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Abstract
Metadata manipulation attacks represent a new threat

class directed against Version Control Systems, such as
the popular Git. This type of attack provides inconsis-
tent views of a repository state to different developers,
and deceives them into performing unintended opera-
tions with often negative consequences. These include
omitting security patches, merging untested code into a
production branch, and even inadvertently installing soft-
ware containing known vulnerabilities. To make matters
worse, the attacks are subtle by nature and leave no trace
after being executed.

We propose a defense scheme that mitigates these at-
tacks by maintaining a cryptographically-signed log of
relevant developer actions. By documenting the state
of the repository at a particular time when an action is
taken, developers are given a shared history, so irregu-
larities are easily detected. Our prototype implementa-
tion of the scheme can be deployed immediately as it is
backwards compatible and preserves current workflows
and use cases for Git users. An evaluation shows that
the defense adds a modest overhead while offering sig-
nificantly stronger security. We performed responsible
disclosure of the attacks and are working with the Git
community to fix these issues in an upcoming version of
Git.

1 Introduction
A Version Control System (VCS) is a crucial compo-

nent of any large software development project, present-
ing to developers fundamental features that aid in the
improvement and maintenance of a project’s codebase.
These features include allowing multiple developers to
collaboratively create and modify software, the ability to
roll back to previous versions of the project if needed,
and a documentation of all actions, thus tying changes in
files to their authors. In this manner, the VCS maintains
a progressive history of a project and helps ensure the
integrity of the software.

Unfortunately, attackers often break into projects’
VCSs and modify the source code to compromise hosts
who install this software. When this happens, an at-
tacker can introduce vulnerable changes by adding (e.g.,
adding a backdoor), or removing certain elements from
a project’s history (e.g., a security patch) if he or she ac-
quires write access to the repository. By doing this, at-
tackers are usually able to compromise a large number
of hosts at once [42, 27, 13, 21, 15, 4, 45, 18, 44]. For
example, the Free Software Foundation’s repository was
controlled by hackers for more than two months, serv-
ing potentially backdoored versions of GNU software to
millions of users [16].

The existing security measures on VCSs, such as com-
mit signing and push certificates [19, 2], provide lim-
ited protection. While these mechanisms prevent an at-
tacker from tampering with the contents of a file, they do
not prevent an attacker from modifying the repository’s
metadata. Hence, these defenses fail to protect against
many impactful attacks.

In this work, we reveal several new types of attacks
against Git, a popular VCS. We collectively call these at-
tacks metadata manipulation attacks in which Git meta-
data is modified to provide inconsistent and incorrect
views of the state of a repository to developers. These
attacks can be thought of as reconcilable fork attacks be-
cause the attacker can cause a developer’s version of the
repository to be inconsistent just for a finite window of
time — only long enough to trick a developer into com-
miting the wrong action — and leave no trace of the at-
tack behind.

The impact of an attack of this nature can be substan-
tial. By modifying the right metadata, an attacker can
remove security patches, merge experimental code into a
production branch, withhold changes from certain users
before a release, or trick users and tools into installing
a different version than the one requested to the VCS.
To make matters worse, the attacker only requires a few
resources to achieve his or her malicious goals.
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We have submitted a vulnerability disclosure to CERT
and the GitHub security team describing the following
scenario: an attacker capable of performing a man-in-
the-middle attack between a GitHub [3] server and a de-
veloper using pip to install Django (a popular website
framework) can trick the developer into installing a vul-
nerable version simply by replacing one metadata file
with another. Even though Git verifies that the signature
in Git objects is correct, it has no mechanism to ensure
it has retrieved the correct object. This type of attack
enables a malicious party to strike any system that can
retrieve packages from Git repositories for installation,
including Node’s NPM [22], Python’s pip [11], Apache
Maven [34], Rust’s cargo [35], and OCaml’s OPAM [33].
As such, it could potentially affecting hundreds of thou-
sands of client devices.

To mitigate metadata manipulation attacks, we de-
signed and implemented a client-only, backwards-
compatible solution that introduces only minimal over-
head. By storing signed reference state and developer
information on the server, multiple developers are able
to verify and share the state of the repository at all times.
When our mechanism is in place, Git metadata manipula-
tion attacks are detected. We have presented these issues
to the Git developer community and prepared patches —
some of which are already integrated into Git — to fix
them in upcoming versions of Git.

In summary, we make the following contributions:

• We identify and describe metadata manipulation at-
tacks, a new class of attacks against Git. We show
these attacks can have a significant practical impact
on Git repositories.

• We design a defense scheme to combat metadata
manipulation attacks by having Git developers share
their perception of the repository state with their
peers through a signed log that captures their his-
tory of operations.

• We implement the defense scheme and study its effi-
ciency. An evaluation shows that it incurs a smaller
storage overhead than push certificates, one of Git’s
security mechanisms. If our solution is integrated
in Git, the network communication and end-to-end
delay overhead should be negligible. Our solution
does not require server side software changes and
can be used today with existing Git hosting solu-
tions, such as GitHub, GitLab, or Bitbucket.

2 Background and related work

2.1 Overview of Git
In order to understand how Git metadata manipulation

attacks take place, we must first define Git-specific termi-
nology, as well as some usage models of the tool itself.

Git is a distributed VCS that aids in the development
of software projects by giving each user a local copy
of the relevant development history, and by propagat-
ing changes made by developers (or their history) be-
tween such repositories. Essential to the version history
of code committed to a Git repository are commit ob-
jects, which contain metadata about who committed the
code, when it was committed, pointers to the previous
commit object, (the parent commit) and pointers to
the objects (e.g., a file) that contain the actual commit-
ted code.

Branches serve as “pointers” to specific commit ob-
jects, and to the development history that preceded each
commit. They are often used to provide conceptual sep-
aration of different histories. For example, a branch ti-
tled “update-hash-method” will only contain objects that
modify the hash method used in a project. When a de-
veloper adds a new commit to the commit chain pointed
to by a branch, the branch is moved forward.

Inside Git, branches are implemented using “refer-
ence” files, that only contain the SHA1 hash of a target
commit. The same format is used for Git tags, which are
meant to point to a static point in the project’s history.
Both tags and branches live in the .git/refs folder.

Git users commit changes to their local repositories,
and employ three main commands to propagate changes
between repositories: fetch, to retrieve commits by
other developers from a remote repository; merge, to
merge two changesets into a single history; and push,
to send local commits from a local repository to a re-
mote repository. Other common commands may consist
of two or more of these commands performed in conjunc-
tion (e.g., pull is both a fetch and a merge). Consider
the following example:

Alice is working on a popular software project and
is using Git to track and develop her application. Al-
ice will probably host a “blessed” copy of her repos-
itory in one provider (e.g., GitHub or Gitlab) for ev-
eryone to clone, and from which the application will
eventually be built. In her computer, she will keep a
clone (or copy) of the remote repository to work on a
new feature. To work on this feature, she will create
a new branch, #5-handle-unicode-filenames
that will diverge from the master branch from now on.
As she modifies files and updates the codebase, she com-
mits – locally – and the updates will be added to the new
branch in her local clone. Once Alice is done adding the
feature, she will push her local commits to the remote
server and request a colleague to review and merge her
changes into the master branch. When the changes are
merged, Alice’s commits will become part of the mas-
ter history and, on the next release cycle, they will be
shipped in the new version of the software.
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2.1.1 Git security features
To ensure the integrity of the repository’s history, Git

incorporates several security features that provide a basic
defense layer:
• Each commit object contains a cryptographic hash of

its parent commit. In addition, the name of the file that
contains the commit object is the cryptographic hash of
the file’s contents. This creates a hash chain between
commits and ensures that the history of commits can-
not be altered arbitrarily without being detected.

