking and tra�c congestion control in a downtown

area. Second, they aim to allocate parking spaces to reduce parking contentions: a

scenario where multiple drivers are looking for a parking in a crowded area. Third,

they guide drivers to their assigned spaces.

2.2 Parking Assignment

The next hurdle is how to e�ciently assign parking spaces to drivers while benefiting

from such information. For this purpose, several solutions have been proposed. We

can classify these solutions into two main categories based on the decision of the

maker’s identity: centralized parking decision making (in which a central authority

makes parking decisions and assigns each driver to a specific parking space), and

distributed parking decision making approaches (where drivers are not passive and

responsible for both searching and selecting vacant parking spaces).

2.2.1 Centralized Parking Assignment Model

In this model, drivers start by emitting their requests for parking spaces to a central

parking authority manager. Di↵erent parking requirements can be specified by

parking costs, proximity to the destinations, and any other parameter reflecting a

specific driver’s requirement. The central manager processes the received requests

and contributes the assignment of the available open parking spaces to drivers.

The parking assignment decision making module generally takes into consideration

the drivers’ requirements and the overall social welfare to maximize. For instance,
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Mackowski et al. [29] developed a demand-based real-time pricing model to allocate

parking spaces in busy urban centers optimally. Ayala et al. [30] developed a pricing

model to minimize the system-wide driving distance. However, the proposed pricing

approach is o↵-line in nature, as the number of vehicles and resources are known

in advance and do not dynamically change. The reservation system for parking

spaces is studied in [31]. A server collects information from curbside units and other

vehicles, and reserves spaces for vehicles. This system attempts to circumvent the

contention for parking spaces by using reservations; however, it does not optimize

some system-wide objectives (”social welfare”). Basu et al. [32] presented a travel

distance based approach, which is to assign the parking space to the nearest driver.

However, this work assumes that the nearest driver will arrive earlier, which ignores

the real-time tra�c information.

In addition to the academic research, the parking assignment apps have

addressed the parking problem by finding and reserving parking spaces to drivers.

For example, SpotHero [33], allows a driver to book discounted parking in lots and

garages right on her phone. Pango [34] o↵ers the possibility of drivers paying for meter

parking on their phone. ParkMe [35] and BestParking [36] are search engines that

let drivers search for lot and garage availability and directs drivers to the best and

cheapest parking options near to their destinations. These solutions are restricted,

they solve the garage and meter parking problem only, and also do not consider the

overall global social welfare. Unlike the previous works, this dissertation proposed a

centralized Free Parking Assignment system FPS which does not require any pricing

data as it deals with free spaces. FPS adapts on-the-fly to new parking requests and

combines a system-wide social welfare objective with a modified compound laxity

algorithm to minimize the total travel time for all drivers (walking and driving).

Even though the parking assignment problem has been solved in the centralized

model, it may su↵er from intrinsic problems. First, it is prone to an inherent single
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point of failure problem. Second, performing intensive computation (to assign spaces

to drivers) and communication with drivers (to receive location updates and guide

them to exact spaces) in real time makes the centralised solutions infeasible for large

regions with many drivers, which is not scalable. Third, drivers’ sensitive information

(e.g., identities, destinations, etc.) have to be submitted for the the availability of

parking spaces in their destinations, and this could result in privacy violation if they

are not protected. In contrast to existing centralized solutions, di↵erent parking

assignment solutions with advantages of decentralization, privacy, and trust has been

utilized for di↵erent parking applications.

2.2.2 Distributed Parking Assignment Model

In the distributed parking assignment model, vehicles/drivers are not passive during

the parking assignment process. Instead of relying on a central server’s decision

maker, they are responsible for both searching for open parking spaces and selecting

the parking to which they prefer to access. Delot et al. [37] proposed a solution

where each vehicle leaving its parking place becomes a coordinator for it. After

collecting information among interested neighbors, it decides on which one to share

the parking coordinates with. This process aims to reduce competition between

vehicles in search for parking since only the elected vehicle knows the parking place’s

exact location. However, this solution su↵ers from scalability since this process

needs to be iterated repeatedly for each open parking space. Moreover, it does not

address how free parking spaces are being assigned in the initial process. Other

parking assignment solutions such as the one proposed in [4] Ayala et al. propose a

parking slot assignment game where vehicles acting as players choose parking slots

in competitive parking settings. In [38], the same authors propose another parking

space assignment approach denoted as GPA for Gravity-based Parking Algorithm.

The basic idea behind the second approach is to use a heuristic based on the forces of
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attraction exerted by the slots. Authors assumed that (1) each driver has access to the

location of other vehicles, which raises privacy concerns and has technical di�culties

to perform the real-time tracking; (2) drivers are distributed uniformly across spaces

which does not happen in reality. They presented driving distance as a traveling

cost while ignoring the real-time tra�c information. The parking assignment system

in [5] capitalizes the ability of a trustworthy central controller to construct a feasible

assignment in a distributed fashion via the coordination of drivers. The problem with

this solution is that the assignment computation and communication are burdens on

the coordinator. This dissertation argues that the proposed Distributed Free Parking

Assignment system DFPS provides scalability and adaptability. DFPS reduces the

communication and computation cost by o✏oading the assignment process to the

parked drivers, where each one manages and assigns drivers to spaces in their regions

as well as it optimizes the system cost (i.e., total travel time (walking and driving)).

2.3 Privacy-Preserving Parking Assignment

There is always a trade-o↵ between privacy and disclosure of information. On the one

side, the amount of the information gathered directly a↵ects the e↵ectiveness of the

system. On the other hand, disclosure of information violates a driver’s privacy (e.g.,

real identity, destination, etc.). To support driver’s privacy, a variety of privacy-

preserving techniques have been proposed. These techniques are based on one of

following concepts. (a) reporting false location (i.e., dummy) [7] where the main idea

is to report the fake location; (b) spatial cloaking [39] where the main idea is to blur a

user’s exact location into a cloaked region that satisfies certain privacy requirements,

e.g., k�anonymity (i.e., the cloaked region contains k users) and minimum area

Amin (i.e., the cloaked region size is at least Amin). This technique is the most

popular one and it supports many environmental settings, e.g., centralized [40, 41],

distributed [42,43], P2P [44], wireless sensor networks [45], and many problem settings
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such as snapshot queries [40, 44, 46], continues queries [47], and trajectories [48].

Di↵erent from existing solutions, cloaking is utilized in an unique way in DFPS. First,

existing solutions use it to break the linkability between users and their location

and/or queries, while our solution aims to protect drivers’ destinations. Second,

existing solutions rely on a third party agent to perform cloaking in a centralized way

or a peer-to-peer infrastructure for mobile users to perform cloaking collaboratively.

DFPS does not assume these architectures, since it mainly uses the smart phone of

each individual driver.

Anonymity algorithms are proposed to form spatial cloaked regions. Abul

et al. [49] proposed a quad-tree-based anonymity algorithm which adopts a recursive

method to continuously divide the space region in which the mobile user resides

into four quadrants. Mokbel et al. [50] proposed an anonymous algorithm based

on the Casper model, which e↵ectively improves the performance of the anonymity

algorithm in [39]. However, there are some problems with these algorithms. In [49],

the anonymity algorithms may form redundant regions in the process of constructing

an anonymous region. In [50], the distribution of users is not considered and due to

the lack of users in sparsely populated regions, the anonymous region will fail to be

constructed. Our proposed privacy technique works well for both sparse and dense

regions. It considers the distance between the real destination and its neighbouring

destinations to construct a cloaked region that satisfies k�anonymity and ensures

that the destinations in the cloaked region are not clustered together.

Di↵erent works have been proposed for smart parking systems to preserve

driver’s privacy. For instance, the schemes [16, 17], proposed a centralized privacy-

preserving parking reservation services. These schemes preserve the privacy of

drivers’ desired identities using anonymity. Also, they use location obfuscation

techniques (e.g., geo-indistinguishably and cloaking) to protect the drivers’ real

destinations. However, the location obfuscation techniques reduce the accuracy of
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selecting nearest parking during the reservation process. Ni et al. [51] presented a

smart parking navigation where users are guided by a cloud server and road side

units (RSUs) to available parking lots in their destination. The scheme mainly

preserves drivers’ privacy by using anonymous credentials. However, hiding drivers’

real identities is not enough because the cloud server can identify the drivers from

their parking locations. Moreover, the drivers reveal sensitive information, such as

current locations, destinations, and arrival times to the cloud server. This enables

cloud servers to track drivers easily. Di↵erent from existing schemes, DFPS made a

balance between driver’s privacy and parking assignment e↵ectiveness by leveraging

pseudonymity to protect drivers’ identities and entropy-based cloaking techniques

to protect drivers’ desired destinations. Existing solutions rely on a third party

agent to perform cloaking in a centralized way or a peer-to-peer infrastructure for

mobile users to perform cloaking collaboratively. DFPS is able to blur the drivers’

destinations in cloaked regions without using any fixed communication infrastructure

or centralized/distributed server. DFPS generates the cloaked regions to the smart

phone of each individual driver.

2.4 Multi-destination Vehicular Route Planning

Vehicle route planning has been proposed as a strategy to decrease road tra�c

congestion and implicitly reduce the travel times for drivers. Most of the previous

studies on route planning focused on single-destination scenarios. Unlike these

studies, this dissertation focuses on a new and practical problem. Many drivers have

to go to several destinations in a trip, but do not care about the visiting order of

these destinations. Furthermore, our problem needs to satisfy real-time constraints

regarding vehicular tra�c and free curbside parking availability.

The Traveling Salesman Problem (TSP) is a well-known multi-destination route

planning problem that aims to find the shortest route (i.e., in terms of distance) that
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visits each destination once [10]. Although this problem is NP-hard, there is a large

number of algorithms that can solve the problem exactly for a practical number of

destinations or approximately for a very large number of destinations. However,

these algorithms assume that the travel times are constant throughout the day. The

Time-Dependent Traveling Salesman Problem (TDTSP) is a variation of TSP in

which the amount of time it takes the salesman to travel from one destination to

another fluctuates depending on the time of the day. By allowing the travel time

between destinations to vary, the TDTSP can better model real world conditions

such as heavy tra�c, road repairs, and automobile accidents. This dissertation is

interested in the time dependent problem introduced by [11–13] which strives to find

the shortest route when the travel time depends on the time of day and when the

route is traversed.

In these real-world TDTSP problems, there are frequently additional constraints

such as time-windows or precedence constraints. TDTSP with time windows [52]

deals with finding a set of optimal routes for a fleet of vehicles in order to serve a

set of customers, each one with a specified time window. Hurkala [53] proposes a

novel algorithm that computes the minimum route duration for TDTSP with multiple

time windows and time-dependent travel and service/visit time constraints. Di↵erent

constraints are addressed in Huang et al. [54] to e�ciently plan a route that satisfies

deadlines and cost requirements. The work finds an objective-optimized route where

the user-specified destinations are visited before their corresponding deadlines. It also

considers multiple deadlines for multiple destinations as well as optimizing the trip

cost simultaneously. Melagarejo et al. [55] proposes a set of benchmarks for TDTSP

based on real tra�c data and shows the importance of handling time dependency in

the problem. The authors present a new global constraint (an extension of no-overlap)

that integrates time-dependent transition times and shows that this new constraint

outperforms the classical Constraint Programming approach. In addition to academic
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research, route planning apps such as Route4Me, RouteXL, and GSMtasks [56–58]

aim to optimize driver’s route when traveling to multiple destinations. These apps

are able to e�ciently manage driver fleets as well as business and delivery drivers.

To the best of our knowledge, none of these works consider finding free curbside

parking for drivers and does not consider the influence parking availability and parking

locations on the tra�c conditions. This dissertation addressed this issue by presenting

Multi-destination Vehicular Route Planning system MDVRP. MDVRP system is the

first work on multiple-destination route planning that considers real-time parking and

tra�c conditions for multiple destinations, while optimizing the total travel time for

all drivers.

2.5 Summary

This chapter discussed the existing studies related to intelligent parking systems.

First, we presented existing solutions for parking availability detection/prediction

that rely on dedicated infrastructure and their shortcomings. Next, we have discussed

existing work on curbside parking assignment in di↵erent models (centralized and

distributed). We also discussed previous works related to driver’s privacy. Finally,

we presented related work to the multi-destination vehicular route planning problem.
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CHAPTER 3

CENTRALIZED FREE PARKING ASSIGNMENT

This chapter provides a general overview of the basic design of the proposed free

parking assignment system that provides individual parking space assignments to

drivers in Section 3.1. Section 3.2 introduces the greedy assignment algorithm in order

to emphasize the parking problems with this simple solution and motivate the need

for a more complex assignment algorithm. Section 3.3 defines the assignment problem

and the social welfare optimization criterion. The parking assignment algorithm is

described in Section 3.4, and the evaluation results are presented in Section 3.5. The

chapter is summarized in Section 3.6.

3.1 FPS Overview

To illustrate how the FPS works, let’s consider the scenario from Figure 3.1, in which

a driver requests free parking space next to her destination. The FPS system consists

of two components, namely parking requester (PR) and parking allocator (PA). PR

is a mobile app that runs on each driver’s smart phone and is in charge of submitting

parking requests, reporting parking status to PA, and guiding drivers to the assigned

parking space. Each parking request contains the requesting driver’s current location

and the desired destination. The reporting of parking status relies on drivers manually

registering their “parked” and “left parking space” status. Alternatively, the app can

learn this status from both an activity recognition service running on the phone [59]

and from a crowdsensing approach that utilizes the pedestrians’ smartphones on-street

to identify free curbside parking spaces [60]. The parking allocator (PA) runs on a

central server, where it manages the incoming parking requests and aggregates the

PR reports to determine the available parking spaces. For availability computation,

PA assumes that not all drivers participate in our system, e.g., not all drivers are
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Figure 3.1 Parking request example.

equipped with the PR component. This means that some parking spaces are occupied

by drivers that are not part of FPS. The FPA algorithms (see Section 3.4) running

at PA discover and iteratively monitor these parking spaces. In addition, PA could

estimate the number of spaces that are occupied by non-participating drivers in order

to reduce the number of unsuccessful assignments [61, 62].

The basic idea of the FPS parking assignment is described as follows. Drivers

who are looking for parking spaces use PR to send requests to PA. All incoming

requests are streamed into a queue and are processed first-come-first-serve. For

each request, PA allocates the available parking space that best matches the driver’s

destination. PA does not assign parking spaces to drivers who are far from the

destination in order to reduce the likelihood of assigned parking spaces not being

available upon the driver’s arrival. Such a situation could happen due to unsubscribed

drivers, and the likelihood that a space is taken by an unsubscribed driver increases

over time. Therefore, FPS just informs the drivers that are far from their destinations

that they will be assigned parking when they enter a zone of its destination, called

Request Distance (see Figure 3.1). PR shows the drivers this area on the map, so they

know when they should expect to receive a parking space as they approach the area.

The requests distance is defined as a circle with the destination at its center. The size
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of the request distance has to be large enough in order to avoid assigning a driver to a

parking space outside the request distance or perform the assignment after the driver

has passed the space. These two problems could increase driving time as well as reduce

driver’s satisfaction with the system. Therefore, we determined experimentally that

the radius should be initially set to the average length of the roads within the whole

region managed by a PA (e.g., a zip code). Then, the radius is adjusted periodically

based on the parking occupancy rate in the area: the radius is increased when the

occupancy becomes higher. In our design, FPS sets the request distance on behalf of

the drivers. However, the drivers could be allowed to set this distance themselves.

Once a driver enters the request distance, her parking request is scheduled

for assignment and the assigned space is returned to the driver. FPS makes the

assignment decision in such a way as to minimize the total travel time of the drivers.

3.2 Strawman Solution: Greedy

A strawman solution for the FPS’s parking space assignment algorithm is a greedy

strategy that minimizes the travel time for each individual driver on a first-come-

first-serve basis. Unfortunately, this strategy cannot guarantee that the total travel

time for all drivers is minimized. On the contrary, the greedy strategy may lead to

substantial increases in the total travel time.

For example, consider the parking problem shown in Figure 3.2, in which edge

labels represent travel time in minutes. The travel time for each driver is the sum

of the driving time to the parking space and the walking time between the parking

space and the actual destination. Greedy yields the (driver, parking space) assignment

(Driver1, space1), (Driver2, space2), and a total travel time of 50 minutes. On the

other hand, there is another possible assignment (Driver1, space2), (Driver2, space1)

with a total travel time of 40 minutes. This requires Driver1 to drive to a farther

space, space2, rather than driving to space1 which is closer. An assignment that
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Figure 3.2 An example of parking assignment.

minimizes the overall total driving time is possible when a central authority can choose

this parking assignment. We believe it is worth designing more advanced assignment

algorithms that maximize the social welfare (e.g., minimize the total travel time over

all drivers) because they will lead to less pollution, less wasted time in congestion,

and overall better travel time for all the drivers. This, of course, is achieved at the

expense of slightly larger travel times for some drivers when compared to the greedy

strategy.

3.3 Parking Assignment Problem Formulation

In this system, we consider a parking assignment problem defined as follows. Given

a set of drivers, each of whom needs to reach a specific destination, and a set of

curbside parking spaces, we would like to assign the parking spaces to drivers in

order to satisfy a system-wide objective. Let S = {s1, s2, ...., sm} be the fixed set of

curbside parking spaces distributed across a city region. Let V = {v1, v2, ...., vn} be

the finite set of drivers that are trying to reach destinations in the considered city

region. We assume the number of drivers is less or equal to the number of parking

spaces. The drivers look for parking spaces close to their destinations, which include

places such as banks, shops, houses, parks, hotels, and restaurants among others.

