JOURNAL OF KX CLASS FILES, VOL. XX, NO. XX, MM YY

Dynamic Interior Point Method for Vehicular
Traffic Optimization

Chang Guo!, Demin Li', Guanglin Zhang!,

Xiaoning Ding?, Reza Curtmola?, and Cristian Borcea

Abstract—The aim of this article is to improve vehicular traffic
in terms of both travel time and load balance. To achieve this goal,
we propose an optimization model that minimizes the sum of the
total travel time in the road network and a time representation of
the traffic imbalance effects in the network. This paper presents
an analytic formulation of the optimization problem, and an
algorithm, Dynamic Interior Point Method (DIPM), that solves
this optimization through driver rerouting. Unlike user-optimum
traffic optimizations, DIPM leads to better fairness for drivers
and works well in case of congestion. Unlike other system-wide
traffic optimizations, DIPM considers the effects of the driver
behavior on traffic load. Together, these features allow our system
to work well in a potential real-world deployment. DIPM benefits
from a central server that computes driver routes, which is
reachable via cellular networks or vehicular ad hoc networks.
Theoretical analysis and simulation results demonstrate that
DIPM is fast and can work in real-time. The results of extensive
simulations with realistic urban maps and traffic scenarios show
that DIPM outperforms other dynamic rerouting algorithms
in terms of travel time. DIPM also improves fairness when
compared with a user-optimum approach.

Index Terms—travel time optimization, traffic load balance,
vehicular networking, dynamic interior point method

I. INTRODUCTION

ITH the rapid mobility increase in urban areas world-

wide, traffic congestion has become an urgent problem
that requires a rapid and effective solution [1]]. The Global
Mobility Report in 2017 showed an additional 1.2 billion cars
on the road compared to 2015’s [2]. Americans waste nearly
14.5 million hours every day in traffic congestion [15]. There-
fore, optimal route planning, which reduces the drivers’ travel
time and relieves congestion, has attracted much attention from
academia and traffic management organizations [3l].

All recent solutions are based on accurate and real-time
traffic information acquisition from smart phones or systems
embedded in the cars [6], [7]. Typically, a central entity
collects this information, achieves a global view of the traf-
fic [4]], and predicts better routes for drivers using current and
historical traffic data [5]. The communication is done either
over cellular networks or a combination of vehicular ad hoc
networks (VANETS) and road-side units (RSUs).

LCollege of Information Science and Technology, and Engineering Re-
search Center of Digitized Textile and Apparel Technology, Ministry of
Education, Donghua University, Shanghai, 201620, China.

Emails: guochang@mail.dhu.edu.cn, {deminli, glzhang}@dhu.edu.cn.

2Department of Computer Science, New Jersey Institute of Technology,
Newark, NJ 07102-1982 USA.

Emails: {xiaoning.ding, reza.curtmola, borcea} @njit.edu

Corresponding author: Guanglin Zhang

Manuscript received xxx; revised xxx

2

Despite their benefits, the current solutions have a number of
problems. First, the drivers’ selfish choice for the optimal route
in the current time slot shifts traffic congestion from one area
to another [8]. Second, many solutions assume that the drivers
will follow the recommended route, but this is not always the
case. Third, there is a lack of solutions that combine analytic
proofs of optimality with practicality in real-world scenarios.
To solve these problems, new algorithms should be designed
to jointly consider the drivers’ behaviors on route selection,
the road networks’ load, and travel time. Furthermore, these
algorithms must have solid theoretical underpinnings and
should lend themselves to efficient implementations.

This article proposes an optimization model that minimizes
the sum of the total travel time in the road network and a time
representation of the traffic imbalance effects in the network.
The constraints of this optimization are the traffic conditions
and the drivers’ behavior.

Unlike user-optimum traffic optimizations [10], which are
expected to lead to best travel times for drivers, our solution
leads to better fairness for drivers, since it achieves similar
travel time for drivers with the same origin-destination (OD)
pairs. Achieving fairness is important for widespread system
adoption, as a system that is perceived as unfair will not be
used by drivers. Also, the travel times for our solution are close
to the optimal values. Furthermore, our solution balances the
traffic and alleviates congestion, whereas typical user-optimum
optimizations do not work well in case of congestion [21].

Unlike other system-wide traffic optimizations [14], our
solution considers the effects of the driver behavior on traffic
load (i.e., the drivers may not follow the suggested routes),
and thus can work better in practice.

This paper presents an analytic formulation of the opti-
mization problem, and an algorithm, Dynamic Interior Point
Method (DIPM), that solves this optimization through driver
rerouting. DIPM benefits from a central server that computes
driver routes, which is reachable via cellular networks or
VANETSs plus RSUs.

Specifically, the contributions of this article are:

e A system model that includes: (i) two types of com-
munication architectures, car-to-cloud and VANET-to-
cloud, to realize the implementation of our optimization;
and (ii) Closed-form expressions of the road segments’
traffic condition (congested or not) and the vehicles’ route
selection property (altruistic or selfish).

e A novel optimization model for vehicular traffic. The
objective in the optimization is analytically modeled in
a drift-plus-penalty framework, which considers not only

JOURNAL OF KX CLASS FILES, VOL. XX, NO. XX, MM YY

the total travel time in the road network, but also the
traffic load imbalance based on traffic conditions and
drivers’ behavior.

e A Dynamic Interior Point Method (DIPM) that solves
the analytic formulation of our optimization model. This
method is implemented as an iterative algorithm that
computes rerouting alternatives for drivers; the rerouting
helps achieve our system-wide optimization objective. We
prove that the DIPM algorithm has a feasible solution,
converges in a finite number of iterations, and has an
acceptable computational complexity.

o Evaluations in MatLab and VanetMobiSim that demon-
strate DIPM performance. Theoretical analysis and sim-
ulation results show that DIPM is fast and can work
for real-time navigation systems. Theoretical analysis
also suggest that DIPM can scale reasonably well. The
results of extensive simulations with realistic urban maps
and traffic scenarios demonstrate that DIPM outperforms
other dynamic rerouting algorithms in terms of travel
time. Furthermore, DIPM improves fairness when com-
pared with a user-optimum approach [21].

The rest of the paper is organized as follows. Section
discusses related work on traffic congestion avoidance and
traffic load balance. The system framework and the basic
traffic models are described in Section Section |[V| presents
the analytic formulation of our optimization model. The de-
sign and analysis of the DIPM algorithm are presented in
Section [V] Section [V contains the evaluation of DIPM. The
paper concludes in Section [VII}

II. RELATED WORK

Unbalanced traffic, caused by the vehicles’ choice of over-
lapping shortest routes, is one of the main reasons of traffic
congestion. This type of traffic congestion can be reduced via
path planning and navigation systems. Wang et al. proposed
a highly practical vehicle rerouting system called Next Road
Rerouting (NRR) to aid drivers in making the most appropriate
next road choice toward avoiding unexpected congestion [9].
The rerouting process in NRR is based on a multi-agent 3-tier
architecture, which includes a traffic operation center, traffic
lights, and vehicles. Jeong et al. proposed a self-adaptive
interactive navigation tool (SAINT), which was tailored for
cloud-based vehicular traffic optimization on road networks
[11]. In this system, the vehicles report their navigation
experiences and travel paths to the vehicular cloud. Based
on real-time road traffic conditions and vehicular trajectories,
the vehicular cloud calculates the road segment congestion
estimation. Although these navigation systems improve the
classical path planning algorithms, they switch the congestion
from one area to another, which postpones the occurrence
of traffic congestion, rather than avoiding it. In addition,
these works considered the assignment as a dynamic process;
however, the route selection methods are seldom discussed.

Pan et al. presented five traffic rerouting strategies designed
to be incorporated in a cost-effective and easily deployable
vehicular traffic guidance system that reduces travel time [12].
The proposed strategies proactively compute individually-
tailored rerouting guidance to be pushed to vehicles when

signs of congestion are observed on their routes. An improved
real-time path planning algorithm was proposed by Guo et
al., which dispatches the backlogged vehicles at weighted
road intersections based on the back-pressure ratio [10]]. These
algorithms can reduce the traffic congestion on the road
network to some extents. However, they lack an analytic model
to describe the problem, and the navigation results are not
proven to be optimal.

Some works have used an optimization model to study
the global traffic balance. Cao et al. proposed a model to
predict the probability of drivers’ choice on routing results and
then the online strategies automatically controlling the traffic
lights’ phases and duration to make sure that the vehicles
have low traveling time [26]. Zhou et al. proposed a two-
level hierarchical control framework for large-scale urban
traffic networks [13]]. For the application of this architecture
in real world, model-based predictive control was utilized to
obtain the best solutions. However, this work modified the
traffic lights timing to achieve the optimal status, rather than
controlling the traffic flow, an approach which may not be
immediately applicable in practice.