• Users have the option to cryptographically sign a com-
mit (a digital signature is added to the commit object)
using a GPG key. This allows an auditor to unequiv-
ocally identify the user who committed code and pre-
vents users from repudiating their commits.

• A signed certificate of the references can be pushed to a
remote repository. This “push certificate” solution ad-
dresses man-in-the-middle attacks where the user and
a well-behaving server can vouch for the existence of
a push operation.

2.2 Related work
VCS Security. Wheeler [39] provides an overview of
security issues related to software configuration man-
agement (SCM) tools. He puts forth a set of secu-
rity requirements, presents several threat models (in-
cluding malicious developers and compromised reposi-
tories), and enumerates solutions to address these threats.
Gerwitz [17] provides a detailed description of creating
and verifying Git signed commits. Signing commits al-
lows the user to detect modifications of committed data.
Git incorporates protection mechanisms, such as commit
signing and commit hash chaining. Unfortunately, they
do not prevent the attacks we introduce in this work.

There have been proposals to protect sensitive data
from hostile servers by incorporating secrecy into both
centralized and distributed version control systems [1,
29]. Shirey et al. [32] analyzes the performance trade-
offs of two open source Git encryption implementations.
Secrecy from the server might be desirable in certain sce-
narios, but it is orthogonal to our goals in this work.

The “push certificate” mechanism, introduced in ver-
sion 2.2.0 of Git, allows a user to digitally sign the refer-
ence that points to a pushed object. However, push cer-
tificates do not protect against most of the attacks we de-
scribe in this work. Furthermore, push certificates were
designed for out-of-band auditing (i.e. they are not in-
tegrated into the usual workflow of Git and need to be
fetched and verified by a trusted third party using out-
of-band mechanisms). As a result, push certificates are
rarely used in practice.

Fork Consistency. A problem that could arise in remote
storage used for collaborative purposes is when the un-

trusted storage server hides updates performed by one
group of users from another. In other words, the server
equivocates and presents different views of the history of
operations to different groups of users. The fork consis-
tency property seeks to address this attack by forcing a
server that has forked two groups in this way to continue
this deception. Otherwise, the attack will be detected as
soon as one group sees an operation performed by the
other group after the moment the fork occurred.

SUNDR [26] provides fork consistency for a network
file system that stores data on untrusted servers. In
SUNDR, users sign statements about the complete state
of all the files and exchange these statements through the
untrusted server. SPORC [14] is a framework for build-
ing collaborative applications with untrusted servers that
achieves fork* consistency (i.e., a weaker variant of fork
consistency). Our solution seeks to achieve a similar
property and shares similarities with SUNDR in that Git
users leverage the actual Git repository to create and
share signed statements about the state of the repository.
However, the intricacies and usage model of a VCS sys-
tem like Git impose a different set of constraints.

Other work, such as Depot [28], focuses on recovering
from forks in an automatic fashion (i.e., not only detect-
ing forks, but also repairing after they are detected). Our
focus is on detecting the metadata manipulation attacks,
after which the affected users can perform a manual roll-
back procedure to a safe point.

Caelus [25] seeks to provide the same declared his-
tory of operations to all clients of a distributed key-value
cloud store. Caelus assumes that no external communi-
cation channel exists between clients, and requires them
to periodically attest to the order and timing of operations
by writing a signed statement to the cloud every few sec-
onds. The attestation schedule must be pre-defined and
must be known to all clients. Our setting is different,
since Git developers usually communicate through mul-
tiple channels; moreover, a typical team of Git develop-
ers cannot be expected to conform to such an attestation
policy in practice.

3 Threat model and security guarantees

We make the following assumptions about the threat
model our scheme is designed to protect against:

• Developers use the existing Git signing mechanisms
whenever performing an operation in Git to stop an
attacker from tampering with files.

• An attacker cannot compromise a developer’s key
or get other developers to accept that a key con-
trolled by an attacker belongs to a legitimate devel-
oper. Alternatively, should an attacker control such
a key (e.g., an insider attack), he or she may not
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want to have an attack attributed to him- or herself
and would thus be unwilling to sign data they have
tampered with using their key.

• The attacker can read and modify any files on
the repository, either directly (i.e. a compromised
repository or a malicious developer) or indirectly
(i.e., through MITM attacks and using Git’s inter-
face to trick honest users into doing it).

• The attacker does not want to alert developers that
an attack has occurred. This may lead to out-of-
band mechanisms to validate the attacked repository
[30].

This threat model covers a few common attack sce-
narios. First of all, an attacker could have compromised
a software repository, an unfortunately common occur-
rence [42, 27, 13, 21, 15, 4, 45, 18, 44, 16]. Even
if the repository is not compromised, an attacker could
act as a man-in-the-middle by intercepting traffic des-
tined for the repository (e.g., by forging SSL certifi-
cates [23, 31, 8, 37, 43, 7, 41, 6, 38]). However, an
attacker is not limited to these strategies. As we will
show later, a malicious developer can perform many of
the same attacks without using their signing key. This
means that it is feasible for a developer inside an organi-
zation to launch these attacks and not be detected.

Note that in all cases, the developers have known sign-
ing keys to commit, push, and verify information.

3.1 Security guarantees
Answering to this threat model, the goal of a success-

ful defensive system should be to enforce the following:

• Prevent modification of committed data: If a file
is committed, an attacker should not be able to mod-
ify the file’s contents without being detected.

• Ensure consistent repository state: All developers
using a repository should see the same state. The
repository should not be able to equivocate and pro-
vide different commits to different developers.

• Ensure repository state freshness: The repository
should provide the latest commits to each developer.

As we will show later, Git’s existing security mech-
anisms fail to handle the last two properties. The ex-
isting signing mechanism for Git does enable develop-
ers to detect modification of committed data, because
the changed data will not be correctly signed. However,
due to weaknesses in handling the other properties, an
attacker can omit security patches, merge experimental
features into production, or serve versions of software
with known vulnerabilities.

An attacker is successful if he or she is able to break
any of these properties without being detected by the de-
velopers. So, an attacker who controls the repository
could block a developer from pushing an update by pre-
tending the repository is offline. However, since the de-
veloper receives an error, it is obvious that an attack is
occurring and therefore is easy to detect. Similarly, this
also precludes irreconciliable fork attacks where two sets
of developers must be permanently segregated from that
point forward. Since developers typically communicate
through multiple channels, such as issue trackers, email,
and task management software, it will quickly become
apparent that fixes are not being merged into the master
branch. (Most projects have a tightly integrated team,
usually a single person, who integrates changes into the
master branch, which further ensures this attack will be
caught.) For these reasons, we do not focus on attacks
that involve a trivial denial of service or an irreconcilable
fork because they are easy to detect in practice.

