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Abstract—This paper presents Sentio, a distributed middle-
ware designed to provide mobile apps with seamless connectivity
to remote sensors when the sensing code and the sensors are
not physically on the same device, e.g., when the sensing code
is offloaded to the cloud. Sentio presents the apps with virtual
sensors that are mapped to remote physical sensors. Virtual
sensors can be composed into higher-level sensors, which fuse
sensing data from multiple physical sensors. Furthermore, they
are mapped to the best available physical sensors when the app
starts and re-mapped transparently to other physical sensors
at runtime in response to context changes. Sentio was designed
to work without modifications to the operating system and to
provide low-latency access to remote sensors, which is beneficial
to apps with real time-requirements such as mobile games. We
have built a prototype of Sentio on Android. We have also deve-
loped four apps based on Sentio to understand the programming
effort and evaluate the performance. The development of the apps
shows that complex sensing tasks can be implemented quickly,
benefiting from Sentio’s high-level API. The experimental results
show that Sentio achieves good real-time performance.

I. INTRODUCTION

Mobile apps, ranging from photo utilities [1], [2] to health
monitoring [3] and well-being [4], [5], [6], [7], use sensors
to provide context-aware features. Despite their widespread
deployment, these apps face challenges in accessing remote
sensors in three situations: (1) app components are offloaded
to the cloud and need to access sensors on the mobile device
where the app was started; (2) an app on a mobile device (e.g.,
smart phone) needs to access sensors on other personal devices
of the user (e.g., smart watch); and (3) an app on a mobile
device needs to access sensors on mobile devices belonging
to other users.

Computation offloading [8], [9], [10], [11], [12] can enhance
the computational and energy resources available to mobiles.
However, the computation cannot be readily offloaded if it
contains sensor accessing code. The offloaded code will not
work unless programmers modify the sensor accessing code
and write several other new components. This problem could
be solved by a mobile sensing framework that virtualizes sen-
sors and provides apps in the cloud with seamless connectivity
to the sensors.

Many new context-aware apps could benefit from a frame-
work that allows them to leverage the collective power of a
user’s personal sensors. Scenarios where a user carries multiple
smart devices (e.g., a smart phone in the pocket, a smart
watch on the wrist, and possibly a tablet in the backpack)
are becoming common. For instance, a mobile game running
on a powerful mobile device (e.g., tablet) may access the

accelerometer on a device worn by the player (e.g., smart
watch) to offer a more user-friendly and immersive experience.
Sharing sensors among users can also be useful in various
scenarios (e.g., collaborative sensing apps); sharing policies
would need to be defined and enforced for such apps.

Unfortunately, many existing mobile sensing frame-
works [13], [14], [15], [16] are typically limited to allowing
an app to use sensors only from its device. To allow simple
development and deployment of mobile sensing apps that
access sensors from multiple devices, programmers should
be provided with a high-level and flexible API that works
across devices. This API should also allow multiple apps on
the same or different devices to access concurrently the same
set of remote sensors. However, dealing with remote sensors is
challenging because sensors in different devices have different
features and different hardware APIs. In addition, certain apps
(e.g., mobile gaming) need real-time performance and must
execute tasks such as sensor exploration, sensor management,
and data aggregation/fusion with low latency.

Some of the above issues have been addressed in the
literature, but the proposed solutions [17], [18], [19] lack
generality, as they target only a few specific scenarios or
particular sensors. Furthermore, none of them provides support
for computation offloading, sensor composition, and sensor
selection based on user-specified criteria (e.g., real-time ope-
ration, power savings).

Another feature not provided by existing solutions for re-
mote sensor access is runtime adaptation to sensor conditions.
For example, the same type of sensor can be available to a user
from multiple devices (e.g., GPS is available in smart phone,
smart watch, and tablet). Even though the sensor type is the
same, sensors from different devices have different accuracy,
speed, and power characteristics. Therefore, a mobile sen-
sing framework should intelligently choose the “best” sensor
among the available sensors of the same type. In addition,
context may require an app to switch access from one sensor
to another at runtime. For example, the battery status of device
hosting the current “best” sensor could be monitored and,
in case of significantly low battery, the sensor access should
seamlessly be switched to a sensor from another device.

This paper presents Sentio, a distributed middleware, which
enables apps to seamlessly access sensors on remote devices.
The two types of apps that Sentio supports are: (1) mobile
apps that offload components to the cloud; and (2) mobile
apps that utilize the collective sensing capabilities of the
user’s personal sensors. Sentio could be extended to support



apps that access sensors from different users by incorporating
privacy/access control policies. Sentio virtualizes the personal
sensors of a user and presents a flexible, high-level API to
access them. As shown in Figure 1, Sentio presents apps with
a high-level abstraction in the form of a Virtual Sensor System
(VSS). A VSS is a collection of virtual sensors mapped to
physical sensors located on mobile, wearable, and IoT devices.
Virtual sensors provide a unified interface to local and remote
sensors for app development. Multiple virtual sensors could be
leveraged to provide composite virtual sensors, which perform
sensor aggregation and fusion. Sentio is also able to select the
“best” sensor of a certain type and to dynamically re-map
a virtual sensor to a physical sensor at runtime. Since it is
implemented at the application level, Sentio is easy to deploy.