Similar to the parking spaces, the destinations are geographically dispersed across
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a city region. The drivers are assumed to be moving independently based on legal

speeds and the congestion levels on di↵erent road segments. We also assume that each

driver vi’s smart phone can compute the approximate driving time to her destination,

Td(Ovi , dvi), simply based on the geographical distance between her original location

Ovi (i.e., the location from where the parking request has been submitted) and the

destination dvi . This information is attached to the parking request and is updated

by driver’s GPS as the driver approaches the destination.

The travel time for a driver vi to reach her destination dvi includes two

components:

• Td (Ovi , sj) is the driving time of driver vi from the moment she submits her

request from location Ovi until she parks at the parking space sj.

• Tw (sj, dvi) is the walking time of the driver from the moment she parks until

the moment she arrives at her destination dvi .

Our goal is to determine an assignment Y of drivers to parking spaces that

maximize the total system cost. The system cost is maximized by an assignment that

minimize the following objective:

TC =
X

v2V

TC(v) (3.1)

TC indicates to a cost of the total travel time of all drivers to reach their exact

destinations dv. The computation of TC includes two phases:

Phase one: minimize the total walking time from the parking spaces to

the drivers’ destinations by using a strongly well-known minimum-cost network

flow algorithm (e.g., see [63]): Find assignment (vi, sj) for all vi 2 V , s.t.

min
Pn

i=1 Tw(sj, dvi), where n = |V | , sj 2 S.
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Phase two: minimize the total driving time from the drivers’ current positions

to the parking spaces by using our modified compound laxity algorithm: Assign vi

next if the laxity value Lvi is min for all v 2 V .

In Y , the assignment of a driver vi to a parking space sj can be represented

with a binary decision variable yij : vi ! sj:

yij =

8
>><

>>:

1, if vi is assigned to sj

0, otherwise

1  i  n, 1  j  m (3.2)

nX

i=1

yij  1, 1  j  m (i.e., sj 2 S) (3.3)

mX

j=1

yij = 1, 1  i  n (i.e., vi 2 V ) (3.4)

Constrains 3.3 and 3.4 ensure, respectively, that a driver receives at most one

space and that a space is not assigned to more than one driver. The violation of

either constraint leads to invalid assignments, which are either wasteful (e.g., assigning

multiple parking spaces to the same driver) or infeasible (e.g., multiple drivers sharing

the same parking space).

3.4 FPA Algorithms for Parking Space Assignment

This section presents two versions of FPA, a dynamic parking assignment algorithm

used by the FPS system to manage driver requests over time subject to social welfare

optimization. The algorithm handles a set of driver requests coming to the system
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independently by assigning available parking spaces to the drivers to satisfy their

requests.

By reducing the problem of finding available parking spaces to an instance of

the minimum-cost network flow problem on a directed bipartite graph, a strongly

polynomial time can be achieved [4]. Although this method results in a minimum

walking time and shows good computational properties, it can hardly meet our

system-wide objective described in Equation (3.1) for two reasons. First, this method

is designed for o✏ine settings where the number of parking spaces and drivers are

known and cannot be customized to a real-life, dynamic situation. Second, it only

minimizes the total walking time.

Therefore, we propose a di↵erent algorithm to construct the parking assignment

process dynamically over time and to maximize the social welfare described in

Equation (3.1). The algorithm addresses two challenges. One is the selection

of parking spaces, i.e., which parking space should be assigned to each driver to

satisfy her request, and the other is when a parking space should be assigned to a

driver. To address the first challenge, the algorithm tries to assign to each driver

the parking space closest to her destination. Assigning parking spaces far away

from the destinations increases driving distance and/or walking distance. To address

the second challenge, the algorithm assigns a parking space to a driver when she

approaches the destination and is about to look for a parking space. Assigning parking

spaces too early reduces the utilization of parking spaces. Assigning parking spaces

too late may results in increasing driving time and bad user experience.

Specifically, FPS periodically examines and updates the status of the drivers

and their requests. The period can be determined as a function of the road network

structure, parking spots distribution, and parking requests distribution. In our

simulations, we experimentally determined that a period of two seconds, which
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Figure 3.3 State transition of drivers in FPS.

provides a good trade-o↵ between performance and overhead. FPS moves the requests

through the states shown in Figure 3.3. These states are described below:

• WAIT: When a driver request comes to the system, it is stored in a FIFO queue,

waiting to be scheduled.

• READY: when the driver moves into the request distance, the request is

marked as READY . FPS schedules READY requests using FPA, which will

be described later in this section.

• ASSIGNED: The request enters this state when it is selected by FPA and

assigned to a parking space. The request stays in the ASSIGNED state until

the driver successfully park in her assigned parking space. If the assigned

parking space is found to be occupied by an unsubscribed driver when this

driver tries to park there, the request moves back to the READY state with

a high priority assignment. The request is finally removed from the system

when the driver leaves the parking space. The app on the driver’s phone will

notify the system when the car leaves the parking space. To deal with the
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case in which the notification is not received (e.g., when the driver’s phone is

turned o↵ or disconnected), each assignment has an expiration time, after which

the request is also removed from the system and the parking space is deemed

available again.

During each period, the main task of FPS is to select requests from the READY

state and assign them. This is the job of the FPA algorithm, and its main steps are

described in Algorithm 1.

Algorithm 1 FPA Pseudo-code

1: Given a destination dvi and an estimated driving duration to destination Di for each
driver vi 2 V

2: Preallocation:
3: for each request vi in READY state do
4: Allocate to vi the closest available parking space to dvi

5: end for
6: Preallocation Adjustment:
7: for each request vi in READY state do
8: if vi shares a parking space with another request then
9: Find a new parking space for vi that minimizes the total walking time
10: end if
11: end for
12: Update the laxity of each driver vi in READY state based on Di and its currently

allocated parking space
13: Search for a READY driver v with the minimum laxity value
14: Assignment:
15: Finalize the parking space assignment for v and change its state to ASSIGNED

16: Show the parking space on the smart phone of v.

For each request in the READY state, FPA first pre-allocates to the driver the

closest available parking space to her destination (lines 3-5). Then, it tests whether

the pre-allocation can be a valid assignment for each request. The pre-allocation is

valid if a parking space is not pre-allocated to more than one driver, as defined by

both constraints 3.3 and 3.4. If it is valid, FPA continues with line 12. If not, the

system immediately adjusts the pre-allocation by re-allocating other parking spaces

to some of the drivers to remove the duplicated assignments of parking spaces (lines

31



7-11). We use the solution to the flow problem described in [4] to select parking

spaces since it can minimize the total walking time.

Note that the pre-allocation and the adjustment of pre-allocation do not actually

assign the parking spaces. The actual assignments are delayed and take place only

when the requests become urgent (lines 12-13). The urgency is measured by the

laxity value Lvi of each request vi, which is defined as follows:

Lvi(t) = min(Td(Cvi , sj), Td(Cvi , dvi)) (3.5)

where Td(Cvi , sj) is the estimated driving time of driver vi from her current location

Cvi to the parking space sj; and Td(Cvi , dvi) is the driving time of the driver vi from

her current location to her destination. The intuition is that a parking space must be

assigned to a driver before she reaches either her destination or an available parking

space close to her destination (represented by the parking space pre-allocated to

her). Thus, the smaller the laxity value is, the more urgently the request assignment

must be finalized. When the laxity values are calculated, we round the values to

whole seconds. FPA compares the laxity values of READY requests and selects the

requests with the smallest laxity value to finalize their assignments. The operations

in lines 3-15 are repeated periodically to handle the remaining requests in the queues

and the newly-arrived requests.

While we assume that FPS drivers are generally representative of the entire

driving population, we do not assume that all or even a large fraction of drivers

will use FPS. Also, we do not assume that many pedestrians walk on the street

sidewalks to detect the parking availability using internal sensors (i.e., magnetometer)

of their smartphones [60]. Therefore, FPS drivers may compete for parking spaces

with non-FPS drivers, which we call unsubscribed drivers. Figure 3.4 illustrates how
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Figure 3.4 Illustration of parking spaces in di↵erent states.

FPS manages parking spaces. Since not all the parking spaces are available to FPS

drivers, FPS needs to maintain a list of spaces that may be potentially available

(spaces 2, 5, and 6 in Figure 3.4). Free spaces may be detected in di↵erent ways. For

example, the mobile app of the subscribed drivers can inform FPS when they leave

a parking space (i.e., using algorithms based on analysis of GPS and accelerometer

readings). Many vehicles are equipped with cameras, through which the availability

of nearby parking spaces can be visually confirmed.

FPS also needs to keep track of occupied spaces and avoid assigning these

spaces. While the spaces allocated by FPS itself can easily be maintained, there are

spaces taken silently by unsubscribed drivers. For example, spaces 2, 3, 6, 8 and 10

are occupied by unsubscribed drivers in Figure 3.4. FPS relies on subscribed drivers

to report these spaces to the system when they find that their parking spaces have

already been occupied. When it receives such reports, FPS marks the spaces as

“observed occupied”; spaces 3, 8, and 10 are such examples in Figure 3.4. Then, FPS

puts the requests of the drivers who reported these spaces back in the READY state.
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In our example, FPS does not yet know that spaces 2 and 6 are occupied because no

subscribed driver has reported them. Such spaces are called “hidden spaces”.

Parking spaces marked as “observed occupied” will not be assigned to other

requests to avoid unsuccessful assignments. However, permanently marking parking

spaces as “observed occupied” inevitably reduces the utilization of parking spaces

since “observed occupied” spaces may become available later. To solve this problem,

we propose FPA-1, an enhanced version of FPA to reclaim “observed occupied”

spaces. FPA-1 keeps track of how much time subscribed drivers occupy their parking

spaces and maintains an average parking time value. Instead of this global average

parking time, FPS could maintain per-street averages for higher accuracy. FPS

assumes that “observed occupied” spaces may also be occupied for similar amounts

of time with the average parking time of subscribed drivers. When a space is reported

to be taken by an unsubscribed driver, FPA-1 moves the space to a queue, named

observed occupied queue, and assigns a timer to this space, which expires after the

average parking time. When the timer expires, the space is moved back to the

allocation list (e.g., space 3 in Figure 3.4).

3.5 Evaluation

This section evaluates the performance of FPA and FPA-1 when compared to Greedy

and a Naive solution. Greedy assigns parking spaces to drivers as soon as they reach

the initial parking allocation area in a first-come-first-serve manner. When selecting

an available parking space for a driver, it always chooses the space closest to the

driver’s destination. The Naive strategy assumes the driver goes to the destination

and, once there, she starts a breadth-first-search for parking spaces along the nearby

road segments.

The evaluation is done via simulations over a real road network. The

experiments simulate two di↵erent scenarios: subscribed-driver-only scenario, which
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Figure 3.5 Road network used in experiments (a). Example of zoomed-in road
segments (b): parking spaces (gray dots) and destinations (red circles).

assumes that all drivers in the system use FPS; unsubscribed-driver-interference

scenario, which assumes there are a number of drivers who have not subscribed to

FPS. In the second scenario, unsubscribed drivers may occupy, without notification,

parking spaces known to the system as available.

We use average travel time metric to compare the performance of di↵erent

assignment strategies. For each driver, it includes the time spent on driving to the

parking space and walking from the parking space to the destination.

3.5.1 Simulation Setup

In our experiments, we use SUMO/TraaS [64], to simulate vehicles going to their

destinations in a business district in Manhattan, New York City. The road network

and the locations of curbside parking places are imported into the simulator based

on the real map of the district. Figure 3.5(a) shows the road network used in the

simulations, while Figure 3.5(a) illustrates an example of destinations and parking

spaces along a few road segments. The total number of parking spaces is 1024, and

the total number of destinations is 400.

The starting locations and the destinations of the vehicles are randomly chosen.

However, the destinations are chosen from a small region in the center of the map to

ensure enough contention for parking spaces. Each vehicle moves along its route at
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the legal speed limit of each road on the route and the movement is restricted within

the map. Every vehicle may adjust its speed for safety driving and to follow tra�c

laws. For example, it must keep a reasonable distance from the vehicle in front of

it or it slows down when approaching an intersection or its parking space. Once a

vehicle parks, we calculate the driving time and the walking time; For walking time,

we consider an average speed of 1.4 m/s, which is reasonable for adults (men and

women) [65, 66].

To simulate the scenarios with di↵erent parking densities and contention levels,

we varied the number of vehicles, the number of parking spaces, and the number of

destinations, which are as specified in each individual experiment. FPS starts each

test with 1024 vacant parking spaces. The arrival rate of the requests falls within the

range of 1 to 5 requests per second. The period for the parking assignment algorithm

is set to 2s; this value was determined experimentally to provide a good trade-o↵

between performance and overhead. For each experiment, we collected results from

5 runs and averaged them.

3.5.2 Results for Subscribed-Drivers-Only Scenario

Figure 3.6 compares the performance of FPA, Greedy, and the Naive algorithm by

varying the number of drivers from 128 to 768 with a fixed number of destinations

(8) distributed in the centroid area of the map.

The results demonstrate that FPA outperforms the comparison algorithms.

When the number of drivers increases, the average travel time grows quickly for the

Naive algorithm. This is because the contention for the parking spaces close to the

destinations leads to substantial tra�c congestion, which is exactly what we observe

in real life. FPA decreases the average travel time by a factor of 4 compared with

the Naive solution for 768 drivers (110.49 minutes). These results demonstrate the

substantial impact FPS can have on driving and parking in the cities. As expected,
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Figure 3.6 Average travel time for a di↵erent number of drivers and a fixed number
of destinations (8).

the average travel time increases for FPA and Greedy with the number of drivers, but

this increase is sub-linear. This is because these algorithms avoid having the drivers

go to the destinations and then starting to search for parking.

Compared to Greedy, FPA is more e↵ective as it reduces the average travel

time by as much as 40%. These results can be explained by the design of FPA, which

optimizes the system-wide travel time. As discussed, maximizing the social welfare

leads to lower walking time, and our modified compound laxity algorithm leads to

lower driving time.

Figure 3.7 shows the average travel time of 768 drivers when the number of

destinations is varied from 1 to 8. The figure also plots the contribution of walking

time and driving time in the total time. With more destinations, the advantage of

FPA over Greedy becomes more prominent. Compared to Greedy, FPA reduces the

average travel time by 18% in the one destination case and 42% in the 8 destination

case. The reason is that, with more destinations, there is more space for FPA to

perform optimization by balancing the driving and walking distances of the drivers
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Figure 3.7 Walking and driving time of FPA and Greedy with a di↵erent number
of destinations and a fixed number of drivers (768).

with di↵erent destinations. Thus, both average driving time and average walking time

can be reduced with FPA. As shown in Figure 3.7, FPA can reduce the average driving

time by up to 61% and reduce the average walking time by up to 14% relative to

Greedy. We observe that Greedy with two and four destinations performs better than

with eight destinations. The reason is that some parking spaces could be allocated for

more than one destination and Greedy is not able to allocate them e↵ectively (i.e.,

similar to the example shown in Figure 3.2). This phenomenon becomes significant

as the number of destinations increases to 8.

Since FPA minimizes the total travel time for all drivers, one may ask how is

the performance of individual drivers impacted by our algorithm. To answer this

question, we conduct an experiment to find out the travel time gains or losses for

individual drivers. To measure the gains/losses, we calculate the ratio between the

travel time obtained by the Naive algorithm and the travel time obtained by FPA

for each driver. If the ratio is higher than 1, the driver has benefited from FPA.

Otherwise, the driver has not. Then for each run of the experiment, we sort the
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Figure 3.8 Distribution of travel time Gain/Loss for all drivers in the system with
a fixed number of destinations (8). Gains are values greater than 1, and Losses are
values less than 1. Error bars are shown.

drivers in the ascending order of these ratios. We then, average the ratios for these

sorted drivers as shown in Equation (3.6).

NP
j=1

(T j
i (Naive)/T j

i (FPS))

N
, i 2 V (3.6)

where N is the number of runs, and T j
i is the travel time for the driver in position i

in the sorted driver list for experiment j for both Naive and FPS algorithms.

Figure 3.8 plots the distribution of individual travel time gains/losses for 512

drivers. The results show that 87.8% of the drivers obtain gains, and some of them

have very large gains. Nevertheless, the number of drivers with losses is not negligible.

From a practical point of view, a few bad experiences could impact the adoption rate

of FPS. Therefore, we plan to investigate methods to limit the number of drivers who

experience losses and bound the loss ratio to low values.
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Figure 3.9 FPS consistency over time: 768 drivers divided into eight equal batches
as a function of their arrival time at 8 destinations.

In the next experiment, we analyze the behavior of FPA and Greedy over time.

We divide 768 drivers in 8 equal batches based on the time they arrive at their

destinations.

Figure 3.9 shows that FPS performs consistently better than Greedy during

the whole parking assignment process as new drivers enter the system over time.

As expected, the average travel time for earlier batches is lower as there are more

parking spaces available at locations closer to destinations when they arrive. Also,

the di↵erence between the two algorithms is not large because Greedy can perform

a good assignment under these conditions. However, we notice that FPA performs

substantially better than Greedy (up to 1.5 times) for the middle batches. Since

Greedy simply moves each vehicle toward the closest parking space available, the

total driving time and therefore congestion are higher, especially when the number of

assigned vehicles increases and the number of available spaces decreases. Therefore,

in Greedy, drivers waiting to be assigned are congested with drivers heading to their

assigned spaces. The average travel time in the last three batches decreases because

the assigned drivers park in their spaces and most of the vehicles on the road are

waiting to be assigned. For the later batches, FPA is still clearly better, but it does

40



Figure 3.10 Average travel time when varying the number of hidden spaces: 768
drivers and a fixed number of destinations (8).

not have as much room for optimization as it has for the middle batches. This is

because fewer parking spaces are available.