4 Metadata manipulation attacks

Even when developers use Git commit signing, there is
still a substantial attack surface. We have identified a new
class of attacks that involve manipulation of Git meta-
data stored in the .git/refs directory of each repos-
itory. We emphasize that, unlike Git commits that can
be cryptographically signed, there are no mechanisms in
Git to protect this metadata. As such, the metadata can be
tampered with to cause developers to perceive different
states of the repository, which can coerce or trick them
into performing unintended operations in the repository.
We also note that a solution that simply requires users to
sign Git metadata has serious limitations (as described in
Sec. 5.2).

Unlike many systems where equivocation is likely
to be noticed immediately by participants, Git’s use of
branches hides different views of the repository from de-
velopers. In many development environments, develop-
ers only have copies of branches that they are working
on stored locally on their system, which makes it easy
for a malicious repository to equivocate and show differ-
ent views to different developers.

In Git, a branch is represented by a file that contains
the SHA1 checksum of a commit object (under benign
circumstances, this object is the latest commit on that
branch). We will refer to such files as branch refer-
ences. All the branch references are stored in the di-
rectory .git/refs/heads/, with the name of the
branch as the filename. For example, a branch “hotfix” is
represented by the file .git/refs/heads/hotfix.

We discovered that it is straightforward for an at-
tacker to manipulate information about branches by sim-
ply changing contents in a reference file to point to any
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other commit object. Modifying the branch reference can
be easily performed with a text editor and requires no so-
phistication. Specifically, we show three approaches to
achieve this, all of them being captured by our adversar-
ial model. First, an attacker who has compromised a Git
repository and has write access to it, can directly mod-
ify the metadata files. Second, an attacker can perform
an MITM attack by temporarily redirecting a victim’s
traffic to a fake repository serving tampered metadata,
and then reestablishing traffic so the victim propagates
the vulnerable changes to the genuine repository (in Ap-
pendix A, we describe a proof-of-concept attack against
GitHub based on this approach). Third, a malicious de-
veloper can take advantage of the fact that Git metadata
is synchronized between local and remote repositories.
The developer manipulates the Git metadata in her local
repository, which is then propagated to the (main) remote
repository.

It is also possible to extend these attacks for Git tags.
Although a Git tag is technically a Git tag object that
can be signed the same way as a commit object, an at-
tacker can target the reference pointing to a tag. Tag ref-
erences are stored in the directory .git/refs/tags/
and work similarly to branch references, in that they are
primarily a file containing the SHA1 of a Git tag object
that points to a Git commit object. Although Git tags
are conceptually different — they only represent a fixed
point (e.g., a major release version) in the projects his-
tory — they can be exploited in the same way, because
Git has no mechanism to protect either branch or tag ref-
erences.

We have validated the attacks against a standard Git
server and also the GitHub, GitLab and other popular Git
hosting services.

Based on their effect on the state of the repository, we
identify three types of metadata manipulation attacks:

• Teleport Attacks: These attacks modify a Git refer-
ence so that it points to an arbitrary object, different
from the one originally intended. The reference can
be a branch reference or a tag reference.

• Rollback Attacks: These attacks modify a Git
branch reference so that it points to an older com-
mit object from the same branch, thus providing
clients with a view in which one or more of the lat-
est branch commits are missing.

• Deletion Attacks: These attacks remove branch or
tag references, which in turns leads to the complete
removal of an entire branch, or removal of an entire
release referred to by a tag.

We use the following setup to present the details of
these attacks. A Git server is hosting the main repository

and several developers who have their own local reposi-
tories have permission to fetch/push from/to any branch
of the main repository, including the master branch. For
commit objects, we use a naming convention that cap-
tures the temporal ordering of the commits. For example,
if a repository has commits C0, C1, C2, this means that
they were committed in the order C0, C1, C2.

4.1 Teleport attacks
We identified two teleport attacks: branch teleport and

tag teleport attacks.

Branch Teleport Attacks. These attacks modify the
branch reference so that it points to an arbitrary commit
object on a different branch. Although we illustrate the
attacks for the master branch, they are applicable to any
branch, since none of the branch reference metadata is
protected.

Fig. 1(a) shows the initial state of the main Git repos-
itory, which contains two branches, “master” and “fea-
ture.” The local repository of developer 1 is in the same
state as shown in Fig. 1(a). The “feature” branch im-
plements a new feature and contains one commit, C2.
The code in C2 corresponds to an unstable, potentially-
vulnerable version that needs to be tested more thor-
oughly before being integrated into the master branch.
Commit C1 is the head of the master branch. This
means that the file .git/refs/heads/master con-
tains the SHA1 hash of the C1 commit object.

After developer 2 pulls from the master branch of the
main repository (Fig. 1(b)), the attacker changes the mas-
ter branch to point to commit C2 (Fig. 1(c). The at-
tacker does this by simply changing the contents of the
file .git/refs/heads/master to the SHA1 hash
of the C2 commit. Any developer who clones the repos-
itory or fetches from the master branch at this point in
time will be provided with the incorrect repository state,
as shown in Fig. 1(c). For example, developer 2, who
committed C3 into his local repository (Fig. 1(d)), now
wants to push this change to the main repository. De-
veloper 2 is notified that there were changes on the mas-
ter branch since his last fetch, and needs to pull these
changes. As a result, a merge commit C4 occurs be-
tween C3 and C2 in the local repository of developer 2,
as shown in Fig. 1(e). The main repository looks like
Fig 1(e) after developer 2 pushes his changes. If devel-
oper 1 then pulls changes from the main repository, all
three repositories will appear like Fig 1(e).

Normally, the master branch should contain software
that was thoroughly tested and properly audited. How-
ever, in this incorrect history, the master branch incorpo-
rates commit C2, which was in a experimental feature
branch and may contain bugs. The attacker tricked a
developer into performing an action that was never in-
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Figure 1: The Branch Teleport attack

tended, and none of the two developers are aware that
the attack took place.

Tag Teleport Attacks. These attacks modify a tag ref-
erence so that it points to an arbitrary tag object. Sur-
prisingly, a tag reference can also be made to point to a
commit object, and Git commands will still work.

One can verify whether a tag is both signed and a valid
tag object by using the git tag --verify com-
mand. However, if an attacker were to modify a tag ref-
erence to point to an older tag (e.g., if the tag for release
1.1 is replaced by the tag for the vulnerable release 1.0),
the verification command is successful.

Modifying tag metadata could be especially impactful
for automated systems that rely on tags to build/test and
release versions of software [36, 20, 10, 12]. Further-
more, package managers such as Python’s pip, Ruby’s
RubyGEMS, and Node’s NPM, among many others sup-
port the installation of software from public Git reposito-
ries and tags. Finally, Git submodules are also vulnerable
if used with the --remote parameter, as they track a re-
mote tag (or branch). If a build dependency is included
in a project as a part of the submodule, a package might
be made vulnerable via an underlying library.
4.2 Rollback attacks

These attacks modify a Git branch reference so that it
points to an older commit object from the same branch.
This gives clients a view in which one or more of the lat-
est branch commits are missing. The attacker can cause
commits to be missing on a permanent or on a temporary
basis.

Figure 2: The Branch Roll-
back attack

Figure 3: The Global Roll-
back attack

4.2.1 Permanent rollback attacks
Based on the nature of the commits removed, we sep-

arate permanent rollback attacks in two groups: Branch
Rollback attacks and Global Rollback attacks.