We implemented a prototype of Sentio using Android-based
smart phones and smart watches. We used Sentio to build two
proof-of-concept mobile apps: SentioApp and SentioFit. We
also modified two open source games to use Sentio API: Tilt
Control and Space Shooter. We ran multiple experiments using
these four apps. For example, we ran the Space Shooter game
on a mobile device and used a virtual accelerometer mapped to
a smart watch as a game controller. Our experimental results
demonstrate that Sentio can guarantee real-time delivery of
sensor data and impose a minimal overhead.

II. SENTIO OVERVIEW

Sentio creates a virtual sensor system (VSS) that facilitates
app access to physical sensors located on different devices.
A virtual sensor behaves as a local and universal sensor
abstraction. A virtual sensor has a type (e.g., accelerometer)
and can be mapped to physical sensors of the same type
located on different devices. Composite sensors can be built
on top of several virtual sensors to perform sensor fusion
or aggregation. Sentio provides default sensor data fusion
methods, but the programmers can specify their own methods.
An example of a composite sensor is a “climbing” sensor
that combines readings from a heart rate monitoring sensor
and a barometric pressure sensor to warn mountain climbers
when they should rest or drink more water at high altitude.
Sentio uses a heuristic algorithm to select or switch to the
“best” available sensor of a given type, as a function of energy
consumption, latency, or sensor accuracy.

Sentio also supports sensor access for code offloaded to the
cloud. Let us consider an activity recognition task in a smart
phone app, which accesses the accelerometer in the phone.
When the app offloads the activity recognition task to the
cloud, Sentio creates a virtual accelerometer in the cloud and
seamlessly maps it to the physical accelerometer of the phone.
The offloaded code in the cloud can access the accelerometer
sensor in the same way it was doing from the mobile.

Sentio is designed and implemented as a distributed midd-
leware, with components on all personal smart devices of a
user. An instance of the middleware on a device manages
the physical sensors of the device and executes tasks such as
sensor registration, sensor mapping, and data collection. More
importantly, each instance is in charge of fulfilling the requests
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Fig. 1. Sentio creates a virtual sensor system across different devices. A
mobile health monitoring app uses Sentio to access a composite sensor built
over three virtual sensors that abstract physical sensors: a heart rate monitor
in the smart watch, a GPS in the tablet, and a temperature sensor in the phone.
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from instances on other devices to retrieve sensor data. Sentio
exposes the same high-level API to apps running on any smart
device owned by the user; the same API is available for apps
offloaded to the cloud.

It is worth mentioning that IoT sensors which are supported
by OSs, such as Android Things [20], can run Sentio similarly
to smart phones or smart watches. Other IoT sensors can be
accessed and managed by Sentio through smart devices using
Arduino [21] which connects the sensors via Bluetooth.

Sentio uses a computing entity (CE) [10] residing in the
cloud for sensor management and for enhancing the compu-
tational, power, and storage resources available to mobiles.
Each user has one CE, which can be a virtual machine or a
container. The CE maintains the VSS sensor registry and the
current states of all virtual sensors exposed by Sentio to apps.
In addition, the CE is used to provide support for computation
offloading to the cloud. App code offloaded to the cloud can
access virtual sensors through a Sentio instance running in the
CE.

In Sentio, one device (generally, the smart phone) is con-
sidered the primary device and all the other devices are con-
sidered as secondary devices. If the CE becomes unreachable
due to network problems, the primary device uses ad hoc
networking to perform VSS management. To be able to do this
switch, CE and the primary device periodically synchronize
the VSS state with each other.

Sentio does not employ ad hoc networking by default
because it includes sensors that are not in the proximity of
the user. For example, smart home apps running on user’s
mobile can access home sensors from anywhere.

ITI. RELATED WORK
A. System Support for Accessing Remote Sensors

Accessing remote sensors is partially addressed in
Beetle [17], Rio [18], and BraceForce [19], which target a
few specific scenarios. Beetle aims to control Bluetooth Low
Energy (BLE) peripherals; Rio focuses on sharing I/O devices;
BraceForce targets the development of remote sensing apps.
Sentio, on the other hand, aims to provide a general solution
that allows any mobile app to seamlessly access a wide range
of remote sensors (e.g., sensors on other mobile devices, IoT
sensors). Table I illustrates the novelty and benefits of Sentio
when compared with the solutions mentioned above.