3.5.3 Results for Unsubscribed-Driver-Interference Scenario

To test the capability of FPS to tolerate interference from unsubscribed drivers, we

randomly selected a number of spaces located in the request distance and marked

them as “hidden” spaces, indicating that they are currently occupied by unsubscribed

drivers (see Figure 3.4). FPS is not aware of a “hidden” space until a vehicle is

assigned to that space and finds that the space is taken (i.e., an “observed occupied”

space). During the experiment, the “observed occupied” spaces become available over

time to simulate unsubscribed drivers leaving their parking spaces. The times for

the “hidden” spaces to become available are assumed independent and exponentially

distributed, but the average parking time for unsubscribed drivers is same to the

average parking time for subscribed drivers. As the number of “hidden” spaces

increases, we increase the radius of the parking space allocation area proportionally,

such that there are still enough parking spaces available to the subscribed drivers.

41



Figure 3.10 compares the performance of FPA, FPA-1, and Greedy when the

number of hidden spaces is varied from 32 to 256. We observe that both FPA

and FPA-1 outperform Greedy, and their relative performance when compared with

Greedy increases with the number of hidden spaces. We also notice that FPA-1

achieves lower average travel time than FPA, and its performance is almost constant.

FPA-1 reduces the average travel time by 10% relative to FPA and 33% relative to

Greedy on average. These results demonstrate that FPA-1 adapts very well to the

interference caused by unsubscribed drivers.

3.6 Summary

In this chapter, a centralized free parking assignment system FPS was presented.

FPS is a cost-e↵ective and adaptive parking system to address the problems faced by

a driver when trying to find a free parking space in an urban environment. Unlike

existing approaches, FPS assigns parking spaces to drivers in a way that optimizes

the social welfare. To minimize the total travel time for all drivers, FPS uses a novel

parking assignment algorithm, FPA, to assign each driver to an available parking

space close to her destination in a way that reduces the total travel time (i.e., the sum

of the driving time to the parking space and the walking time from the parking space

to the destination). FPA manages the e↵ect of unsubscribed drivers that compete

with FPS drivers for parking spaces. FPS was tested on a real road network and

compared to Greedy and Naive parking assignment algorithms. The results show

significant performance improvement over the other systems.
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CHAPTER 4

DISTRIBUTED FREE PARKING ASSIGNMENT

The proposed parking assignment system in Chapter 3 is centralized, which makes it

a bottleneck, as the server has to perform intensive computation and communication

with the drivers, and a privacy risk, as the drivers have to disclose their destinations

to the server. To address these limitations, this chapter presents DFPS, a distributed

mobile system for free parking assignment. The chapter starts with system model

of DFPS together with its scalability and privacy goals in Section 4.1. Section 4.2

describes the entropy-based cloaking technique to conceal drivers’ destinations in the

parking requests. Subsequently, the K-D tree structure of the cooperative drivers is

explained in Section 4.3. Section 4.4 presents the parking assignment algorithm. The

privacy analysis and performance evaluation are shown in Section 4.5 and Section 4.6,

respectively. The chapter concludes in Section 4.7.

4.1 System Overview

This section presents an overview of DFPS, with emphasis on its design goals and

system/threat models.

4.1.1 Design Goal

Our design goal is to propose a solution that solves two intrinsic problems in a

centralized system for parking assignment: scalability and privacy. In a centralized

system, the server responsible for communication with drivers and parking request

processing could be a bottleneck. Also, processing parking requests requires drivers

to disclose their desired destinations to the server. This could lead to major privacy

concerns for the drivers and may prevent this solution from being adopted. Thus, the

following system objectives should be considered to achieve the design goal:
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Figure 4.1 DFPS system architecture.

• Scalability: The parking assignment process should be distributed and

performed e�ciently on the drivers’ smart phones rather than at the central

server to reduce the computation and communication burden on the server and

to achieve better scalability.

• Privacy: The drivers’ destinations should be protected. When a driver submits

her parking requests through the central server, the server cannot identify her

desired destinations and cannot link di↵erent parking requests submitted by the

same driver at di↵erent times.

4.1.2 System Model

Under the aforementioned system objectives, we propose the following system model

to implement DFPS (Figure 4.1). The system consists of the following two entities: a

parking app running on the drivers’ smart phones and a parking assignment dispatcher

running on a server.

• Drivers in the system are divided into three categories, based on their status:

(1) drivers who are looking for parking spaces, (2) parked drivers, and (3)
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departing drivers. The drivers in the first category determine their cloaked

regions, submit their requests along with the regions, and then wait to receive

parking spaces while heading to their destinations. Once parking assignments

are made, they drive to the parking spaces. When a driver has parked (second

category), she cooperates with other parked drivers to provide on-demand

parking service for the drivers looking for parking spaces. Departing drivers

report when they leave the system such that DFPS can update the status of

the parking spaces. Drivers use their smart phones to communicate with the

system and with other drivers through the Internet (e.g., over 5G).

• Dispatcher is a cloud server that receives parking requests from the drivers

looking for parking spaces, and forwards them to parked drivers who perform

parking assignments. The dispatcher also serves as a bootstrapping unit to

initialize the whole system. During the system’s adoption period, when a few

number of parked drivers provide the parking service, the dispatcher could share

with the drivers parking availability information derived from historical parking

statistics, real-time sources (e.g., street images from video cameras), or real-time

curbside parking occupancy data from sensors embedded in the smartphones of

pedestrians, who walk on the sidewalks next to the parking spaces [60].

The high-level workflow of the DFPS architecture in Figure 4.1 illustrates

the life-cycle of a parking request in the system, from generation to completion.

When a request is generated, an entropy-based cloaking technique is used to protect

privacy. Specifically, each driver has its own privacy profile that specifies the desired

level of privacy. A privacy profile includes two parameters, a pseudonym and an

integer k. The pseudonym ensures the pseudonymity of the parking request by

concealing the driver’s identity and k indicates that a driver wants her destination to

be k�anonymous, i.e., indistinguishable among k�1 neighbour destinations. In other

45



words, the driver wants to find a cloaked region that includes at least k�1 neighbour

destinations to conceal her desired destination from the dispatcher. The larger the

value of k, the more strict the privacy requirement is. The entropy-based cloaking

technique generates cloaked regions (detailed in Section 4.2), which are sent along

with parking requests.

After a parking request with a cloaked region is generated at the app on the

smart phone, a question that arises is when the request should be sent and parking

spaces are assigned. Assigning parking spaces when drivers are far away from their

destinations increases the likelihood that the assigned spaces are taken by drivers who

are not subscribed to DFPS (i.e., unsubscribed drivers) and reduces the utilization of

parking spaces. Assigning parking spaces too late may result in an increase in driving

time and bad user experience, especially when the system may not be able to find a

parking space close enough to the destination. Therefore, the cloaked regions serve a

dual-purpose. As discussed, they provide privacy protection for drivers’ destinations.

In addition, DFPS uses them to determine when a driver’s parking request has to be

sent to the dispatcher: a parking request is sent to the dispatcher when the driver is

about to reach the cloaked region.

In DFPS, the sizes of cloaked regions are determined by the following a few

factors: 1) the need to preserve privacy: larger regions tend to contain more

destinations and preserve privacy better; 2) the need for finding optimal parking

spaces for drivers: with more available parking spaces, larger regions tend to

provide more opportunities for DFPS algorithms to perform parking assignment

optimizations; and 3) the need to avoid interference from unsubscribed drivers: with

smaller regions, the contention of unsubscribed drivers for assigned parking spaces is

less intense.

All the requests are sent to the dispatcher first. Then, the dispatcher forwards

them to parked drivers. The work required to serve requests is divided among parked
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drivers. This protects a driver’s destination at the dispatcher side, minimizes the

workload on the dispatcher, and maximizes the system scalability. We partition the

whole area of a city into regions, and assign a parked driver to manage a region and

allocate parking spaces in that region. We use a structured peer-to-peer network to

organize parked drivers and the regions that they are in charge of. Once a driver parks

in her assigned space, she is assigned to a region, joins the peer-to-peer network, and

starts to serve parking requests from the drivers who are looking for parking spaces

in her region.

4.1.3 Threat Model and Privacy Goals

Threat Model. We assume that the dispatcher is honest-but-curious, i.e., it follows

the protocol correctly, but may try to analyze the information available in the system

in order to find private information about the drivers. For example, the dispatcher

could be interested in learning personally identifiable information about the drivers

such as their identity and their destinations. The dispatcher may also be interested

in linking di↵erent parking requests made by the same driver, which could reveal

over time private information about the drivers. We also assume that parked drivers

do not collude with the dispatcher (i.e., share information) or act maliciously in any

other ways in order to break the privacy of other system users. Specifically, we do not

handle the situation in which parked drivers may attempt to disclose the destination

data of drivers for which they perform parking assignment.

A determined attacker could potentially be willing to expend resources and have

a physical presence at a location in the real world in order to determine a driver’s

destination. We assume that the attacker’s ability to execute such an attack is limited

because it is expensive; whereas the attacker may be able to cover a small number of

locations, it is not feasible nor cost e↵ective to execute such an attack at scale.
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The role of the dispatcher could be played by a telecommunication company

which can also act as a service provider (e.g., AT&T). This gives an unscrupulous

dispatcher the chance to identify drivers’ real identities as well as their destinations

by tracking their location. In this work, we do not consider such a strong adversary.

Finally, we assume that the communication between entities in the system

is protected using standard security mechanism against interference from external

adversaries.

Privacy Goals. To mitigate the aforementioned privacy threats, DFPS needs to

achieve the following privacy goals:

• Driver identity privacy : Drivers should not have to reveal personally identifying

information (such as their real identity). This helps preserve the privacy of the

drivers as related to their real-world persona, which may otherwise act as a

deterrent against using the system.

• Unlinkability of parking requests : Given two parking requests, the system should

not be able to tell if they are made by the same driver or by di↵erent drivers.

This prevents building a profile of a driver over time, which may eventually lead

to revealing a driver’s real-world identity and their parking request history.

• Parking destination privacy : Given a parking request, the system should not

learn the real destination of the parking request. This also prevents the system

from learning information about a driver’s real identity by correlation with the

destination of parking requests.

There are well-known techniques to address the first two privacy goals, for

example drivers can use a randomly chosen pseudonym for each parking request.
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Our primary focus in this dissertation is to achieve the third goal, that of parking

destination privacy.

4.2 Privacy-Aware Parking Request

Protecting driver’s destination privacy against the attacks at the dispatcher side is

one of the DFPS goals. Knowing the driver’s destination could disclose sensitive

information (e.g., interests, the most visited places, etc.), which can cause privacy

breaches, even if the driver uses a new pseudonym with every parking request [39,47].

Privacy concerns in location-based services exist on two fronts: location privacy and

query privacy [67, 68]. Spatial cloaking is a privacy protection mechanism used to

protect both location and query privacy [50, 69]. The main idea is to blur a piece

of location information by replacing the exact location with a cloaked region that

contains the location and some other similar locations so as to satisfy the user’s

privacy requirement, e.g., k�anonymity [39] (i.e., the cloaked region contains at

least k users). This mechanism is widely used because of its high e�ciency. However,

it must be improved to be usable in DFPS due to two drawbacks in our problem

settings. First, it fails to consider the distribution of destinations, and a cloaked

region with many destinations clustered together could be very small. Thus, the user

privacy may be negatively a↵ected. Second, it requires additional system resources

from trusted third parties (e.g., location anonymizer [50, 70], peer users [44]). This

makes the system more complex and may bring additional vulnerabilities.

DFPS proposes an entropy-based cloaking technique that overcomes these

drawbacks. DFPS generates cloaked regions that satisfy the privacy requirements of

drivers by achieving k�anonymity. The construction of a cloaked region satisfies four

requirements: (1) the cloaked region is not centered around the actual destination to

avoid ”center-of-cloaked-region” attack [43,71]; (2) the destinations in the region are

not very close to each other to avoid the clustering problem; (3) the region has enough
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Figure 4.2 Entropy-based cloaking technique. (a) Basic k-anonymity region
creation; (b) Center adjustment; (c) Entropy-distance adjustment; (d) Parking-
availability adjustment.

open parking spaces to ensure the e↵ectiveness of the parking assignment algorithm;

and (4) the process of generating the region does not rely on trusted third-party

servers.

These requirements are considered in the four phases of the cloaked region

construction: (a) basic k-anonymity region creation; (b) center adjustment;

(c) entropy-distance adjustment; and (d) parking-availability adjustment.

Figure 4.2 illustrates these phases, with a running example. In the figure, 13

destinations are represented with solid circles, and dv is the real destination of the

driver. We assume that the required k�anonymity level is four, i.e., k = 4. The

operations in these phases are as follows:
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Phase (a): Basic k-anonymity region creation: This phase starts

by applying the k�nearest neighbours algorithm (KNN) to determine the k�1

nearest destinations to dv. Then, as shown in Figure 4.2(a), it defines a

circular region A centered at dv that encompasses the k�1 nearest destinations

(i.e., NumDest(A) � k).

Phase (b): Center adjustment: For the di↵erent requests with the same

destination, phase (a) always generates the same cloaked region. This makes the

solution vulnerable to “center-of-cloaked-region” privacy attack — an attacker could

guess that the destination closest to the center of the cloaked region is the real

destination of the driver. Thus, we propose an adjustment scheme for the region’s

center. As shown in Figure 4.2(b), DFPS randomly selects a point x in A and finds a

set of k�1 nearest destinations to x. Phase (a) guarantees that x is not too far from

dv. DFPS then constructs a new region A’, which is centered at x and contains the

k-nearest destinations (including the real destination dv).

Phase (c): Entropy-distance adjustment: Region A0 satisfies requirement

(1), but not requirements (2) and (3). It is possible that the distance between the

k�1 neighboring destinations in A0 is small, making it easier for an attacker to infer

the driver’s destination. Knowing the driver’s identity helps an attacker to physically

inspect which destination the driver is located at. To prevent this type of attack, the

cloaked region may be further expanded while keeping x as its center. This adjustment

is conducted using the entropy of distance method [18]. If the destinations of A0 are

located on fewer than k/2 segments (i.e., they are too close to each other), DFPS

selects a di↵erent set of k � 1 neighboring destinations and ensures that: (i) the

selected k�1 destinations are evenly distributed in the new, expanded region; and

(ii) the new region is not expanded too much.

We first use the KNN algorithm to find 2k nearest neighbour destinations around

x. The area containing all these destinations is inevitably large. Thus, we examine
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the distribution of these 2k destinations to determine a smaller region A00, which

contains k�1 destinations that can hide well the location of the real destination, based

on the entropy values defined below. The number 2k is experimentally determined

and provides a good trade-o↵ between performance and overhead. In a practical

deployment, DFPS can allow users to adjust a threshold for this method (in addition

to the anonymity parameter k).

DFPS selects the k�1 destinations in this phase such that these destinations

have a large entropy value, indicating that they are evenly distributed in the region.

For this, DFPS forms m destination groups, each of which has k�1 destinations

randomly selected from the 2k destinations. For each group, DFPS calculates two

values: 1) an aggregated distanceD, which is the sum of the distances between each of

the k�1 destinations and the center x, and 2) an entropy valueH, which measures the

uncertainty of the destinations (more uncertainty indicates more even distribution).

The entropy of a group is calculated using the following equation.

H(n) = �
k�1X

i=1

/ni log /ni (4.1)

In the equation, /ni is the the weight of the destination i, which is defined as

follows:

/ni=
dist(x, di)P2k
j=1 dist(x, dj)

(i = 1, .., k � 1) (4.2)

Among m groups, we select the group to determine the cloaked region A00 as

follows. If theD values of the groups are equal, we select the group whose destinations

are more evenly distributed (larger entropy value). Otherwise, we select the group

with the largest D value.
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Figure 4.2(c) depicts how a cloaked region is expanded using the entropy of

distance method. The area of A0 is first expanded to cover 2k=8 nearest destinations

including dv. Lines between the destinations indicate the spatial neighbor relation

between each destination and x, and the values marked on the lines indicate

the distances. Assume that three (m=3) groups of destinations are randomly

selected, G1={x, d5, d8, d9}, G2={x, d3, d5, d6}, and G3={x, d5, d7, d8}. According to

formula 4.1, the entropy on distances is obtained. The total distance of destinations

is also calculated for each group. The total distance of destinations in G1 is less than

those of G2 and G3. The total distances of G2 and G3 are almost equal; however,

the destinations in G2 are more evenly distributed than the ones in G3. According

to the entropy of distance method, G2 is chosen in this example. Then, the cloaked

area A00 is computed based on group G2. The cloaked area shown in the figure is

before the shrinking done according to G2.

Phase (d): Parking-availability adjustment: this phase happens when

the DFPS app at the driver sends a parking request for region A00 to the dispatcher.

As explained, A00 guarantees k-anonymity destination protection (i.e., the dispatcher

cannot tell the real destination from k� 1 other destinations, which are not clustered

together). Upon receiving the request, the dispatcher has to decide whether to forward

it to the peer-to-peer network of parked drivers as is or to expand the region further.

The decision is based on the parking availability in A00. The dispatcher dynamically

maintains the spatial distribution of parking availability in the whole city as we will

describe in Section 4.3.5. If the number of available spaces in A00 is less than a

threshold Pmin, the dispatcher expands the region to encompass the closest available

parking spaces to center x that are not within A00 until the number of parking spaces

in the region reaches Pmin. This is done to avoid the parking space scarcity problem.