Branch Rollback Attacks. Consider the repository
shown in Fig. 2(a), in which the order of the commits
is C0, C1, C2, C3. Commits C0 and C3 are in the
master branch, and commits C1 and C2 are security
patches in a “patch” branch. The attacker rolls back
the patch branch by making the head of such branch
point to commit C1, as shown in Fig. 2(b). This can
be done by simply replacing the contents of the file
.git/refs/heads/patch with the SHA1 hash of
the C1 commit. As a result, all developers that pull from
the main repository after this attack will see the state
shown in Fig. 2(c), in which commit C2 (that contains
a security patch) has been omitted.

Note that the attack can also be used to omit commits
on any branch, including commits in the master branch.

Global Rollback Attacks. As opposed to a Branch Roll-
back attack, which removes commits that happened prior
to one that remains visible, in a Global Rollback attack,
no commits remain visible after the commits that are re-
moved. In other words, the attacker removes one or more
commits that were added last to the repository.

Consider the initial state of a Git repository as illus-
trated in Fig. 3(a), in which C2 is a commit that fixes
a security bug and has been merged into the master
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Figure 4: The Effort Duplication attack

branch. The file .git/refs/heads/master con-
tains the SHA1 hash of the C3 commit object.

By simply changing the contents of the file
.git/refs/heads/master to the SHA1 hash of
the C1 commit, the attacker forges a state in which the
repository contains the history of commits depicted in
Fig. 3(b). This effectively removes commits C2 and
C3 from the project’s history, and a developer who now
clones the project will get a history of commits as shown
in Fig. 3(c). This incorrect history does not contain the
commit C2 that fixed the security bug.

Note that the Global Rollback attack removed the lat-
est two commits from the repository. This is different
than the effect of a Branch Rollback attack which re-
moves one or more commits that happened before a com-
mit that remains visible.

4.2.2 Temporary rollback attacks
Effort Duplication Attacks. The Effort Duplication
attack is a variation of the Global Rollback attack, in
which the attacker temporarily removes commits from
the repository. This might cause developers to unknow-
ingly duplicate coding efforts that exist in the removed
commits.

Consider a main Git repository with just a master
branch which contains only one commit C0. Two devel-
opers D1 and D2 have pulled from the main repository,
so their local repositories also contain C0. After the fol-
lowing sequence of actions by D1 and D2, the repository
should look as shown in Fig. 4(a):

1. D1 commits C1 to her local repository & pushes to
the main repository.

2. D2 pulls from the main repository.
3. D2 commits C2 to her local repository & pushes to

the main repository.

However, when D2 pulls in step 2, the attacker can
temporarily withhold commit C1, keeping D2 unaware
of the changes in C1. As a result, D2 works on changes
that already exist in C1. The following attack scenario
results in a repository shown in Fig. 4(b):

1. D1 commits C1 to her local repository & pushes to
the main repository.

2. D2 pulls from the main repository, but the attacker
withholds C1. Thus, D2 thinks there are no changes.

3. D2 makes changes on top of C0 and commits these
changes in her local repository as commit C2. C2
duplicates (some or all of) D1’s coding effort in C1.

4. D2 tries to push changes to the main repository. This
time, the attacker presents C1 to D2 (these are the
changes that were withheld in step 2). Thus, D2 has
to first pull changes before pushing.

5. D2 pulls changes from the main repository, and this
results in a merge commit C3 between C1 and C2.
As part of the merge, the developer has to solve any
merge conflicts that appear from the code duplication
between C1 and C2.

In this case, D2 re-did a lot of D1’s work because
D1’s commit C1 was withheld by the attacker. Note that
unlike a Global Rollback attack, in which commits are
removed permanently from the repository, in the Effort
Duplication attack commits are just removed temporar-
ily. This is a more subtle attack, since the final state of
the repository is the same for both the benign and at-
tack cases. The effect of applying commits C1 and C2
in Fig. 4(a) on the files in the repository is the same as
applying commits C1, C2, C3 in Fig. 4(b). However, D2
unknowingly (and unnecessarily) duplicated D1’s coding
effort, which may have negative economic consequences.
Adding to this, an attacker can slow down developers
of a specific project (e.g., a competitor’s project) by de-
livering previously-withheld changes to them when they
will cause merge conflicts and hamper their development
progress.

4.3 Reference deletion attacks
Since the branch metadata is not protected, the at-

tacker can hide an entire branch from the repository by
removing a branch reference. Similarly, since the tag
metadata is not protected, the attacker can remove a tag
reference in order to hide a release from the repository
history.

When an attacker performs a reference deletion attack,
only the users who previously held a copy of the refer-
ence will be able to know of its existence. If this is not the
case, a developer would be oblivious of the fact that other
developers have worked on the deleted branch (similar to
a fork attack), or be tricked into retrieving another ver-
sion if the target tag is not available. Furthermore, some
projects track work in progress by tying branch names
to numbers in their issue tracker [9], so two developers
could be tricked into working on the same issue by hid-
ing a branch (similar to an effort duplication attack).

4.4 Summary of attacks
Metadata manipulation attacks may lead to inconsis-

tent and incorrect views of the repository and also to cor-
ruption and loss of data. Ultimately, this will lead to
merge conflicts, omission of bug fixes, merging exper-
imental code into a production branch, or withholding
changes from certain users before a release. All of these
are problems that can impact the security and stability of
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the system as a whole. Table 1 summarizes the attacks
impact.

Attack Impact

Branch Teleport Buggy code inclusion
Branch Rollback Critical code omission
Global Rollback Critical code omission
Effort Duplication Coding effort duplicated
Tag Rollback Older version retrieved

Table 1: Impact of metadata manipulation attacks.

5 Defense framework

5.1 Design goals for a defense scheme
We designed our defense scheme against metadata ma-

nipulation attacks with the following goals in mind:

Design Goal 1 (DG1): Achieve the security goals stated
in Sec. 3.1. That is, prevent modification of commit-
ted data, ensure a consistent repository state, and ensure
repository state freshness.

Design Goal 2 (DG2): Preserve (as much as possible)
current workflows and actions that are commonly used
by developers, in order to facilitate a seamless adoption.

Design Goal 3 (DG3): Maintain compatibility with ex-
isting Git implementations. For example, Git has limited
functionality when dealing with concurrency issues in a
multi-user setting: it only allows atomic push of multiple
branches and tags after version 2.4. Following Git’s de-
sign philosophy, backwards compatibility is paramount;
a server running the latest Git version (i.e., 2.9.0) can be
cloned by a client with version 1.7.

5.2 Why binding references with Git ob-
jects is not enough

Adding reference information (i.e., branch and tag
names) inside the commit object might seem like a suf-
ficient defense against metadata manipulation attacks.
This would bind a commit to a reference and prevent an
attacker from claiming that a commit object referred to
in a reference belongs somewhere else.

Unfortunately, this simple approach has important
drawbacks. It does not meet our DG1 because it does
not defend against rollback and effort duplication at-
tacks. Furthermore, adding new reference information
in a commit object requires updating an existing commit
object. When this happens, the SHA-1 hash of the com-
mit object will change, and the change will propagate to
all new objects in the history. In other words, when a new
branch is created and bound to a commit far earlier in the
history, all commit objects need to be rewritten and, thus,
sent back to the remote repository, which could add sub-
stantial computational and network overhead.