TABLE I
COMPARISON BETWEEN SENTIO AND RELATED WORKS. P MEANS
PARTIAL SUPPORT.

RIO|Beetle |BraceForce | Sentio

Deployable with unmodified OS
Code offloading support
Sensor composition support
Sensor selection optimization
Support for more than two devices
Dynamic sensor switching support
High level API
Support for BLE peripherals
Concurrent sensor access
Works with heterogeneous systems
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Unlike Sentio, the comparison systems do not provide
support for code offloading, sensor composition, and sen-
sor selection based on user-specified criteria (e.g., real-time
operation, power savings). In addition, Beetle and Rio do
not work with unmodified operating systems (i.e., they need
rooted mobile devices). Beetle also does not work for non-BLE
sensors and multiple smart devices trying to access sensors
from each other because Android devices cannot work as
BLE peripherals. Similarly, RIO does not support multi-device
setup. Braceforce, on the other hand, works with unmodified
operating systems and multi-device setup. However, it does
not support dynamic sensor switching at runtime, and it does
not work with Android Wear OS.

B. Programming Abstractions for Remote Sensing

SeeMon [22] is a framework for developing context-aware
applications, which monitors user context through sensors.
Similar to Sentio, SeeMon provides sensor control policies.
However, it does not provide a general-purpose interface
or support for accessing sensors across devices or fusing
data from multiple sensors. MobileHub [23] is a system
that rewrites applications to leverage a sensor hub for power
efficiency. Unlike Sentio, MobileHub only supports access to
local sensors through the sensor hub.

HomeOS [24] provides a peripheral abstraction to connect
home devices (TV, printer, lights) to a PC. However, its
centralized setting lacks flexibility for our use cases. Sentio
employs a distributed setup of mobile devices where multiple
apps can run on multiple devices and can control sensors on
other devices. Furthermore, HomeOS is not designed to run
on mobile devices, as it needs a dedicated PC. It also does not
provide support for features offered by Sentio such as sensor-
code offloading, sensor fusion, selecting the best sensor, and
seamless switching of sensors due to context changes.

BOSS [25] provides an API for sensors/actuators placed
in a building to simplify application development. However,
programmers need to write device/sensor-specific code (e.g.,
set_min_air flow). Sentio, on the other hand provides a high-
level API, designed specifically for mobile apps. BOSS also
needs to run several services (Hardware Presentation Layer,
Transaction Manager) on a dedicated computer collocated with
BMS. Thus, it cannot run on a setup with only mobile devices.

App Sentio API Sentio API
Sentio API
3 ad
ey e ;
We \
: hi PN I
‘ I e
1| | |
I ! i | temel _Nig
Smart Watch : Heart Rate || Accelero ‘ﬂ;eTeEfI ‘[;e;rtiR;teil )
L Monitor _ | (SERIEER L -meter | | Monitor |
Mobile phone ~ Computing Entity

in the cloud
Fig. 2. Sentio provides a unified view of the VSS via Sentio API. Solid boxes
show physical sensors; dotted boxes show virtual sensors.

IV. SENTIO DESIGN

As shown in Figure 2, Sentio consists of a set of middle-
ware instances running on smart devices and the cloud. The
virtual sensors created on a device and the physical sensors
embedded in the device are managed by its local middleware
instance. The access to virtual sensors is also handled by the
middleware instance, which either forwards the requests to
the corresponding physical sensors if they are located on the
device or forwards them to the middleware instances on the
devices where the physical sensors are located.

A. Sentio API

Sentio API follows an event-driven and callback-based
asynchronous design. For each Sentio API call, a program
needs to provide a callback function. The API call sends a
request to the Sentio middleware about the desired operation,
and returns immediately when the request is sent. The midd-
leware handles the request and returns the necessary data to
the app by invoking the callback function. This asynchronous
API design fits well with the architecture of Sentio, in which
apps and the Sentio middleware run in different processes and
exchange information using events and messages.

1 SensorListener listener = new SensorListener () {

2 (@Override

3 public void onSensorDataAvailable (
SensorDataBundle bundle) {

4 //TODO: process sensor data

5 1}

6 };

Listing 1. Code for a sensor listener.

As shown in Table II, Sentio API methods are mainly desig-
ned to 1) query about available sensors in the VSS, 2) specify
callback functions for receiving data from the middleware, 3)
create virtual sensors (individual or composite), and 4) register
and unregister sensors.