In DFPS, there is always a chance that an unsubscribed driver will take a parking

space before the driver assigned to that space arrives there. The probability of this
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situation to happen is much higher when there is parking space scarcity in a region.

Expanding the region up to Pmin parking spaces reduces the likelihood of such a

situation.

Figure 4.2(d) depicts how the cloaked region A00 is expanded to satisfy the

parking availability condition. We assume that Pmin = 3, and the number of available

parking spaces within A00 is two. A00 will be expanded to contain at least three

available parking spaces.

The Dispatcher over-estimates the number of available parking spaces as it uses

only information from the DFPS parked drivers. This is because unsubscribed drivers

may take parking spaces presumed to be available by our system (this problem is

addressed in Section 3.4 based on keeping track of spaces occupied by unsubscribed

drivers and on avoiding assigning these spaces for a period of time). Thus, the value

of Pmin should be reasonably large to tolerate this over-estimation. This value is

determined experimentally as a function of the number of destinations and the total

number of spaces in the region in order to provide a good trade-o↵ between destination

privacy and system optimization.

An alternative solution that avoids phase (d) is to make the cloaked region

significantly larger than A00 before submitting the request. In this way, there will be

a high chance to find parking spaces available in the region. However, this alternative

solution may assign the parking spaces too early (when the drivers are far away from

their parking spaces), and the parking spaces may be taken by unsubscribed drivers

before the subscribed drivers arrive there. Thus, we choose to apply phase (d) instead

of this alternative solution.
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4.3 Overlay Network Structure and Operation

DFPS uses a peer-to-peer overlay network to organize parked drivers and the regions

managed by the parked drivers. The organization of parked drivers needs to satisfy

the following requirements:

• Scalability : The drivers must be organized in a scalable way to share the

workload e↵ectively.

• Fast Routing : Given a request, DFPS must quickly identify the driver managing

the region where the parking space is requested.

• Adaptability : The overlay network must adapt quickly and with low overhead

to high churn (i.e., parked drivers coming and going frequently).

4.3.1 K-D Tree Network Structure

To meet the above requirements, DFPS organizes the overlay network of the parked

drivers as a K-D tree. A K-D tree is a k-dimensional binary search tree for partitioning

and spatially indexing data distribution in a k-dimensional space [15, 72]. A node in

the K-D tree is associated with three types of information: a value, a rectangular

representation (i.e., a region) containing a set of data points, and the coordinates of

these data points.

Each node in the K-D tree represents a region. The region corresponding

to a parent node is divided into sub-regions corresponding to the children of that

node. The locations of the parking spaces in a region are represented as data points

associated with the node for that region. The node’s value is the location of the first

driver parked in the corresponding region when the region and the node are created.

For brevity, we call this value the location of the node.
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Figure 4.3 The roles associated with nodes in the K-D tree.

DFPS associates a parked driver with each tree node. The tasks of forwarding

parking requests and allocating parking spaces, as well as the data structures required

to manage these tasks, are associated with nodes. Since the nodes follow a tree

structure, DFPS can manage the tasks and data structures in a hierarchical way,

which leads to good scalability.

There are two roles that may be associated with a node in the K-D tree as

shown in Figure 4.3: 1) region manager which forwards parking requests, divides a

region into two sub-regions when necessary, and assigns sub-regions to drivers that

park in these sub-regions; 2) parking manager which assigns parking spaces within

the region associated with the node. Depending on its position in the tree, a node

may have one or both of these roles. A leaf node acts only as parking manager for its

region (i.e., nodes C, F, G, and H). An internal node that has two children acts only

as region manager (i.e., nodes A and E). An internal node that has only one child

acts as parking manager for the sub-region that is not covered by the child node, and

it acts as a region manager by forwarding requests to its child or by assigning the

sub-region not covered by the child to a driver that parks in that sub-region (i.e.,

nodes B and D).
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Since parking space allocation is handled by the phones of parked drivers, we

also refer to the parked drivers as the region manager or the parking manager of the

regions corresponding to the node (depending on the node’s role).

4.3.2 Joining and Departing K-D Tree

The K-D tree grows dynamically when more drivers park. When a driver informs its

parking manager that it had parked, the parking manager creates a sub-region and

a new node for the sub-region. Then, it attaches the new node as the child of the

node it manages and assigns the newly parked driver to manage the new node and

the parking spaces in the corresponding sub-region. Thus, the newly parked driver

becomes the parking manager for these parking spaces. Over time, it also becomes a

region manager when it has to divide this sub-region.

When a parking manager creates sub-regions, it divides its region based on the

location of its parking space. This design has two advantages over evenly splitting the

entire region among all the parked drivers. First, it helps to evenly distribute parking

requests to parking managers. Due to hot spots, the destinations of drivers are not

distributed evenly in the region. If the entire region is evenly partitioned among

parking managers, the drivers managing hot areas might be overloaded. In contrast,

the method employed by DFPS guarantees that more parking managers are assigned

to hot areas than cold areas. Second, sub-regions are created dynamically within a

small region where the driver parks. Other regions are not a↵ected. This minimizes

the changes to regions and the associated overhead, such as exchanged messages.

Figure 4.4 shows an example illustrating how a K-D tree grows, in which four

drivers (A,C,B,D) park sequentially in a region with a size of 8x8. Figure 4.4(a)

shows how the sub-regions are created when these drivers park, and Figure 4.4(b)

shows how each new node is created and added to the K-D tree. Initially, before any

driver parks, there is only one node (i.e., the dispatcher) in the tree, managing the
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Figure 4.4 Example showing how a K-D tree grows when drivers A,C,B,D park
in a 8x8 area. Dots represent parking spaces and letters represent parked drivers.
The numbers in each box of sub-figure (b) are the 2-D coordinates of the parking
space of the corresponding driver.

entire region. The location of the dispatcher ((4,7) in the figure) is chosen such that

its value on the x-coordinate is in the middle of the region, whereas its value on the

y-coordinate is chosen at random. Choosing the x value in the middle helps with

system load balancing, as the first split of the space in the K-D tree is done on the

x-coordinate.

When driver A parks at coordinate (1, 4), the whole region is split into two

sub-regions. Sub-regions are created by splitting the parent region along alternating

dimensions depending on the K-D tree level of the node managing the parent region.

At the root level, the x-dimension is used. In our example, the first splitting is along

the x-coordinate of the dispatcher. The sub-region where driver A parks is assigned

to A. Although the dispatcher is still the region manager of the entire region, node

A is the parking manager of the sub-region assigned to it. The dispatcher remains

the parking manager for the other sub-region.
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Driver C requests a parking space in the region whose parking manager is A.

Assume that A assigns parking space (3,2) for driver C. When C parks, the new

node created for C is added as a child node of A. Thus, A splits its region into

two sub-regions based on the y-coordinate of A’s parking space location. Since the

parking space of C is in the bottom sub-region, C becomes the parking manager of

this sub-region. Although A is the region manager of the region consisting of the

two (top and bottom) sub-regions, it acts as the parking manager only for the top

sub-region.

Driver B requests a parking space in the region managed by the dispatcher,

and the dispatcher allocates a parking space at (6,6) to B. When B parks, the node

created for B is added as a child of the root. It then becomes the parking manager

of the dispatcher’s second sub-region (the right half of the whole region). Since A

and B handle the parking space allocation of both the dispatcher’s sub-regions, the

dispatcher no longer handles any parking space allocation.

When parked drivers leave their parking spaces, the tree nodes associated to

those drivers must be updated. For each node managed by a leaving driver, if the

node is a leaf, the node is deleted from the K-D tree and its parent node (i.e., the

corresponding driver) takes over the parking space allocation task associated with

the node. If the node is an internal node, one option is to apply existing solutions

for deleting K-D tree internal nodes [72]. However, because the sub-trees rooted

at the internal node’s children must be re-organized to form another sub-tree, these

solutions can be very expensive and may cause considerable overhead, especially when

the sub-trees are large.

Instead of deleting an internal node, DFPS assigns the node to another parked

driver. DFPS considers the following two situations:
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• The node is the parking manager of the region containing its location (the node

value). In this case, the node has only one child node. DFPS will find the driver

who is managing the child node, and assign the node to this driver.

• The location of the node is managed by another node, i.e., another node is the

parking manager of the region containing its location. DFPS will first locate the

parking manager, then assign the node to the driver of the parking manager. In

the example shown in Figure 4.4, when A leaves, driver D will be asked to take

care of the node of A, since D is in charge of the parking space allocation in the

region where A parked. Thus, later on, when the parking space is re-allocated

by D to another driver E, E can be assigned to manage the node.

4.3.3 Request Forwarding

The same overlay network can be used to forward the parking requests for two types

of drivers: (a) drivers who care to set their privacy preferences, and (b) drivers

who do not require privacy. The second type of drivers may end up with parking

spaces closer to their destinations. In the following, the parking request forwarding

procedures explain how a request is forwarded to the corresponding parking manager

with and without privacy.

Forwarding with Privacy. Each parking request, which includes the pseudonym

of the driver and the cloaked region computed at the driver’s phone, is forwarded down

the tree from the root (i.e., dispatcher) until it reaches the corresponding parking

manager, which will assign a parking space in its region. This process is described in

Algorithm 2.

Upon node n receiving a parking request along with the cloaked region CK, n’s

state is examined to determine if it can answer this request or forward it down the
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Algorithm 2 Parking request forwarding procedure

1: Upon node n receiving a parking request (vpseudonym, CK)
2: if (n is not a parking manager) then
3: Forward the request to the children whose regions intersect with CK

4: else if (n has no children) then
5: //Region(n) is the region managed by n when acting as parking manager
6: Send the coordinates of Region(n) to the driver
7: else
8: //n is a parking manager and a region manager
9: if (CK \Region(n)) and (CK \Region(child(n))) then
10: Send the coordinates of Region(n) to the driver and forward the request to the

child
11: else if (CK \Region(n)) and (¬(CK \Region(child(n)))) then
12: Send the coordinates of Region(n) to the driver
13: else
14: Forward the request to the child node
15: end if
16: end if

tree. If n is a region manager, then the request is forwarded to the children whose

regions overlap with CK (lines 2-3). CK could overlap the region of one child or

both. If n is a parking manager and its region overlaps with the CK, then the region

coordinates are sent to the driver (lines 4-6). If n is both a parking manager and a

region manager, then both its region and its child’s region have to be examined (lines

7-8). If CK overlaps with both regions, n sends the coordinates of its region to the

driver and forwards the request to the child (lines 9-10). If only n’s region overlaps

with CK, n sends the coordinates of its region to the driver (lines 11-12). Otherwise,

it forwards the request to the child (lines 13-14).

This process works recursively until the coordinates of all regions that intersect

with CK are sent to the driver, along with the identities of their parking managers.

The app at the driver determines in which region her destination is located and

then communicates directly with the parking manager of that region. In this

communication, the app at the driver requests a parking space from the parking

manager using its exact destination, not the cloaked region. The parking manager

then performs parking assignment, as described in Section 4.4. In this way, only one
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parking manager learns the driver’s destination. All the other nodes in the tree that

processed the original request know only the cloaked region CK. This brings some

level of privacy for the drivers since non of the parked drivers have access to the their

exact destinations except the one who is in charge of providing the parking service

for them.

Forwarding without Privacy. When a driver does not require privacy, she

submits her parking request with her driver’s id and the desired destination only.

The request is sent to the dispatcher in order to forwarded it to the corresponding

parking manager as described in Algorithm 3.

Algorithm 3 Parking request forwarding procedure

1: Upon node n receiving a parking request (v, dv)
// v refers to a driver’s identity and dv represents the driver’s destination
// Region(n) is the region managed by n when acting as parking manager

2: if (n is not a parking manager) then
3: Forward the request to the child whose region contains dv.
4: else if (n is a parking manager that has no children) and (dv 2 Region(n)) then
5: Accept the request.
6: else if (n is a parking manager that has one child) then
7: if (dv 2 Region(n)) then
8: Accept the request.
9: else
10: Forward the request to the child node.
11: end if
12: end if

Upon node n receiving a parking request, the state of node n is examined. If

n is a region manager, the request is forwarded to its child whose region contain dv

(line 2-3). The request is accepted if n is a parking manager and dv is located in its

region (lines 4-5). If n is a region manager and parking manager, then both its region

and its child region have to be examined (lines 6-11). The request is accepted if n’s

region contains dv; otherwise, the request is forwarded to its child.
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4.3.4 Load Balancing

Each parking manager receives requests for its region. However, the distribution of

destinations and requests coupled with the tree-structure of the network can cause

a heavy load on certain managers. Heavy load leads to slow downs and significant

battery consumption on the impacted phones. To avoid this problem, DFPS applies

a simple load balancing mechanism. An overload threshold is determined by each

parking manager as the di↵erence between the local load � (i.e., the number of

requests that have been processed by the phone) and a load threshold ↵. If � > ↵, an

imbalance is detected and the phone removes itself from the system. The threshold

↵ can be determined experimentally on each phone such that the phone does not

consume more than a small fraction of its battery power serving DFPS requests. As

described in Section 4.3.2, a phone of another parked driver will replace this phone in

the overlay network and will handle any pending requests inherited from the removed

phone.

4.3.5 Failure Recovery

DFPS employs the proposed mechanism in Midas [72] to ensure that the system

continues to function in the presence of failures or disconnections of the phones of

parked drivers. For example, the phones may fail without warning if the drivers

decide to turn them o↵. Failure or disconnection of the phones is detected by periodic

gossip messages from their neighbors. Each neighbor knows the region boundary of

the failing node w and maintains a replica of the data it stores (e.g., the number

of available spaces and total number of spaces) in order to restore the data and

improve availability. In addition, a parent maintains a list of requests forwarded to

w and requests assigned by w in case of failure. To avoid consistency problems, a

disconnected parking manager will not attempt to reconnect to the system when the

wireless connection becomes available again. Finally, let us note that the overload
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threshold at parking managers (used for load balancing as described in Section 4.3.4)

also reduces the e↵ect of node failures or disconnections.

4.4 Parking Space Assignment

In DFPS, each parking manager periodically runs the same parking space assignment

algorithm to satisfy the outstanding requests that have been forwarded to it. The

algorithm computes an assignment for these requests, aiming to optimize the total

travel time of the drivers.

4.4.1 Parking Space Assignment Algorithm

Each parking manager in DFPS assigns parking spaces in its region in the same way

as the dispatcher assigns parking spaces in our centralized solution. The detailed

algorithm can be found in Section 3.4. A brief description is included below for

convenience.

A parking manager assigns parking spaces periodically to outstanding requests.

Each manager can adjust the period as a function of its outstanding request queue

size to achieve a good trade-o↵ between assignment performance and overhead. In

each period, the manager first pre-allocates to the driver of each outstanding request

the closest available parking space to her destination. The pre-allocation adapts the

solution to the flow problem described in the Parking Slot Assignment Games (Psag)

[4] to minimize the total walking time of these drivers.

The actual assignment of parking spaces takes place based on the urgency of

the demands for parking spaces (i.e., how close the drivers are to their destinations).

We apply a modified version of the compound laxity algorithm to determine how

long a request can be delayed before it must be assigned a space. Specifically, in each

period, the drivers with the most urgent demand are selected. Their pre-allocated

parking spaces are o�cially allocated to them.
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Figure 4.5 Nodes in the maximal sibling sub-trees of node C.

Table 4.1 Neighbor Relation Table

Node Neighbors

C(011) D(010) B(00)
D(010) C(011) B(00)
B(00) A (01) C(011) D(010)

The algorithm described above is named FPA. It assumes that subscribed

drivers are generally representative of the entire driving population and all spaces

in the region are available to them. To consider the cases in which spaces may be

taken silently by unsubscribed drivers, the algorithm is enhanced to track the spaces

taken by unsubscribed drivers and avoid assigning these spaces. This algorithm,

described in Section 3.4, is named FPA-1.

FPA and FPA-1 are used under the assumption that there are still available

parking spaces in the region. However, in DFPS, the assignment of parking spaces

is done by multiple parking managers. It is possible that a parking manager runs

out of parking spaces, but still has outstanding requests. In such a case, DFPS

allows a parking manager to acquire parking spaces from nearby parking managers

temporarily to satisfy her outstanding requests, as explained next.
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4.4.2 Finding Best Available Spaces from Neighboring Regions

DFPS uses an indexing scheme based on the multi-indexing technique in [72] to locate

nearby regions close to the destinations of the parking requests. The scheme assigns

a binary identifier to each node as its index. The binary format of the index reflects

the path from the root to the node, and thus reflects roughly the location of the

corresponding region. For example, as shown in Figure 4.5, the index of the root

node is 0 and the indexes of its children nodes (A and B) are 01 and 00. The first

bit of the indexes (i.e., 0) reflects that they are in the region of the root node (i.e.,

index 0). The second bit (i.e., 1 or 0) reflects the corresponding sub-region created

by the root node. Nodes C and D are the children of node A, and the first two bits

(i.e., 01) reflect that they are in the region of node A (i.e., index 01), and the last

bit reflects the sub-region.

In DFPS, each parking manager maintains a neighbor table, as shown in

Table 4.1, which includes the nodes managing the neighboring regions, named

neighboring nodes. For any two nodes (N1 and N2) with indexes of lengths L1 and L2

respectively, the two nodes are neighboring nodes if one of the following two conditions

are met: 1) If L1  L2, the first L1 � 1 bits of the two indexes are the same, and the

L1
th bits are di↵erent. 2) If L1 > L2, the first L2 � 1 bits of the two indexes are the

same, and the L2
th bits are di↵erent. The neighbor table is built by broadcasting the

index of each newly-created node.