5.3 Our defense scheme
The fundamental cause of metadata manipulation at-

tacks is that the server can respond to users’ fetches
with an incorrect state and history of the main reposi-
tory that they cannot verify. For example, the server can
falsely claim that a branch points to a commit that was
never on that branch or to a commit that was the location
of that branch in an earlier version. Or, the server can
falsely claim that the reference of a tag object points to
an older tag.

In order to stop the server from falsely claiming an
incorrect state of the repository, we propose that every
Git user must include additional information vouching
for their perceived repository state during a push or a
fetch operation. To achieve this, we include two pieces
of additional information on the repository:

• First, upon every push, users must append a push
entry to a Reference State Log (RSL) (Sec. 5.3.1).
By validating new entries in this log with each push
and fetch operation, we can prevent teleport, perma-
nent rollback, and deletion attacks.

• Second, when a Git user performs a fetch operation
and receives a new version of files from the repos-
itory, the user places a random value into a fetch
nonce bag (Sec. 5.3.2). If the Git user does not re-
ceive file updates when fetching, the user replaces
her value in the bag with a new one. The bag serves
to protect against temporary rollback attacks.

During our descriptions, we assume that a trusted key-
chain is distributed among all developers along with the
RSL. There are tools available to automate this pro-
cess [24, 5], and the RSL itself can also be used to dis-
tribute trust (we elaborate more on this in Sec 6.1).

5.3.1 The Reference State Log (RSL)
For a developer to prevent the server from equivocat-

ing on the location of the references, the developer will
sign a push entry, vouching for the location of the ref-
erences at the time of a push. To do this, she must exe-
cute the Secure push procedure, which has the following
steps:

First, the remote RSL is retrieved, validated, and
checked for the presence of new push entries (lines 3-
11). If the RSL is valid and no push entries were added, a
new RSL push entry is created (lines 13-14). The newly
created entry will contain: (1) the new location of the
reference being pushed; (2) the nonces from the fetch
nonce bag; (3) a hash of the previous push entry; and (4)
the developer’s signature over the newly created push en-
try. The newly created entry is then appended to the RSL
(line 16), and the nonce bag is cleared (line 15).

Once this is done, the remote RSL must be updated
and local changes must be pushed to the remote reposi-
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PROCEDURE: Secure push
Input: LocalRSL; related commits; pushed reference X
Output: result: (success/fail/invalid)

1: repeat
2: result← fail
3: (RemoteRSL, nonce bag) =

Retrieve RSL and nonce bag from remote repo
4: if (RSL Validate(RemoteRSL, nonce bag) == false)

then
5: // Retrieved RemoteRSL is invalid
6: // Must take necessary actions!
7: return invalid
8: if (new push entries for reference X in RemoteRSL) then
9: // Remote repository contains changes

10: // User must fetch changes and then retry
11: return fail
12: else
13: prev hash = hash last push entry(RemoteRSL)
14: new RSL Entry = create push Entry(prev hash,

nonce bag, X)
15: nonce bag.clear()
16: RemoteRSL.addEntry(new RSL entry)
17: result = Store in remote repo(RemoteRSL,

nonce bag)
18: if (result == success) then
19: // The remote RSL has no new entries
20: push related commits
21: LocalRSL = RemoteRSL
22: return success
23: until (result == success)

tory (lines 17-20). Notice that these steps are performed
under a loop, because other developers might be pushing,
which is not an atomic operation in older versions of Git
(this is required to meet DG3).

Depending on the result of the Secure push procedure,
a developer’s actions correspond to the following:

• success: the push is successful. No further ac-
tions are required from the user (line 22).

• fail: the push fails because there are changes
in the remote repository that must first be fetched
and merged locally before the user’s changes can be
pushed (line 11).

• invalid: the RSL validation has failed. The algo-
rithm detects a potential attack and notifies the user,
who must then take appropriate measures (line 7).

Note that these actions mirror a user’s actions in the
case of a regular Git push operation, as suggested by
DG2. By doing this, we effectively follow the existing
Git workflows while providing better security guarantees
at the same time.

5.3.2 The Nonce Bag
When retrieving the changes from a remote repository,

a developer must also record her perceived state of the
repository. Our scheme requires that all the user fetches
be recorded in the form of a fetch nonce bag, i.e., an
unordered list of nonces. Each nonce is a random num-
ber that corresponds to a fetch from the main repository.
Every time a user fetches from the main repository, she
updates the nonce bag. If the user has not fetched since
the last push, then she generates a new nonce and adds it
to the nonce bag; otherwise, the user replaces her nonce
in the nonce bag with a new nonce.

Each nonce in the nonce bag serves as a proof that a
user was presented a certain RSL, preventing the server
from executing an Effort Duplication attack and pro-
viding repository freshness as per DG1. To fetch the
changes from the remote repository, a developer must ex-
ecute the Secure fetch procedure.

The first steps of the Secure fetch procedure consist
of retrieving the remote RSL, performing a regular git
fetch, and ensuring that the latest push entry in the
RSL points to a valid object in the newly-fetched ref-
erence (lines 4-11). Note that this check is performed
inside a loop because push operations are not atomic in
older versions of Git (lines 2-12). A user only needs to
retrieve the entries which are new in the remote RSL and
are not present in the local version of the RSL.

If this check is successful, the nonce bag must be up-
dated and stored at the remote repository (lines 14-20).
Note that all these steps are also in a loop because other
developers might update the RSL or the nonce bag since
it was last retrieved (lines 1-21).

Finally, the RSL is further validated for consistency
(line 22), and the local RSL is updated. We chose to
validate the RSL at the end of Secure fetch and outside
of the loop in order to optimize for the most common
case. Once Secure fetch is successfully executed, a de-
veloper can be confident that the state of the repository
she fetched is consistent with her peers. Otherwise, the
user could be the victim of one of the attacks in Sec. 4.

5.3.3 RSL validation
The RSL Validate routine is used in Secure push and

Secure fetch to ensure the presented RSL is valid. The
aim of this routine is to check that push entries in a
given RSL are correctly linked to each other, that they
are signed by trusted developers, and that nonces corre-
sponding to a user’s fetches are correctly incorporated
into the RSL.

First, the procedure checks that the nonce correspond-
ing to the user’s last fetch appears either in the nonce bag
or was incorporated into the right push entry (i.e., the first
new push entry of the remote RSL) (lines 1-2). The algo-
rithm then checks if the new push RSL entries from the
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PROCEDURE: Secure fetch
Input: reference X to be fetched
Output: result: (success/invalid)

1: repeat
2: store success← false
3: repeat
4: (RemoteRSL, nonce bag) =

Retrieve RSL and nonce bag from remote repo()
5: f etch success← false
6: // This is a regular “Git fetch” command.
7: // Branch X’s reference is copied to FETCH HEAD
8: fetch reference X
9: C← RemoteRSL.latestPush(X).refPointer

10: if (C == FETCH HEAD) then
11: f etch success← true

12: until ( f etch success == true)
13: // Update the nonce bag
14: if NONCE in nonce bag then
15: nonce bag.remove(NONCE)
16: save random nonce locally(NONCE)
17: nonce bag.add(NONCE)
18: // Storing the nonce bag at the remote repository
19: // might fail due to concurrency issues
20: store success = Store in remote repo(nonce bag)
21: until (store success == true)
22: if (RSL Validate(RemoteRSL, nonce bag) == false)

then
23: // Retrieved RemoteRSL is invalid
24: // Must take necessary actions!
25: return invalid
26: else
27: LocalRSL = RemoteRSL
28: return success

remote RSL are correctly linked to each other and that
the first new remote push entry is correctly linked to the
last push entry of the local RSL (the check is based on
the prev hash field) (lines 5-9). Finally, the signature on
the last RSL push entry is verified to ensure it was signed
by a trusted developer; since all RSL entries are correctly
linked, only the last entry signature needs to be verified.
How to handle misbehavior? If the RSL validation fails
due to a misbehaving server, the user should compare
the local RSL with the remote RSL retrieved from the
remote repository and determine a safe point up to which
the two are consistent. The users will then manually roll
back the local and remote repositories to that safe point,
and decide whether or not to continue trusting the remote
repository.