An app starts by querying Sentio for the list of available
sensors in VSS. The example in Listing 1 explains how a
program accesses a virtual sensor. Specifically, a program must
create an instance of SensorListener callback interface (line 1)
and implement the onSensorDataAvailable() callback function
in the instance (line 3). After the program registers for the
virtual sensor with the SensorListener instance, the Sentio
middleware will automatically pass sensor data as SensorData-
Bundle objects to the callback function. Information about the



TABLE II
LIST OF SENTIO API METHODS

API

Description

getAvailableSensorList(SensorListListener
listListener)

Fetches a Iist of available sensors in the sensor registry. The list is received by the
callback function of the “listListener” interface.

registerSensor(SentioSensor sensor, SensorListe-
ner listener)

Registers the “sensor” from the VSS. Sensor data will be received by the “Tistener”.

unregisterSensor(SentioSensor sensor)

Unregisters the “sensor’.

SensorListListener callback interface

onSensorListAvailable(Map<SentioDevice,
List<SensorType>> sensors)

Receives a mapping between “SentioDevice” and its sensors from the middleware.

SensorListener callback interface

onSensorDataAvailable(SensorDataBundle data)

[

Receives sensor data from the middleware.

FuseAction interface (used for writing custom fusing functions)

SensorDataBundle (SensorData-

Bundle... data)

fuseData

An interface method for programmers writing custom fusing functions. It receives
SensorDataBundle objects from the sensors in the current composite sensor, applies
the fusing function to the received data, returns a single SensorDataBundle object.

SentioSensor builder API

addSensor(SentioDevice device, SensorType type)

Adds a sensor of type “type” from the device “device” to the virtual sensor.

addSensor(SentioSensor sensor)

Adds the virtual (composite/individual) sensor “sensor” to the current virtual sensor.

addSensor(SensorType type, SensingMode mode)

Adds the sensor selected based on the “type” parameter (i.e., sensor type) and the
“mode” parameter (i.e, POWER_SAVING, REAL_TIME, or ACCURACY).

samplingRate(SamplingRate rate)

Defines the sampling rate or frequency (NORMAL, UI, GAME, or FASTEST).

addListener(SensorListener listener)

Specifies the listener which will receive the sensor data.

fuse(FusingMode mode)

Specifies the fusing mode (Combine, Average, Competitive, or Complementary).

fuse(FuseAction fuseAction)

Specifies a customized fuse function.

sensor (e.g., source device, sensor type, etc) is also included

in the SensorDataBundle object.

1 SentioSensor sensor = SentioSensor.newBuilder ()

2 .addSensor (SensorType .MAGNETIC_FIELD,
SensingMode .ACCURACY)
3 .addSensor (SensorType.GPS, SensingMode.

POWER_SAVING)
.samplingRate (SamplingRate.NORMAL)
.addListener (listener)
. fuse (FusingMode.COMBINE)
.build();

N o A

Listing 2. Code for building a composite sensor.

The example in Listing 2 shows how to build a composite
sensor. This composite sensor is for environment monitoring.
It consists of a magnetic field sensor in the ACCURACY
sensing mode (added on line 2) and a GPS sensor in the
POWER_SAVING sensing mode (added on line 3). Since
our sensor building API follows the Java builder design pat-
tern [26], programmers can add an arbitrary number of sensors
by repeatedly calling addSensor(). An individual virtual sensor
can be built by calling addSensor() only once. A polymorphic
version of addSensor() can be leveraged to build a composite
sensor from already existing virtual sensors.

The sensing modes specified in addSensor() calls can direct
Sentio to select the appropriate sensors for the request. If
a program does not specify a mode, Sentio will balance
accuracy, speed, and energy consumption and will select
sensors based on a method described in Section IV-B1. Line 4
specifies the sampling rate of the virtual sensor. SamplingRate
is an enum with four possible predefined values, similar to
the ones used in Android: NORMAL, Ul, GAME, FASTEST.
The first three represents 200 ms, 60 ms, and 20ms sampling
periods, respectively. FASTEST directs the middleware to
sample data as frequently as possible. Line 5 specifies the
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Fig. 3. The Sentio middleware architecture.
listener callback for receiving sensor data, and line 6 specifies
the fuse function to be used for fusing data. A few predefined
fusing functions are provided by Sentio, such as Combine,
which combines data points together and delivers the results in
an array. Programmers can also apply a custom fuse function
by implementing the FuseAction callback interface.

B. Sentio Middleware Design

The Sentio middleware instance on each device has four
major components, as shown in Figure 3. IPCManager ma-
nages the inter-process communication (IPC) between Sen-
tio apps and the middleware instance. An IPC channel is
established when an app initiates a SentioManager object,
and is released when the app stops and unbinds it from the
middleware. The execution of the Sentio middleware is driven
by events and messages. Every Sentio API call is translated
to a corresponding low level event, and sensor data is sent in
messages. The Event and Message Management component
queues events and messages after they are received and ensures
that they are dispatched later. The NetworkManager handles
communication between the middleware instances on different
devices. By default, Sentio uses the Internet. However, if



devices are disconnected from the Internet but are physically
located in proximity, the NetworkManager works in a P2P
fashion using techniques such as WiFi-direct or Bluetooth.