The best parking spaces are those close to the destinations of the requests. To

find such spaces, a parking manager that runs out of spaces first needs to contact

her neighboring nodes to get their lists of available parking spaces. Note that a

neighboring node may not be a parking manager, which has first-hand information

on available parking spaces. If a neighboring node is not a parking manager, to

obtain a list of available parking spaces in its region, the node needs space availability

reports from all its o↵springs. Then, the parking manager short of spaces examines
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the parking spaces in the lists received from its neighbors, calculates the distances

between the spaces and the destinations of the pending requests, and selects the

parking space with the shortest distance for each of these requests.

The multi-indexing technique is also leveraged to pass the parking availability

information up the tree to the dispatcher, which needs it for phase (d) of the cloaked

region construction.

4.5 Privacy Analysis

This section analyzes how the DFPS protocol satisfies the desired privacy goals.

Driver Identity privacy: A driver uses a randomly-generated pseudonym

identity with every parking request, which is completely unrelated to her true identity.

This pseudonym is not identifiable by attackers at the dispatcher side because (1) the

parking request is a snapshot query (i.e, a request submitted just once by the driver);

(2) the pseudonymity mechanism is e↵ective due to the discrete characteristic of the

parking behavior (i.e., the average time interval between two parking demands is long

enough). Thus, the attacker cannot infer the driver identity from a parking request.

Unlinkability of parking requests: Given two parking requests, no one

should be able to tell if they are made by the same driver or by di↵erent drivers. This

is achieved by the use of pseudonyms and cloaked regions. In other words, with each

parking request, a driver’s privacy is protected by (1) replacing her true identity with

a randomly-generated pseudonym; (2) constructing the cloaked regions such that two

requests from the same driver to the same destination will result in di↵erent cloaked

regions.

Parking destination privacy: By design, the cloaked area contains k

destinations, which ensures the driver’s true destination is hidden among these k

destinations. However, to infer a driver’s destination, the attacker may deploy a

“center-of-cloaked-region” privacy attack [43, 71], i.e., the destination is inferred to
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be at the center of the cloaked region. The attacker may also be physically present

at a location to determine a driver’s destination.

The parking request in DFPS includes provisions to mitigate these attacks.

To alleviate the “center-of-cloaked region” attack, phase (b) of the parking request

protocol randomly shifts the center of the cloaked region. Thus, even if the same

driver chooses to travel to the same destination on di↵erent occasions, the cloaked

area (which contains the true destination) will appear di↵erently to the dispatcher.

Although the cloaked area contains k destinations after phase (b) of the parking

request protocol, it may still be possible that these k destinations be clustered in a

small region. If the attacker decides to be physically present in this small region, the

driver’s true destination may be determined based on direct observation. To mitigate

this issue, phase (c) of the parking request protocol uses the entropy of distance

method to select a cloaked region which contains k destinations that are located on

more than k/2 segments and are evenly distributed in the cloaked region. As a result,

the probability of inferring the true destination within the cloaked region remains

1/k.

Due to the fact that that dispatcher manages the entire space before any driver

parks, the real destinations of the first right and left managers will be known, which

can lead to privacy leakage. However, this has a very minor e↵ect on the privacy of

the whole system.

4.6 Experimental Evaluation

In this section, we experimentally evaluate the performance of DFPS, in terms of

(1) scalability and load balancing, (2) assessing the benefits of DFPS with and without

privacy compared to the centralized system; (3) measuring the benefits of DFPS in

terms of travel time when compared to a Naive parking assignment solution, which

resembles what drivers normally do; (4) investigating the DFPS performance under
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di↵erent privacy protection mechanisms; (5) understanding the relationship between

the average travel time and the size of the cloaked regions; (6) analysing the impact

of the privacy level on the average travel time.

The evaluation is done via simulations over a real road network. The

experiments simulate two di↵erent scenarios: subscribed-drivers-only scenario, which

assumes that all drivers in the system use DFPS; unsubscribed-drivers-interference

scenario, which assumes there are a number of drivers who have not subscribed to

DFPS and who may occupy, without notification, parking spaces known to the system

as available.

We use SUMO/TraaS [64], an open source framework for running vehicular

network simulations, and PeerSim [73], a simulation environment for P2P protocols.

SUMO/TraaS simulates vehicles going to their destinations in a business district in

Manhattan, New York City (see Figure 3.5). PeerSim simulates the overlay peer-to-

peer network of parked drivers.

We generate a set of trips for the drivers. While the starting locations of the

vehicles are randomly chosen over the entire road network, the target destinations

are chosen randomly from a small region in the center of the map to ensure enough

contention for parking spaces. The travel time of a driver is the sum of the driving

time and the walking time. In these experiments, the driving time is the sum of the

time the driver takes to reach the cloaked region and the time from the edge of the

cloaked region to the assigned parking space. The walking time is calculated from

the assigned parking space to the destination. We consider a walking speed of 1.4

m/s [65]. DFPS starts each test with 1024 vacant parking spaces. The arrival rate of

the requests falls within the range of 1 to 5 requests per second. For each experiment,

we collect results from 5 runs and average them.

We compare the performance of DFPS with (1) our centralized system FPS in

Chapter 3 and (2) a version of DFPS without privacy protection (DFPS-wop) in terms
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of the average travel time. Unlike DFPS, which uses the edge of the cloaked region to

trigger a parking assignment request, FPS and DFPS-wop trigger the request when

the driver reaches a circle centered at the destination and with a radius (request

distance) set based on the parking availability in that region. The radius is initially

set to the average length of the road segments within the whole region, and it is

adjusted periodically based on the parking occupancy rate in the region: the radius

is increased when the occupancy becomes higher. Each driver in DFPS selects the

value of her k�anonymity randomly from the set {3,5,7,9}.

4.6.1 Results and Analysis

Scalability and Load Balancing. Compared to our centralized system FPS, the

computation bottleneck at the central server (i.e., dispatcher) in DFPS is removed,

as the parking assignment is computed in a distributed fashion by the phones of the

drivers. Therefore, DFPS scales better from a computation point of view.

The total computation time consumed in each period for the parking assignment

algorithm is the sum of (1) finding a valid allocation that minimizes the total walking

time to destinations and (2) determining the urgency of pending requests in order to

assign spaces to the most urgent requests and minimizing the total driving time.

Minimum-cost network flow in a directed bipartite graph is used to generate a

valid allocation. Its cost is O(ve), where v is a number of nodes (i.e., m spaces +

n drivers in the region) and e is the number of edges (i.e., equal to n, the number

of drivers in the region). The cost of computation to determine request urgency and

select urgent requests is O((n+')2), where n is the number of drivers to be assigned

parking spaces and ' is the number of drivers with high urgency. Thus, the total

time for each parking manager is O(n2 +nm)+O((n+')2). Given that each parking

manager handles only a limited number of parking spaces and drivers, as described

in Section 4.3.4, this computation can easily be done on today’s smart phones.
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Figure 4.6 Number of messages handled by the dispatcher/server in DFPS and
FPS for a di↵erent number of drivers and a fixed number of destinations (8).

Figure 4.6 compares the number of messages handled by the dispatcher in DFPS

and the server in FPS by varying the number of drivers from 128 to 768. The results

show that DFPS reduces the number of messages by a factor of 2 or better when

compared to FPS.

Next, we investigate the e↵ect of load balancing on parking managers. We

compare the number of requests assigned by the phone of a parked driver when

DFPS employs its load balancing mechanism (DFPS) and when it does not (DFPS*).

The value of the load threshold ↵ in the load balancing mechanism is set to 10.

Table 4.2 compares the maximum number of assigned requests in DFPS and DFPS*.

As expected, DFPS scales better due to its load balancing mechanism. The maximum

number of requests in DFPS* is about 20 times higher than the maximum number

in DFPS. We also observe that the maximum in DFPS is 13, not 10 as expected (the

load threshold). This is because of two reasons. First, a parking manager receives

requests until it has served ↵ of them (while the others are pending). Second, a

parking manager can not depart the network until it completes its set of requests

with high urgency.
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Table 4.2 Maximum Number of Requests Assigned by a Parked Driver for Di↵erent
Numbers of Destinations and 768 Drivers

Destinations
2 4 8

DFPS 13 12 12
DFPS* 268 166 100

Figure 4.7 Number of parked drivers involved in the assignment process for
di↵erent total numbers of drivers and eight destinations.

Figure 4.7 presents another measure of scalability: the average number of

parking managers cooperating to serve the incoming parking requests in DFPS and

DFPS*. The results show that the number of managers in DFPS increases by as

much as 185% compared to DFPS*. Higher numbers are better because the load is

distributed more evenly across the participants, and the system scales better.

Average travel time. The average travel time measures the performance of the

system from a global point of view. Figure 4.8 shows the average travel time for DFPS

compared to FPS and DFPS-wop in the subscribed-drivers-only scenario. In FPS and

DFPS-wop, destination privacy is not considered. Their regions are constructed based

only on parking availability. The results show that DFPS reduces the travel time by
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Figure 4.8 Average travel time for a di↵erent number of drivers and eight
destinations.

as much as 26% compared to DFPS-wop and FPS. We observe that a DFPS-wop and

FPS have similar results.

The improvement in performance observed when comparing DFPS with DFPS-

wop and FPS is due to combining the privacy and parking availability requirements

when generating the cloaked region. Let us recall that DFPS-wop and FPS use just

parking availability to generate their regions. The privacy requirement allows DFPS

to optimize the size of the region better than DFPS-wop and FPS. This is due to

the even distribution of the destinations, which also distributes better the available

parking spaces. An optimized region allows for more e↵ective parking assignment

optimizations.

For the same scenario, Figure 4.9 shows the average travel time when the number

of destinations is varied from 2 to 8. The figure breaks down the travel time into two

parts: driving time and walking time and shows that drivers spend most time on

driving, and DFPS reduces the average travel times by mostly reducing the driving

time. With eight destinations, DFPS can reduce driving time by 67% and 64%

compared to FPS and DFPS-wop, respectively. Reducing the driving time is very
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Figure 4.9 Walking time and driving time for di↵erent number of destinations and
768 drivers.

important, as this reduces tra�c congestion and implicitly the gas cost and pollution.

Since the number of parking spaces in the centroid area is limited, all systems can

hardly reduce the walking time.

The next set of experiments evaluate the performance of DFPS and DFPS-wop

in the unsubscribed-drivers-interference scenario. Each system, has two parking

assignment algorithms. One (DFPS/FPA and DFPS-wop/FPA) just keeps trying

to find another space if the assigned parking space is found to be taken by an

unsubscribed driver. The other (DFPS/FPA-1 and DFPS-wop/FPA-1) keeps track

of the spaces found to be taken by unsubscribed drivers, avoids them for a while,

and tries them later. We call the spaces taken by unsubscribed drivers “hidden”

spaces. These spaces are taken at the beginning of the simulation to help tracking

them. More details on how we model the behavior of unsubscribed drivers can be

found in Section 3.4. Figure 4.10 shows that DFPS continues to perform better than

DFPS-wop, even in the presence of unsubscribed drivers. We also notice that FPA-1

improves the performance for both systems, and DFPS/FPA-1 achieves the lowest
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Figure 4.10 Average travel time for di↵erent numbers of hidden spaces, 768 drivers,
and 8 destinations.

average travel time. These results demonstrate that DFPS/FPA-1 adapts well to the

interference caused by unsubscribed drivers.

Individual Travel Time Gains/Losses. In the subscribed-drivers-only scenario,

we conduct an experiment to find out the gains and losses in travel time for individual

drivers when comparing DFPS with a Naive solution, a baseline assignment algorithm

that assumes the driver goes to the destination and, after arriving there, she starts

a breadth-first-search for parking spaces along the nearby road segments. The Naive

solution is similar to what most people do in real life. To measure the gains/losses,

we calculate the ratio between the travel time obtained by the Naive solution and the

travel time obtained by DFPS for each driver. If the ratio is higher than 1, the driver

has benefited from DFPS. Otherwise, the driver has not.

Figure 4.11 plots the distribution of individual travel time gains/losses for all

drivers in the experiment. We observe that DFPS manages to improve the travel time

for a large majority of drivers (over 95%). Many drivers reduce their travel times by

more than an order of magnitude. These results are possible due to the high parking
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Figure 4.11 Distribution of travel time gain/loss for 512 drivers and 8 destinations.
Error bars are shown.

contention generated in the experiment, which leads to high tra�c congestion and

thus to very high travel times for the Naive solution. The small error bars in the

figure demonstrate that these results are consistent across di↵erent simulation runs.

Entropy-based cloaking. To determine how our entropy-based cloaking technique

a↵ects travel times, we compare its performance with that of a simple k-anonymity

technique, which creates cloaking areas containing the k � 1 nearest neighbor

destinations around the real destination. Figure 4.12 shows the average travel time

for when DFPS works with either of these two methods in three cases: DFPS

with subscribed-drivers-only, DFPS/FPA with unsubscribed-drivers-interference, and

DFPS/FPA1 with unsubscribed-drivers-interference. The results show that DFPS

with the entropy-based cloaking technique achieves better performance consistently

for all three cases. Therefore, we conclude that the entropy-based cloaking improves

both the destination privacy and the travel time. This is because its cloaked region

is larger, with destinations spaced more evenly, and thus avoids parking contention

and tra�c congestion.
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Figure 4.12 Average travel time for simple k-anonymity cloaking vs. entropy-based
cloaking for 768 drivers, 8 destinations, and 265 hidden spaces

E↵ect of region size. To understand how the region size a↵ects performance, we

compare the average travel times for DFPS and two versions of DFPS-wop. The

minimum number of available parking spaces in a region, Pmin, is set to 3 for DFPS

and one version of DFPS-wop, denoted DFPS-wop(3), and to 6 for the other version

of DFPS-wop, denoted DFPS-wop(6).

Table 4.3 shows that the average travel time gradually decrease with larger

region sizes. The cloaked regions of DFPS with two and four destinations are

smaller than the regions in DFPS-wop, due to two reasons: (1) There are many

neighbour destinations around the 2 or 4 destinations chosen in the experiments;

this helps reducing cloaked region sizes in DFPS. (2) The parking availability around

the destinations is high when drivers submit their parking requests. However, we

noticed that the region with eight destinations is larger in DFPS than the regions

in DFPS-wop. The reason is that the distance between the 4 new destinations

(in addition to the first 4) and their nearest neighbours are relatively large (i.e.,
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Table 4.3 Average Travel Time for Di↵erent Region Sizes, Di↵erent Numbers of
Destinations, and 768 Drivers

Destinations 2 4 8

DFPS DFPS-wop(3) DFPS-wop(6) DFPS DFPS-wop(3) DFPS-wop(6) DFPS DFPS-wop(3) DFPS-wop(6)

Region Size 319.6 356.2 405.8 309.3 366.8 403.6 684.2 371.5 394

Avg. Travel Time 18.1 17.8 16.5 17.9 16.9 16 13.5 15.8 15

sparsely populated region). Thus, to construct a region that satisfies DFPS privacy

requirement, the region has to be expanded.

The results show that a slight increase in the region size can improve significantly

the travel time in DFPS. This indicates that using larger k values is a good solution:

it expected to increase the privacy protection and improve the travel time, at the

same time. However, if the regions become too large, it is possible that the parking

assignment is done too early and unsubscribed drivers may take some of the assigned

spaces. Next, we investigate this trade-o↵ between privacy protection as measured

by the value of k and the average travel time.

Impact of increasing the privacy level on average travel time. Figure 4.13

shows how the average travel time and the region size vary with k in an unsubscribed-

driver-interference scenario. A number of 256 hidden spaces are taken by unsubscribed

drivers gradually at a rate of two spaces every minute. We observe that increasing k

leads to larger cloaked regions, which provide better privacy protection. The travel

time, however, is not proportional with the region size. It gradually reduces until

k = 7, and then increases. The explanation for the increase is that parking assignment

is done too early for larger regions, and unsubscribed drivers have time to take some

of the assigned spaces. The slight decrease in the travel time for k = 11 vs. k = 9

can be explained by the fact that parking spaces are taken unevenly by unsubscribed

drivers. For example, for k = 11, the unsubscribed drivers tend to occupy spaces

farther away from the real destinations. Overall, the results demonstrate that a good
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Figure 4.13 Average travel time and cloaked region size for di↵erent values of
k(-anonymity), 768 drivers, 2 destinations, and 265 hidden spaces.

balance can be found between the level of privacy protection and the travel time (e.g.,

k = 7 in this experiment).

4.7 Summary

This chapter presented DFPS, a cost-e↵ective and e�cient distributed mobile

system for parking assignment that can be implemented and deployed in real-life

settings. DFPS uses the smart phones of the drivers to o✏oad the computation of

parking request assignments from a central server, and thus the assignment process

becomes scalable in real-time. Parked drivers cooperate to serve parking requests

in a distributed fashion while optimizing the social welfare of the whole system,

i.e., minimizing the total travel time. DFPS protects the privacy of the drivers’

destinations through a novel entropy-based cloaking technique, which guarantees

k�anonymity. The simulation results demonstrated that DFPS is scalable, e↵ectively

reduces the average travel time, and achieves better performance than a centralized

system. Furthermore, the results show that achieving destination privacy does not

hurt the travel time performance.
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CHAPTER 5

MULTI-DESTINATION VEHICULAR ROUTE PLANNING WITH

PARKING AND TRAFFIC CONSTRAINTS

This chapter introduces a new instance of multi-destination vehicular route planning

problem, which considers real-time parking and tra�c constraints, and it presents

a solution for this problem, namely the MDVRP system. Section 5.1 presents an

overview of the MDVRP system. Section 5.2 defines the optimization criteria for

time-dependent route planning and free parking assignment, and it describes the

route planning algorithm, TDTSP-FPA. Section 5.3 presents our novel experimental

platform and the experimental results obtained on top of this platform. Section 5.4

gives a summary of the chapter.