6 Discussion

6.1 Trust and revoke entries
Developers’ keys may be distributed using

trust/revoke RSL entries. To use these entries, the

PROCEDURE: RSL Validate
Input: LocalRSL (RSL in the local repository); RemoteRSL;
nonce bag
Output: true or false

1: if (NONCE not in nonce bag) and (NONCE not in Remot-
eRSL.push after(LocalRSL) then

2: return false
3: // Verify that the ensuing entries are valid
4: prev hash = hash last push entry(LocalRSL)
5: for new push entry in RemoteRSL do
6: if new push entry.prev hash != prev hash then
7: // The RSL entries are not linked correctly
8: return false
9: prev hash = hash(new push entry)

10: if verify signature(RemoteRSL.latest push) == false then
11: // this RSL is not signed by a trusted developer
12: return false
13: return true

repository is initialized with an authoritative root of trust
(usually a core developer) who will add further entries
of new developers in the group. Once developers’ public
keys are added to the RSL, they are allowed to add other
trust entries.

A trust entry contains information about the new de-
veloper (i.e., username and email), her public key, a hash
of the previous push entry and a signature of the entry by
a trusted developer. Revocation entries are similar in that
they contain the key-id of the untrusted developer, the
hash of the push entry, and the signature of the developer
revoking trust.

6.2 Security analysis
Our defense scheme fulfills the properties described in

Sec. 3.1 as follows:

• Prevent modification of committed data: The ex-
isting signing mechanism for Git handles this well.
Also, RSL entries are digitally signed and chained
with each other, so unauthorized modifications will
be detected.

• Ensure consistent repository state: The RSL pro-
vides a consistent view of the repository that is
shared by all developers.

• Ensure repository state freshness: The Nonce Bag
provides repository state freshness because an at-
tacker cannot replay nonces in the Nonce Bag.
Also, if no newer push entries are provided by the
repository, then the attack becomes a fork attack.

The attacks described in Section 4 are prevented be-
cause, after performing the attack, the server cannot pro-
vide a valid RSL that matches the current repository

10



Possible attacks Time window of attack Vulnerable commit objects
Commit signing all attacks Anytime Any object
RSL (full adoption) no attacks None No object
RSL (partial adoption) all attacks After the latest RSL entry and Objects added after

before the next RSL entry the latest RSL entry

Table 2: Security guarantees offered by different adoption levels of the defense scheme

state. Since she does not control any of the developers’
keys, she can not forge a signature for a spurious RSL en-
try. As a result, a user who fetches from the main repos-
itory after the attack will notice the discrepancy between
the RSL and the repository state that was presented to
her. Each metadata manipulation attack would be de-
tected as follows:

• Branch Teleport and Deletion Attacks: When this
attack is performed, there is no mention of this
branch pointing to such a commit, and the RSL val-
idation procedure will fail.

• Branch/Global Rollback and Tag Teleport Attacks:
These attacks can be detected because the latest en-
try in the RSL that corresponds to that branch points
to the commit removed and the RSL validation pro-
cedure will fail.

An attacker can attempt to remove the latest entries
on the RSL so that the attacks remain undetected.
However, after this moment, the server would need
to consistently provide an incorrect view of the RSL
to the target user, which would result in a fork at-
tack. Finally, the attacker cannot remove RSL en-
tries in between because these entries are chained
using the previous hash field. Thus, the signature
verification would fail if this field is modified.

• Effort Duplication Attack: This attack will result in
a fork attack because the RSL created by the user re-
questing the commit will contain a proof about this
request in the form of a nonce that has been incor-
porated into an RSL push entry or is still in the
Nonce Bag. Any ensuing RSL push entry that was
withheld from the user will not contain the user’s
nonce.

6.3 Partial adoption of defense scheme
It is possible that not all developers in a Git repository

use our solution. This can happen when, for example, a
user has not configured the Git client to sign and update
the RSL. When this is the case, the security properties of
the RSL change.

To study the properties of using the RSL when not ev-
eryone is using the defense, we will define a commit ob-
ject as a “secure commit” or an “insecure commit.” The
former will be commits made by users who employ our
defense, while the latter are made by users who do not

use our defense (i.e., they only use the Git commit sign-
ing mechanism). Consider that supporting partial adop-
tion requires changing the validation during fetches to
consider commits that are descendants of the latest se-
cure commit, for users might push to branches without
using the defense. For simplicity, we do not allow users
to reset branches if they are not using the defense.

Compared to commit signing only, when our scheme
is adopted by only some users, a user who writes an
RSL entry might unwittingly attest to the insecure com-
mits made by other users after the latest secure commit.
However, this situation still provides a valuable advan-
tage because the attacker’s window to execute Metadata
Manipulation attacks is limited in time. That is, when our
defense is not used at all, an attacker can execute Meta-
data Manipulation attacks on any commits in the repos-
itory, (e.g., the attacker can target a forgotten branch lo-
cated early in the history). This is not possible with our
scheme, where an attacker can only attack the commit
objects added after the latest RSL entry for that branch.
The differences between the three alternatives are sum-
marized in Table 2.

6.4 Comparison with other defenses
In Table 3, we examine the protections offered by

other defense schemes against metadata manipulation at-
tacks. Specifically, we studied how Git commit signing,
Git’s push certificate solution, and our solution (listed as
RSL) fare against the attacks presented in this paper, as
well as other usability aspects that may impact adoption.

Feature Commit Push RSL
signing certificate

Commit X X X
Tampering
Branch Teleport X X X
Branch Rollback X X X
Global Rollback X X X
Effort X X X
Duplication
Tag Rollback X X X
Minimum Git 1.7.9 2.2.0 1.7.9
Version
Distribution in-band (no default) or in-band
Mechanism Additional server

Table 3: Comparison of defense schemes against Git metadata ma-
nipulation attacks. A Xindicates the attack is prevented.

As we can see, Git commit signing does not pro-
tect against the vast majority of attacks presented in
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this paper. Also, Git’s push certificate solution provides
a greater degree of protection, but still fails to protect
against all rollback and effort duplication attacks. This is
primarily because (1) a server could misbehave and not
provide the certificates (there is no default distribution
mechanism), and (2) a server can replay old push certifi-
cates along with an old history. Basically, this solution
assumes a well-behaving server hosting push certificates.

In contrast, our solution protects against all attacks
presented in Table 3. In addition to this, our solution
presents an in-band distribution mechanism that does not
rely on a trusted server in the same way that commit sign-
ing does. Lastly, we can see that our solution can be used
today, because it does not require newer versions of Git
on the client and requires no changes on the server, which
allows for deployment in popular Git hosting platforms
such as GitHub and Gitlab.