As the core of Sentio SentioSensorManager manages the
local physical and virtual sensors on a device. When Sentio
is initialized on a new device, this manager runs a sensor
discovery process to create a local sensor registry (LSR),
which includes the specifications of the sensors, such as
precision/resolution, the lowest and highest sampling rates, and
power consumption rating. It then sends the LSR along with
the device ID to the cloud entity, where a global sensor registry
(GSR) is formed. The GSR will be used to find appropriate
sensors to build virtual sensors. The SentioSensorManager
at the cloud entity manages the GSR and is responsible for
discovering and managing IoT sensors located in the user
environment. As described in Section II, we assume that IoT
sensors are accessed through a smart device running Sentio.
Based on the user’s location, her cloud entity interacts with
cloud entities of nearby smart devices to discover IoT sensors.

When a request is received to register a virtual sensor,
SentioSensorManager identifies the physical sensors that meet
the required criteria and map them to the virtual sensor. It does
so by searching the GSR fetched from the cloud. To accelerate
searching, a copy of the GSR is maintained on each device
and is synchronized with the cloud. If the desired sensors
are located on other devices, the local SentioSensorManager
will contact the corresponding SentioSensorManagers on those
devices in order to get access to those sensors. It will also for-
ward the mapping information to these SentioSensorManagers,
which will be used to deliver sensor data to the requesting app.

The SentioSensorManager also monitors context changes in
the device, such as battery level and network connection chan-
ges. It notifies the SentioSensorManagers of remote devices
about the status changes when necessary (i.e., remote devices
have virtual sensors based on physical sensors on this device).
As a result, remote devices may switch the physical sensors
used for the virtual sensors.

1) Sensor Selection: When there are multiple sensors avai-
lable for building a virtual sensor, the SentioSensorManager
needs to select a sensor. If a sensing mode is specified by
the program (Section IV-A), it makes the selection based
on the sensing mode. Specifically, if the sensing mode is
REAL_TIME, Sentio considers the highest sampling fre-
quency that the sensor can support, as well as the latency
for the sensing data to arrive to the app. If the sensing
mode is POWER_SAVING, Sentio considers the energy
consumption of the sensor, the energy for transferring the
sensing data, and the battery level of the host device of the
sensor, in order to avoid selecting a sensor on a device with
a low battery level. If the sensing mode is ACCURACY,
Sentio picks the sensor with the highest resolution.

1

k
MiNdelay + latENCYcomm

score = Wy * —————
precision
batteryy
+ wp * (1)
powe’rS + powercowrm

If the program does not specify a sensing mode, Sentio
makes the selection by balancing speed, accuracy, and power
saving. It computes a score for each sensor using Equation 1,
and selects the sensor with the highest score. In Equation 1,
precision is the smallest change a sensor can detect. Mingejay
and latencycomm refer to the supported minimum sampling
period of the sensor and the communication latency to receive
data from the sensor; power; indicates the power consumption
rating of a sensor; and battery, indicates the remaining battery
of the host device. power omm refers to the power consump-
tion for transporting data from this sensor to the requesting
device. w,, wq, and w, are the weights assigned to the
accuracy, delay, and power consumption factors, respectively.
In our implementation, we give equal weights to these factors.

2) Sensor Data Rate Control: Physical sensors may not be
able to report data at steady rates, which are required by many
apps. To ensure that virtual sensors report data at steady rates,
besides common mechanisms, such as filtering, Sentio also
uses a rate controller, which buffers data points arriving early
and uses extrapolation to project data points that arrive late.

3) Managing Composite Sensors: To build a composite
sensor, the SentioSensorManager first creates component vir-
tual sensors. Then, it establishes and maintains the mapping
between the composite sensor and the component virtual
sensors. A buffer is used to stage the data from component
virtual sensors, since they may have different data rates. Every
time when enough data (one sample from each component
virtual sensor) is accumulated to calculate a fused data point,
the fusing function is invoked. In case of missing data points
from a sensor within the required time window (defined by the
requested sampling rate), Sentio extrapolates a value based on
the previous data points. Since the data rate of a composite
sensor is affected by the data rate of each component virtual
sensor, it can be more unsteady than that of an individual
virtual sensor. Therefore, even if we have applied data rate
control to each component virtual sensor, we still use a data
rate controller to regulate the fused data points to further
stabilize the rate.