5.1 System Overview

The goal of MDVRP is to plan a multi-destination route that satisfies real-time tra�c

and parking conditions, in which the total travel time (i.e., driving and walking times)

for all drivers in the system is reduced.

To illustrate howMDVRP works, Figure 5.1 shows the system design of MDVRP

system, which consists of two components, namely Driver Manager (DM) and Route

Planning Manager (RPM).

DM is a mobile app that runs on each driver’s smart phone, which consists of

three modules: driver request initiator, tracker, and driver guidance. DM is in charge

of submitting a multi-destination route request and reporting parking status to the

RPM. Once it receives a route from RPM, it guides the driver in their trip. The

reporting of parking status relies on the app, which can learn this status from an

activity recognition service running on the phone [59].
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Figure 5.1 MDVRP system overview.

RPM runs on a central server and consists of two modules, the multi-destination

route planner and the parking scheduler. RPM manages the incoming route requests,

aggregates the DM parking reports to determine the available parking spaces, and

provides multi-destination route planning services to drivers. The services are invoked

upon the initial request for trip planning from a driver, and are re-invoked at each

destination to plan the remaining route for the driver based on her current location.

The TDTSP-FPA algorithm running at RPM combines a solution for the Time-

Dependent Traveling Salesman Problem (TDTSP) [19] to find the fastest route for the

next destination with our Free Parking Assignment Algorithm (FPA) (see Section 3.4)

to find free curbside parking that minimizes the driving plus walking time for all

drivers in the system. MDVRP is designed to first consider tra�c conditions, and

then consider the parking conditions, as drivers approach their destinations.

We now describe the lifecycle of a multi-destination route request in MDVRP,

from generation to completion. When a driver submits a request, the driver request

initiator on her phone generates two types of requests: a route request and several

parking requests (corresponding to the multiple destinations). The route request
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contains the destinations chosen by the driver and the driver’s current-status record,

(i.e., driver’s current road segment, position on road segment, observation time).

The route request is sent to RPM, where all incoming route requests are streamed

into a queue by the multi-destination route planner module and are processed on a

first-come-first-serve basis. The parking requests are forwarded to the tracker at the

DM, which sends them individually to the parking scheduler at the RPM each time the

driver approaches a new destination and needs a parking space near that destination.

The number of parking requests equals the number of the driver-specified destinations.

Each parking request contains a driver-specified destination and the amount of time

the driver wants to spend at the destination (i.e., parking duration).

The multi-destination route planner manages and serves incoming route

requests. It plans routes in a way that optimizes the total travel time. Specifically, for

each route request, it uses a time-dependent graph representation of the road network

and applies a Time-Dependent Traveling Salesman Problem (TDTSP) solution to

compute the fastest path between two given locations. The travel time over a

road segment depends on its tra�c congestion status, which in turn depends on

the time instant at which the road segment is traversed. Thus, knowledge about

real-time tra�c information over the road network is required. Even though speed

profiles extracted from history data can provide a good estimation of long-term

tra�c dynamics, the short and mid-term forecast of travel times on road segments,

particularly the time instant at which the segments are traversed must be made

dynamically. Thus, we obtain the time cost of a road segment from existing open

source historic trajectory data [74] and real-time tra�c information from drivers who

are part of our system (i.e., MDVRP drivers) [75]. As shown in [76], drivers’ smart

phones can form a tra�c sensing infrastructure, and a 2-3% penetration of smart

phones in the driver population is enough to provide accurate measurements of the

velocity of the tra�c flow.
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The initial routes determined by TDTSP are adjusted after visiting each

destination based on the locations of available parking spaces around the next

destination. This is done to minimize the total cost of traversing the route, which

includes the time spent on both driving to parking spaces and walking to destinations

from parking spaces. Since parking spaces may be taken without notice by drivers who

are not part of MDVRP, we consider the k closest parking spaces to each destination

when computing the routes. To select the next destination, the multi-destination

route planner averages the travel times between driver’s origin location and the

k selected parking spaces around each destination. It then selects the destination

with the shortest average travel time. Once the next destination is computed, the

corresponding route and the destination are sent to the DM’s driver guidance module.

Given the driver’s next target destination, the driver guidance module guides

the driver to the destination. It also forwards the destination to the tracker, which

then submits a parking request to the parking scheduler when the driver approaches

the target destination. If the parking request is sent when the driver is far away from

the destination, drivers who are not part of our system (i.e., unsubscribed drivers)

have a high likelihood of taking the assigned space. If the request is sent when the

driver is too close to the destination, the system may not be able to find a parking

space close enough to the destination.

Therefore, as the driver approaches the target destination, we use the Request

Distance (see Figure 3.1) to determine when the driver’s parking request has to be

sent by the tracker to the parking scheduler in order to be assigned a parking space.

As we explained earlier in Section 3.1, this distance defines a circle centered around

the destination and its radius was determined experimentally to be initially set to

the average length of the roads within the whole region (i.e., zip code). The radius

can be adjusted periodically based on the parking occupancy rate in the area which

is learned from the RPM (i.e., the radius is increased when the occupancy becomes
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higher). RPM may over-estimate the number of available parking spaces as it uses

only information from MDVRP drivers. This is because unsubscribed drivers may

take parking spaces presumed to be available by our system. This problem is discussed

and solved in Section 3.4 based on keeping track of spaces occupied by unsubscribed

drivers and on avoiding assigning these spaces for a period of time.

After receiving the parking request, the parking scheduler enqueues it for

parking scheduling and assignment. The parking assignment decision is made once the

Request Distance is reached in such a way as to minimize the total travel time (driving

and walking times) of all drivers in MDVRP. The parking assignment algorithm is

described in Section 5.2. Once the driver parks in the assigned space, the parking

scheduler deletes the parking request from the queue. The tracker reports the status

of the parking space to the parking scheduler when the driver is going to either

park at or leave the assigned space. When the driver leaves the space, the tracker

also updates the driver’s current-status record and sends it to the multi-destination

route planner to find the fastest path toward the next target destination in the trip.

The aforementioned process is repeated until all the driver-specified destinations are

visited.

Both the multi-destination route planner and the parking scheduler aim

to minimize the total travel time; however, the multi-destination route planner

minimizes the travel time toward the next destination (up to the Request Distance)

for each driver. Then, once the Request Distance is reached, the parking scheduler

minimizes the total travel time (driving from the Request Distance to the parking

space and walking from the parking space to the destination and back) for all the

drivers.

The design of our MDVRP system is modular and, thus, other time-dependent

route planning and parking assignment algorithms can be used. Even though we

use the TDTSP’s point-to-point shortest path algorithm [19] and the Free Parking
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Assignment algorithm (FPA) (Section 3.4), they can be replaced with other such

algorithms.

5.2 Travel Time Optimization

We consider the multi-destination route planning problem with parking and tra�c

constraints defined as follows. Given a sequence of route requests ordered by

generation time, we aim to serve each request by finding the fastest route leading

drivers to their destinations while considering the real-time tra�c and providing free

parking assignment service at each destination in the route.

The salient character of our problem lies in that we aim to reduce the total

travel time of all drivers as much as it is practically possible. The travel time for each

driver is split into: 1) The driving time from the current location to the parking’s

Request Distance of the next target destination; 2) The driving time from the moment

the driver reaches the Request Distance to the moment it parks; 3) The walking time

between the parking space and destination (forth and back).

To achieve this goal, we develop the TDTSP-FPA algorithm. TDTSP-FPA uses

a solution to TDTSP to solve a multi-destination route planning problem in such a

way as to minimize the travel time toward destinations (point 1 above). FPA solves

drivers’ contention for the same parking spaces in such a way as to optimize the total

travel time to each destination in their trips (points 2 and 3 above). TDTSP helps

FPA in the sense that it finds the fastest route that avoids tra�c congestion to the

destination, which implicitly means it is easier to find a parking space along the path.

FPA helps TDTSP by reducing the tra�c congestion due to cruising while looking

for parking.
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5.2.1 Optimization Formulation

The optimization objective for our problem is to reduce the total travel time for

all drivers. Specifically, the problem targets a set of requesting drivers V =

{v1, v2, ...., vn}; and each driver vi has a set of target destinations D = {d1, ...., dz}.

When planning routes, we also consider curbside parking spaces, which are denoted by

S = {s1, s2, ...., sm}, and the parking occupancy periods for each destination, which

are described by wsj , i.e., the time duration that parking space sj will be occupied

by a driver and cannot be utilized for any other driver.

The drivers are assumed to be moving independently based on legal speeds and

on the congestion levels on di↵erent road segments. All the geographical locations,

including the addresses of destinations and the locations of parking spaces, are

converted into latitude and longitude coordinates in the system.

The optimization solves two problems together, TDTSP and FPA, which are as

described as follows.

TDTSP Definition TDTSP is a well-known route planning problem for multiple

destinations. TDTSP extends the original Traveling Salesman Problem (TSP) with

the specific goal of finding the fastest connection on time-dependent road networks.

The travel time on the road networks depends on the tra�c congestion. All drivers

travel along a road network that is modeled as a directed graph G(N,E). Each

directed edge e 2 E represents a road segment and each node n 2 N represents

the intersection of two or more roads. Given a segment ei, it takes time ti for a

driver to travel from one intersection to another along ei. Note that tra�c conditions

represented by ti can be incorporated in the model by introducing weights on graph

edges [75]. If a trip begins or ends in the middle of a road segment, we approximate

the location to the nearest intersection node. This approximation works well in our

city settings, where the road segments are a mix of medium-length and short.
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Next, we formally define the concept of path, travel time function, timed-path

in a graph, travel time of sub-tour, and we then give an alternative formal definition

of the TDTSP.

Definition 1 (Path). A path P = (n1, ..., nk) in a graph G = (N,E) is a

sequence of nodes such that (ni, ni+1) 2 E, 8i 2 {1, ....k � 1}, k � 2.

Definition 2 (Travel Time Function). A travel time function f : E⇥R+ !

R+ is a function such that for a given edge (ni, nj) 2 E, f(ni, nj, t) is the travel time

from ni to nj when leaving ni at time t.

The travel time function dynamically associates travel times to road segments

at the time when the segment is traversed, i.e.. MDVRP does this based on historical

speed profiles as well as frequent updates received from drivers in the system.

Definition 3 (Timed-Path). Given a graph G=(N,E), a path starting time

⌧ 2 R+ and a travel time function f : E⇥R+ ! R+, a timed-path P⌧,f in G is a path

(ni, ...., nk), in which each node ni has an associated start time t(ni, P⌧,f ) such that:

t(ni, P⌧,f ) � ⌧, 8i 2 {1, ..., k}

t(ni+1, P⌧,f ) � t(ni, P⌧,f ) + f(ni, ni+1, t(ni, P⌧,f ))

Next, we define the travel time to parking, which is the time between the current

location of the driver (origin or current parking space) and its next parking space (i.e.,

for the next destination). Recall that we do not know which parking space will be

available when the car approaches the next destination, and thus consider the k closest

parking spaces to the destination in our system.

Definition 4 (Travel Time to Parking). Given a graph G=(N,E), two nodes

(ni, nj) that represent a driver’s current location (ni) and the next target destination

(nj) in a driver’s route, a current time t, and a travel time function f : E⇥R+ ! R+,

a travel time to parking Tij is the average of the minimum costs (i.e., time) timed-paths

between the origin ni and the k available parking spaces closest to the destination nj.
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MDVRP calculates the k available parking spaces at the time the vehicle is

ready to drive toward the next destination (i.e., MDVRP does not predict the parking

availability at the time the vehicle arrives at destination). The parking spaces are

calculated based on the occupancy period wsj and the travel time to the parking space

sj from the current location ni. If by the time the driver approaches the destination,

some of the k parking spaces become unavailable, MDVRP is able to adapt and find

other parking spaces.

Definition 5 (TDTSP). Given a graph G=(N,E), a path starting time ⌧ 2 R+,

a travel time function f : E ⇥ R+ ! R+, and a timed-path P⌧,f , TDTSP finds the

fastest route which starts from the origin (n1 = o) and visits each destination exactly

once. The route is computed using the travel times to parking, Tij, computed between

each pair of (ni, nj) nodes.

FPA Definition As explained earlier in Section 3.4, a parking assignment of spaces

to drivers is defined as Y: V ! S, where yij is the assignment of a driver vi 2 V

to a parking space sj 2 S. For a set of drivers and a set of parking spaces, there

may exist a large number of assignments. The algorithm seeks to find an assignment

that can minimize the total travel time (driving and walking) of the drivers to each

destination in their trips. The travel time T (vi) toward one destination in a driver

vi’s trip is calculated in real-time and consists of two parts, the driving time and the

walking time:

• Td (Ovi , sj) is the driving time of driver vi from the moment she submits her

request from location Ovi until she parks at the parking space sj.

• Tw (sj, dvi + sj) is the walking time of the driver between the parking space sj

and the destination dvi (forth and back).
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5.2.2 A Solution for the TDTSP

In the RPM component of our system, we deploy the time-dependent point-to-point

shortest path solution [19] to compute a timed-path with minimum travel time to

the next destination. This is a bidirectional search algorithm on time-dependent

road networks, based on the A* algorithm. The given network is modeled as

a directed graph with time-dependent travel time functions for all edges. The

algorithm procedure leverages a modified generalization of Dijkstra’s algorithm, made

bidirectional and improved in several aspects. As for the backward search in A*,

the arrival times are not known in advance. Thus, the reversed graph has to be

weighted by a lower bound cost (constant travel time for all time instants i.e., edge

length/maximum speed limit).

Given a graph G= (N ,E) and origin and destination nodes o, d 2 N, the

algorithm for computing the fastest o-d path works in three phases.

1. A bidirectional A* search occurs on G, where the forward search is run on the

graph weighted by the travel time function, and the backward search is run on

the graph weighted by the lower bound cost. All nodes settled by the backward

search are included in a set M . Phase one terminates as soon as the two search

scopes meet.

2. Suppose that node n 2 N is the first node in the intersection of the forward and

backward searches, where a time cost of the path going from o to d passing v is

an upper bound cost of the path of (o, d, t). In the second phase, both search

scopes are allowed to proceed until the backward search queue contains only

nodes associated with costs less than the upper bound. Again, all nodes settled

by the backward search are added to M .
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Algorithm 4 TDTSP-FPA Pseudo-code Executed for Each Visited Destination

1: Phase one

2: Input: a driver’s origin ov, set of target destinations Dv = d1, ..., dz, a value k for the

closest parking spaces to each destination, and a starting time ⌧

3: curr orig  �ov // current origin of the trip

4: rem Dv  �Dv //set of remaining destinations to be visited

5: for each destination d
i
v 2 Dv do

6: Define a list of k parking spaces Ldiv
which are the closest available spaces to d

i
v at

the approximate time of arrival to d
i
v

7: Origin set  �Dv-div+curr orig

8: for each parking space sj 2 Ldiv
do

9: for each o in Origin set do

10: Compute travel time ↵
sj
o of the timed-path between o and sj at time t

11: end for

12: end for

13: for each o in Origin set do

14: Compute the travel time to parking Ti between o and d
i
v by averaging the travel

times ↵sjo between o and the k parking spaces

15: end for

16: end for

17: fastestRoute  � TDTSP (Dv,T )

18: Send first destination, d, in fastestRoute to FPA procedure to assign parking space

19: Phase two //executed once the driver reaches the Request Distance for parking

assignment

20: Input: a driver’s current location cv and the destination d

21: Create the list of current available parking spaces Ld in the proximity of d

22: sv  � FPA(cv, d, Ld) //assigned parking space for driver v

23: Guide v to sv.

24: rem Dv  � rem Dv � d
i
v

25: curr orig  � sv

3. Only the forward search continues, with the additional constraint that only

nodes in M can be explored. The forward search terminates when d is settled.

5.2.3 The FPA Algorithm

The parking scheduler component runs the FPA algorithm periodically to assign

parking spaces to outstanding parking requests in the queue. We determined
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experimentally, based on simulations, that running FPA every 2 seconds provides

a good trade-o↵ between performance and overhead. In each period, FPA first

pre-allocates to the driver of each outstanding request an available parking space

that is closest to her destination. The pre-allocation adapts the solution to the flow

problem described in the Parking Slot Assignment Games (Psag) [4] to minimize the

total walking time of these drivers. The actual assignment of parking spaces takes

place based on the urgency of the demands for parking spaces, which is measured by

how close the corresponding drivers are to their destinations or their pre-allocated

parking spaces. Specifically, in each period, the drivers with the most urgent demand

(i.e., they may pass their destination if a parking assignment is not made quickly) are

selected and their pre-allocated parking spaces are o�cially allocated to them. For

more details, we direct the reader to a description of the FPA algorithm in Section 3.4.

5.2.4 The TDTSP-FPA Algorithm

The procedure of serving drivers’ request in TDTSP-FPA algorithm is divided into

two phases, as shown in Algorithm 4, and each phase requires a list of parking

spaces that are located in a destination’s region. These lists are static, as defined

by the municipality data on streets with free curbside parking. Therefore, for each

destination, we define an ascending list of parking spaces o✏ine where each parking

space is ordered according to the road distance to its associated destination.

The first phase invokes the TDTSP procedure to find the shortest route that

starts from a driver’s current origin and visits all the destinations once in such a way

as to minimize the total travel time. We compute the travel time to parking according

to Definition 4 (lines 5-16 in Algorithm 4) for each pair of nodes in the graph (i.e., the

union of current origin and the set of remaining destinations not visited yet). Then,

we apply TDTSP according to Definition 5 (line 17), and select the first destination

in the fastest route generated by TDTSP (line 18). This will be the next destination,
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for which FPA will assign parking. In order to reduce the time spent on computing

paths, we re-use the paths that have been computed in the past x minutes for drivers

who share the same locations and destinations, where x is determined experimentally.