The optimization model in [27] is presented for the mini-
mization of the probability that vehicles arrive at their desti-
nations after given deadlines and the minimization of the total
travel time. Cao et al. proposed two optimization models to
describe the problem [14]. The Probability Tail Model (PT
model) aims to obtain an optimal path that minimizes the
probability of arriving at a destination later than a predefined
deadline. The Stochastic Shortest Path Problem With Delay
Excess Penalty Model (SSPD model) had a deterministic
travel fee and a random travel time which aimed to obtain
an optimal path that minimizes the sum of these two types
of cost, i.e., the total travel fee and the expected penalty for
arriving at the destination later than the predefined deadline.
This work finds the optimal solution based on the Partial
Lagrange Multiple method. However, these models did not
consider the case that individual drivers’ selection can in-
fluence the future traffic status. On the basis of these two
models, the authors proposed an intelligent routing algorithm
to minimize the traffic jam occurrence by directing the paths
of multiple vehicles cooperatively [15]. The traffic network
optimum is achieved if the probability for spontaneous traffic
jam occurrence over the entire road network during a given
observation time period is minimized. This objective aims to
minimize network breakdown probability, rather than the total
travel time and the load imbalance as in our optimization.

Overall, our work differs from previous related work in two
main aspects: (1) we propose an analytic optimization model
that considers the traffic conditions and drivers’ behavior on
rerouting decisions, and (2) we present an algorithm that solves
this optimization. The algorithm periodically optimizes the
traffic flow for the road network, and thus minimizes the
sum of the total travel time and a time representation of load
imbalance effects for all drivers in the road network.

III. SYSTEM MODEL

This section presents an overview of our system operation
and formulates the models of time-varying traffic flow and

JOURNAL OF KX CLASS FILES, VOL. XX, NO. XX, MM YY

congestion estimation on road segments. The notation used in
this section is described in Table [I

TABLE I: Summary of the Main Mathematical Notations

Notation [Description
N road network set
R road segment set
I road intersection set
T road segment ¢
Ai(T) the inflow rate of vehicles coming from other segments
to r; in time slot T°
wi(T) the outflow rate of vehicles leaving r;
for other segments in time slot T

P time slot duration
N;(T) number of vehicles on road segment r; in time slot T’
L; length of road segment r;
viveg (T) legal speed of road segment 7; in time slot 7'
Qii“(T) the number of vehicles entering network from r; in slot 7"
QM(T) the number of vehicles exiting network on r; in slot T°
ci capacity of road segment r; (number of vehicles)
o (T) traffic condition of road segment 7; in time slot 7'

i (T) vehicle m’s altruism for road segment 7; in slot 7'
ttel, (T) | vehicle m’s travel time estimation on 7; in slot T
0 threshold for ratio of altruistic to optimal travel time
s average inter-vehicular distance

A. Transportation architecture and system operation

As shown in Figure [} our system can work with either:
(a) direct communication between the cars and the server
using cellular/5G communication or (b) ad hoc communication
(VANET to RSU) and cellular/wired communication (RSU
to server), which is based on our previous work [[10]. The
first architecture is simpler, whereas the second one is more
scalable.

In both cases, the system periodically (i.e., in each time
slot) collects real-time traffic information, analyzes the traffic
conditions and generates the input parameters for DIPM, and
then sends the rerouting results generated by DIPM to vehicles.
The RSUs in the VANET-to-Cloud architecture aggregate the
results during the traffic collection phase and disseminate the
rerouting results to cars in their coverage area. In this way,
the load on the server can be reduced at the the expense of
longer delays and potentially lost messages in VANET.

In our system, the road network is defined as a weighted
graph. We assume that each road segment between two road
intersections is unidirectional; a bidirectional road is split
into two unidirectional segments. For brevity, we use “road

Cellular/5G
Vehicle/driver

2. send request ;
i for real-time
il traffic information ;

Cloud

Server

Cloud

Server

VANET

Roadside unit Vehicle/driver

1. time slot begins 1, time slot begins_j
Toad previous load previous
information information

3. response message
; speed, destination, B8 4 .hajyze traffic
i position, altruism lcondition

2. send request |
for real-time

I§. sleep and wait_ 1, sleep and wail

for next slot for next slot
(a) Car-to-Cloud Architecture (b) VANET-to-Cloud Architecture

Fig. 1: System operation under two architecture types

segments” to refer to “unidirectional road segments” in the
rest of the paper. With assistance from RSU, the number of
vehicles on each road segment can be estimated within an
acceptable error for different traffic densities, even when some
vehicles are not part of the system.

The behavior of the drivers is modeled using the binary
“altruism” parameter, which tells DIPM if a driver is expected
to follow the rerouting suggestion or not. To reduce load
imbalance and implicitly traffic congestion, the suggested
route for some drivers may be slightly longer than the optimal
route. If they take this route, we consider them altruistic. If
they take the optimal route (using their own knowledge), we
consider them selfish. This “altruism” parameter is learned
over time by analyzing the driver’s decisions to rerouting
suggestions.

B. Traffic flow model

We model the vehicles’ traffic flow as an inflow/outflow
system with sequential time slots. As shown in Figure [2] the
number of vehicles on road segment r; in the current time slot
can be divided into three components: the backlogged vehicles
from the previous time slot, the inflow and outflow of vehicles
from/to the neighbor road segments, and the vehicles that enter
the road network from this segment or have a destination on
this segment (i.e., exit the road network on this segment).

Parameters \;(7) and u;(T) denote the inflow rate and
outflow rate, respectively, of road segment 7; in time slot 7'.
They have variable values in different time slots; however, they
are regarded as constant in each time slot. The parameter p is
the duration of each time slot. The traffic volume that starts
and departs from 7; in time slot 7" is p[A;(T) — u;(T)]. The
lower bound of p should be larger than the computing time for
one DIPM calculation to make sure the vehicles in the road
network can use the results. Furthermore, p should not be too
low to avoid unnecessary calculations and waste of system
resources in relatively stable networks. On the other hand,
if p is too large, the system cannot set up the optimization
model based on the latest traffic parameters due to the changes
in the real-time traffic conditions, which will influence the
performance of traffic load balance. Therefore, our system will
set p as a multiple of the traffic light’s period, based on the
number and speed of the vehicles in the road network.

The number of vehicles that enter and exit the road network
on 7; in time slot 7 are defined as: Q"(T") and Q%(T).
Vehicle h and vehicle g illustrate this type of traffic in Figure[2}

Fig. 2: Illustration of traffic flow on road segment

JOURNAL OF KX CLASS FILES, VOL. XX, NO. XX, MM YY

The number of backlogged vehicles from the previous time slot
is N;(T — 1), illustrated by the vehicles in the circle in the
figure. Specifically, N;(T — 1) denotes the number of starting
vehicles inside road segment r; at the beginning of the time
slot.

Therefore, the number of vehicles on road segment r; in
time slot 7' is:

Ni(T) = N(T = 1) + p[\i(T) — pi(T)]
+[QN(T) — @M(T)].
Let us note the road segment’s total inflow in each time slot
is limited by ¢;, the capacity of road segment r;:

pAi(T) + QM(T) < c;.)

Here, the capacity ¢; of a road segment can be acquired
from its associated RSU’s cache, if RSUs are deployed, or
calculated based on the segment length and the average inter-
vehicular distance as ¢; = [LT]

(D

C. Congestion estimation

The traffic condition is determined by the relation among
density (the number of vehicles per distance unit), flow (the
number of vehicles per time unit), and mean speed [22].

Congestion definition 1 (speed-volume): When the speed on
road segment r; in time slot 7" is below a given threshold value
and the slope of flow is negative, the road segment 7; in time
slot T is congested. The formal definition is:

9q
o5 =0 3)

The drawback of this definition is that the threshold value is
difficult to define. Commonly, this value is set to two-thirds of
the legal maximum speed on the road segment. However, since
this value is arbitrary, we consider the following congestion
definition for the rest of the article.

Congestion definition 2 (number of backlogged vehicles):
The road segment r; is congested in time slot 7' when the
number of backlogged vehicles in the previous time slot is
larger than the sum of outflow and exit vehicles in the current
time slot. The definition can be described as:

Ni(T = 1) > ppi(T) + Q7"(T).)

Using this definition, the traffic condition of a road segment
in a given time slot, a;(7T), is defined as:

ai(T) = e[Ni(T = 1) = pui(T) = Q3" (T)]

— elopa(T) + Q™(T) = Ny(T = 1)]

Here, £(-) is a unit step function. When the road segment is

congested in time slot 7', the value of a;(T") is 1. Otherwise,
the value of «;(T) is -1.

wi(T) < (T

— 71

&)

IV. ANALYTIC FORMULATION OF OPTIMIZATION MODEL

When all drivers in the road network choose their own
optimal route as perceived at a given time, traffic congestion
may occur because the drivers do not consider the future
traffic load on the roads. While user-optimum optimizations
that consider future traffic load exist [10], they do not work

well in practice for three reasons: (i) they are unfair, as drivers
with the same OD pairs may end up with very different travel
times, and this may cause problems with system adoption, (ii)
they are computationally expensive and the results may arrive
too late for effective driver rerouting, and (iii) they do not work
well during congestion, which sometimes is unavoidable [21].