V. SENTIO IMPLEMENTATION

We have implemented a prototype of Sentio on standard
Android (for mobiles, tablets, and the cloud entity) and An-
droid Wear (for smart watches). The prototype Sentio SDK
has 3,127 lines of code (LoC). The mobile module of Sentio
(i.e., standard Android OS) has 3,726 LoC, and the wearable
module (i.e., Android Wear OS) has 561 additional LoC. The
cloud entity is an Android x86 virtual machine hosted and ma-
naged by the Avatar system [10]. Although the implementation
is Android-based, the implementation techniques are generic
and can be used in implementations on other systems.

The implementation follows a Message-Oriented Middle-
ware architecture, where different components communicate
through events and messages. Since apps and Sentio midd-
leware instances are different processes, we use Android’s
binder IPC interface for the communication among them. Each
Sentio middleware instance contains a queuing mechanism



to manage events and messages, using the observer design
pattern (dispatchers observe on queues). The NetworkMa-
nager uses kryonet TCP library [27] in mobile modules
and MessageApi[28] provided by Google Play Services in
wearable modules for the communication between the Sentio
middleware instances on different devices. MessageAPI uses
BlueTooth and WiFi for low level communication.

The Sentio middleware uses Android’s sensor SDK to
access and manage physical sensors. To respond to the
status changes of the devices, we use Android’s Broad-
castReceiver mechanism to monitor status changes (e.g.,
BATTERY _LOW) and register the intended actions, which
are invoked by the Android automatically on status changes.

Sentio supports concurrent access from multiple apps to the
same physical sensor. This is achieved by carefully designing
the data structures and routing to consider concurrent accesses.
The paper does not elaborate this aspect because Sentio mainly
focuses on providing a personal sensing eco-system, where
accessing a sensor concurrently from multiple apps is rare or
does not make sense (e.g., accessing the same accelerometer
to control two games).

VI. APPLICATION CASE STUDIES

We validated Sentio with 4 mobile apps: two proof-of-
concept apps developed from scratch (i.e., SentioApp and
SentioFit) and two open source mobile games, adapted to work
with Sentio (i.e., Tilt Control and Space Shooting).

SentioApp is built to verify that various types of virtual
sensors can be built with sensors on different types of devices
by calling Sentio APIs. The app first visually shows the sensors
available in the VSS. Then, it allows users to read any of these
sensors and build composite sensors by selecting individual
sensors. Once a virtual sensor is built and registered, the app
shows the sensed data from this sensor on the screen. We
have run this app on various combinations of smart devices.
For example, we ran the Sentio middleware on several phones
(Nexus 6, Nexus 5X, Moto X) and a watch (Samsung Gear
Live) to form the VSS, and ran the app on Nexus 6.

SentioFit is built to test composite sensors, particularly the
support for custom fusion functions. It uses a composite sensor
built from a heart rate monitor(HRM), a step detector, and a
barometric pressure sensor. A custom fusion function is used
to i) check the heart rate, ii) keep track of the number of steps
per minute, and iii) convert air pressure to altitude. Based
on these data, the fusion function generates the final result:
KEEP_GOING, SLOW_DOWN, RUN_FASTER. The app
uses the result to train the user, while ensuring his heart rate
is not too high. We ran this app on a Nexus 5X. The sensors
selected during the execution were located in a Samsung Gear
Live watch (HRM) and the Nexus 5X (barometric pressure
sensor and step detector). The test shows that programmers
can build composite sensors easily without worrying about
data collection, communication, and aggregation.

To demonstrate that real-time apps can easily use Sentio to
access sensors, we selected two open source mobile games
from Github. Figure 4 shows the screenshots of these games.

(a) Tilt control

(b) Space shooting

Fig. 4. Open source mobile games modified to work with Sentio

In the Tilt Control game, a user tilts the mobile to put all the
balls in the central circle. In the Space Shooting game, a user
tilts the mobile to control the space ship. Thus, both games
need to use accelerometers. We modified the sensor-accessing
code in the games, such that, when they are running on one
device (e.g., a tablet with a big screen), they can access its
local accelerometer or the accelerometer on another device
(e.g., a light-weighted phone used as the game controller). We
tested the games by running the apps on a Nexus 5X phone
and using the Nexus 5X phone, a Samsung Gear Live watch,
or a Nexus 6 phone as controller. We repeated the tests for
two Android’s sampling rates, GAME and FASTEST.
The gaming experience was smooth and without any lag
for all the scenarios. Developing and running these games
demonstrate the simplicity and robustness of Sentio API. It
takes only 6 lines of code in Java (excluding comments and
without wrapping the lines for readability) for each game to
allow it to build and access a virtual accelerometer, including
the sensor listener interface (similar to code listing 1) and the
code building the virtual sensor (similar to code listing 2).