In this second phase, the FPA procedure is invoked when a driver reaches the Request

Distance (line 22). Once a parking space is assigned, the driver’s phone will guide the

driver toward this space (line 23). Lines 24-25 update the set of visited destinations

and sets the new current origin of the driver. The whole algorithm is executed again to

determine the next destination after the parking duration at the current destination

expires.

5.3 Experimental Evaluation

We have evaluated the performance of MDVRP and TDTSP-FPA algorithm using

simulation with real tra�c traces in a real-world road network, which provide us with

realistic constraints in terms of tra�c and parking.

5.3.1 Evaluation Goals

Our evaluation aims to determine:

• The overall e↵ectiveness of the TDTSP-FPA algorithm on reducing the average

travel time. The travel time of a driver includes the time spent on driving to

the assigned parking locations and the time spent on walking from the parking

locations to destinations and then back to the parking locations. It does not

include parking duration. The travel times of all drivers in each experiment are

averaged to reflect the overall performance.

• Contributions of driving time and walking time in the total reduction of travel

time.
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• The scalability of TDTSP-FPA, as the percentage of the MDVRP’s drivers

among all drivers on the roads increases.

• The e↵ectiveness of MDVRP on reducing the travel times of individual drivers.

We want to know how many drivers use less time to finish their trips and

how many drivers spend more time when MDVRP is used. We calculate the

improvement rate, which is the proportion of drivers with travel time reduced

by MDVRP, to reflect its e↵ectiveness.

• The robustness of the system under a varying compliance rates (i.e., percentage

of drivers who follow the suggested visiting order).

5.3.2 Comparison Algorithms

• Highest Transition Probability Order (HTPO) represents human mobility habits

without careful route planing: a driver always picks the destination that is

closest to her current location as her next stop.

• Traveling Salesman Problem (TSP) is a classical routing strategy that aims to

minimize the total travel distance; it does not consider any constraints. The

problem is NP-hard, but a heuristic algorithm for solving the TSP problem is

used in the experiments [77].

• Time-dependent Traveling Salesman Problem (TDTSP) uses travel time as a

metric to select the shortest path between driver’s origin and destination that

yields the provably fastest route. Paths can be evaluated by considering simply

point-to-point shortest paths [19] and real-time tra�c density on the road

segments [75].
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Figure 5.2 Illustration of road network in Cologne.

In HTPO, TSP, and TDTSP, a driver searches for the closest free parking spaces

using breadth-first search.

5.3.3 Experimental Platform

Real-World Tra�c and Road Network Dataset We use the TAPAS Cologne

driver trace [74], which contains the tra�c records of over two million drivers in the

city of Cologne, Germany during a period of tow hours from 6:00 am to 8:00 am. Each

trip record includes a departure time, an origin location and a destination (the IDs of

the corresponding road segments), and the route from the origin to the destination.

We map the trips to the road network in the same city, which contains 31,584 road

intersections and 71,368 road segments. The map is shown in Figure 5.2.

Request Generation The requests used to drive the simulation are derived from

the trip records in the TAPAS Cologne dataset. This process allows us to 1) control

the number of drivers in simulation experiments; 2) select only the destinations in

Cologne downtown (i.e., the centroid area in Figure 5.2) which is the most congested
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area in the city, since we are most interested to evaluate TDTSP-FPA in crowded

areas with enough vehicular tra�c and contention for parking; and 3) have requests

with multiple destinations in simulation experiments.

To generate realistic route requests with specific departure times and multiple

destinations, we use the method proposed in [78]. We first divide the trips in the

dataset into short-time bins, denoted by bi and denote all road segments by ri. Then

all trips are assigned into bins based on the departure time of the trips. We assume

that the destinations of trips on each road segment approximately follow a Poisson

distribution during time frame fj, where each frame has a fixed length spanning L

time bins. Thus, the Poisson distribution parameter �ij is computed for each road

segment ri during time frame fi. Specifically, for each road segment ri, we count the

number of trips that originated from ri within time frame fi, denoted by cij, and learn

the probability distribution of the destination road segments of these trips, denoted

by pij. Then, we calculate �ij based on cij using Equation (5.1) and generate a target

route request that follows a Poisson process.

�ij = cij/L. (5.1)

For each route request generated in frame fi with the origin road segment ri,

a destination road segment is generated according to the probability distribution pij.

We only consider the destination road segments with high probability distribution in

the Cologne downtown area to ensure enough vehicular tra�c and enough contention

for parking spaces. Note that the dataset only reveals one destination in a trip;

however, in reality there are more destinations. To keep the characteristics of a

realistic scenario, we repeat the operation and select from the list more trip records

with the origin of each trip record being the destination of the previous trip record.
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Since trip records are selected according to the probability distribution, they

reflect the real distribution of trip destinations in Cologne downtown and the mobility

patterns of the drivers. Also note that the drivers that submit requests are not the

only drivers in the road network in the simulation, since background tra�c is also

included in the simulation, as we will discuss in this section. The route requests

contain only the trips that we are interested to evaluate.

The route requests have di↵erent numbers of destinations (e.g., 1⇠7). We set

40% of the routing requests to the largest number of destinations to induce more tra�c

congestion and to resemble the case of delivery drivers. The rest of the requests

are set with fewer destinations to resemble individual drivers. For example, in an

experiment with 1⇠4 destinations, 40% of requests are set with 4 destinations, 30%

with 3 destinations, 20% with 2 destinations, and 10% with 1 destination. To obtain

a diverse workload, di↵erent simulations have di↵erent upper limits.

The length of parking duration is randomly chosen within [10 min, 25 min],

to keep the duration reasonable. Note, the time needed to walk from the parking

location to the destination and back to the parking location is not included in the

parking duration, as it is an important factor in our optimization objective.

We set the value of k, the number of closest available parking spaces to each

destination considered in TDTSP, to 3. We found that a small value of k is su�cient

to deal with the problem of parking spaces taken by cars that are not part of MDVRP,

while avoiding an increase in the computation time. Furthermore, k cannot be very

large in order to ensure that the parking spaces are close to the destinations.

Simulation Setup We use SUMO [64] to run vehicular tra�c simulations, and use

TraaS [79] to send commands to drivers and direct them in their routes. We use

the NetEdit tool in SUMO to create travel destinations and parking spaces on the

Cologne map. The total number of parking spaces around the destinations is 2400.
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To simulate the scenarios with real tra�c conditions, we varied the background

tra�c by including di↵erent numbers of additional drivers (40k⇠80k). These drivers

make single-destination trips, which are randomly selected from the TAPAS Cologne

dataset.Background tra�c is introduced because we do not assume that all or even

a large fraction of drivers will use the MDVRP system. However, we assume that

MDVRP drivers are generally representative of the entire driving population.

The background tra�c simulates realistic tra�c conditions, but it is not used for

parking contention for two reasons. First, we selected only a small number of parking

spaces for the drivers that we control; there are many more parking spaces that

could be used by drivers in the background tra�c. Second, we are not interested to

evaluate the e↵ect of unsubscribed drivers (i.e., drivers not subscribed to MDVRP) on

parking contention in this section. We proposed a solution to this problem elsewhere

(see Section 3.4. All experimental results show averages over five runs.

5.3.4 Experimental Results

Figure 5.3 compares the performance of HTPO, TSP, and TDTSP with TDTSP-

FPA with the number of drivers varied from 800 to 2400. The background tra�c

is generated with 60K drivers. As the figure shows, TDTSP-FPA outperforms the

competing solutions consistently, and its performance advantage is more prominent

when the number of drivers increases. When the number of drivers is 2400, TDTSP-

FPA reduces the average travel time by 34%, 29%, and 26%, respectively, compared to

HTPO, TSP, and TDTSP. The results demonstrate the substantial impact MDVRP

can have on driving and parking in the cities.

The figure also shows that the average travel time grows quickly for HTPO,

TSP, and TDTSP when the number of drivers increases. There are two reasons for

this behavior. First, tra�c conditions are not considered in HTPO and TSP; thus,

they may select congested road segments. The comparison between TDTSP and TSP
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Figure 5.3 Average travel time for a di↵erent number of drivers and a varying
number of destinations [1⇠4].

shows the benefits from taking tra�c conditions into consideration. Second, drivers

in HTPO, TSP, and TDTSP need to travel more to search for parking, which further

increases tra�c congestion. TDTSP-FPA directs drivers to parking spaces that are

likely to be available. Thus, drivers travel shorter distances looking for parking spaces.

This reduces not only their travel time but also the tra�c in the road network.

Figure 5.4 breaks down the travel time into two parts: driving time and walking

time. The figure shows that drivers spend most time on driving and TDTSP-FPA

reduces the average travel times by mostly reducing the driving time. With 2400

drivers, TDTSP-FPA can reduce driving time by up to 54%. Reducing the driving

time is very important, as this reduces tra�c congestion and implicitly the gas cost

and pollution. Since the number of parking spaces in the centroid area is limited,

TDTSP-FPA can hardly reduce walking time. We expect that, with the technology

developing toward self-driving cars that can drop o↵ drivers at the locations closest

to their destinations, the impact of walking time can be ignored in the future. In

such a scenario, a self-driving car finds its way to the assigned parking space after

dropping o↵ its passenger.
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Figure 5.4 Walking and driving time for a di↵erent number of drivers and a varying
numbers of destinations [1⇠4].

The next set of experiments investigate how the travel times change when the

number of destinations is varied. Figure 5.5 represents the average travel time for

1200 drivers and 60K background tra�c drivers. As the figure shows, TDTSP-FPA

reduces the average travel time by larger percentages when the number of destinations

increases. For the experiments with 1⇠3 destinations, TDTSP-FPA reduces the

average travel time by 13% and 7%, respectively, relative to HTPO and TDTSP. For

5⇠7 destinations, the percentages increase to 23% and 14% respectively. TDTSP-FPA

shows more advantage with more destinations in each trip not only because the tra�c

in the road network increases, but also because there is more optimization space for

TDTSP-FPA to improve parking performance.

We have also investigated how TDTSP-FPA scales when the percentage of

MDVRP’s drivers increases. To model this scenario, we varied the number of

background tra�c drivers and kept the number of MDVRP’s drivers constant at 2000.

The background tra�c is generated with 40K, 60K, and 80K drivers. Figure 5.6 shows

that TDTSP-FPA decreases the average travel time by 25%, 19%, and 14%, relative

to TDTSP, for 40k, 60k, and 80k background drivers, respectively. We observe that
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Figure 5.5 Average travel time for a di↵erent number of destinations and a fixed
number of drivers (1200).

Figure 5.6 Average travel time for 2000 drivers with di↵erent patterns of
background tra�c and a varying number of destinations [1⇠4].

TDTSP-FPA scales well, as it reduces the average travel time by larger percentages

when the percentage of MDVRP’s drivers increases. With more MDVRP drivers,

TDTSP-FPA can collect more information from these drivers and a↵ect the tra�c

more e↵ectively. These results confirm what we observed in Figure 5.3, where we

varied the number of MDVRP’s drivers, but kept the number of background drivers

constant.

While the reduction of average travel time reflects the overall benefits for the

drivers in the road network, we also want to find out if most individual drivers spend
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Figure 5.7 Distribution of travel time Gain/Loss for all drivers in the system and
a varying number of destinations [1⇠4]. Gains are values greater than 1, and Losses
are values less than 1.

less time for their trips. Thus, for each driver, we calculate an improvement ratio

between the travel time obtained with TSP and the travel time obtained by TDTSP-

FPA. A ratio higher than 1 indicates that the driver has benefited from TDTSP-FPA

and spent less time with TDTSP-FPA. Then, we sort the drivers based on their ratios,

and show the ratios in Figure 5.7. In the experiments, there are 2000 MDVRP drivers

with 1⇠4 destinations and 60k drivers in background tra�c.

As shown in the figure, TDTSP-FPA manages to reduce the travel time for

a large majority of drivers (over 85%). However, there are still some drivers who

cannot experience improvements. In real-life, these drivers may not know that their

time increased, but a few bad experiences could impact the system adoption. Thus,

we plan to investigate limiting the number of drivers who experience performance

losses and bound performance loss to avoid the worst user experiences.

While it is in the drivers’ interest to follow the MDVRP’s guidance, it is possible

that some drivers will not comply with the guidance (i.e., they will not follow the

recommended visiting order of destinations). Therefore, we vary the compliance rate

(percentage of drivers who follow the recommended visiting order) to test the system
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Figure 5.8 Average travel time as a function of the compliance rate for 2400 drivers
and a varying number of destinations [1⇠4].

robustness. In this experiment, all drivers (including the non-compliant ones) accept

the FPA parking assignments. The non-compliant drivers follow their own routes,

according to HTPO. Figure 5.8 indicates that MDVRP is robust; compared to TDTSP

and HTPO, TDTSP-FPA still o↵ers good improvement, even under a low compliance

rate. This is due to the fact that, even at a 0% compliance, drivers still receive benefits

from FPA, which in turn can improve the travel time. Conversely, at the higher

compliance rate, both FPA and our updated version of TDTSP provide benefits to

drivers. The figure shows that the FPA benefits range from 19% to 27%, and the

TDTSP benefits are 7% when compared to HTPO.

5.4 Summary

This chapter has addressed a novel problem, namely multi-destination route planning

with parking and tra�c constraints. This problem has practical applications in many

real-life situations, such as package delivery or people visiting multiple destinations in

one trip. We formulated this problem analytically in order to optimize the travel time

for all drivers. To solve the problem, we designed a novel system, MDVRP, which finds

the sequence of destinations that result in the shortest driving and walking time for

102



the drivers. To the best of our knowledge, this is the first work on multi-destination

route planning that considers real-time tra�c and parking conditions to optimize the

travel time for all drivers in the system. We evaluated the optimization algorithm of

MDVRP, namely TDTSP-FPA, over a new and realistic experimental platform that

leverages millions of real-life vehicular traces. The experimental results demonstrated

that TDTSP-FPA outperforms the comparison baselines, scales well when the number

of drivers in MDVRP increases, and is robust to non-compliant drivers. For future

work, we plan to optimize the travel time by considering destination arrival deadlines

as an additional constraint to our problem.
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CHAPTER 6

CONCLUSION

The recent increase in the development and use of smart phones has provided the

opportunity to collaboratively sense and share information for the common good.

This development has also given rise to solutions that seek to improve the e�ciency

of the transportation systems. This dissertation proposed cost-e↵ective solutions to

tackle the serious mobility problem of drivers who cruise for free vacant parking spaces

in urban areas. These solutions are easily deployed in centralized and distributed

contexts.

To study the problem in the centralized model, the dissertation proposed FPS,

a free parking assignment system, and showed how a centralized server can assign

drivers to near optimal parking spaces in order to reduce the total travel time for all

drivers. FPS reduces parking space contention because it provides individual space

assignment to drivers, which implicitly reduces cruising for parking, tra�c congestion,

air pollution, and drivers’ frustration. The dissertation also presented a novel free

parking assignment algorithm for computing this assignment. The performance

evaluation of FPS shows that the total travel time for all drivers is reduced even

when many parking spaces are occupied by unsubscribed drivers.

To improve scalability and privacy, the dissertation proposed DFPS, a

distributed free parking assignment system, which takes advantages of the smart

phones of the drivers to cooperatively compute and forward the parking assignments.

DFPS uses a central dispatcher to receive and distribute parking requests. The

distributed structure of drivers’ smart phones, represented as a K-D tree, allows

DFPS to increase parallel processing and decrease the response time. DFPS scales

well by performing localized computations over smart phones of drivers parked in
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proximity of each other. A cloaking-based entropy technique is proposed to preserve

drivers’ destinations privacy at the dispatcher side, without seeking help from any

centralized third party. DFPS deploys the free parking assignment algorithm in a

distributed fashion. Extensive experiments show that the distributed solutions (i.e.,

DFPS and DFPS-wop) can provide better travel time compared to the centralized

counterparts, while protecting drivers’ destinations.

Finally, the dissertation addressed a novel problem, named multi-destination

vehicular route planning with real-time parking and tra�c constrains. To solve

this problem, a multi-destination vehicular route planning system, MDVRP, was

proposed. MDVRP uses a novel algorithm to find a route that visits the destinations

in the most e�cient order and also assigns free parking spaces to drivers while

optimizing a system-wide objective (i.e., total travel time). Through a series of

experimental evaluations, we demonstrate that the routing algorithm in MDVRP

delivers excellent performance when compared to the baseline algorithms. To the

best of our knowledge, this is the first work on route planning that considers handling

parking and tra�c constraints for multi-destinations as well as optimizing the travel

time for all drivers, simultaneously.

The three practical and cost-e↵ective parking assignment systems can be

implemented and deployed in real-life settings to manage the parking problems and

help in reducing tra�c congestion.
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[9] F. Dürr, P. Skvortsov, and K. Rothermel, “Position Sharing for Location Privacy in
Non-Trusted Systems,” in Proceedings of IEEE International Conference on
Pervasive Computing and Communications (PERCOM), 2011, pp. 189–196.