Therefore, this article focuses on a system-wide optimum
solution to the traffic congestion problem. Existing system-
wide travel time optimizations suffer from two problems.
They either do not consider the driver behavior when making
decisions [14], or do not provide proofs of optimality [12].
Our solution addresses both problems.

The rest of this section presents a discussion of drivers’
behavior and alternative route constraints, followed by the ana-
lytic formulation of our optimization, which aims to minimize
the sum of the total travel time in the road network and a
time representation of the traffic imbalance effects in the road
network.

A. Driver behavior and alternative route constraints

Given our optimization goal, it is expected that most drivers
will end up with optimal routes, but a small number of drivers
will not be recommended optimal routes. In general, drivers
do not know whether the route recommended by our system is
optimal or not. However, they know that the system optimizes
the total travel time and load balance, and that in general they
will end up with a shorter travel time when they follow the
system’s recommendation. Nevertheless, we assume that some
drivers will not follow the route suggested by the system and
will, instead, follow their individual optimal route.

To model this behavior, we use a parameter 3% (T). The
value of 3 (T) is 1 when the driver of vehicle m chooses its
optimal road segment r; in time slot 7', which means the driver
is selfish for the road network. The value of 3%, (7)) is -1 when
the driver of vehicle m chooses the alternative road segment
r; in time slot T, where 7; is a non-optimal segment suggested
by our system; in this case, we say the driver is altruistic for
the road network. The driver altruism can be further defined
as:

B (T) = 2elttest(T) — ttey,, (T)]

— ettet (T) — ttePY(T))]. ©

Here, tte?};t(T) denotes the vehicle m’s optimal travel time in
time slot 7', and tte! (T) is the travel time when vehicle m
chooses the non-optimal road segment r; in time slot T, with
ttel (T) > tteph (T). £(+) is a unit step function, which returns
0 when the variable is negative, and 1 otherwise. The vehicles
that are not in our system are considered to have selfish driver
behavior with 3¢ (T') = 1. Given our global optimization goal,
the number of vehicles selecting non-optimal routes will be
smaller than the number of vehicles selecting optimal routes:

q
> Bi(T) >0. (7)
m=1

Here, ¢ is the number of vehicles. If the travel time of the
altruistic road segment is significantly higher than the optimal
segment’s, the drivers may decide to stop using our system.

JOURNAL OF KX CLASS FILES, VOL. XX, NO. XX, MM YY

Therefore, the travel time of the altruistic road segment will
have an upper bound, described as:

E,,(T) < 0tte(T). ®)

Here, E¢,(T) is the extra travel time of vehicle m, which
chooses the altruistic road segment r; in time slot 7". It will
not exceed 6 percent of the optimal segment’s travel time of
vehicle m. The parameter 6 relates to the drivers’ acceptance.
In our paper, its default value equals 0.3 (i.e., 30%).

The detailed method to acquire the travel time estimation of
both tte??" and tte!, is based on our previous work [10]. Our
rerouting algorithm is improved based on Yen’s algorithm [28]],
which considers the futile rerouting issue. If the potential
rerouting path has a sub-path that is part of the previous
shortest path, the algorithm will remove the edges of this sub-
path.

B. Global traffic optimization

The objective in our optimization is analytically modeled in
a drift-plus-penalty framework, which considers not only the
total travel time in the road network, but also the traffic load
imbalance based on traffic condition and drivers’ behavior.

The main objective of the optimization is to reduce the total
travel time in the road network. The travel time of vehicle m
on road segment r; in time slot 7" is defined as followed, based
on work done in [16]:

tte! (T) = Ul.ef(iT) 1+ k‘l(NiC(iT) a1,)

Here, L; denotes the length of road segment r;. v*3(T') is the
legal speed of road segment r;, which is the free flow speed.
k1 and ko are adjustment parameters, which define the relation
between the speed and the traffic density quantitatively. The
values of k; and ky depend on the traffic scenario, which
can be estimated via evaluation and are not the same for all
road networks (we list the values used in our evaluation in
Section [VI). Therefore, the total travel time of all the vehicles

in the road network is:

SN ttel, (T).

i=1 m=1

(10)

Here, p denotes the number of road segment and ¢ denotes
the number of vehicles. To avoid low-accuracy estimates of
TTE when the number of vehicles on the road segment is
inaccurate, we leverage the work in [[10], which adjusts the
results of TTE for different system penetration.

Our secondary optimization objective is to reduce the
traffic load imbalance. The drivers’ behavior for the route
selection (altruistic or selfish) and the traffic conditions will
both influence the traffic load imbalance in the road network.
Considering these two parameters, there are four cases that
must be analyzed:

o Case 1: The road segment r; is not congested in time slot
T, and vehicle m selects r; as its altruistic road segment.
o Case 2: The road segment ; is not congested in time slot
T, and vehicle m selects r; as its optimal road segment.

o Case 3: The road segment r; is congested in time slot
T, and vehicle m selects r; as its optimal road segment.

o Case 4: The road segment r; is congested in time slot 7',
and vehicle m selects r; as its altruistic road segment.

Next, we present analytic formulations to analyze the im-
pacts of these four cases. The parameter «;(7T) describes
the traffic condition of road segment r; in time slot 7. As
shown previously, the vehicle m’s selection (altruistic/selfish)
is described by ¢ (T). The impact of a vehicle’s route
selection can be estimated by the existed parameters:
(T) — tteX(T).

m

E (T) = tte!

m

(1)

Furthermore, the impact of the road segment’s traffic con-
dition on the global traffic load can be estimated as:

iy Li Ni(T) — N{™(T) i,
B! (T) = max{0, S5 (T [1 4 Fa(5)™}
(12)
which means that if the road segment r; is not congested in
time slot 7', the number of vehicles on the road segment r; is
below the threshold value, and the vehicles on this segment
have no impact on the global traffic load in this time slot.
Otherwise, B! (T) is the travel time increase for the road
segment r;. The congestion threshold we use is based on what
we estimate in eq.(@). In addition, the definitions guarantee
that B! (T) and E¢ (T) have the same unit of measurement
(second), in order to be summed up with the travel time in our
optimization. The values of k3 and k4 depend on how much
traffic load balance the system wants to achieve. If the system
wants to balance the traffic load more, the values of k3 and
k4 will be larger. In this paper, we define k1 = k3, ko = k4.
By combining the parameters a;(T') and 3¢ (T'), the impact
of the four cases can be estimated quantitatively:

p

S5 (il T)BiL(T) + B (T)EL(T))

i=1

(13)

Where p is the number of road segments, and g is the number
of vehicles in the road network.

At this stage, we can model our multi-objective global traffic

optimization as follows.

Given:

1) Road network N = {R, I}

2) The real-time traffic information of each road segment in
time slot 7', including the inflow/outflow rate, the num-
ber of enter/exit vehicles, and the backlogged vehicles
from previous time slot.

3) The vehicles’ real-time positions and their destinations.

Objective:

P q
minz Z [ttein(T) + ai(T)Bfn (T) + B?Z”n(T)Ein(T)]
1=1 m=1
(14)
Subject to: (1), @), @), and (8).

This objective is to minimize the sum of the total travel
time and a time representation of the effects of load imbalance.
The traffic load is impacted by drivers’ behavior and road seg-
ments’ traffic conditions as shown in eq.(I3). The constraints

JOURNAL OF KX CLASS FILES, VOL. XX, NO. XX, MM YY

for our proposed objectives are: 1) road segments’ traffic
flow conservation between two sequential time slots; 2) upper
bound of the number of inflow vehicles; 3) upper bound of the
altruistic vehicle ratio; 4) upper bound of alternative route’s
extra travel time. The proposed model presents the dynamic
relationship between time slot 7' — 1 and time slot 7, until all
the vehicles in the road network reach their destinations.

Solution: The model outputs the optimal next road segment
and the suggested/altruistic next road segment for each vehicle.
Oftentimes, the suggested segment is the optimal one. In
the other cases, the suggested segment is longer than the
optimal one. In this case, the 3, parameter models the driver
behavior in time slot 77; it tells us whether the driver chooses
the recommended altruistic road segment or the optimal road
segment.

V. DIPM DESIGN AND ANALYSIS

This section presents our Dynamic Interior Point Method to
solve the optimization model presented in Section as well
as its performance analysis.

A. Algorithm design

Our optimization model contains three inequality constraints
and one equality constraint. This model is of the same type
as the one in [17]:

minimize fo(zx)
s.t.
Az =b
fi(z) <0,i=1,2,..n.

15)

In all the functions of our model, N;(T') can be regarded as
z in eq.(15). fo(x) is the objective function in eq.(14), which
denotes ttel, (T) + a;(T)B:,(T) + B, (T)E:,(T). The n in
eq.(13) is the number of inequality constraints, which is 3 in
our case. Therefore, fi(z) is our eq.(2), f2(z) is our eq.(7),
and f3(x) is our eq.. The equality constraint Az = b is our
eq.(T).