7 Implementation and evaluation

We have implemented a prototype for our defense
scheme. This section provides implementation details
and presents our experimental performance results.

7.1 Implementation
To implement our defense scheme, we leveraged Git

custom commands to replace the push and fetch com-
mands, and implemented the RSL as a separate branch
inside the repository itself. To start using the defense, a
user is only required to install two additional bash scripts
and use them in lieu of the regular fetch and push com-
mands. Our client scripts consist of less than a hundred
(86) lines of code, and there is no need to install anything
on the server.

RSL and Nonce Bag. We implemented the RSL in a
detached branch of the repository, named “RSL.” Each
RSL entry is stored as a Git commit object, with the en-
try’s information encoded in the commit message. We
store each entry in a separate commit object to leverage
Git’s pack protocol, which only sends objects if they are
missing in the local client. Encoding the Git commit ob-
jects is also convenient because computing the previous
hash field is done automatically.

We also represent the Nonce Bag as a Git commit ob-
ject at the head of the RSL branch. When a nonce is
added or updated, a new commit object with the nonces
replaces the previous nonce bag, and its parent is set to
the latest RSL entry. When a new RSL entry is added, the
commit containing the nonce bag is garbage collected by
Git because the RSL branch cannot reach it anymore.

When securepush is executed, the script first
fetches and verifies the remote RSL branch. If verifica-
tion is successful, it then creates an RSL entry by issuing
a new commit object with a NULL tree (i.e., no local

Field Description

Branch Target branch name
HEAD Branch location (target commit)
PREV HASH Hash over the previous RSL entry
Signature Digital signature over RSL entry

Table 4: RSL push entry fields.

files), and a message consisting of the fields described in
Table 4. After the new commit object with the RSL push
entry is created, the RSL branch is pushed to the remote
repository along with the target branch.

A securefetch invocation will fetch the RSL
branch to update or add the random nonce in the Nonce
Bag. If a nonce was already added to the commit object
(with a NULL tree also), it will be amended with the re-
placed nonce. In order to keep track of the nonce and the
commit object to which it belongs, two files are stored lo-
cally: NONCE HEAD, which contains the reference of
the Nonce Bag in the RSL branch, and NONCE, which
contains the value of the nonce stored in it.

Atomicity of Git operations. The securepush and
securefetch operations require fetching and/or pushing
of the RSL branch in addition to the pushing/fetching
to/from the target branch. Git does not support atomic
fetch of multiple branches, and only supports atomic
push of multiple branches after version 2.4.0 1.

In order to ensure backwards compatibility, we de-
signed our solution without considering the existence of
atomic operations. Unfortunately, the lack of atomic
push opens the possibility of a DoS attack that exploits
the ‘repeat’ loop in Secure fetch (lines 3-12), that makes
the algorithm loop endlessly. This could happen if a
user executes Secure push and is interrupted after push-
ing a new RSL entry, but before pushing the target branch
(e.g., caused by a network failure). Also, a malicious
user may provide an updated RSL, but an outdated his-
tory for that branch. However, this issue can be easily
solved if the loop is set to be repeated only a finite num-
ber of times before notifying the user of a potential DoS
attempt.

If atomic push for multiple branches is available, the
Secure push procedure can be simplified by replacing
lines 17-22 with a single push. Availability of atomic
push also eliminates the possibility of the endless loop
mentioned above.

7.2 Experimental evaluation
Experimental Setup. We conducted experiments using
a local Git client and the GitHub server that hosted the
main repository. The client was running on an Intel Core
i7 system with two CPUs and 8 GB RAM. The client
software consisted of OS X 10.11.2, with Git 2.6.2 and

1Note that both Git client and server must be at least version 2.4.0
in order to support atomic push.
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the GnuPG 2.1.10 library for 1024-bit DSA signatures.
Our goal was to evaluate the overhead introduced by

our defense scheme. Specifically, we want to determine
the additional storage induced by the RSL, and the addi-
tional end-to-end delay induced by our securefetch
and secure push operations. For this, we used the
five most popular GitHub repositories 2: bootstrap, an-
gular.js, d3, jQuery, oh-my-zsh. We will refer to these
as R1, R2, R3, R4, and R5, respectively. In the exper-
iments, we only considered the commits in the master
branch of the these repositories. Table 5 provides details
about these repositories.

Repo. Number Number Repo. Repo. size with
of commits of pushes size signed commits

R1 11,666 1,345 73.04 78.85
R2 7,521 26 66.96 69.79
R3 3,510 255 32.91 34.65
R4 6,031 194 15.79 19.98
R5 3,841 1,170 3.52 4.01

Table 5: The repositories used for evaluation (sizes are in MBs).

We used the repositories with signed commits as the
baseline for the evaluation. We evaluated three defense
schemes:

• Our defense: This is our proposed defense scheme.

• Our defense (light): A light version of our defense
scheme, which does not use the nonce bag to keep
track of user fetches. This scheme sacrifices pro-
tection against Effort Duplication attacks in favor
of keeping the regular Git fetch operation un-
changed.

• Push certificates: Push certificates used upon push-
ing.

For our defense and our defense (light), the reposito-
ries were hosted on GitHub. Given that GitHub does not
support push certificates, we studied the network over-
head using a self-hosted server on an AWS instance, and
concluded that push certificates incur a negligible over-
head compared to the baseline. Thus, we only compare
our scheme with push certificates in regard to the storage
overhead.

Storage overhead. Table 6 shows the additional storage
induced by our defense, compared to push certificates.
In our defense, the RSL determines the size of the ad-
ditional storage. We can see that our defense requires
between 0.009%-6.5% of the repository size, whereas
push certificates require between 0.012%-10%. The rea-
son behind this is that push certificates contain 7 fields in
addition to the signature, whereas RSL push entries only
have 3 additional fields.

2Popularity is based on the “star” ranking used by GitHub, which
reflects users’ level of interest in a project (retrieved on Feb 14, 2016).

Repo. Our defense Push certificates
R1 301.93 461.27
R2 6.49 8.88
R3 58.91 86.05
R4 44.34 66.27
R5 261.3 402.19

Table 6: Repository storage overhead of defense schemes (in KBs).

Communication overhead. To evaluate the addi-
tional network communication cost introduced by our
securepush operation when compared to the regu-
lar push operation, we measured the cost of the last 10
pushes for the five considered repositories. To evaluate
the cost of securefetch, we measured the cost of a
fetch after each of the last 10 pushes.

Table 7 shows the cost incurred by push operations.
We can see that our defense incurs, on average, between
25.24 and 26.21 KB more than a regular push, whereas
our defense (light) only adds between 10.29 and 10.48
KB. This is because a securepush in our defense re-
trieves, updates and then stores the RSL in the remote
repository. In contrast, our defense (light) only requires
storing the RSL with the new push entry if there are no
conflicts. Table 8 shows the cost incurred by fetch op-
erations. A securefetch incurs on average between
25.1 and 25.55 KB more than a regular fetch, whereas
our defense (light) only adds between 14.34 and 10.91
KB.