VII. PERFORMANCE EVALUATION

Our evaluation is mainly to assess the impact of Sentio on
sensor data delivery, with a special focus on the performance
achieved by apps that have real-time constraints (e.g., mobile
games). In addition, we evaluated the costs of API calls, sensor
composition, and sensor switching. We have used Android-
based smart phones, tablets, and smart watches, as well
as virtual machines (VMs) running in an OpenStack-based
cloud. Each VM runs Android 6.0 x86 64-bit OS and has 4
virtual CPUs and 3GB of memory. Mobiles communicate with
the cloud using a secure WiFi network. The communication
between phones is done through WiFi; the communication
between a phone and a watch is done through Bluetooth.

A. Real-time performance of virtual accelerometers

To verify that Sentio does not impose significant latency on
sensing data as observed by the apps, particularly real-time
apps, we ran several experiments with the Space Shooting
game accessing a virtual accelerometer at a requested rate.
We measure the observed sampling period of the virtual
accelerometer in two scenarios: (1) the physical accelerometer
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Fig. 5. Comparison between the observed sampling period of a virtual
accelerometer and a physical accelerometer when the physical accelerometer
is on the phone and on the watch. The app runs on the phone and the sampling
rate is set to FASTEST

is on the phone; (2) the physical accelerometer is on the
smart watch. In both scenarios, the game app runs on the
phone. Figure 5 shows the results. We measured the observed
sampling period of the virtual sensor and actual sampling
period of the physical sensor. The variation between the two
curves is due to the overhead introduced by Sentio. This
metric does not include the network delay, but it includes the
jitter. Similar to real-time multimedia streaming, Sentio will
introduce a one time network delay. Then, the apps will be
influenced only by the jitter, which is captured by our metric.

We first used Android’s sampling rate “FASTEST” to
verify how Sentio performs under the most constrained real-
time demands. This sampling rate requires to retrieve and
deliver data as fast as the sensor hardware supports it. The
difference between the average observed sampling period is
27us when the physical sensor is on the phone and 10us
when the physical sensor is on the watch. We observe a higher
variability for the observed sampling rate of the physical
sensor on the watch, and this translates in a similar variability
for the virtual sensor.

These results demonstrate that Sentio works well even under
strict real-time constraints and imposes minimal overhead on
virtual sensor access latency. The main factors that influence
this latency are the physical sensor access handled by OS and
the network latency. Thus, Sentio is expected to scale well, as
long as the host OS provides fast access to physical sensors
and the network is not congested.

We then varied the sampling rate to see its impact on
Sentio’s performance. Table III shows the results, where
two phones communicated using WIFI. We observe that the

TABLE 111
OBSERVED SAMPLING PERIOD (IN MS) FOR DIFFERENT SAMPLING RATES
WHEN USING WIFI COMMUNICATION. THE GAME RUNS ON ONE PHONE,
AND THE PHYSICAL SENSOR IS ON THE OTHER PHONE.

NORMAL Ul GAME |FASTEST

Virt Phy | Virt | Phy | Virt | Phy | Virt | Phy
Avg 199.481199.3939.82|39.69 [ 19.1619.09 | 10.4 | 3.98
StDev | 437 | 447 2142|186 |77.01| 1.76 |8.22| 0.7
Median | 199 200 39 40 12 19 9 4

TABLE IV

OBSERVED SAMPLING PERIOD (IN MS) FOR DIFFERENT SENSOR TYPES
WHEN SENTIOAPP RUNS ON ONE PHONE, AND THE PHYSICAL SENSOR IS
ON THE OTHER PHONE. WIFI IS USED FOR COMMUNICATION. NORM AL

SAMPLING RATE.

Magnetic Field |Gyroscope| Orientation | Pressure
Virt | Phy Virt |Phy| Virt | Phy | Virt | Phy
200.6| 195.9 [203.7(201|194.7{194.3|198.1|196.2
63.7 | 10.5 33 1621499 | 1.1 |99.6 |144.4
200 196 199 |201| 191 | 194 | 247 | 185

Light
Virt | Phy
Average|395.5| 395
StDev [518.2(430.4
Median | 197 | 200

difference in average observed sampling rate for the virtual
sensor and the physical sensor is very low (<1ms) for GAME,
UI, and NORMAL sampling rates. For the FASTEST sampling
rate, the difference is 6.6 ms. These differences are slightly
larger than in the case of Bluetooth communication. We
attribute this result to the contention in our public WiFi
network, which leads to queuing effects in Sentio, especially
for high sampling rates. Nevertheless, the results demonstrate
that Sentio also works well with WiFi communication.