This type of formulation for our optimization model can
be analytically solved by the Interior Point Method (IPM)
[L7]. However, as we will explain later, using this method
directly is not sufficient for our problem because it can be
applied for only one time slot, and thus cannot guarantee that
all the vehicles arrive at their destinations when the method
finishes. Furthermore, we need to design an algorithm for a
computational solution to our problem. Therefore, we propose
the Dynamic Interior Point Method (DIPM), which is an
algorithm that works for road networks and all time slots,
until all vehicles reach their destinations. In the following, we
explain how we use the original IPM and how we incorporate
it in the DIPM algorithm.

IPM uses the indicator function to offset the inequality
constraints, which means that the inequations in constraints
fi(x) <0 are transformed into indicator functions I_(f;(x)).
The indicator functions are represented as:

I (u) = {0’ us0 (16)

oo, u>0.

Then, the model in eq.(I3) can be reformulated as an equality
constrained problem:

min <f0(x) +

s.t.
Ax =1b

a7

This indicator function I_(f;(x)) can be approximated via a
logarithmic barrier, which contains a parameter ¢:

3 1 3
Zl,(fi(x)) ~ = Zlog(—ﬁ(ar))

Then, the eq.(I7) can be approximated as:

(18)

3
min <fo(x) - 1_Zlog<—fi<x>>> (19)
s.t. Ax =b -

Therefore, the inequality constrained problem in eq.(I3)) is
transformed into eq.(I7), and then approximated into eq.(T9).
The eq.(T9) is an equality constrained problem, which can be
solved with the Lagrange function under the KKT conditions
[18].

The Lagrange function that considers N;(7T') as variable is:

LIN:(T), ¢ (D), V*(t)]

= fo(N, +Z<k) fr(Ni(T))+v* (£) (AN (T) — b).

(20)

Here, (*(t) and v*(¢) denote the dual operators of the La-
grange function; ¢*(¢) is — m and v*(t) is ¥. A and
b denote the coefficients of the constraint in equation (T).

Because IPM cannot take into consideration the traffic flow
across consecutive time slots, it can only be used for each
individual time slot, using the real-time data as static variables
in KKT conditions. Though it is possible to apply IPM
repeatedly at the beginning of every time slot, as implemented
in Section @ as a competing mechanism of DIPM, this
method still cannot detect the traffic flow relationship between
time slots, and thus cannot stop the repeated calculation
automatically when all the vehicles arrive at their destinations.

DIPM improves the coefficient A as a dynamic variable that
relates to the current time slot 7" and the previous time slot
T — 1 in the barrier function:

H AT [ANy(T) VI(Ni(T))
R Vol R DO e]
where H can be described as
H= dmg[tVQfo ZV Tre(N:(T'))]
— dia _ szl(lnkz)
= diaglln + (1 =51+ O 5 ey e @
BT Liks(n ka)? N(T) = NP (T)
(c0)20["(T)

JOURNAL OF KX CLASS FILES, VOL. XX, NO. XX, MM YY

The IPM algorithm considers A as a unit matrix based on
equation (I} and the b coefficient as N;(T — 1) 4+ p[\i(T) —
wi(T)] + [Q(T) — Q9“*(T)]. Since IPM works only in an
individual time slot, it loads N;(T — 1) as a part of variable
b.

Unlike IPM, DIPM works for road networks and all time
slots, and it considers the dynamic flow in current time slot T’
and the previous time slot 7'— 1. The coefficient A is set as a
variable that relates dynamically to the time slot via AN;(T).
In DIPM, the variable b in each time slot is p[A\;(T) — p; (T)]+
[Qi(T) — Q¢**(T)], which transforms N;(T —1) as AN;(T)
via AN;(T) = Ny(T) — N;(T —1). Ais I — v(T) when
N;(T—1) = ~v(T)N;(T). Therefore, A is a variable that relates
to the time slot 7" and AN;(T') in the barrier function. The
equation (ZI) in DIPM is transformed as:

3
H = diag [tV fo(N(T)) = Y V2 fu(N:i(T))| (23a)
k=1

A=1-~(T)

b= p[Xi(T) — pa(T)] + Q" (T) — Q7 (T)]

Here, I is a unit matrix. v(7") is the ratio matrix between
N;(T — 1) and Ny(T) for i € {1,2,...m}.

In addition to improving the definitions of variables A and
b to make them work for all the time slots and the whole road
network, DIPM improves the stop criteria used by IPM. The
IPM algorithm has two stop criteria:

o The error between the original optimal results and the
IPM’s results is smaller than the threshold value. When
the parameter ¢ increases during the iteration, the error
between the approximated optimization model in eq.(T9)
and the original model in eq.(I3) will be reduced itera-
tively. Therefore, the algorithm will stop at the iteration
when the error is under the threshold value. The default
value for the error threshold is 1076.

e The number of iterations reaches a maximum value. In
our case, the algorithm’s processing time cannot be larger
than the duration of the time slot because we need to
make timely rerouting decisions. Thus, IPM needs a
constraint on the number of iterations. The default value
for the number of iterations is 1000.

DIPM adds one more stop criterion for termination: the
execution ends when all the vehicles in road network reach
their destinations. This criterion makes sense in experimental
evaluations; in real-life, the algorithm will run continuously.

IPM can calculate the optimal results in one time slot.
DIPM, on the other hand, adapts to the traffic dynamically,
as it takes the results from the previous time slot and uses
them in the current time slot. The full comparison between
DIPM and IPM, which illustrates the improvements of DIPM
is presented in Table

Algorithm 1 presents the pseudo code of DIPM in one time
slot. At the beginning of the time slot, Lines 1~6 initialize
the model’s input and collect real-time traffic information.
The algorithm sets up the optimization model via lines 8~15.
Lines 16~24 execute iterations to obtain the optimal results for
DIPM, and then the algorithm ends by outputting the rerouting
results for all drivers.

(23b)
(23c)

Algorithm 1 DIPM Pseudo Code (per time slot)

1: Input the road network N = {R, I} as matrix
2: Input error threshold ¢ > 0, maximum iteration number

jm(l(ﬂ

3: Load the real-time traffic status of road network

4: Initialize road segment id ¢ = 1, iteration time j = 1

5: Transform the variables N;(T") and «;(T")

6: Input vehicles’ OD pairs

7. /*Create the optimization model*/

8: Create the objectives as eq.(I4)

9: Set up four constraints eq.(I) eq.(2) eq.(8) eq.(7)

10: /*Search the optimal arrangement result via IPM*/

11: Transform eq.(2), eq.(8), and eq.(7) via indicator function
as eq.(T7).

12: Approximate indicator function as eq.(T9)

13: Set up the Lagrange multiplier and dual multiplier ((t),
Vi (t) via eq.(2), eq.(8), and eq.(7)

14: Create Lagrange function L[z, (), v} (t)].

15: /*Do iterations until any stop criteria is satisfied*/

16: while 2 > e&&j < jinao do

17: /*% > ¢: error is larger than the threshold*/

18: /*j < jmae: Maximum number of iterations not

reached*/
190 if N; =0 forall i € {1,2,...m} then
20: /*All vehicles in road network reach destinations™*/
21: Go to line 30
22: else
23: Find feasible solution of L[z, (/(t), v} (t)]
24 Calculate H, A, b, N;(T) as x via eq.(23)
25: r=z*(t)
26: t=kt
27: J++
28: end if

29: end while
30: Output the optimal rerouting results for each driver

B. Algorithm analysis

Theorem 1: Our optimization model has a feasible solution
and the optimal result is attained.

Proof. See Appendix A. O

Theorem 2: DIPM converges to optimal results within a
finite number of iterations.

Proof. See Appendix B. O

Theorem 3: The computational complexity of DIPM is
O(KN(M + Nlog N) + s + vnlog(Z)), where K is the
number of routes provided to vehicles; K is set to 2 in our
experiments (optimal route and alternative route), but can be
higher if we want more alternative routes. M is the number
of road segments, N is the number of road intersections. s
is cardinality of the set of OD pairs for all drivers, where
the origin for each driver is considered its current segment.
n is the number of inequational constraints and € is the error
threshold.

JOURNAL OF KX CLASS FILES, VOL. XX, NO. XX, MM YY

TABLE II: Comparison of IPM and DIPM

Comparison criteria IPM DIPM
A load data via eq._ set up A with AN;(T)
b Ni(T = 1) + p[Ai(T) — ps(T)] + [QI(T) — QEU(T)] pAa(T) — i (T)] + [QIP (T) = Q2¥t(T)]
Step length constant time-vary variable among time slots

Stop criterion (a)
Stop criterion (b)
Stop criterion (c)

iteration threshold
error threshold

iteration threshold
error threshold
no vehicle left in the system

Can it work for sequential time slots? No Yes

Proo f See Appen dix C. O TABLE III: Synthetic road networks parameters
road road 2-connected 3-connected 4-connected

Remark 1: Compared to the method that repeatedly applies segments | intersections | road segments | road segments | road segments
IPM over all time slots, DIPM reduces the computational égg g; ‘3‘ ég ;
complexity by O(Az(ﬁlog(2))). Az denotes the reduction 300 a4 7 % p
of the number of time slots. In each time slot, DIPM calculates 400 110 4 31 75
one less parameter (i.e., A). 500 135 4 32 99

Proof. See Appendix C. O

These theorems and the remark demonstrate that DIPM can
effectively and efficiently find the optimal number of vehicles
on each road segment in each time slot in order to reduce
both the total travel time and the traffic load imbalance in the
network as much as possible.