[10] S. Lin and B. W. Kernighan, “An E↵ective Heuristic Algorithm for the Traveling
Salesman Problem,” Operations research, vol. 21, no. 2, pp. 498–516, 1973.
[Online]. Available: http://www.jstor.org/stable/169020

[11] B. Strasser, “Dynamic Time-Dependent Routing in Road Networks Through
Sampling,” in Proceedings of 17th Workshop on Algorithmic Approaches for
Transportation Modelling, Optimization, and Systems (ATMOS’17). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

106



[12] C. Malandraki and M. S. Daskin, “Time Dependent Vehicle Routing Problems:
Formulations, Properties and Heuristic Algorithms,” Transportation science,
vol. 26, no. 3, pp. 185–200, 1992. [Online]. Available: https://doi.org/10.
1287/trsc.26.3.185

[13] H. Abeledo, R. Fukasawa, A. Pessoa, and E. Uchoa, “The Time Dependent
Traveling Salesman Problem: Polyhedra and Algorithm,” Mathematical
Programming Computation, vol. 5, no. 1, pp. 27–55, 2013. [Online]. Available:
https://doi.org/10.1007/s12532-012-0047-y

[14] P. thaisombut, “Generalization of EDF and LLF: Identifying All Optimal Online
Algorithms for Minimizing Maximum Lateness,” Algorithmica, vol. 50, no. 3,
p. 312–328, Mar. 2008. [Online]. Available: http://www.cs.pitt.edu/utp

[15] E. Nardelli, “Distributed Kd Trees,” in Proceedings of 16th Conference of Chilean
Computer Science Society (SCCC’96). Citeseer, 1996, pp. 142–154.

[16] C. Huang, R. Lu, X. Lin, and X. Shen, “Secure Automated Valet Parking: A
Privacy-Preserving Reservation Scheme for Autonomous Vehicles,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 11, pp. 11 169–11 180,
2018. [Online]. Available: http://doi.org/10.1109/TVT.2018.2870167

[17] L. Zhu, M. Li, Z. Zhang, and Z. Qin, “ASAP: An Anonymous Smart-Parking
and Payment Scheme in Vehicular Networks,” IEEE Transactions on
Dependable and Secure Computing, pp. 1–1, 2018. [Online]. Available:
http://doi.org/10.1109/TDSC.2018.2850780

[18] L. Ni, F. Tian, Q. Ni, Y. Yan, and J. Zhang, “An Anonymous Entropy-based
Location Privacy Protection Scheme in Mobile Social Networks,” EURASIP
Journal on Wireless Communications and Networking, vol. 2019, no. 1, pp.
1–19, 2019. [Online]. Available: https://doi.org/10.1186/s13638-019-1406-4

[19] G. Nannicini, “Point-to-point Shortest Paths on Dynamic Time-Dependent Road
Networks,” European Alliance for Innovation, vol. 8, no. 3, pp. 327–330,
2010. [Online]. Available: https://doi.org/10.1007/s10288-010-0121-0

[20] G. Yan, S. Olariu, M. C. Weigle, and M. Abuelela, “SmartParking: A Secure and
Intelligent Parking System Using NOTICE,” in Proceedings of 11th IEEE
International Conference on Intelligent Transportation Systems, 2008, pp.
569–574.

[21] S. Mathur, T. Jin, N. Kasturirangan, J. Chandrasekaran, W. Xue, M. Gruteser, and
W. Trappe, “ParkNet: Drive-by Sensing of Road-side Parking Statistics,” in
Proceedings of 8th International Conference on Mobile Systems, Applications,
and Services, 2010, pp. 123–136.

[22] V. Verroios, V. Efstathiou, and A. Delis, “Reaching Available Public Parking Spaces
in Urban Environments Using Ad Hoc Networking,” in Proceedings of 12th

107



IEEE International Conference on Mobile Data Management, vol. 1, 2011,
pp. 141–151.

[23] O. Wolfson, B. Xu, and H. Yin, “Dissemination of Spatial-Temporal Information in
Mobile Networks with Hotspots,” in Proceedings of International Workshop
on Databases, Information Systems, and Peer-to-Peer Computing. Springer,
2004, pp. 185–199.

[24] N. BESSGHAIER, M. Zargayouna, and F. Balbo, “An Agent-Based Community
to Manage Urban Parking,” Advances in Intelligent and Soft Computing,
vol. 155, pp. pp 17–22, Jan. 2012. [Online]. Available: https://hal.
archives-ouvertes.fr/hal-00861808

[25] M. Caliskan, D. Graupner, and M. Mauve, “Decentralized Discovery of Free Parking
Places,” in Proceedings of 3rd International Workshop on Vehicular Ad Hoc
Networks, 2006, pp. 30–39.

[26] S. Nawaz, C. Efstratiou, and C. Mascolo, “Parksense: A Smartphone Based Sensing
System for On-Street Parking,” in Proceedings of 19th Annual International
Conference on Mobile Computing & Networking, 2013, pp. 75–86.

[27] R. Salpietro, L. Bedogni, M. Di Felice, and L. Bononi, “Park Here! A Smart
Parking System Based on Smartphones’ Embedded Sensors and Short Range
Communication Technologies,” in Proceedings of 2nd IEEE World Forum on
Internet of Things (WF-IoT), 2015, pp. 18–23.

[28] R. Arnott and J. Rowse, “Downtown Parking in Auto City,” Regional Science
and Urban Economics, vol. 39, no. 1, pp. 1–14, 2009. [Online]. Available:
https://doi.org/10.1016/j.regsciurbeco.2008.08.001

[29] D. Mackowski, Y. Bai, and Y. Ouyang, “Parking Space Management via
Dynamic Performance-based Pricing,” Transportation Research Part C:
Emerging Technologies, vol. 59, pp. 66 – 91, 2015. [Online]. Available:
https://doi.org/10.1016/j.trpro.2015.06.010

[30] D. Ayala, O. Wolfson, B. Xu, B. DasGupta, and J. Lin, “Pricing of Parking for
Congestion Reduction,” in Proceedings of 20th International Conference on
Advances in Geographic Information Systems, 2012, pp. 43–51.

[31] H. Wang and W. He, “A Reservation-based Smart Parking System,” in Proceedings
of IEEE International Conference on Computer Communications Workshops
(INFOCOM WKSHPS), 2011, pp. 690–695.

[32] P. Basu and T. D. Little, “Networked Parking Spaces: Architecture and
Applications,” in Proceedings of 56th IEEE International Conference on
Vehicular Technology Conference, vol. 2, 2002, pp. 1153–1157.

[33] S. P. Company, “Spothero,” https://spothero.com, Chicago, IL, USA, [Online;
accessed 02-April-2020].

108



[34] A. M. S. C. Company, “Pango,” https://www.mypango.com, Fort Lauderdale, FL,
USA, [Online; accessed 02-April-2020].

[35] I. Inc, “Parkme,” https://www.parkme.com, Santa Monica, CA, USA, [Online;
accessed 02-April-2020].

[36] P. Company, “Bestparking,” https://www.bestparking.com, Chicago, IL, USA,
[Online; accessed 02-April-2020].

[37] T. Delot, N. Cenerario, S. Ilarri, and S. Lecomte, “A Cooperative Reservation
Protocol for Parking Spaces in Vehicular Ad Hoc Networks,” in Proceedings of
6th International Conference on Mobile Technology, Application & Systems,
2009, pp. 1–8.

[38] D. Ayala, O. Wolfson, B. Xu, B. DasGupta, and J. Lin, “Parking in Competitive
Settings: A Gravitational Approach,” in Proceedings of 13th IEEE
International Conference on Mobile Data Management, 2012, pp. 27–32.

[39] M. Gruteser and B. Hoh, “On the Anonymity of Periodic Location Samples,” in
Proceedings of International Conference on Security in Pervasive Computing.
Springer, 2005, pp. 179–192.

[40] B. Bamba, L. Liu, P. Pesti, and T. Wang, “Supporting Anonymous Location
Queries in Mobile Environments with PrivacyGrid,” in Proceedings of 17th
International Conference on World Wide Web, 2008, pp. 237–246.

[41] B. Gedik and L. Liu, “Protecting Location Privacy with Personalized K-anonymity:
Architecture and Algorithms,” IEEE Transactions on Mobile Computing,
vol. 7, no. 1, pp. 1–18, 2007. [Online]. Available: http://doi.org/10.1109/
TMC.2007.1062

[42] G. Ghinita, P. Kalnis, and S. Skiadopoulos, “PRIVE: Anonymous Location-based
Queries in Distributed Mobile Systems,” in Proceedings of 16th International
Conference on World Wide Web, 2007, pp. 371–380.

[43] K. P. S. S. Ghinita, Gabriel, “MOBIHIDE: a Mobilea Peer-to-Peer System
for Anonymous Location-based Queries,” in Proceedings of International
Symposium on Spatial and Temporal Databases. Springer, 2007, pp. 221–238.

[44] C.-Y. Chow, M. F. Mokbel, and X. Liu, “A Peer-to-Peer Spatial Cloaking Algorithm
for Anonymous Location-based Service,” in Proceedings of 14th Annual ACM
International Symposium on Advances in Geographic Information Systems,
2006, pp. 171–178.

[45] M. Gruteser, G. Schelle, A. Jain, R. Han, and D. Grunwald, “Privacy-Aware Location
Sensor Networks,” in Proceedings of 9th Conference on Hot Topics in Operating
Systems, ser. HOTOS’03. USENIX Association, 2003, p. 28.

109



[46] M. Gruteser and D. Grunwald, “Anonymous Usage of Location-based Services
Through Spatial and Temporal Cloaking,” in Proceedings of 1st International
Conference on Mobile Systems, Applications and Services, 2003, pp. 31–42.

[47] T. Xu and Y. Cai, “Location Anonymity in Continuous Location-based Services,”
in Proceedings of 15th Annual ACM International Symposium on Advances in
Geographic Information Systems, 2007, pp. 1–8.

[48] T. Xu and Y. Cai, “Exploring Historical Location Data for Anonymity Preservation
in Location-based Services,” in Proceedings of 27th IEEE International
Conference on Computer Communications (INFOCOM’08), 2008, pp. 547–
555.

[49] O. Abul, F. Bonchi, and M. Nanni, “Never Walk Alone: Uncertainty for Anonymity
in Moving Objects Databases,” in Proceedings of 24th IEEE International
Conference on Data Engineering, 2008, pp. 376–385.

[50] M. F. Mokbel, C.-Y. Chow, and W. G. Aref, “The New Casper: Query processing
for Location Services without Compromising Privacy,” in Proceedings of 32nd
International Conference on Very Large Data Bases, 2006, pp. 763–774.

[51] J. Ni, K. Zhang, Y. Yu, X. Lin, and X. Shen, “Privacy-Preserving Smart
Parking Navigation Supporting E�cient Driving Guidance Retrieval,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 7, pp. 6504–6517, 2018.
[Online]. Available: http://doi.org/10.1109/TVT.2018.2805759

[52] A. Montero, I. Méndez-Dı́az, and J. J. Miranda-Bront, “An Integer Programming
Approach for the Time-Dependent Traveling Salesman Problem with Time
Windows,” Computers & Operations Research, vol. 88, pp. 280–289, 2017.
[Online]. Available: https://doi.org/10.1016/j.cor.2017.06.026

[53] J. Hurka la, “Time-Dependent Traveling Salesman Problem with Multiple Time
Windows,” Annals of Computer Science and Information Systems, vol. 6, pp.
71–78, 2015. [Online]. Available: http://dx.doi.org/10.154392015311

[54] Y. Huang, B.-H. Lin, and V. S. Tseng, “E�cient Multi-Destinations Route
Planning with Deadlines and Cost Constraints,” in Proceedings of 18th IEEE
International Conference on Mobile Data Management (MDM), 2017, pp.
228–233.

[55] P. A. Melgarejo, P. Laborie, and C. Solnon, “A Time-Dependent No-Overlap
Constraint: Application to Urban Delivery Problems,” in Proceedings
of International Conference on AI and OR Techniques in Constriant
Programming for Combinatorial Optimization Problems. Springer, 2015, pp.
1–17.

[56] G. Inc, “Route4me route planner,” https://route4me.com, Hackensack, NJ, USA,
[Online; accessed 02-April-2020].

110



[57] Gsmtasks Inc, “Gsmtasks,” https://gsmtasks.com, Walnut, CA, USA, [Online;
accessed 02-April-2020].

[58] R. B.V., “Routexl: Fastest route with multiple stops,” https://routexl.com, Heiloo,
Netherlands, [Online; accessed 02-April-2020].

[59] S. Dernbach, B. Das, N. C. Krishnan, B. L. Thomas, and D. J. Cook, “Simple and
Complex Activity Recognition Through Smart Phones,” in Proceedings of 8th
International Conference on Intelligent Environments, 2012, pp. 214–221.

[60] M. Arab and T. Nadeem, “Magnopark - locating on-street parking spaces
using magnetometer-based pedestrians’ smartphones,” in 2017 14th Annual
IEEE International Conference on Sensing, Communication, and Networking
(SECON), 2017, pp. 1–9.

[61] A. Nandugudi, T. Ki, C. Nuessle, and G. Challen, “PocketParker: Pocketsourcing
Parking Lot Availability,” in Proceedings of ACM International Joint
Conference on Pervasive and Ubiquitous Computing, 2014, pp. 963–973.

[62] B. Xu, O. Wolfson, J. Yang, L. Stenneth, S. Y. Philip, and P. C. Nelson,
“Real-time street parking availability estimation,” in Proceedings of 14th IEEE
International Conference on Mobile Data Management, vol. 1, 2013, pp. 16–25.

[63] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver, Combinatorial
Optimization. John Wiley & Sons, Inc., 1998.

[64] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “SUMO - Simulation of
Urban MObility: An overview,” in Proceedings of 3rd International Conference
on Advances in System Simulation (SIMUL), 2011, pp. 63–68.

[65] R. W. Bohannon, A. W. Andrews, and M. W. Thomas, “Walking Speed: Reference
Values and Correlates for Older Adults,” Journal of Orthopaedic & Sports
Physical Therapy, vol. 24, no. 2, pp. 86–90, 1996. [Online]. Available:
https://www.jospt.org/doi/10.2519/jospt.1996.24.2.86

[66] T. Öberg, A. Karsznia, and K. Öberg, “Basic Gait Parameters: Reference
Data for Normal Subjects, 10-79 Years of Age,” Journal of Rehabilitation
Research and Development, vol. 30, pp. 210–210, 1993. [Online]. Available:
https://doi.org/10.1682/JRRD.2003.07.0361

[67] X. Chen and J. Pang, “Measuring Query Privacy in Location-based Services,” in
Proceedings of 2nd ACM conference on Data and Application Security and
Privacy, 2012, pp. 49–60.

[68] C.-Y. Chow and M. F. Mokbel, “Enabling Private Continuous Queries for Revealed
User Locations,” in Proceedings of International Symposium on Spatial and
Temporal Databases. Springer, 2007, pp. 258–275.

111



[69] L. Sweeney, “K-anonymity: A Model for Protecting Privacy,” International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 10,
no. 05, pp. 557–570, 2002. [Online]. Available: https://doi.org/10.1142/
S0218488502001648

[70] P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias, “Preventing Location-based
Identity Inference in Anonymous Spatial Queries,” IEEE transactions on
knowledge and data engineering, vol. 19, no. 12, pp. 1719–1733, 2007. [Online].
Available: https://doi.org/10.1109/TKDE.2007.190662

[71] C. Zhang and Y. Huang, “Cloaking Locations for Anonymous Location Based
Services: A Hybrid Approach,” GeoInformatica, vol. 13, no. 2, pp. 159–182,
2009. [Online]. Available: https://doi.org/10.1007/s10707-008-0047-2

[72] G. Tsatsanifos, D. Sacharidis, and T. Sellis, “Midas: Multi-Attribute Indexing for
Distributed Architecture Systems,” in Proceedings of International Symposium
on Spatial and Temporal Databases. Springer, 2011, pp. 168–185.

[73] A. Montresor and M. Jelasity, “PeerSim: A Scalable P2P Simulator,” in Proceedings
of 9th IEEE International Conference on Peer-to-Peer Computing, 2009, pp.
99–100.

[74] S. Uppoor, O. Trullols-Cruces, M. Fiore, and J. M. Barcelo-Ordinas, “Generation
and Analysis of a Large-Scale Urban Vehicular Mobility Dataset,” IEEE
Transactions on Mobile Computing, vol. 13, no. 5, pp. 1061–1075, 2013.
[Online]. Available: http://doi.org/10.1109/TMC.2013.27

[75] J. S. Pan, I. S. Popa, and C. Borcea, “Divert: A Distributed Vehicular
Tra�c Re-Routing System for Congestion Avoidance,” IEEE Transactions
on Mobile Computing, vol. 16, no. 1, pp. 58–72, 2016. [Online]. Available:
https://hal.inria.fr/hal-01426424

[76] J. C. Herrera, D. B. Work, R. Herring, X. J. Ban, Q. Jacobson, and A. M. Bayen,
“Evaluation of Tra�c Data Obtained via GPS-Enabled Mobile Phones:
The Mobile Century Field Experiment,” Transportation Research Part C:
Emerging Technologies, vol. 18, no. 4, pp. 568–583, 2010. [Online]. Available:
https://doi.org/10.1016/j.trc.2009.10.006

[77] E. L. Lawler, “The Traveling Salesman Problem: A Guided Tour of Combinatorial
Optimization,” Wiley-Interscience Series in Discrete Mathematics, 1985.
[Online]. Available: https://doi.org/10.1112/blms/18.5.514

[78] S. Ma, Y. Zheng, and O. Wolfson, “T-Share: A large-Scale Dynamic Raxi Ridesharing
Service,” in Proceedings of 29th IEEE International Conference on Data
Engineering (ICDE), 2013, pp. 410–421.

[79] S.-S. of Urban Mobility, “Traci/Traas-Sumo,” https://sumo.dlr.de/wiki/TraCI/
TraaS.html/, Berlin, Germany, [Online; accessed 02-April-2020].

112