The observed overhead is a consequence of the fact
that we implemented our defense scheme to respect de-
sign goal DG3, (i.e. no requirement to modify the
Git server software). Since we implemented the RSL
and the Nonce Bag as objects in a separate Git branch,
securepush and securefetch require additional
push/fetch commands to store/fetch these, and thus
they incur additional TCP connections. Most of the
communication overhead is caused by information that
is automatically included by Git and is unrelated to
our defense scheme. We found that Git adds to each
push and fetch operation about 8-9 KBs of supported
features and authentication parameters. If our defense
is integrated into the Git software, the securepush
and securefetch will only require one TCP ses-
sion dramatically reducing the communication overhead.
In fact, based on the size of an RSL entry (∼325
bytes), which is the only additional information sent by
a securepush/securefetch compared to a regular
push/fetch, we estimate that the communication over-
head of our defense will be less than 1KB per operation.

End-to-end delay. Table 9 shows the end-to-end delay
incurred by push operations. We can see that our de-
fense adds on average between 1.61 and 2.00 seconds
more than a regular push, whereas our defense (light)
only adds between 0.99 and 1.3 seconds. Table 10 shows
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Scheme used R1 R2 R3 R4 R5
Git w/ signed 17.80 3,925.35 38.32 59.14 11.96
commits
(baseline)
Our defense 44.01 3,950.87 63.56 84.71 37.65
Our defense 28.28 3,935.71 48.61 69.52 22.28
(light)

Table 7: Average communication cost per push for the last 10 push
operations, expressed in KBs.

Scheme used R1 R2 R3 R4 R5
Git w/ signed 20.68 3,896.98 40.93 65.85 13.67
commits
(baseline)
Our defense 46.18 3,922.40 66.48 91.27 38.77
Our defense 35.19 3,911.81 55.84 80.67 28.01
(light)

Table 8: Average communication cost per fetch for the last 10 fetch
operations, expressed in KBs.

Scheme used R1 R2 R3 R4 R5
Git w/ signed 1.29 3.27 1.17 1.31 1.51
commits (baseline)
Our defense 3.11 5.27 2.78 2.95 3.51
Our defense (light) 2.44 4.49 2.16 2.40 2.81

Table 9: Average end-to-end delay per push for the last 10 push op-
erations, expressed in seconds.

Scheme used R1 R2 R3 R4 R5
Git w/ signed 0.87 1.95 0.75 0.66 0.67
commits (baseline)
Our defense 2.93 3.86 2.52 2.40 2.75
Our defense (light) 1.60 2.75 1.52 1.31 1.30

Table 10: Average end-to-end delay per fetch for the last 10 fetch
operations, expressed in seconds.

the end-to-end delay incurred by fetch operations. We
can see that a securefetch incurs on average be-
tween 1.74 and 2.08 seconds more than a regular fetch,
whereas our defense (light) only adds between 0.65 and
0.8 seconds.

The time Git uses to do a fetch or push is dominated by
the network latency when talking with the remote reposi-
tory. Since our defense is designed to be backwards com-
patible, it uses multiple Git commands per push or fetch.
This explains the additional time incurred by our imple-
mentation. If our defense scheme is integrated into Git
so that additional commands (and hence network con-
nections) are not needed, we expect the additional delay
to be negligible.

8 Conclusions

In this work, we present a new class of attacks against
Git repositories. We show that, even when existing Git
protection mechanisms such as Git commit signing, are
used by developers, an attacker can still perform ex-
tremely impactful attacks, such as removing security
patches, moving experimental features into production
software, or causing a user to install a version of soft-

ware with known vulnerabilities.
To counter this new class of attacks, we devised a

backwards compatible solution that prevents metadata
manipulation attacks while not obstructing regular Git
usage scenarios. Our evaluation shows that our solution
incurs less than 1% storage overhead when applied to
popular Git repositories, such as the five most popular
repositories in GitHub.

We performed responsible disclosure of these issues to
the Git community. We have been working with them to
address these issues. Some of our patches have already
been accepted into Git version 2.9. We are continuing to
work with the Git community to fix these problems.
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A Man In The Middle Example

This appendix contains a proof of concept of a Git
metadata manipulation attack against a GitHub reposi-
tory with the intention of showing how an attack could
be carried out in practice.

To perform an attack of this nature, an attacker con-
trols a server, compromises a server, or acts as a man-
in-the-middle between a server and a developer. Hav-
ing done this, the attacker is able to provide erroneous
metadata to trick a developer into committing a tampered
repository state.

We simulated a repeated line scenario, in which a Git
merge accidentally results a repeated line. This can be
devastating as it can completely alter the flow of a pro-
gram — some researchers argue that the ”goto fail;” [41]
vulnerability that affected Apple devices [40] might have
been caused by a VCS mistakenly repeating the line
while merging.

A.1 Simulating the attack
To simulate the attack, we created a repository with

a minimal working sample that resembles Figure 5(c).
Also, we configured two Linux machines under the same
network: one functioned as the malicious server pro-
viding tampered metadata information, while the other
played the role of the victim’s client machine. The spe-
cific setup is described below.

Setup. To simulate the malicious server, we set up Git
server on port 443 with no authentication enabled. Then,
we created an SSL certificate and installed it in the victim
machine. Finally, we a bare clone (using the --bare
parameter) of the repository hosted on GitHub is created
and placed on the pertinent path.

In order to redirect the user to the new branch, we
modified the packed-refs file on the root of the repository
so that the commit hash in the master branch matches the
one for the experimental branch. Refer to Table 11 for an
example.

On the client side, a clone of the repository is cre-
ated before redirecting the traffic. After cloning, the at-
tacker’s IP address is added to the victim’s /etc/hosts file
as “github.com” to redirect the traffic.

As such, both the server and the developer are config-
ured to instigate the attack the next time the developer
pulls.

A.2 The attack
When the developer pulls, he or she is required to

either merge or rebase the vulnerable changes into the
working branch. These merged or rebased changes are
not easy to identify as malicious activity, as they just
resemble work performed by another developer on the
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experimental

master

“Initial 
Commit”

Repeated 
goto

Adds auth

(a) Original repository state (as cloned
by the developer)

experimental
master

Initial 
Commit

Repeated 
goto

Adds auth

(b) The attacker changes the master
branch pointer

experimental

Initial 
Commit

Repeated 
goto

Adds auth Merge
master

master

(c) The developer pulled and, unknowingly, merged the
experimental commit

Figure 5: Maliciously merging vulnerable code

Original file
# pack-refs with: peeled fully-peeled
00a5c1c2f52c25fe389558ea8117b7914ca2351e refs/heads/experimental
3a1db2295a5f842d0223088447bc7b005df86066 refs/heads/master

Tampered file
# pack-refs with: peeled fully-peeled
00a5c1c2f52c25fe389558ea8117b7914ca2351e refs/heads/experimental
00a5c1c2f52c25fe389558ea8117b7914ca2351e refs/heads/master

Table 11: The edited packed-refs file

same branch. Due to this, the user is likely to merge and
sign the resulting merge commit.

Aftermath. Once the user successfully merges the vul-
nerable change, the attacker can stop re-routing the user’s
traffic to the malicious server. With the malicious piece
of code in the local repository, the developer is now ex-
pected to pollute the legitimate server the next time he or
she pushes. In this case, the attacker was able to merge a
vulnerable piece of code into production. Even worse,
there is no trace of this happening, for the target devel-
oper willingly signed the merge commit object.

Setting up an environment for this attack is straightfor-
ward; the metadata modification is easy to perform with
a text editor and requires no sophistication.
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