VI. EVALUATION

We evaluate DIPM using simulations. The evaluation aims
to answer the following three questions: 1) Is DIPM fast
enough to work in a real-time navigation system? 2) Does
DIPM performs better than existing practical solutions, includ-
ing IPM, dynamic LET, etc, in terms of travel time? and 3)
Does DIPM improve driver fairness when compared to existing
practical solutions and a user-optimum traffic optimization?

A. Experiment setup

We conduct our evaluation using MATLAB and VanetMo-
biSim [24], which is a traffic pattern and vehicle mobility
simulator. Specifically, we implement and run DIPM and the
following competing algorithms in MATLAB:

o Static shortest path (SSP) [10]: A static path planning
algorithm that chooses the shortest path based on the
traffic information when the vehicle enters the road
network; no rerouting happens during the travel.

« Entropy-balanced k shortest path (EBkKSP) [12]: An im-
proved kSP algorithm that takes into consideration the
impact of each path selection on the density of the
affected road segments.

o A* shortest path with repulsion (AR*) [12]: An enhanced
A* algorithm with a weighted vehicle footprint counter
and an improved heuristic function.

o Dynamic traffic assginment (DTA) [21]]: A dynamic traf-
fic assignment method that achieves user equilibrium.
Despite not being a viable solution for real-time traffic
guidance [12]], DTA is valuable because it gives us a
lower bound on the travel time and allows us to com-
pare DIPM’s fairness against a well-known user-optimum
approach to traffic optimization.

The vehicular mobility model is set as polito.uomm ex-
tension in VanetMobiSim. The number of vehicles entering

’
Tow, llll_
\/ lll'i “ @ylfllll

'\\

i"

Fig. 3: Map used in simulations: area of Newark, NJ, USA

the road network in different time slots is generated using
a Normal distribution. The system sets an initial number
of vehicles at the beginning of simulation, which considers
vehicles starting inside the road network. The execution of
an algorithm in MATLAB generates rerouting results, which
are fed into VanetMobiSim. Based on the rerouting results,
VanetMobiSim simulates the movement of the vehicles on a
map and generates a set of vehicular trace files as the result of
simulation. We measure the execution time of DIPM in MAT-
LAB, and analyze the trace files generated by VanetMobiSim
to evaluate the DIMP’s solutions quality. Both MATLAB and
VanetMobiSim run on a Windows10 computer with Core i7
processor and 8Gb memory.

The execution time of DIPM is mainly determined by the
complexity of road network. Therefore, for experiments re-
garding execution time, we use MATLAB to generate synthetic
road networks with different numbers of road segments and
intersections, as summarized in Table

To measure the travel time and fairness, we use a real map
from OpenStreetMap [23]]. The map (shown in Figure [3) is a
part of the road network in Newark, NJ, USA. The details
of the map are summarized in Table [V} This table also
contains a few other key parameters needed by VanetMobiSim
for generating traffic and conducting simulations. The traffic
generation model is the same with the one in [[10].

JOURNAL OF KX CLASS FILES, VOL. XX, NO. XX, MM YY

TABLE IV: Simulation parameters for realistic scenario

Simulation parameter Value
network area (km?) 27.09
number of road segments 1494

number of road intersections 505

total segment length (km) 201.83
number of vehicles 1000
origin-destination (OD) pairs 100
traffic light duration (s) 100
time slot duration (s) 100
number of traffic lights 85
vehicular legal speed (km/h) 40 /50 /70780 /100 /130
travel recording interval (s) 0.1
simulation time in VanetMobiSim (s) | 20000
ki/kalkalka 0.35/0.6/0.35/0.6
15
é 10
o0
§
Zs
:

-
=}
So

400 600
400
200

#intersections

#segments 0 o

Fig. 4: DIPM execution time: the plane is the theoretically estimated time, and the curve
is the measured time

B. DIPM Execution Time

Our goal with these experiments is two-fold: (i) verify if the
measured execution time of DIPM matches the theoretically-
estimated execution time, and (ii) understand if the execution
time of DIPM is good enough for a real-time navigation
system.

Figure [4] shows a 3D visualization of the execution time
of DIPM for road networks of different sizes. The plane
shows the execution time estimated theoretically based on
the analysis of the algorithm, for all combinations of the
number of road segments (100-600) and the number of in-
tersections (100-600). The curve shows the actual execution
time measured on our platform for 5 map configurations (100
segments-31 intersections, 200 segments-57 intersections, 300
segments-84 intersections 400 segments-110 intersections, and
500 segments-135 intersections); each data point on the curve
is the average execution time of 20 runs of DIPM with 5
different sets of OD pairs and different initial values.

The results in Figure] show that execution time measured
in the experiments is very close to the theoretically-estimated
execution time. Figure [5] shows a 2D visualization of this
result. The estimated time is plotted for the same map config-
urations as the measured time. The results illustrate that the
difference between the theoretically-estimated execution time
and the measured execution time is less than 5%.

Figure [6] shows how the execution time changes with the
number of OD pairs. The map used is the one with 500 road
segments in Table [ITT} the number of vehicles is 1000, and
their origin and destination locations are randomly selected
from the OD pairs based on normal distribution. The results

—=—simulated results
~ ® ~theoretical results

computing time(s)
s
n

o 1 L I I . . L
100 150 200 250 300 350 400 450 500
the number of road segments

Fig. 5: DIPM execution time: estimated time vs. measured time for 5 map configurations

et
e
T
»

v
3
T

—=— simulated results
- @~ theroetical results

e
9
T

e
N

computing time(s)
e o
- 24

S
w

I
N

0.1
|

0 I I I I 1 I
10 20 30 40 50 60 70 80 90 100
the number of OD pairs

L h

Fig. 6: DIPM execution time: estimated time vs. measured time for different numbers of
OD pairs

demonstrate that the two types of execution time match
very well. Furthermore, the execution time increases roughly
linearly with the number of OD pairs.

Thus, even though it is not realistic to generate maps of
all sizes and repeat the experiments with these maps, we can
use the estimated execution time from the theoretical analysis
to quantify how DIPM scales. First, let us note that DIPM’s
execution time for a fairly large map with 600 segments and
600 intersections is 15 seconds on a laptop. Since the travel
time within a road segment usually exceeds 15 seconds, we
conclude that DIPM is fast enough to generate solutions in
real-time for such networks. Based on the DIPM’s theoretical
analysis, we also estimate that DIPM can work for much larger
networks, but it will require more powerful hardware, which
is readily available (e.g., in the cloud).

mean speed(m/s)
N

0 L L I I L I
0 2 4 6 8 10 12 14

time slot id

Fig. 7: Average speed comparison between DIPM and IPM in different time slots

JOURNAL OF KX CLASS FILES, VOL. XX, NO. XX, MM YY

Fig. demonstrates that DIPM works better than just
invoking IPM repeatedly over the time sots. Specifically, the
figure shows a comparison of the average speed for all vehicles
in different time slots. We observe that DIPM results in higher
speed, and the difference between DIPM’s speed and IPM’s
speed keeps increasing over time. The average speeds of IPM
and DIPM at the beginning are the same. Because the number
of vehicles is small at the beginning, N;(T — 1) equals zero,
which means that the variables A and b in both DIPM and IPM
are the same. Thus, the difference between the two algorithms
is negligible at the beginning. However, after several time
slots, the advantage of DIPM becomes apparent because it can
provide optimal dispatch results dynamically as the number of
time slots grows. This is explained by the dynamic setting of
variables A and b in DIPM. Furthermore, DIPM terminates
within 14 time slots. Under IPM, with these time slots,
12.23% of vehicles cannot arrive at their destinations; for these
vehicles to arrive their destinations eventually, as many as 18
time slots are needed.

C. Travel Time Comparison

Figure [8] shows the comparison of the average travel time
(per driver) between DIPM and 4 comparison algorithms,
using 3 traffic scenarios. We repeat each simulation 5 times.
Across all scenarios, DIPM performs better than the 3 practical
solutions, namely AR*, EBkSP, and SSP. Compared to these
algorithms, the average travel times with DIPM are 19.2%,
9.15%, and 5.39% shorter, respectively. While the average
travel time increases with the number of vehicles (i.e., the
traffic slows down), the performance advantage of DIPM
remains stable. For example, compared to SSP, the average
travel time with DIPM is shorter by 19.41%, 18.9% and
19.29% for 1000 vehicles, 1500 vehicles, and 2000 vehicles,
respectively.