B. Performance for other sensors

We have shown that Sentio works efficiently for real-time
apps (e.g., games) using the accelerometer for the experiments,
because this is the sensor most commonly used in games. Next,
we evaluate performance of Sentio for other types of sensors,
such as light, magnetic field, gyroscope, barometric pressure
sensor, etc. For this experiment, we have used SentioApp
running on a Nexus 6 phone. The app uses various virtual
sensors, which are mapped to sensors from a Moto X phone.
The NORM AL sampling rate (5 samples per second) is used.
As shown in Table IV, the maximum difference in the observed
average sampling period is 4.69 ms. This is a small value when
compared to the expected period of 200 ms. Therefore, Sentio
is expected to work efficiently for all the sensors we tested.
The standard deviations with light and pressure sensors are
higher than those with other sensors because they are designed
to generate data only upon state changes instead of providing
continuous measurement steadily.

C. Performance for offloaded code

Sentio simplifies code offloading because the offloaded code
to the cloud can seamlessly access sensors on mobiles. We
evaluated how Sentio performs once the code is offloaded
using the Tilt Control game. The game is hosted in the
cloud, and it uses a virtual accelerometer mapped to Moto X’s
accelerometer. As shown in Table V, the highest difference in
the average observed sampling period (5.32 ms) is observed
for the FAST EST sampling rate. Sentio worked very well for



TABLE V
OBSERVED SAMPLING PERIOD (IN MS) WHEN THE TILT CONTROL GAME
IS OFFLOADED TO THE CLOUD FOR DIFFERENT SAMPLING RATES.

NORMAL Ul GAME FASTEST
Virt Phy Virt Phy Virt Phy Virt Phy

Average | 200.7 | 200.5 | 46.79 | 46.73 | 19.18 | 19.13 | 9.32 4
StDev 8.12 0.99 12.28 9.9 5.39 0.93 3.44 | 0.81
Median 201 201 43 40 19 19 9 4
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Fig. 6. Observed sampling period comparison for accelerometer with and
without the rate controller. The sampling rate is GAM E

other sampling rates. These results prove that code offloading
with Sentio is practical for context-aware apps.

D. Jitter reduction using a rate controller

The results we presented so far use sensor data as soon as
they become available. As virtual sensors may be mapped to
different devices, network delay will cause data to arrive at the
app with irregular frequency. This explains the zig-zag pattern
in some of the previous graphs. Sentio uses a rate controller
to reduce this type of jitter and smoothen the sensor data
over time. Figure 6 shows the benefits from the rate controller
for SentioApp running on Nexus 6 and accessing Moto X’s
accelerometer. The G AM E sampling rate is used. We observe
that the jitter is substantially reduced. Similar results, omitted
for brevity, have been obtained for virtual magnetic field sensor
and the NORM AL sampling rate.

E. Seamless switching of sensors during context changes

Sentio switches sensors seamlessly during context changes
on the devices embedding the sensors. For example, if the
battery on a device is low, Sentio re-assigns the physical
mapping of sensors from this device to another device. We
have measured the latency experienced by the app during
this re-mapping. We have run SentioApp in Nexus 6 using
a virtual magnetic field sensor, which is physically mapped to
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Fig. 7. Delay observed by SentioApp during a sensor switching from a watch
to the local phone. NORMAL sampling rate is used.

the magnetic field sensor of the smart watch. In our scenario,
Sentio senses when the battery level in the smart watch drops
below a specific threshold and re-maps the physical mapping
of Nexus 6’s virtual sensor to the physical magnetic field
sensor of the local device (i.e., Nexus 6). The latency for this
re-mapping consists of several components: the delay to pass
an event from the smart watch to Nexus 6, with the low-battery
context change information; the delay to find another suitable
sensor from the registry; and the delay to register the newly
chosen sensor and receive data from it.

Fig 7 shows that sensor switching causes a clear increase in
the observed sampling rate: 375 ms as opposed to the average
value of 184 ms before and after the switch. We note that
this increase only affects the immediately next data point after
switching. For all practical purposes, skipping one data point
is an acceptable compromise.

VIII. CONCLUSION

This paper presented Sentio, a middleware that virtualizes
sensors for mobile apps. Sentio provides a unified view of
a personal sensing ecosystem. Apps can use Sentio API to
access any virtual sensor in real-time, no matter on which
device its associated physical sensor is located. They can
also selectively access the most suitable sensor of a particular
type and can build composite virtual sensors using the same
API. The Sentio middleware can transparently re-map virtual
sensors to physical sensors in response to context changes.
We have implemented a prototype of Sentio and two proof-of-
concept apps. In addition, we adapted two open source apps to
work with Sentio. We evaluated Sentio using these four apps,
and the results show that Sentio does not introduce significant
overhead in sensing. Therefore, it can be used for many types
of context-aware apps, including apps that have tight real-time
constraints such as mobile games.
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