Furthermore, based on [25], we added the performance of
“Dynamic LET” in Fig. [§] as an intuitive baseline, which is
shown as a line in the figure. “Dynamic LET” performs path
planning based on Least Expected Time in each time slot
in a greedy way. The simulation results show that the SSP’s
average traveling time bar is above the baseline because SSP
does not provide rerouting in the following time slot. The
AR* and EBKSP are below the baseline because the rerouting

2500

4‘ E=Issp /7///1eBksp [[II11J AR* [NV DTA E:::dDpIPM

2400

2300+ 1 —
o 1 | baseline d—LET
T 2200 :I: =
£ - s
= 2100 = = =
T = | H u
& 2000 —.] |
g 1 | ||
- -
& 1900 m - Pl
=] | 1 [1
S 1800 —— - - - = L.]
% T theore— [|]
1700 ftical DIPM || m]
1600] N]
1500 M 1

1000cars1000d 1500cars1000d 2000cars1000d

Fig. 8: Comparison of average travel time for 3 traffic scenarios

TABLE V: Number of reroutings for all vehicles

metrics EBKSP | AR* DTA | DIPM
mean value 1.538 1.429 2.5 1.419
standard deviation 1.301 1.409 0.8 1.399

of AR* and EBKSP considers the influence of vehicles’ path
choices on the future traffic conditions. As explained above,
DIPM performs best and it is substantially better than Dynamic
LET. Furthermore, the line named theoretical DIPM shows
the theoretical objective values. The difference between the
theoretically-calculated average travel time and the simulated
average travel time is less than 1%. The error is caused by
two factors: the error of parameter ¢te estimation, and a minor
delay at vehicles to receive the optimal results.

We also notice that DTA performs slightly better than DIPM
(by at most 2.5%). This is because DTA aims to achieve
user equilibrium, with which shortening the travel time is
the only objective. DIPM, on the other hand, aims to achieve
system equilibrium and reduce both the travel time and traffic
imbalance. Furthermore, as shown in Section [VI-B] DIPM can
work well in real-time. DTA, on the other hand, cannot, due
to its very high computational complexity coupled with high
traffic dynamics and imperfect traffic knowledge [12].

To investigate how travel times are affected by traffic
congestion, we have selected three OD pairs with a reasonable
large number of vehicles (at least 40 vehicles each) and
examined the travel times of these vehicles. We show the travel
times in Figure[9} one sub-figure for each OD pair. We sort the
vehicles based on their departure times, and use their ranks as
their IDs in the figure, with vehicles departing earlier having
smaller IDs. At the beginning of the simulation, there are no
vehicles on the road network; then, vehicles enter and depart
the network gradually. The first vehicles to enter the network
experience lighter traffic.

As shown in Figure [0 travel times increase for all al-
gorithms when traffic becomes heavy. The travel times are
the longest with SSP, because SSP cannot reroute vehicles to
avoid congestion. EBKSP, AR*, and DTA can perform better
than DIPM when traffic is light. However, their advantages
cannot sustain when traffic becomes heavy; for vehicles with
large IDs, their travel times are the lowest with DIPM. The
reason is that these algorithms give more weight to shortening
paths, instead of balancing traffic load in the network. When
traffic is light and congestion is unlikely, they achieve better
performance by making vehicles traveling shorter distances.
But, when traffic is heavy, having vehicles moving along their
shortest paths increases the chance of traffic congestion, and
thus increases the travel times. DIPM, on the other hand,
reduces traffic imbalance and works best for scenarios with
medium to high congestion. These results can inform a real-
life system to decide when to use DIPM.

Furthermore, we analyzed the number of reroutings pro-
duced by each algorithm. This is an important parameter
because the drivers may not use the system if too they have
to go through too many reroutings. Table [V] shows the mean
value and standard deviation of the number of reroutings for all
vehicles. SSP does not provide rerouting, so it is not shown in

JOURNAL OF KX CLASS FILES, VOL. XX, NO. XX, MM YY

1700

1600

1500

1400

travel time(s)
travel time(s)

1300

—+—DTA
DIPM

1200

1400

1300

1200

1100}

> .

1000 H
—w— SSP

900 EBKSP | |

—4#— AR*
——DTA
DIPM

travel time(s)

800

0 B 10 15 20 25 30 35 40
vehicle id

(a) Travel times for 40 cars with OD pair #1

(b) Travel times for 45 cars with OD pair #2

vehicle id vehicle id

(c) Travel times for 50 cars with OD pair #3

Fig. 9: Effect of congestion for vehicles with the same OD pairs

the table. The results show that DIPM performs the best, while
DTA has the most reroutings. Since the number of reroutings
is relatively low, we believe that DIPM can be acceptable in
practice.

D. Fairness Comparison

ssol [ESssp iz Emksp [T AR* KX DTA DIPM | |
=
S
£ 200} = [l N
3 N = I
° =
T =
= 150 = B
K = 7
E —/
2 H
£ 100f = i
= E
° =
: = N
= =
& s0- = M E H |
#16610#33 #199t0#497 #423to#241 #34t0#338 #22610#485
OD pair

Fig. 10: Fairness comparison through travel time standard deviation

As argued in Section [} driver fairness is very important
for widespread system adoption. Figure [I0] shows a fairness
comparison between DIPM and the other 4 algorithms. The
metric used in this comparison is the standard deviation of the
travel times for vehicles with the same OD pair (but different
departure times). The results demonstrate that the standard de-
viation is the lowest for DIPM. This means that DIPM is fairer
than the other algorithms: vehicles with the same OD pair have
similar travel times. In addition to fairness, the results also
emphasize that the drivers can expect predictable/stable travel
times with DIPM. These benefits come from the combined
objectives of DIPM of reducing both the travel times and the
traffic imbalance in the network.

Aiming to analyze the traffic load balance quantitatively,
Fig. [TT] shows the average traffic load ratio in each time slot.
The traffic load ratio is defined as JZ where N; denotes
the number of vehicles on road segmeﬁt r; in this time slot
and c¢; is this road segment’s capacity. Only segments that
have vehicles are included in the the mean value’s calculation.
The higher the ratio is, the heavier the traffic load is in this
time slot. The figure shows that the performances of traffic

0.9+
0.8}
2
S 07
S
=
3
=
=
«<
St
< —s— SSP
s EBKSP
£ e AR*
—+— DTA
DIPM

L L L | I
0 10 20 30 40 50 60 70 8 9 100 110
time slot id

0 L L L L L

Fig. 11: Traffic load ratio in different time slots

load ratio as SSP>EBkSP>AR*>DTA>DIPM. Compared with
the other four algorithms, DIPM’s traffic load ratio ranges
from 0.6 to 0.7 in most time slots. According to the standard
deviation, the traffic load is the most stable in DIPM across
all time slots, which means that DIPM’s traffic load balance is
better than the load balance obtained by the other algorithms.

08 i

0.7} i

0.6 q

0.5} s

04 i

03 B

Cumulative distribution of
drivers’ relative travel time

0.2 4

0.1 i

| | | |
0.7 0.8 0.9 1 1.1 1.2
relative travel time (system optimun/user optimum)

Fig. 12: CDF of relative travel time between DIPM and DTA

The final question that we address in this evaluation is: what
is the cost of fairness in terms of increased travel time for
drivers when compared to DTA, which provides the optimal
driver travel times? We have already seen in Section [VI-C|that
the average travel time of DIPM is just slightly higher than

JOURNAL OF KX CLASS FILES, VOL. XX, NO. XX, MM YY

that of DTA. Now, we compare the travel times for individual
drivers between these two algorithms.

Specifically, we want to find out how many drivers benefit
from DIPM and use less time to reach their destinations, and
how many vehicles suffer longer travel times. For this purpose,
we show the CDF of the relative travel times in Figure [I2] The
relative travel time for a driver is the ratio between the travel
time with DIPM and the travel time with DTA. Thus, a relative
travel time below 1 means that the vehicle uses less time to
reach the destination with DIPM.

Figure[12]shows that about 70% of the vehicles have smaller
travel times with DIPM than they do with DTA. This indicates
that, compared to DTA, although DIPM cannot shorten the
average travel time, it can shorten the travel times of most
vehicles. Another 30% of the vehicles have larger travel times
with DIPM, but only a very small percentage (<3%) have
relative travel times larger than 1.1, and the relative travel
times of all vehicles are lower than 1.2. This is the cost
of fairness. Most of these drivers are altruistic and choose
to follow the alternative routes suggested by DIPM. This
indicates that DIPM can achieve fairness for all drivers, better
travel times for most drivers, and effectively limits the increase
on travel times for altruistic drivers. Thus, DIPM can be a
practical solution for traffic optimization.

VII. CONCLUSION

This paper has proposed a system-wide traffic optimization
model that minimizes the sum of the total travel time and
a time representation of the effects of traffic load imbalance
in the road network. We proposed an analytic formulation
for this optimization and an algorithm, DIPM, that solves
the optimization. The experimental results have demonstrated
that DIPM outperforms existing practical algorithms in terms
of travel time. Furthermore, its travel time benefits become
more apparent during traffic congestion, when most existing
solutions do not perform well. DIPM also improves the driver
fairness by providing similar travel times for drivers with
the same OD pairs. Finally, our results show that DIPM can
provide results in real-time. Its fairness and real-time features
make DIPM practical for real-life traffic navigators. As future
work, to ensure the scalability of our system, we will consider
multiple cooperative servers. Then, we will study how to
divide the road network among these servers and how to
execute our algorithm in this distributed setting.

APPENDIX A
PROOF OF THEOREM 1 ON SOLUTION FEASIBILITY

Based on [17]], an inequality constrained minimization
model has a feasible solution if the model satisfies two
requirements: 1) the objective and inequality constraints are
twice continuously differentiable convex functions; and 2) For
the matrix in the equality constraint A, A € RP*"™, its rank
should satisfy rankA = p < n.

In our optimization model, as described in Section all the
functions in Eq. take IV;(T) as their variable after certain

formula transformations. The objective function, tte! (T') +
a;(T) - BL,(T) + BL,(T) - Ei (T), can be transformed into

Y1L; Ni(T)

Jo(Ni(T)) = — (14 ki (——=)"]
v;(T) Ci 24)
. . _ thr
L A

In equation[24] ~; is a constant ratio; the positive or negative
value of the second term depends on the value of N;(T'). The
twice differentiation of the function is continuous and convex:

_ nLiki(Inky)? (Ni(T)
uT) - (@) G
kal(Inka)? | N(T) = N{(T)

Vi (T) - (c3)? &

K2

V2 fo(Ni(T)))2

).
(25)

Among the inequality constraints, the first inequality
constraint, Eq.(2), can be simplified into f(N;(T)) =
voN;(T),Vi < p, utilizing the relationship described in
Eq.(1). Since v is a ratio constant, V f1(N;(T)) = 72, and
V2f1(N;(T)) = 0. Thus, the first inequality constraint also
satisfies the first requirement.

The second inequality constraint described in Eq.(7) can
be divided into two inequality functions with N;(T") as their
variables, denoted f>; and fyo. Here, fo, is the lower
bound and f;o is the upper bound. Since the value of
second constraint is between w and N;(T), both of fz1
and fy o are linear functions. Specifically, V fo1(N;(T)) =
-1, V2fou(Ni(T)) = 0, Vfoo(Ni(T)) = 1, and
V2 f22(N;(T)) = 0. Thus, the second inequality constraint
satisfies the first requirement.

The last inequality constraint is described in Eq.(§), i.e., for
Vi < p, f3(N:(T)) = E. (T) — 0tte2’*(T) < 0. The model
uses a ratio 3 to describe the difference between ttel, (T') and
tte?P(T), i.e., tteP!(T) = ~sttel (T), where v3 < 1. Thus,
the last inequality constraint f3 can be rewritten as:

f3(Ni(T)) = [1 = 73(1 + 0)]tte;, (T)

=1+ ‘9)]”1{5&1)[1 + kl(Nic(iT)

)3
(26)

The twice differentiation of f3 shown below is continuous
and convex. Thus, it also satisfies the first requirement.

Likl (ln k2)2 (NZ(T)
(el (1) e

V2 f3(Ni(T)) = [1 = 73(1 + 0)])"
27
The matrix of the equality constraint in the proposed model

is N = {Ny(T),- - -,Ny(T),- - - Np(T)}T with a rank of

1. Thus, rankN = 1 < p, where p denotes the number of

road segments. This means that the matrix satisfies the second

requirement.

To summarize, the optimization model satisfies both require-
ments. Thus, it has a feasible solution, and the optimal result
is attained.

JOURNAL OF KX CLASS FILES, VOL. XX, NO. XX, MM YY

APPENDIX B
PROOF OF THEOREM 2 ON DIPM CONVERGENCE

Appendix A has proven that fo(z), f1(z), fo(x), and f3(z)
are continuous twice differentiable functions.
For Eq.(19), assuming 2*(¢) is the optimal result of x, when
x = x*(t), there exists a w that satisfies the KKT conditions:
-1
tV folx) + mei(x) + ATw=0,4z=b. (28)
i\T
i=1
Eq.(28) can be considered as a Lagrange function of Eq. [I9]
It reaches its minimum value when x = x*(¢). The function
can be further rewritten as:

3
Llz, ¢ (1), v (1)) = folw) + Y ¢ (8) fi(w) + v ()(Az — b)
= (29)

In Eq. Llz,¢F(t),vi(t)] is the Lagrange function;
) = —7. and vi(t) = w/t. The function reflects

the approximation of the original model described in Eq.(T4).
Thus, the original optimal result opt™ is greater than the
optimal result of our method, i.e., the minimal value of
Lagrange function fo(x*(t)):

opt™ > L{z™(1), ¢ (t), v; (1)]
3
= fo(z" (1)) + Z(Cf(t)fqz(w*(t))) +v; (1) (Az™(t) - b)

fi(z™(t))

ftfi(x*(t))) + w/t(Ax — b)

3
= fola" () + >

= ol 0) + ().
= (30)

Based on Egq. fo(x*(t)) < opt* + 2. This indicates that
the optimal result of our method fo(x*(¢)) will approach the
original optimal result opt* when ¢ — oo. Therefore, DIPM
converges.

APPENDIX C
PROOF OF THEOREM 3 ON DIPM COMPUTATION
COMPLEXITY

The algorithm includes four steps in each time slot: 1) load
the traffic data of the current time slot; 2) determine optimal
routes and altruistic routes for all vehicles; 3) calculate an
optimal altruistic ratio with DIPM; and 4) update the traffic
data to be used in the next time slot. Among these steps, the
second and third steps are the main parts, and determine the
complexity of the algorithm.

The second step is finished using an enhanced version of the
Yen’s algorithm [19]. The enhancement is to estimate travel
times more accurately by taking into consideration traffic
density, and does not increase complexity. The complexity
of Yen’s algorithm depends on the shortest path algorithm
used to compute the spur paths. Let us assume that Dijkstra’s
algorithm is used. With a Fibonacci heap, the complexity

of Dijkstra’s algorithm can be reduced to O(M + N log N)
[19], where N is the number of road intersection and M is
the number of road segments. The Yen’s algorithm makes
KN calls to the Dijkstra’s algorithm when computing the
spur paths, where K is the number of paths provided for
vehicles, with a default value of 2 in our experiments. Thus,
the complexity of the second step is O(K N (M + N log N)).
This shows that the complexity of step 2 is mainly determined
by the number of the road intersections.

The complexity of step 3 is mainly determined by the
number of iterations. Based on the self-concordance of
barrier function [20], the complexity of IPM algorithm is
O(v/n log(ﬂ)), where n is the number of inequality con-
straints in tehe model (3 in our algorithm), € is the default
value of error.

The DIPM algorithm is called in each time slot to compute
the optimal rerouting for the set of OD pairs. s is cardinality
of the set of OD pairs for all drivers, where the origin for each
driver is considered its current segment. Thus, the complexity
of step 3 is O(s + \/ﬁlog(ﬁ)).

The overall computationalecomplexity of DIPM algorithm is
O(KN(M+NlogN) +s+\/ﬁlog(ﬁ)), which is determined
by the size of road network and the ‘number of OD pairs in
each time slot.

The DIPM complexity is reduced in two ways: (1) The bar-
rier function parameters’ calculation. DIPM need not calculate
A in every time slot. Although b is different from IPM, it
still needs calculation in the barrier function. Suppose that
the number of calculation parameters is r in IPM, therefore
it will be » — 1 in DIPM. In each time slot, DIPM has
one less parameter (i.e. A) calculation; the reduction will be
(v/nlog(%)). (2) The number of time slots. Because DIPM
decreases the time for parameters’ calculation, it may end the
progress earlier than IPM. Let us assume that the number of
time slots DIPM decreases is Az. Therefore, comparing to
IPM over all time slots, the reduction of DIPM in complexity

is Az(y/nlog(2)).

ACKNOWLEDGMENT

This work is supported by the NSF of China under Grant
No0.71171045, No.61301118 and No.61772130; the Innovation
Program of Shanghai Municipal Education Commission under
Grant No.14YZ130; the International S&T Cooperation Pro-
gram of Shanghai Science and Technology Commission under
Grant No.15220710600; Fundamental Research Funds for the
Central Universities No.17D310404. This research was also
supported in part by the U.S. National Science Foundation
under Grants No. DGE 1565478, SHF 1617749, and CNS
1801430.

REFERENCES

[1] T. Mao, W. Zhang, H. He, Y. Lin, V. Kale, A. Stein, and Z. Kos-
tic, Aic2018 report: Traffic surveillance research, CVPR Workshop
(CVPRW) on the AI City Challenge, 2018.

[2] Global Mobility Report 2017: Tracking Sector Performance, Washington
DC, License: Creative Commons Attribution CC BY 3.0, 2017.

[3] P.J. Owens, B. Kean, and G. Apostolopoulos, Optimizing traffic load in
a communications network, U.S. Patent N0.9648133. Washington, DC,
issued May 9, 2017.

JOURNAL OF KX CLASS FILES, VOL. XX, NO. XX, MM YY

[4]

[5]

[6]

[71

[8

=

[91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

F. Cunha, L. Villas, A. Boukerche, G. Maia, A. Viana, R. A. Mini, and A.
A. Loureiro, Data communication in VANETSs: Protocols, applications
and challenges. Ad Hoc Networks, 44, 90-103, 2016.

J. Wan, J. Liu, Z. Shao, A.V. Vasilakos, M. Imran, and K. Zhou, Mobile
crowd sensing for traffic prediction in internet of vehicles, Sensors,
16(1), 88, 2016.

M. M. Rahman, J. R. Mou, K. Tara, and M. 1. Sarkar, Real time Google
map and Arduino based vehicle tracking system. IEEE International Con-
ference on Electrical, Computer and Telecommunication Engineering
(ICECTE), 1-4, December 2016.

S. Hu, L. Su, H. Liu, H. Wang, and T. E. Abdelzaher, Smartroad:
Smartphone-based crowd sensing for traffic regulator detection and
identification, ACM Transactions on Sensor Networks (TOSN), 11(4),
55, 2015.

M. Wang, H. Shan, R. Lu, R. Zhang, X. Shen, and F. Bai, Real-time
path planning based on hybrid-VANET-enhanced transportation system,
IEEE Transactions on Vehicular Technology, 64(5): 1664-1678, 2015.
S. Wang, S. Djahel, Z. Zhang, and J. McManis, Next road rerouting:
A multiagent system for mitigating unexpected urban traffic congestion,
IEEE Transactions on Intelligent Transportation Systems, 17(10): 2888-
2899, 2016.

C. Guo, D. Li, G. Zhang, and M. Zhai, Real-time path planning in urban
area via VANET-assisted traffic information sharing, IEEE Transactions
on Vehicular Technology, 67(7): 5635-5649, 2018.

J. Jeong, H. Jeong, E. Lee, T. Oh, and D.H. Du, SAINT: Self-adaptive
interactive navigation tool for cloud-based vehicular traffic optimization,
IEEE Transactions on Vehicular Technology, 65(6): 4053-4067, 2016.
J. Pan, LI.S. Popa, K. Zeitouni, and C. Borcea, Proactive vehicular
traffic rerouting for lower travel time, IEEE Transactions on Vehicular
Technology, 62(8), pp.3551-3568, 2013.

Z. Zhou, B. De Schutter, S. Lin, and Y. Xi, Two-Level Hierarchical
Model-Based Predictive Control for Large-Scale Urban Traffic Net-
works, IEEE Transactions on Control Systems Technology, 25(2),
pp-496-508, 2017.

Z. Cao, H. Guo, J. Zhang, D. Niyato, and U. Fastenrath, Improving the
efficiency of stochastic vehicle routing: A partial lagrange multiplier
method, IEEE Transactions on Vehicular Technology, 65(6), pp.3993-
4005, 2016.

H. Guo, Z. Cao, M. Seshadri, J. Zhang, D. Niyato,and U. Fasten-
rath, Routing multiple vehicles cooperatively: Minimizing road network
breakdown probability, IEEE Transactions on Emerging Topics in Com-
putational Intelligence, 1(2), pp.112-124, 2017.

S. Alexander, and R. Dowling, Improved speed-flow relationships for
planning applications, Transportation Research Record: Journal of the
Transportation Research Board, 1572: 18-23, 1997.

Boyd, Stephen, and Lieven Vandenberghe, Convex optimization, Cam-
bridge university press, 2004.

Kheirfam, and Behrouz, A full-Newton step infeasible interior-point
method based on a new search direction, PACIFIC JOURNAL OF
OPTIMIZATION 13.3 (2017): 463-473.

M. L. Fredman, and R. E. Tarjan, Fibonacci heaps and their uses in
improved network optimization algorithms, Journal of the ACM (JACM),
34(3), 596-615, 1987.

D. Den Hertog, Interior point approach to linear, quadratic and convex
programming: algorithms and complexity, Springer Science and Busi-
ness Media vol.277, 2012.

B. N. Janson, Dynamic traffic assignment for urban road networks,
Transportation Research Part B: Methodological 25(2-3), 143-161,
1991.

T. V. Mathew, and K. K. Rao, Fundamental relations of traffic flow.
Lecture Notes in Transportation Systems Engineering, India: Department
of Civil Engineering Indian Institute of Technology Bombay, 2017.
F. Ramm, J. Topf, and S. Chilton, OpenStreetMap: using and enhancing
the free map of the world, Cambridge: UIT Cambridge 2011.

S. Kasapovic, and L. Banjanovic-Mehmedovic, Simulation VANET Net-
works on a Random and Realistic Spatial Scenario, In International Con-
ference on Applied Physics, System Science and Computers Springer
245-251, 2017.

E. D. Miller-Hooks, and H. S. Mahmassani, Least expected time paths
in stochastic, time-varying transportation networks, Transportation Sci-
ence, 2000, 34(2): 198-215.

Z. Cao, S. Jiang, J. Zhang, and H. Guo, A unified framework for vehicle
rerouting and traffic light control to reduce traffic congestion, IEEE
transactions on intelligent transportation systems, 2016, 18(7), 1958-
1973.

(271

[28]

Z. Cao, H. Guo, and J. Zhang, A multiagent-based approach for vehicle
routing by considering both arriving on time and total travel time, ACM
Transactions on Intelligent Systems and Technology (TIST), 2018, 9(3),
25.

E. Q. V. Martins, and M. B. P. Marta, A new implementation of Yen’s
ranking loopless paths algorithm, Quarterly Journal of the Belgian,
French and Italian Operations Research Societies 1.2 121-133, 2003.

Chang Guo received the B.S. degree in Commu-
nication engineering from Donghua University in
2014 and is in successive postgraduate and doctoral
program of study to pursue the doctor’s degree since
2015 in Donghua University. Her research interests
include data delivery delay in VANETS, traffic in-
formation acquisition, traffic congestion avoidance,
and dynamic route propagation in VANETs.

Demin Li received the PhD in electronic and com-
puter engineering from Nanjing University of Sci-
ence and Technology, China, in 1998. He is currently
a professor of the Department of Communication
Engineering, College of Information Science and
Technology, Donghua University, Shanghai, China.
His recent research interests include telecommuni-
cation system engineering, wireless mobile network-
ing, mobile decision theory and mobile decision sup-
port systems. He is currently as Associate Chairman
of the Circuits and Systems Committee in Shanghai.

Guanglin Zhang received the B.S. degree in applied
mathematics from Shandong Normal University in
2003, the M.S. degree in operational research and
control theory from Shanghai University in 2006,
L§ and the Ph.D. degree in electronic engineering from
. Shanghai Jiao Tong University in 2012. He is a
professor and the Chair of the Dept. of Communica-
tion Engineering, Donghua University. His research
includes scaling of wireless networks, vehicular net-
works, smart micro-grid, and mobile edge comput-
ing. He is an Associate Editor of IEEE Access.

Xiaoning Ding is an Associate Professor at New
Jersey Institute of Technology. His interests are in
the area of experimental computer systems, such
as distributed systems, virtualization, operating sys-
tems, and storage systems. He earned his Ph.D.
degree in computer science and engineering from
the Ohio State University.

JOURNAL OF KX CLASS FILES, VOL. XX, NO. XX, MM YY

Reza Curtmola is a Professor of Computer Science
at the New Jersey Institute of Technology. He holds a
Ph.D. in Computer Science from The Johns Hopkins
University. His research focuses on the security of
cloud services, security of the software supply chain,
and applied cryptography. He is the recipient of
the NSF CAREER award and has participated in
several other projects funded by NSF and DARPA.
Dr. Curtmola has published over 65 papers under the
umbrella of cybersecurity.

15

Cristian Borcea received his Ph.D. degree from
Rutgers University in 2004. He is currently a Profes-
sor with the Department of Computer Science, New
Jersey Institute of Technology. He is also a Visiting
Professor with the National Institute of Informatics,
Tokyo, Japan. His research interests include mobile
computing and sensing; vehicular computing and
networks; cloud and distributed systems, and com-
putational advertising. Borcea is a member of the
ACM and IEEE.

	Introduction
	Related Work
	System Model
	Transportation architecture and system operation
	Traffic flow model
	Congestion estimation

	Analytic Formulation of Optimization Model
	Driver behavior and alternative route constraints
	Global traffic optimization

	DIPM Design and Analysis
	Algorithm design
	Algorithm analysis

	Evaluation
	Experiment setup
	DIPM Execution Time
	Travel Time Comparison
	Fairness Comparison

	Conclusion
	Appendix A: Proof of Theorem 1 on Solution Feasibility
	Appendix B: Proof of Theorem 2 on DIPM Convergence
	Appendix C: Proof of Theorem 3 on DIPM Computation Complexity
	References
	Biographies
	Chang Guo
	Demin Li
	Guanglin Zhang
	Xiaoning Ding
	Reza Curtmola
	Cristian Borcea

